
RESEARCH SUMMARY

AMNON YEKUTIELI

This summary covers the research in mathematics I have done since 1990. At
the end I also mention several topics for future research.
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1. Noncommutative Grothendieck Duality

1.1. Duality for Noncommutative Rings. Grothendieck Duality was originally
formulated in (commutative) algebraic geometry, in the seminal text [22]. In my
thesis, and later in [67], I introduced the noncommutative version of Grothendieck
Duality. The main idea in [67] was that a dualizing complex R over a noncom-
mutative k-algebra A (k is the base field) should be a complex of bimodules, and
the derived functors RHomA(−, R) and RHomAop(−, R) should induce a duality
(anti-equivalence) between the derived categories of left and right A-modules. Here
Aop stands for the opposite algebra, so right A-modules are naturally considered as
left Aop-modules. Of course we must impose some finiteness conditions. Usually we
assume A is noetherian, and the duality is between the bounded derived categories
with finite cohomologies Db

f (ModA) and Db
f (ModAop).

The impetus to generalize Grothendieck Duality from commutative algebraic
geometry to noncommutative rings came from my thesis advisor Michael Artin, in
connection with his work on local duality for regular graded algebras [2], [4] and
[5]. More on this in §1.2 below.

Noncommutative dualizing complexes have developed into a powerful method,
with a variety of applications, reaching from ring theory to representations of Lie
algebras, and even to theoretical physics. The paper [67] was cited so far in 22
papers by various authors.

1.2. Balanced Dualizing Complexes. Actually, in [67] I considered noetherian
connected graded k-algebras. It turns out that local duality is not automatic for a
noncommutative graded algebra, even if a dualizing complex does exist. Something
more is needed, which is why I defined the balanced dualizing complex. The existence
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of a balanced dualizing complex was verified in some important cases, including the
twisted homogeneous coordinate rings of [6].

For a few years the true meaning of balanced dualizing complexes was obscure.
But in [80] J.J. Zhang and I proved that the existence of a balanced dualizing
complex over the algebra A implies the condition χ of Artin-Zhang [7], and the
finite dimensionality of the projective spectrum ProjA. Then in 1996 M. Van
den Bergh [62] proved the converse statement. This directly implied existence of
balanced dualizing complexes for a wide class of graded k-algebras, for instance PI
(polynomial identity) algebras.

1.3. Duality on Noncommutative Projective Schemes. As mentioned above,
in [80] J.J. Zhang and I proved that for a large class of graded algebras A, including
regular Artin-Schelter algebras, the projective spectrum ProjA of [7] has a global
Serre-Grothendieck duality. Among other applications, recently this duality fea-
tured in a paper in theoretical physics by A. Kapustin, A. Kuznetsov and D. Orlov
[35].

1.4. Canonical Deformations. The paper [69] examined noncommutative de-
formations of the commutative polynomial algebra A = k[x1, . . . , xn] and its de
Rham complex Ω·A/k. The deformed algebra Aq is called a quantum affine space.
These deformations are related to work of Wess-Zumino, Maltsiniotis, Manin and
Artin-Schelter-Tate [3]. I proved that there exists a deformation of Ω·A/k, called
the canonical deformation and denoted by Ω·q, such that Ω0

q = Aq, and Ωn
q [n] is the

balanced dualizing complex of Aq.

2. Rigid Auslander Dualizing Complexes

2.1. Rigid Dualizing Complexes. Another development due to Van den Bergh
[62] is the introduction of rigid dualizing complexes. A dualizing complex R over a
noncommutative k-algebra A is called rigid if

(1) R ∼= RHomAe(A,R⊗R)

in the derived category D(ModAe), where Ae := A⊗Aop.
Observe that for a commutative ring A, letting X := Spec A, π : X → Spec k

the structural morphism and R := π!k the twisted inverse image of the module k,
one has a canonical isomorphism (1) coming from flat base change, cf. [22].

Van den Bergh proved that a rigid dualizing complex is unique up to isomor-
phism. He also proved that if A is a graded algebra with balanced dualizing complex
R, then R is also rigid.

In [81] Zhang and I proved that the rigid dualizing complex RA is unique up to a
unique isomorphism. Moreover for a finite homomorphism of rings A → B there is
at most one rigid trace morphism TrB/A : RB → RA, i.e. a morphism in D(ModAe)
that is nondegenerate and compatible with the rigidifying isomorphisms (1).

2.2. Auslander Dualizing Complexes. The Auslander-Gorenstein property of
a noncommutative algebra A is extremely useful for applications (cf. work of Björk
[11] and Levasseur [44]). However it only makes sense when A is Gorenstein, which
is a rather strong regularity condition. In [72] I suggested that instead one should
look for a dualizing complex R which has the Auslander property. This property
asserts that for every finite A-module M , every integer p, every Aop-submodule
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N ⊂ Extp
A(M,R) and every integer q < p, the module Extq

Aop(N,R) vanishes; and
the same holds after exchanging A with Aop.

My basic observation was that the double Ext spectral sequence arguments used
by Björk and Levasseur apply (with minor modifications) to the situation of an
Auslander dualizing complex. And as shown in my paper with J.J. Zhang [81],
a large class of algebras admit an Auslander dualizing complex, including many
so-called quantum algebras.

Existence of an Auslander dualizing complex has many applications. For in-
stance, we obtained the Gabber Maximality Principal for A-modules, the catenar-
ity of the prime spectrum Spec A (extending work of Goodearl-Lenagan [21]), and
the finiteness of the Krull dimension Kdim A, for many algebras A.

Q.S. Wu and Zhang used Auslander dualizing complexes in their paper [66]
to prove, among other things, that a PI Hopf algebra A admitting a noetherian
connected filtration (e.g. any A finite over its center) is necessarily Gorenstein.
This had been conjectured by K.A. Brown.

The paper [81] was already cited in 9 articles by various authors.

2.3. The Residue Complex of a Noncommutative Ring. The study of the
residue complex K·A of a noncommutative algebra began in [72], and better results
are contained in my paper with Zhang [82]. The Cousin functor E, introduced by
Grothendieck, is a rather subtle operation in commutative algebraic geometry. We
showed that it exists also in the noncommutative setting, once interpreted correctly.
The key is to consider the category ModA of A-modules as a “space” filtered
according to a suitable dimension function. Indeed when A has an Auslander rigid
dualizing complex R we take the canonical dimension function Cdim determined
by R, namely

CdimM := − inf{i | Exti
A(M,R) 6= 0}.

In nice cases the residue complex is K·A = ER. Perhaps the most notable re-
sult of [82] is that an affine noetherian PI algebra A has a residue complex (we
have to assume A has some noetherian connected filtration, but we believe this
restriction can be removed). It should be noted however that if the ring A is “too
noncommutative” then it does not have a residue complex.

2.4. Duality for Universal Enveloping Algebras. In [76] I proved that for
a finite dimensional Lie algebra g, the rigid dualizing complex R of the universal
enveloping algebra U(g) is R = U(g)⊗

(∧n
g
)
[n], where n = rankk g. This had been

conjectured by Van den Bergh in 1996. As a corollary I deduced a Poincaré duality
between the Hochschild homology and cohomology of U(g)-bimodules. There are
also applications to representation theory of Lie algebras, such as the structure of
duals of Verma modules, extending results of K.A. Brown and T. Levasseur [15].
In these applications the crucial ingredient is the rigid trace morphism

Tr : B∗ → U(g)⊗
(∧n

g
)
[n]

in D(ModU(g)e), where B = U(g)/I is any quotient ring of U(g) that’s finite over
k, and B∗ := Homk(B, k), which is the rigid dualizing complex of B.

In [76] I also proved that if C is a smooth k-algebra of dimension n, char k = 0
and D(C) is the ring of differential operators, then the rigid dualizing complex of
D(C) is D(C)[2n]. The proof used standard facts about D-modules. This approach
was extended by S. Chemla [18] to the case of the ring of differential operators
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D(L) of a Lie algebroid L over a smooth commutative ring C, using her results in
[17]. The rigid dualizing complex here is

D(L)⊗C

(∧n

C
L

)
⊗C Ωm

C/k[n + m]

where n = rankC L and m = dim C. Note that Chemla’s result recovers my original
result for U(g), since for L := g and C := k we get D(L) = U(g).

2.5. Perverse Modules. Perverse sheaves first appeared in the context of geom-
etry of singular spaces [8].

In [85] we prove that if A is a noncommutative k-algebra with an Auslander
dualizing complex R and p is the minimal perversity p(n) = −n, then there is a
corresponding t-structure on the derived category Db

f (ModA). The formulas are
similar to the topological setup (as in [8] and [34]), but the dimension of support of
a module M is measured by the canonical dimension Cdim M determined by the
complex R. The heart pD0

f (ModA) is called the category of perverse modules.
Now suppose A is a differential k-algebra of finite type (i.e. there is a filtration of

A s.t. grA is finite over its center, and the center is finitely generated over k). Then
we show that the rings A and Ae both have rigid Auslander dualizing complexes,
and the rigid dualizing complex RA of A, as complex of bimodules, is perverse,
namely RA ∈ pD0

f (ModAe).

2.6. Perverse Sheaves and Dualizing Complexes. Let (X,A) be a pair con-
sisting of a scheme X and a sheaf of noncommutative rings A on X. Suppose X is
separated finite type over k, and A has a filtration F s.t. F−1A = 0, A =

⋃
FiA,

the center Z(grFA) is a quasi-coherent, locally finitely generated OX -algebra, and
grFA is a coherent Z(grFA)-module. We call (X,A) a differential quasi-coherent
ringed scheme of finite type. Familiar examples are A := DX , the ring of differential
operators for X smooth in characteristic 0; or any coherent OX -algebra A.

Restricting to an affine open set U = Spec C ⊂ X we obtain a differential k-
algebra of finite type A := Γ(U,A). As explained above A has a rigid dualizing
complex RA. Furthermore, as C-bimodules the cohomologies HiRA are supported
on the diagonal U ⊂ U × U . Since the open sets U × U cover the diagonal X ⊂
X2 = X × X, one would like to glue the dualizing complexes RA to a global
complex RA. This kind of gluing is tricky, since we are dealing with objects in
triangulated categories. We remind the reader that in [22] the solution was to pass
to residue complexes, which are well defined as sheaves and so can be glued. Yet
in the noncommutative situation residue complexes seldom exist!

Our solution in [85] is to use perverse sheaves. First we show there is a prod-
uct (X2,Ae) that’s also a differential quasi-coherent ringed scheme of finite type.
Relying on our results for rings we show that there is a perverse t-structure on the
derived category Db

c (ModAe) for the minimal perversity p(n) = −n. We then prove
that the heart pD0

c(ModAe) is a stack of abelian categories on X2. For each affine
open set U as above the rigid dualizing complex RA sheafifies to a perverse sheaf
on U × U , supported on the diagonal. Now we can perform the gluing.

3. Derived Picard Groups

3.1. The Derived Picard Group. Let A be a k-algebra. A two-sided tilting
complex is a complex T ∈ Db(ModAe) s.t. there exists some other complex S
satisfying T ⊗L

A S ∼= S ⊗L
A T ∼= A. The derived Picard group DPick(A) consists of
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isomorphism classes of two-sided tilting complexes, and the operation is the derived
tensor product. In [75] I proved that when A is commutative with connected
spectrum, or when A is local, then DPick(A) = Z × Pick(A). Here Pick(A) is
the usual (noncommutative) Picard group of Morita equivalences. This result was
obtained independently by Rouquier-Zimmermann [57]. On the other hand already
in the smallest nonlocal noncommutative k-algebra – the ring of upper triangular
2×2 matrices – one has a proper inclusion Z×Pick(A) ( DPick(A). Thus DPick(A)
is a genuine noncommutative geometric invariant.

In [75] I also proved that DPick(A) classifies the isomorphism classes of dualizing
complexes the algebra A.

B. Keller (lecture at CIRM, October 2001) proved that the Lie algebra of
DPick(A) is isomorphic as graded Lie algebra to the Hochschild cohomology HH·(A)
of A. This implies that HH·(A) with its Gerstenhaber Lie algebra structure is in-
variant under derived Morita equivalence.

The paper [75] has an appendix by my summer student E. Kreines. This paper
was already cited 7 times, including the review paper by P. May [48].

3.2. Derived Picard Groups of Hereditary Algebras. In [49] with J. Miyachi
we look at the structure of DPick(A) when A is a finite dimensional hereditary
k-algebra (the path algebra of a finite quiver). We work out the structure of the
group DPick(A) for many types of quivers, including all Dynkin and affine quivers.
For that we analyze the natural action of DPick(A) on the Auslander-Reiten quiver
of the derived category Db(mod A). We also get an interesting connection with the
reflection functors of Bernstein-Gelfand-Ponomarev [10] and Auslander-Platzeck-
Reiten, and the Weyl group of the quiver.

One should mention that for some commutative schemes X (e.g. X = P1
k) the

derived category Db(CohX) is equivalent to Db(mod A), where A is the path al-
gebra of a suitable quiver. In a recent paper of Kontsevich-Rosenberg [41] it is
shown that this phenomenon holds also for Db(CohX), where X = NPn

k is their
noncommutative projective space. Thus our calculations in [49] describe the group
of auto-equivalences of Db(CohX) in these cases.

3.3. Derived Picard Groups of Finite Dimensional Algebras. In the paper
[77] I use recent deep work of Huisgen-Zimmermann and Saoŕın [30] and Rouqier
[55] to prove that for any finite dimensional algebra A over an algebraically closed
field k the group DPick(A) is a locally algebraic group (i.e. it has a geometric
structure). This is reminiscent of the Picard scheme of a (commutative) variety.
The locally algebraic groups obtained are often of the form of a nontrivial semi-
direct product D n G, where D is a discrete group and G is a connected algebraic
group. Interestingly, similar groups occur in D.O. Orlov’s paper [50].

4. Residues on Schemes

4.1. Topological Local Fields and Residues. In [68] I worked on topological
local fields, expanding earlier work of A.N. Parshin [51] and V.G. Lomadze [47]. A
topological local field of dimension n is a field K endowed with a topology and a rank
n valuation, that’s isomorphic to an iterated Laurent series field F ((t1)) · · · ((tn)),
where F is a finitely generated extension of the base field k. To a topological local
field K one assigns its separated differential forms Ω·,sepK/k . There is a notion of
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morphism of topological local fields K → L. I proved that there is a functorial
residue map ResL/K : Ω·,sepL/k → Ω·,sepK/k , and studied its properties.

The results on topological local fields required a lot of foundational work on
topological rings and differential operators, that was also done in [68]. One of my
theorems on differential operators in characteristic p > 0 was used by K.E. Smith
in several papers, including [61].

4.2. Explicit Construction of the Residue Complex. Let X be a scheme of
finite type over a field k. According to Grothendieck Duality theory [22], there is
a special complex K·X of quasi-coherent injective OX -modules called the residue
complex. It is defined as follows. Denote the structural morphism by π : X →
Spec k. Then in the derived category D(ModX) there is a dualizing complex π!k,
called the twisted inverse image of k. Applying the Cousin functor E (which takes
a sheaf to the direct sum of its local cohomologies) we obtain K·X := Eπ!k.

The residue complex K·X enjoys remarkable functorial properties, which are de-
duced from the corresponding properties of the functor π!. To mention two, there
is a homomorphism of complexes Trf : f∗K·X → K·Y when f : X → Y is a proper
morphism; and there is a quasi-isomorphism Ωn

X/k[n] → K·X when X is smooth of
dimension n. Thus in the smooth case K·X is the minimal injective resolution of
the sheaf Ωn

X/k of top degree differential forms.
The importance of the residue complex K·X (and the difficulty in constructing

it explicitly) is its double nature: on the one hand it consists of concrete mod-
ules (which can be expressed as injective hulls, or as modules of differential forms
with denominators); yet on the other hand it has the functorial variance proper-
ties, which are invisible from the naive concrete point of view. The problem of
explicit construction of the residue complex can be stated as finding formulas for
the coboundary operator δ : Kq

X → Kq+1
X and the variance (Trf etc.), which involve

the concrete description of the modules (necessarily with auxiliary data).
Attempts at an explicit description of Duality Theory were for a long time re-

stricted to the dualizing sheaf ωX , which is the lowest nonvanishing cohomology
sheaf of K·X . Using local cohomology residues, J. Lipman, E. Kunz and their col-
laborators were able to give a pretty complete picture. See [26], [42], [43], [45] and
[46] and their references.

In [68] I gave an explicit construction of the residue complex K·X , for X a re-
duced scheme of finite type over a perfect field k. Here is the main idea. Let
ξ = (x0, . . . , xn) be a saturated chain of points in X, namely each xi is an im-
mediate specialization of xi−1. Beilinson [9] showed how the residue field k(x0)
can be completed to a ring k(x0)ξ, and I proved that k(x0)ξ is a finite product of
topological local fields of dimension n. Furthermore any lifting σ : k(xn) → ÔX,xn

gives rise to a morphism of topological local fields σ : k(xn) → k(x0)ξ, and hence
to the Parshin residue map

Resσ,ξ : Ωm+n
k(x0)/k → Ωm+n,sep

k(x0)ξ/k → Ωm
k(xn)/k.

To illustrate how the residue complex K·X is constructed from the residue maps
Resσ,ξ let’s examine the really easy case of an integral curve X (cf. Serre’s [60]).
Write x for the generic point of X and y for some closed point. Note that there
is only one lifting σ : k(y) → ÔX,y. Define KX(x) := Ω1

k(x)/k and KX(y) :=
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Homcont
k(y)(ÔX,y,k(y)). Let δ : KX(x) → KX(y) be the homomorphism

δ(α)(a) := Res(x,y)(aα) ∈ k(y)

for α ∈ Ω1
k(x)/k and a ∈ ÔX,y. Finally define K−1

X := KX(x) and K0
X :=

⊕
y KX(y).

The explicit construction of the residue complex in [68] made it possible for the
first time to compare Parshin residues to local cohomology residues (see my joint
paper with P. Sastry [59]). Furthermore the papers by Hübl [24] and Sastry [58]
are largely based on my work in [68]. In all there are at least 14 citations of [68] by
other authors.

4.3. Beilinson Completion Algebras. Let X be a finite type scheme over a per-
fect field k. Following Beilinson [9] I showed that a saturated chain ξ = (x0, . . . , xn)
in X defines a completion OX,ξ of the local ring OX,x0 . The completion OX,ξ is
a complete semilocal ring, and its residue fields are topological local fields. For
n = 0 we simply get the adic completion OX,(x) = ÔX,x. A Beilinson completion
algebra is any algebra A with topology and with valuations on its residue fields,
that’s isomorphic to some OX,ξ.

The main result in [70] is the existence of the dual module K(A) of a Beilinson
completion algebra A, which is a canonical injective hull with a topology. Suppose
A is local with maximal ideal m and residue field K. Define ω(K) := Ωm,sep

K/k where

m := rankK Ω1,sep
K/k . Suppose σ, σ′ : K → A are two liftings. I discovered a canonical

isomorphism of A-modules

Ψσ,σ′ : Homcont
K;σ (A,ω(K)) '→ Homcont

K;σ′(A,ω(K)).

This isomorphism has an explicit formula, that surprisingly uses differential opera-
tors. Choose a sequence (a0, a1, . . .) of elements in A whose symbols are a K-basis
of grm A. Since for any element a ∈ A the Taylor expansions a =

∑
σ′(λi)ai =∑

σ(µj)aj are unique, we get an infinite matrix D = [di,j ] of differential operators
di,j ∈ D(K) satisfying

σ′(λ)ai =
∑

j

σ(di,j(λ))aj ∈ A.

Now an element φ ∈ Homcont
K;σ (A,ω(K)) can be viewed as a row [φ(a0), φ(a1), . . .]

of elements in ω(K). It’s known that ω(K) is a right D(K)-module, so we can
multiply φ · Dt; and this new row of elements of ω(K) is the one representing
Ψσ,σ′(φ). It’s not hard to verify that for a third lifting σ′′ : K → A one gets
Ψσ,σ′′ = Ψσ′,σ′′ ◦Ψσ,σ′ , and so we can safely define K(A) := Homcont

K;σ (A,ω(K)).
I then showed that the dual modules are covariant w.r.t. intensifications ho-

momorphisms A → A′ (these include completions and étale extensions), and con-
travariant w.r.t. morphisms A → B (such as finite maps).

4.4. Residues and Differential Operators. A much improved construction of
the residue complex K·X is contained in my paper [73]. Here X is any finite type
scheme over a perfect field k. The construction is based on the method of Beilinson
completion algebras discussed above. The idea is that for any point x ∈ X we let
KX(x) be the constant sheaf with support {x} and stalk the dual module K(ÔX,x).
For an immediate specialization (x, y) there is an intensification homomorphism
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ÔX,x = OX,(x) → OX,(x,y) and a morphism ÔX,y = OX,(y) → OX,(x,y), and thus
we obtain an OX -module map

δ : K(x) → K(OX,(x,y)) → K(y).

Summing over all points in X we get the residue complex K·X .
This construction of K·X implies some new results in algebraic geometry and ring

theory, such as the contravariance of de Rham homology w.r.t. étale morphisms,
and an explicit description of the intersection cohomology D-module of a curve (in
characteristic 0). Extending the latter to higher dimensions is one of my research
goals (see below).

5. Beilinson Adeles on Schemes

5.1. Adeles and Differential Forms. Another topic of research is Beilinson ade-
les. Recall the classical ring of adeles A(X) of A. Weil and C. Chevalley, associated
to a regular curve X. This is a “restricted product”: A(X) ⊂

∏
x∈X k(X)(x),

where k(X)(x) denotes the completion of the function field k(X) at a point x. A.N.
Parshin [51] extended the definition to a surface X, and A.A. Beilinson [9] found
a general definition for the complex of sheaves of adeles A·(M), where M is any
quasi-coherent sheaf on a noetherian scheme X.

In [28] R. Hübl and I found a formula for the homomorphism of complexes of
sheaves A·(ωX) → K·X [−n] on an integral n-dimensional scheme X. Here K·X
is the residue complex of X and ωX := H−nK·X is the dualizing sheaf. Such
a formula was predicted by J. Lipman. We also showed that the double complex
A·red(Ω·X/k) calculates de Rham cohomology for X smooth. For a smooth morphism
f : X → S we used the complex f∗A·red(Ω·X/S) to describe explicitly the Gauss-
Manin connection.

5.2. Adelic Chern-Weil Theory. In the paper [29] Hübl and I developed a
Chern-Weil theory based on adeles. We showed that any vector bundle E on a
variety X admits adelic connections ∇, and such connections calculate the usual
Chern classes of E. We then went on to construct adelic secondary Chern-Simons
classes, thereby extending the work of Bloch-Esnault [13]. An algebraic proof of
the Bott Residue Formula for a vector field with finitely many zeroes was given.
Global integration

∫
X

: Hn(X, Ωn
X/k) → k was performed using the sum of residues

over all maximal chains of points in X (see §4.2).
Using the action of adeles on the residue complex from [79] we proved a version of

the Gauss-Bonnet Formula, taking place in the residue complex (i.e. before passing
to cohomology).

The paper [29] was one of the subjects of a seminar at the Independent University
of Moscow in 1998 devoted to current trends and problems of modern algebraic
geometry.

6. Formal Schemes

6.1. Formal Schemes and Duality. In [74] I studied quasi-coherent sheaves on
formal schemes, and introduced the notion of formally finite type morphism between
formal schemes. I defined dualizing complexes on a formal scheme X, proved some
of their properties (like uniqueness up to twists) and existence under some natural
assumptions. A peculiar feature of my definition was that a dualizing complex R
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on X has discrete (or torsion) quasi-coherent cohomology sheaves, that are often
not coherent. This peculiarity was later explained in a paper by Alonso-Jeremı́as-
Lipman [1], with whom I had fruitful exchanges (a section of their paper is based
on my [74]). In [1] it was shown that there are actually two types of dualizing
complexes on X: t-dualizing complexes (my definition) and c-dualizing complexes.
These two types are related via Greenlees-May duality.

In [74] I gave a third construction of the residue complex. Here X is a finite
type scheme over a regular base scheme S (e.g. S = Spec Z), and one is looking at
the relative residue complex K·X/S . I used I-C. Huang’s work on traces for local
rings [23], in conjunction with my own results on smooth formal embeddings and
duality on formal schemes. One of the consequences I got is the equality between
H−nK·X/S and the sheaf of degree n regular differentials of Kunz and Waldi [43],
when X is generically smooth over S of relative dimension n.

6.2. Hochschild Complex of a Scheme. In [78] I considered a scheme X that’s
separated and of finite type over a noetherian base ring k. The formal completion of
the product scheme Xq+2 along the diagonal embedding of X is a topological sheaf
of OX2-modules, supported on X, that we denote by B̂−q(X). Taking all q ≥ 0 we
obtain the complete bar resolution B̂·(X) of OX . On any affine open set in X this
resolution is the adic completion of the usual (unnormalized) bar resolution.

Define Ĉ·(X) := OX ⊗OX2 B̂·(X), the complete Hochschild chain complex. The
continuous Hochschild cochain complex of X with values in an OX -module M is
Homcont

OX
(Ĉ·(X),M). When X is smooth and M = OX the continuous Hochschild

cochain complex turns out to be exactly the complex of poly differential operators
of Kontsevich [39].

I proved that whenever X is smooth over k (regardless of characteristic) there
is a functorial isomorphism

Homcont
OX

(Ĉ·(X),M) ∼= RHomOX2 (OX ,M)

in the derived category D(ModOX2).
I also proved that if X is smooth over k of relative dimension n and n! is invertible

in k, then there is a quasi-isomorphism⊕
q
HomOX

(Ωq
X/k,M)[−q] → Homcont

OX
(Ĉ·(X),M).

This is a generalized Hochschild-Kostant-Rosenberg Theorem. WhenM = OX this
is the quasi-isomorphism underlying the Kontsevich Formality Theorem. Indeed for
a real C∞ manifold X the quasi-isomorphism above is [39] Theorem 4.6.1.1.

7. Research in Progress and Future Plans

7.1. Rigid Dualizing Complexes and DGAs. The importance of rigid dualiz-
ing complexes has already been established. So far the definition involved an algebra
A over a base field k. I would like to extend the definition to the case where k is
any (noetherian) commutative ring, and A is not necessarily flat over k. There are
some technical problems, that I think can be solved with DGAs. Then I would
like to prove uniqueness and functoriality of these rigid dualizing complexes. Using
this general notion of rigidity, together with gluing of perverse sheaves, one should
be able to obtain a totally new approach to the classical Grothendieck Duality of
schemes, including the delicate base change theorems.
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7.2. Rigid Dualizing Complexes and Hopf Algebras. In [76] the rigid du-
alizing complex was used to establish a Poincaré duality for bimodules over an
enveloping algebra U(g). I would like to extend this result to other Hopf algebras,
and in particular the quantum enveloping algebras Uq(g).

Furthermore I wish to see if the rigid dualizing complex of a Hopf algebra is
compatible in some way with comultiplication. The heuristic is that the rigid
dualizing complex is an analog of the invariant Haar measure on a Lie group. If
this approach succeeds we may be able to extend the powerful methods of bialgebra
cohomology, so far used very effectively by S. Gelaki and P. Etingof [20] for finite
dimensional Hopf algebras, also to some infinite dimensional Hopf algebras.

7.3. Noncommutative Schemes. Van den Bergh [63] proposed a theory of non-
commutative algebraic geometry, which includes the projective geometry of Artin-
Zhang. This new geometry talks about “sheaves” of algebras and bimodules on
noncommutative quasi-schemes, and morphisms between quasi-schemes. Very re-
cently another noncommutative algebraic geometry was proposed by Kontsevich-
Rosenberg [41]. I would like to study these new geometries. Among other questions,
is it possible to incorporate duality theory into these geometrical setups, and if so,
what are the applications? In particular I want to look at canonical projective em-
beddings, the behavior of duality in blow-ups, perverse sheaves and group actions.

7.4. The Derived Picard Group. An intriguing question about DPick(A) is its
relation to the link graph on Spec A, where A is a noetherian k-algebra. If A is finite
dimensional hereditary this was solved in [49]. In general, do any properties of the
group DPick(A) constitute obstructions to noncommutative localization? What do
conditions on dualizing complexes, like the Auslander condition, mean in terms of
the group DPick(A)?

On a broader perspective the derived Picard group is related to the geometry
of commutative varieties and to mirror symmetry (conjectures of Konstevich [38]
and work of Orlov [50] and Bondal-Polischchuk [14]). These relations should be
explored.

7.5. Intersection Cohomology. As proved in [73], algebraic residues and Beilin-
son completion algebras give rise to a description of the intersection cohomology
D-module L(X, Y ) of a curve X in characteristic 0. What is the explicit descrip-
tion of L(X, Y ) when dim X ≥ 2? I would expect that residues along chains in
desingularizations X ′ → X shall play a role in this description. What would that
tell us about the singularities of X? What is the intersection cohomology version
of the residue complex, and what information does it carry about the singularities
of X?

Recently M. Blickle [12] worked on a characteristic p version of the intersection
cohomology D-module. What is the connection between his work and our approach
of algebraic residues?

7.6. Adeles, Arithmetic Geometry and Hodge Theory. As demonstrated in
[29], the complex of adeles A·X = A·red(Ω·X/k) is a very good model for calculating
de Rham cohomology, as far as intersection theory and characteristic classes are
concerned. Indeed the complex A·X behaves formally like the Dolbault complex of
C∞ differential forms on a differentiable manifold. There exist adelic connections on
any vector bundle. However, by [71], the filtration A·,≥q

X doesn’t induce the Hodge
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decomposition on H·DR(X), when X is smooth projective over C. The conjecture
is that instead what we get is the coniveau filtration. Similarly on an arithmetic
scheme, the adeles A·red(OX) do not account for the primes at infinity. Could it be
possible to enrich Beilinson’s adeles, and also the algebraic residues of [68], by some
R-metric data, adding the missing “archimedean part”? If this plan works out one
could have very interesting applications both to arithmetic intersection theory and
to Hodge theory.

7.7. Adeles, Residues and Algebraic Stacks. Recently there has been a flour-
ish of research involving calculations of characteristic classes on algebraic spaces,
and more generally on algebraic stacks (cf. Edidin-Graham [19]). Some of these
calculations arise from physics (cf. Kontsevich-Manin [40]). As shown in [29], the
method of adeles and algebraic residues is effective for dealing with intersection
theory on schemes, and I propose to study generalizations of this method to stacks.
In particular one would expect to obtain secondary characteristic classes for vector
bundles on stacks.
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[28] R. Hübl and A. Yekutieli, Adeles and differential forms, J. reine angew. Math. 471 (1996),

1-22.
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[42] E. Kunz, “Kähler Differentials”, Vieweg, Braunschweig, Wiesbaden 1986.
[43] E. Kunz and R. Waldi, “Regular Differential Forms,” Contemp. Math. 79 (1988), AMS,

Providence.

[44] T. Levasseur, Some properties of noncommutative regular rings, Glasgow Math. J. 34 (1992),
277-300.

[45] J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117
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[69] A. Yekutieli, Canonical deformations of De Rham complexes, Advances in Math. 115 (1995),

250-268.
[70] A. Yekutieli, Traces and differential operators over Beilinson completion algebras, Compositio

Math. 99 (1995), 59-97.
[71] A. Yekutieli, Some remarks on Beilinson adeles, Proc. Amer. Math. Soc. 124 (1996), 3613-

3618.

[72] A. Yekutieli, The residue complex of a noncommutative graded algebra, J. Algebra 186
(1996), 522-543.

[73] A. Yekutieli, Residues and differential operators on schemes, Duke Math. J. 95 (1998), 305-

341.
[74] A. Yekutieli, Smooth formal embeddings and the residue complex, Canadian J. Math. 50

(1998), 863-896.

[75] A. Yekutieli, Dualizing complexes, Morita equivalence and the derived Picard group of a ring,
J. London Math. Soc. 60 (1999) 723-746.

[76] A. Yekutieli, The rigid dualizing complex of a universal enveloping algebra, J. Pure Appl.

Algebra 150 (2000), 85-93.
[77] A. Yekutieli, The derived Picard group is a locally algebraic group, to appear in Algebr.

Represent. Theory; eprint: math.RA/0005005.

[78] A. Yekutieli, The continuous Hochschild cochain complex of a scheme, preprint; eprint
math.AG/0111094.

[79] A. Yekutieli, The action of adeles on the residue complex, preprint.
[80] A. Yekutieli and J.J. Zhang, Serre duality for noncommutative projective schemes, Proc.

Amer. Math. Soc. 125 (1997), 697-707.

[81] A. Yekutieli and J.J. Zhang, Rings with Auslander dualizing complexes, J. Algebra 213
(1999), no. 1, 1-51.

[82] A. Yekutieli and J.J. Zhang, Residue complexes over noncommutative rings, preprint; eprint

math.RA/0103075.



14 AMNON YEKUTIELI

[83] A. Yekutieli and J.J. Zhang, Dualizing complexes and tilting complexes over simple rings,
preprint; eprint math.RA/0110008.

[84] A. Yekutieli and J.J. Zhang, Multiplicities of indecomposable injectives, in preparation.

[85] A. Yekutieli and J.J. Zhang, Dualizing complexes and perverse sheaves on noncommutative
ringed schemes, in preparation.

Department of Mathematics, Ben Gurion University, Be’er Sheva 84105, ISRAEL

E-mail address: amyekut@math.bgu.ac.il

http://www.math.bgu.ac.il/∼amyekut


