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1. Deformation Quantization in Algebraic Geometry

Subsections 1.1 and 1.2 give some background. My own work is explained in
Subsections 1.3 - 1.7.

1.1. Overview of Deformation Quantization. The origin of deformation quan-
tization is in the paper [9] from 1978 by the physicists Flato et. al. They asked
whether the ring C∞(X) of functions on a Poisson differentiable manifold X can
be quantized. Namely, does there exist an associative R[[~]]-bilinear multiplication
? on the R[[~]]-module C∞(X)[[~]], satisfying

(1.1.1) f ? g ≡ fg mod ~

and

(1.1.2) 1
2 (f ? g − g ? f) ≡ {f, g}~ mod ~2

for any f, g ∈ C∞(X). Here ~ is a formal parameter (the “Planck constant”)
and {−,−} is the Poisson bracket. The multiplication ? is called a star product.
Furthermore, there should be a sequence {βj}j≥1 of bidifferential operators on X
such that

(1.1.3) f ? g = fg +
∑

j≥1

βj(f, g)~j .

The physical reasoning goes like this: the noncommutative algebra
(
C∞(X)[[~]], ?

)
is a model for the quantization of the classical system whose phase space is X.

The problem of existence of a deformation quantization turned out to be a diffi-
cult one. For a symplectic manifold X it was solved by De Wilde and Lacomte [21]
in 1983. A more geometric proof, using the formal geometry of Gelfand-Kazhdan
[28], was discovered by Fedosov [24] in 1994. The problem was finally solved by
Kontsevich [45] in 1997.
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Deformation quantization is also closely related to index theorems; this was
already observed by Fedosov. There are some results in this direction by Schapira
et. al. [62] and Tsygan et. al. [59].

1.2. The Work of Kontsevich. Kontsevich did more than prove existence of
a deformation quantization of the algebra C := C∞(X), given a Poisson bracket
{−,−}. He showed how to obtain a canonical deformation quantization, up to gauge
equivalence. To be more precise, Kontsevich considered formal Poisson brackets on
C, which are by definition Poisson brackets on the commutative R[[~]]-algebra C[[~]]
that are congruent to 0 modulo ~. A usual Poisson bracket {−,−} on C extends
to a formal Poisson bracket {−,−}~ in an obvious way. There is a group acting
on the set of all formal Poisson brackets, called the group of gauge equivalences.
Likewise there is a group of gauge equivalences acting on the set of all deformation
quantizations of C (i.e. star products on C[[~]]). The result of Kontsevich [45] is
that there is a canonical bijection

Q :

{
formal Poisson brackets on C

}

gauge equivalence
'→

{
deformation quantizations of C

}

gauge equivalence
called the quantization map. The map Q preserves first order terms, in the following
sense. Given a formal Poisson bracket α = {−,−} we can expand it into a series
of biderivations, namely {f, g} =

∑∞
j=1 αj(f, g)~j for f, g ∈ C. Then, if ? = Q(α),

one has the relation
1
2 (f ? g − g ? f) ≡ α1(f, g)~ mod ~2.

The crux of Kontsevich’s solution of the deformation quantization problem was
his celebrated Formality Theorem [45]. It asserted the existence of an L∞ quasi-
isomorphism

(1.2.1) U : Tpoly(R[t]) → Dpoly(R[t])

between the differential graded (DG) Lie algebras Tpoly(R[t]) and Dpoly(R[t]). Here
R[t] := R[t1, . . . , tn], the algebra of polynomial functions on Rn. The morphism U
has some important invariance properties. The formulas for U were inspired by
considerations of string theory (see [46]).

Let us recall the roles of the DG Lie algebras mentioned above. Let K be a
field of characteristic 0, and let C be a commutative K-algebra. The DG Lie
algebra Tpoly(C) of poly derivations controls formal Poisson structures on C, in
the sense that formal Poisson structures are precisely solutions α =

∑
j≥1 αj~j ∈

T 1
poly(C)[[~]]+ of the Maurer-Cartan equation d(α) + 1

2 [α, α] = 0, and gauge equiv-
alence are parameterized by the Lie algebra T 0

poly(C)[[~]]+. Similarly the DG
Lie algebra Dpoly(C) of poly differential operators (which is a subalgebra of the
Hochschild complex) controls deformation quantizations of C (this goes back to
Gerstenhaber [27]). An L∞ quasi-isomorphism Ψ : Tpoly(C) → Dpoly(C) is a se-
quence of homomorphisms

Ψj :
∧j

K
Tpoly(C) → Dpoly(C),

where Ψ1 is a DG Lie algebra quasi-isomorphism, up to the higher homotopies
Ψ2, Ψ3, . . .. By standard facts from deformation theory [45, 26] the L∞ quasi-
isomorphism Ψ induces a bijection between gauge equivalence classes of solutions
of the Maurer-Cartan equation in Tpoly(C)[[~]]+ and Dpoly(C)[[~]]+.



RESEARCH SUMMARY: 2001 - 2006 3

The Formality Theorem solves the deformation problem locally (for small open
sets in the C∞ manifold X). In order to globalize Kontsevich used Fedosov’s
method, i.e. by going to formal geometry. (This is briefly explained, in the algebraic
context, in Subsection 1.4 below.) Thus he obtained an L∞ quasi-isomorphism

Ψ : Tpoly

(
C∞(X)

) → Dpoly

(
C∞(X)

)
,

which gave rise to the quantization map Q.
The universal deformation formula (1.2.1) has other amazing consequences, of

which I’d like to mention one. Consider a finite dimensional real Lie algebra g, and
let X := g∗. The symmetric algebra S(g) coincides with the ring of polynomial
functions on X, and it has the Kostant-Kirillov Poisson bracket. The canonical
deformation quantization of S(g), when evaluated at ~ = 1, recovers the universal
enveloping algebra U(g). This provides a new proof of the Duflo isomorphism. Re-
cently Alexeev and Meinrenken [3], using results of Torossian [65] on an extended
Kontsevich deformation formula, proved the longstanding Kashiwara-Vergne con-
jecture (which is a generalization of the Duflo result).

1.3. Deforming Algebraic Varieties. Let K be a field of characteristic 0, and
let X be a smooth n-dimensional variety over K. Assume X is endowed with a
Poisson structure α; namely there is a biderivation α ∈ Γ(X,

∧2
OX

TX) such that
the bracket {f, g} := 〈α, df ∧ dg〉, for local sections f, g ∈ OX , satisfies the Jacobi
identity. What is the correct notion of deformation of the Poisson variety (X, α)?

In case X is affine, say X = Spec C, then the obvious notion of deformation
quantization is a star product ? on the K[[~]]-module C[[~]], as in Subsection 1.1.
(There is a more delicate definition in the affine setting, called semi-formal defor-
mation [47], which we will not consider here.) When X is not affine this has an
immediate generalization: a star product ? on the sheaf OX [[~]]. This means that
? makes OX [[~]] into a sheaf of associative K[[~]]-algebras, and there is a sequence
{βj}j≥1 of global bidifferential operators on OX such that equations (1.1.1), (1.1.2),
(1.1.3) hold locally.

There is a more refined notion of deformation quantization of OX , which we
introduced in [79]. Here we are looking for a sheaf A of K[[~]]-algebras on X, which
admits local differential trivializations. This means that X can be covered by open
sets {Ui}, and on each Ui there is an isomorphism of sheaves of K[[~]]-algebras
A|Ui

∼= OUi [[~]], where on the right side the multiplication is a star product. On
a double intersection the resulting automorphism of OUi∩Uj [[~]] has to be a gauge
equivalence, namely of the form f 7→ f +

∑
j≥1 γj(f)~j , where the γj are differential

operators. The “naive” deformation of the previous paragraph now becomes a
globally trivialized deformation quantization.

In general one must allow this more refined definition of deformation. For in-
stance, if Y is any smooth variety and X := T∗Y , the cotangent bundle, endowed
with its canonical symplectic Poisson structure, then X has a deformation quan-
tization (see [79, Example 1.7]); but it is unlikely that this deformation can be
globally trivialized. (Our definition of deformation quantization was adopted by
several authors; cf. [8].)

One of the things we show in [79] is that when X is affine, or more generally when
H1(X,DX) = 0, then any deformation quantization can be globally trivialized (see
[79, Theorem 1.13]). Here DX is the sheaf of differential operators on the variety
X. This result also explains why in the C∞ setting it is enough to consider globally
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trivialized deformation quantizations (i.e. deformations of the algebra C∞(X)): on
a differentiable manifold X the sheaf DX has vanishing higher cohomologies.

1.4. Existence of Deformations. The question of existence of a deformation
quantization of a Poisson variety X was open until recently, even for an affine
variety X = Spec C. Only a few cases were known explicitly. Things changed after
the Kontsevich Formality Theorem: it easily implies that when X is an affine open
set in An

K , or more generally an affine scheme admitting an étale morphism to An
K ,

then deformation quantizations exist, and moreover they can be classified up to
gauge equivalence (see [79, Corollary 3.24]). Still for a general affine variety there
was no satisfactory answer.

Other cases were treated too. For instance, Artin [5] considered deformations
via an obstruction theory approach. And in [10] the authors found sufficient and
necessary conditions for deforming symplectic varieties.

The problem was solved to a large extent in our paper [79]. Recall that X
is said to be D-affine if any quasi-coherent left DX -module has vanishing higher
cohomologies. This class of varieties includes affine varieties (of course), but also
the flag varieties (such as the projective spaces Pn and the Grassmannians). Note
that for such varieties any deformation quantization can be globally trivialized (see
Subsection 1.3). Our main result [79, Theorem 0.1] asserts that when X is a D-
affine, and R ⊂ K, there is a canonical function

Q :

{
formal Poisson structures on X

}

gauge equivalence
→

{
deformation quantizations of OX

}

gauge equivalence

which preserves first order terms. The quantization map Q commutes with étale
morphisms X ′ → X. When X is affine the map Q is actually bijective; so that we
have a complete solution of the affine case.

Let me outline the proof. The strategy in [79] is to adopt Kontsevich’s proof
to the algebro-geometric setup as much as possible, with input from other sources
such as [18]. Thus we study the bundle π : CoorX → X of formal coordinate
systems on X as an infinite dimensional scheme. Surprisingly, in doing so we had
to quote results from our older papers [76, 78]. Let PX be the sheaf of principal
parts on X (cf. [23]); this sheaf is also called the sheaf of infinite order jets, or the
sheaf of sections of the jet bundle of X. The complete pullback π∗̂ PX is canonically
isomorphic to OCoor X [[t]], and this isomorphism is the universal Taylor expansion
of OX , in a way which we make precise in [79].

We prove that the pullbacks π∗̂ (PX ⊗OX Tpoly,X) and π∗̂ (PX ⊗OX Dpoly,X) also
have universal Taylor expansions. Thus there is a canonical isomorphism of graded
Lie algebras

(1.4.1) π∗̂ (PX ⊗OX
Tpoly,X) ∼= OCoor X ⊗̂K Tpoly(K[[t]]),

and likewise for Dpoly,X . The universal Kontsevich deformation U of (1.2.1) can be
applied to the DG Lie algebras on the right. However the isomorphisms (1.4.1) do
not respect differentials, due to the presence of the Grothendieck connection (see
Subsection 1.6) on the left side. This forces us to twist the universal L∞ morphism
(in a sense explained in Subsection 1.5).

The new L∞ morphism Ψ descends to the quotient bundle Coor X/GLn(K).
This bundle is “almost a torsor” under a pro-unipotent group, and hence by the
method explained in Subsection 1.6 we can find a simplicial section of the bundle.
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This simplicial section σ gives rise to an L∞ quasi-isomorphism

(1.4.2) Ψσ : MixU (Tpoly,X) → MixU (Dpoly,X)

between the sheaves of DG Lie algebras MixU (Tpoly,X) and MixU (Dpoly,X) on X.
Here MixU (−) is the mixed resolution, which is explained in Subsection 1.6. Passing
to global sections it follows that

Γ(X, Ψσ) : Γ
(
X, MixU (Tpoly,X)

) → Γ
(
X, MixU (Dpoly,X)

)

is an L∞ quasi-isomorphism. There are also two global DG Lie algebra homomor-
phism

(1.4.3) Γ(X,Dpoly,X) → Γ
(
X, MixU (Dpoly,X)

)

and

(1.4.4) Γ(X, Tpoly,X) → Γ
(
X, MixU (Tpoly,X)

)
.

When X is D-affine we know that (1.4.3) is a quasi-isomorphism; and hence we
obtain the quantization map Q. And when X is affine the DG Lie algebra homo-
morphism (1.4.4) is also a quasi-isomorphism, implying that Q is bijective.

Here are several papers citing our paper [79]: [22], [16], [8], [42], [55], [10], [20],
[25]. In the very recent preprint [69] by Van den Bergh there is an alternative proof
of our main result.

1.5. Continuous and Twisted L∞ Morphisms. This work [80] is one of the
companions to our paper on deformation quantization. The purpose is to establish
two technical aspects of L∞ morphisms. First we consider the question of conti-
nuity of L∞ morphisms. In the setup of deformation quantization we encounter a
complicated situation: adic completions of quasi-coherent sheaves, and nontrivial
maps between them.

The existing methods of commutative algebra and sheaf theory do not suffice
here. In earlier treatments often such problems were either “shoved under the rug”
or bypassed using ad hoc solutions.

In [80] we introduced the notion of dir-inv modules. As the name suggests, these
are modules (or sheaves) equipped with filtrations, resembling the topology of a one-
dimensional local field. We worked out some basic properties of these “topological
modules”, most importantly completions, direct sums and tensor products.

The second technical aspect treated in [80] was twisting of L∞ morphisms. Con-
sider the universal L∞ quasi-isomorphism U : Tpoly(K[t]) → Dpoly(K[t]) of Kont-
sevich, where K[t] := K[t1, . . . , tn], the polynomial algebra. Then Tpoly(K[t]) and
Dpoly(K[t]) have the t-adic dir-inv structures, and every component Uj of U is con-
tinuous. It follows that for any super-commutative associative unital DG K-algebra
A there is an induced continuous A-multilinear L∞ quasi-isomorphism

UA : A ⊗̂K Tpoly(K[[t]]) → A ⊗̂K Dpoly(K[[t]]).

By twisting a DG Lie algebra such as A ⊗̂K Tpoly(K[[t]]) we mean changing the
differential from d to d + ad(ω), where ω ∈ A1 ⊗̂K T 0

poly(K[[t]]) is a solution of the
Maurer-Cartan equation. This is the case in the universal Taylor expansion

ΩCoor X ⊗̂OCoor X
π∗̂ (PX ⊗OX

Tpoly,X) ∼= ΩCoor X ⊗̂K Tpoly(K[[t]]),
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where ΩCoor X =
⊕

p≥0 Ωp
Coor X is the de Rham complex of the scheme Coor X (cf.

(1.4.1)). The Grothendieck connection on the left side corresponds to ad(ωMC) on
the right side, for a canonical element ωMC called the Maurer-Cartan form.

In [80, Theorem 0.1] we prove that the DG Lie algebra A ⊗̂K Dpoly(K[[t]]) and
the L∞ quasi-isomorphism UA can be twisted by ω, and we give an explicit formula
for the twisted L∞ quasi-isomorphism UA,ω.

1.6. Mixed Resolutions and Simplicial Sections. In the C∞ context the bun-
dle Coor X/GLn(K) has contractible fibers, and therefore it admits global C∞

sections. This does not work in the algebro-geometric context. As a way of getting
around this problem we introduced the notion of simplicial section of a bundle, in
[81]. This concept is inspired by work of Bott [13], and by our own work with Hübl
[41].

Suppose π : Z → X is a morphism of schemes. A simplicial section of π, based
on an open covering {Ui} of X, consists of a family of morphisms

σi : ∆q
K × Ui → Z,

for i = (i0, . . . , iq) and q ∈ N, that commute with π and satisfy the simplicial
relations (see [81]). Here ∆q

K is the geometric q-dimensional simplex

∆q
K := SpecK[t0, . . . , tq]/(t0 + · · ·+ tq − 1),

and Ui := Ui0 ∩ · · · ∩ Uiq .
We show (in [79]) that the bundle π : Coor X → X is a torsor under the group

GLn n G, where G is a pro-unipotent group. Locally π has sections, so we can
choose an open covering U = {Ui} of X with sections Ui → Coor X. Due to the
averaging process described in Subsection 1.7, these sections can be extended to a
simplicial section σ of Coor X/GLn(K) based on U .

Let’s move to the notion of mixed resolutions. Suppose the open covering U
consists of affine open sets. Given any sheafM of K-modules on X one can form the
commutative Čech resolution ̂̃NC(U ,M). This is a complex of sheaves on X, made
up of the Čech resolution, to which one applies the Thom-Sullivan normalization
(cf. [41] and [35]). There is a functorial quasi-isomorphism M→ ̂̃NC(U ,M), and

globally this gives an isomorphism RΓ(X,M) '→ Γ(X, ̂̃NC(U ,M)) in D(ModK).
Since the commutative Čech resolution involves the family of simplices ∆q

K , it
follows that sometimes operations on π∗M, combined with the simplicial section
σ, can induce similar operations on ̂̃NC(U ,M).

Recall the sheaf of principal parts PX . There is a canonical integrable connection

∇P : PX → Ω1
X ⊗OX

PX

called the Grothendieck connection. For any quasi-coherent OX -module M there is
a corresponding de Rham complex M⊗OX ΩX ⊗OX PX with differential ∇P , and
the map

M→M⊗OX ΩX ⊗OX PX

is a quasi-isomorphism. We can now define the mixed resolution of M to be the
total complex

MixU (M) := ̂̃NC(U ,M⊗OX ΩX ⊗OX PX).
Then M → MixU (M) is a functorial quasi-isomorphism of sheaves, and
RΓ(X,M) ∼= Γ(X, MixU (M)). Moreover, certain operations on π∗̂ (PX ⊗OX

M)
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will induce similar operations on MixU (M). This is how the L∞ morphism Ψσ of
(1.4.2) is constructed.

1.7. An Averaging Process for Unipotent Group Actions. This is a new
result about the structure of torsors under unipotent groups in characteristic 0.

Suppose K is a field of characteristic 0. By a weight sequence in K we mean
a sequence w = (w0, . . . , wq) of elements of K such that

∑
wi = 1. Thus w is a

K-rational point of ∆q
K . Let G be a unipotent group over K, and suppose Z is a set

with G(K)-action which is transitive and has trivial stabilizers. Let z = (z0, . . . , zq)
be a sequence of points in Z, and let w be a weight sequence in K. We prove in [82]
that there is a point wavG,w(z) ∈ Z called the weighted average. The operation
wavG is symmetric, functorial, simplicial, and is the identity for q = 0. In case
G is the abelian group An

K , i.e. a vector space, then Z is an affine space, and the
averaging process is the familiar one.

Actually we prove a more geometric result: with G as above, let X be a K-
scheme, let Z be a G-torsor over X, and let Y be any X-scheme. Suppose f =
(f0, . . . , fq) is a sequence of X-morphisms fi : Y → Z. Then there is an X-
morphism

wavG(f) : ∆q
K × Y → Z

called the weighted average. The operation wavG is symmetric, simplicial, functorial
in the data (G,X, Y, Z), and is the identity for q = 0. (In the previous paragraph
we had the special case X = Y = SpecK).

Due to functoriality the averaging result extends to pro-unipotent groups, and
also to semi-direct products, such as GLnnG, which occurs in our main application
(i.e. π : Coor X → X).

It is interesting to note that our averaging process implies that a unipotent
group in characteristic 0 is special (i.e. all torsors have rational sections). This was
observed by Reichstein.

2. Rigid Dualizing Complexes on Schemes

In Subsections 2.1 and 2.3 I review some of the background. My own work is
explained in Subsections 2.2 and 2.4.

2.1. Duality for Commutative Rings – Overview. Grothendieck duality the-
ory for commutative rings [33] says that for a finite type homomorphism f∗ : A → B
between noetherian commutative rings there is a twisted inverse image functor
f ! : D+

f (Mod A) → D+
f (Mod B). Here D+

f (Mod A) is the derived category of
bounded below complexes of A-modules with finitely generated cohomologies. The
assignment f∗ 7→ f ! has to be a 2-functor (i.e. it should be compatible with com-
positions; this is also called a pseudofunctor). Moreover, when f∗ is either smooth
or finite, f ! has to have particular formulas. If f∗ is smooth of relative dimension
n one defines

f ]M := Ωn
B/A[n]⊗A M ;

and when f∗ is finite one defines

f [M := RHomA(B, M).

Then there should be a 2-functorial isomorphism f ! ∼= f ] for smooth homomor-
phisms, and a 2-functorial isomorphism f ! ∼= f [ for finite homomorphisms.
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A word on notation. We denoted the ring homomorphism A → B by f∗, and this
is to indicate that the corresponding morphism of affine schemes is f : SpecB →
Spec A. In the larger context (of algebraic geometry) this notation makes good
sense, even though it might seem peculiar when applied to rings only.

Known constructions of this duality theory have to put some restriction on the
category of rings, e.g. looking only at the category of finite type K-algebras, where
K is some noetherian base ring admitting a dualizing complex RK . We remind that
a complex R ∈ Db

f (Mod A) is called dualizing if it has finite injective dimension,
and RHomA(R, R) = A. Suppose A is a finite type K-algebra, with structural ho-
momorphism π∗ : K → A. It is known that RA := π!RK is a dualizing complex over
A, and hence it induces a duality (i.e. an auto-equivalence) DA := RHomA(−, R)
of Df(Mod A). For any homomorphism f∗ : A → B one can recover the functor f !

using the formula

(2.1.1) f ! ∼= DB Lf∗DA.

Thus to construct the 2-functor f ! it suffices to find a collection of dualizing com-
plexes RA with suitable variance properties.

It might be a surprise to non-experts, but there is no easy way to construct the
affine duality theory described above. The original treatment in [33] first builds
the duality theory for all schemes (and in particular it needs to look at proper
morphisms), and then restricts attention to affine schemes. There are alternative
approaches (mainly in the work of Kunz and Lipman, and their respective students
and collaborators [50, 51, 37, 52, 37, 34], where the concrete aspects are stressed),
but they are neither easy nor complete.

2.2. Rigid Dualizing Complexes over Commutative Rings. In the preprint
[92] Zhang and I apply ideas from noncommutative algebraic geometry to the prob-
lem. From our earlier work on rigid dualizing complexes over noncommutative
rings [88] we knew that much of the commutative affine duality theory can be ob-
tained quite easily, if we consider essentially finite type algebras over a base field
K. (Recall that a K-algebra is called essentially finite type if it is a localization of
a finitely generated algebra.) The challenge was to extend this method to include,
at the very least, the case K = Z. We succeeded to do so in [93] for any finite
dimensional regular noetherian ring K. Our main result is that any essentially fi-
nite type K-algebra A has a rigid dualizing complex RA, which is unique up to a
unique rigid isomorphism. If f∗ : A → B is a finite (resp. essentially smooth homo-
morphism) then there is a canonical isomorphism f [RA

∼= RB (resp. f ]RA
∼= RB).

As explained in Subsection 2.1, this data is enough to construct the inverse image
2-functor f∗ 7→ f !.

Here is a quick explanation of how rigidity is defined and used. Let A be any
commutative ring and let B be a commutative A-algebra. In [92] we construct a
functor

SqB/A : D(Mod B) → D(Mod B)
called the squaring operation. This is a quadratic functor, in the sense that given
a morphism φ : M → N in D(Mod B) and an element b ∈ B one has

SqB/A(bφ) = b2 SqB/A(φ) ∈ HomD(Mod B)(SqB/A M, SqB/A N).

In case B is flat over A then

SqB/A M = RHomB⊗AB(B,M ⊗L
A M);
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but in general we have to choose a K-flat DG algebra resolution B̃ → B relative to
A, and to use the DG algebra B̃ ⊗A B̃ to define SqB/A.

Following Van den Bergh [67] we define a rigid complex over B relative to A to
be a pair (M,ρ), where M ∈ D(Mod B), and

ρ : M
'→ SqB/A M

is an isomorphism in D(Mod B), called a rigidifying isomorphism. (I am suppress-
ing some finiteness conditions.) A rigid morphism from (M, ρ) to (M ′, ρ′) is a
morphism φ : M → M ′ in D(Mod B) such that ρ′ ◦ φ = SqB/A(φ) ◦ ρ. We prove
several properties of rigid complexes. In particular, we show that for an essentially
smooth homomorphism f∗ : B → C (i.e. f∗ is essentially finite type and formally
smooth) there is an induced rigidifying isomorphism f ](ρ) on f ]M . And for a finite
homomorphism f∗ : B → C there is an induced rigidifying isomorphism f [(ρ) on
f [M .

Now fix a regular noetherian ring K of finite Krull dimension. Let A be an
essentially finite type K-algebra. A rigid dualizing complex over A relative to K is
a rigid complex (R, ρ) with R a dualizing complex. Since HomD(Mod A)(R,R) = A
it follows that the only rigid automorphism of R is the identity automorphism 1R.
From this it is not hard to prove that any two rigid dualizing complexes (R, ρ) and
(R′, ρ′) over A relative to K are uniquely isomorphic. This fact, together with the
induction operations ρ 7→ f ](ρ) and ρ 7→ f [(ρ), make our method work.

2.3. Duality for Schemes – Overview. By Grothendieck duality for schemes
we mean a twisted inverse image 2-functor from the category of schemes (say of
finite type over a noetherian base ring K) to the 2-category of all categories. Thus
to a scheme X we assign the category D+

c (ModOX), and to a morphism f : X → Y
there is a functor f ! : D+

c (ModOY ) → D+
c (ModOX), compatible with composi-

tions. There should be 2-functorial isomorphisms f ! ∼= f ] and f ! ∼= f [ for smooth
homomorphisms and finite homomorphisms respectively (see notation in Subsec-
tion 2.1). Also there should be a nondegenerate trace morphism Trf : Rf∗ f ! → 1
on D+

c (ModOY ) when f is proper.
There are two major obstacles to establishing such a Grothendieck duality theory

for schemes (assuming that we already have at our disposal a satisfactory affine
duality theory, as explained in Subsection 2.1). The first is the problem of defining
the functors f ! correctly, and the second is constructing the trace maps for proper
morphisms. The first problem amounts to finding a suitable dualizing complex RX

on each scheme X (cf. formula (2.1.1)), whereas the second problem amounts to
constructing Trf : Rf∗RX →RY when f is proper.

In [33] both these problems were tackled using Cousin complexes. Other treat-
ments (like Deligne in [33, Appendix], or Neeman [58]) used representability argu-
ments to obtain f ! directly. More explicit approaches to Grothendieck duality on
schemes can be found in the papers [4], [19], [36], [37], [38], [39], [44], [51], [52], [53],
[73], [75].

2.4. Rigid Dualizing Complexes on Schemes. Let K be a regular finite dimen-
sional noetherian ring, and let X be a finite type K scheme. Recall that a dualizing
complex on X is a complex R ∈ Db

c (ModOX) that has finite injective dimension,
and RHomOX

(R,R) = OX . In [85] we define a rigid dualizing complex over X
relative to K to be a pair (R, ρ), where R is a dualizing complex, and ρ = {ρU} is
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a rigid structure on R. This means that for any affine open set U = Spec A ⊂ X
the dualizing complex RA := RΓ(U,R) is equipped with a rigidifying isomorphism
ρU : RA

'→ SqA/K RA, and for any inclusion g : U ′ = Spec A′ ⊂ U the isomorphism
g∗RA

∼= RA′ is rigid (i.e. g](ρU ) = ρU ′).
We prove in [85] that X has a rigid dualizing complex (R,ρ), and it is unique up

to a unique rigid isomorphism. Given the affine theory of rigid dualizing complexes
(see Subsection 2.2) this becomes a problem of gluing (complexes and morphisms
between them). Our strategy is as follows. The rigid dualizing complexes on affine
pieces give rise to a dimension function dim on the points of X. Let us recall
(from [33]) that a complex M ∈ Db

c (ModOX) is said to be Cohen-Macaulay if the
local cohomologies Hi

xM vanish unless dim(x) = −i. Define Db
qc(ModOX)CM to

be the full subcategory of Db
qc(ModOX) consisting of Cohen-Macaulay complexes.

We prove that the assignment U 7→ Db
qc(ModOU ), for U ⊂ X open, is a stack of

categories on X. Now for an affine open set U = Spec A let RU be the sheafification
of the rigid dualizing complex RA. Almost by definition RU is a Cohen-Macaulay
complex. For an inclusion g : U ′ → U of affine open sets there is an isomorphism
g∗RU

∼= RU ′ , coming from the rigidity, and these isomorphisms satisfy the cocycle
condition on triple inclusions. So by the stack property we obtain a global complex
RX , together with a rigid structure, and it is unique up to a unique isomorphism.

The fact that we are dealing with stacks implies very easily that for a finite
morphism f : X → Y there is a canonical isomorphism f [RY

∼= RX ; and for
a smooth morphism there is a canonical isomorphism f ]RY

∼= RX . It remains
to find a trace map when f is proper. This we do using Cousin complexes (in
the sense of [33]). We define KX to be the Cousin complex of the rigid dualizing
complex RX , with respect to the dimension function dim mentioned above. Since
KX

∼= RX there is a rigid structure ρX on KX , and we call the pair (KX , ρX) the
rigid residue complex of X. For any scheme morphism f : X → Y we get a map of
graded sheaves Trf : f∗KX → KY , whose formulas are local. Indeed, the trace Trf

depends only on the homomorphisms f∗ : OY,y/mi
y → OX,x/mi

x between truncated
local rings, for x closed in f−1(y). These are finite homomorphisms in the category
of essentially finite type K-algebras, for which we have functorial traces on rigid
dualizing complexes. In order to show that Trf is a map of complexes when f is
proper we reduce to the case of P1

A, where A is an essentially finite type artinian
K-algebra (very similarly to the way it was done in [33]). We then use rigidity we
prove a residue theorem for P1

A.
The last part of the paper [85] is about base change for Cohen-Macaulay mor-

phisms. We show how rigidity allows a significant simplification of Conrad’s results
[19].

3. Rigid Dualizing Complexes over Noncommutative Rings

In this section I present two new applications of dualizing complexes to ring
theory.

3.1. Multiplicities of Indecomposable Injectives. Let A be a (left) noetherian
ring. Any injective left A-module I is a direct sum of indecomposable injective left
modules. Some of these indecomposables are related to prime ideals in A. Indeed,
for a prime p there is an indecomposable injective left A-module J(p), which is
characterized (up to isomorphism) by the property that it has a nonzero submodule
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that’s isomorphic to a submodule of A/p. Furthermore, the injective hull of the left
A-module A/p is isomorphic to J(p)Grank A/p, where Grank A/p is the Goldie rank
of A/p. Thus given an injective module I we can write I ∼= J(p)µ ⊕ I ′, where µ is
a cardinal number, J(p)µ denotes the direct sum of µ copies of J(p), and I ′ does
not have any nonzero submodule isomorphic to a submodule of A/p. The number
µ is called the multiplicity of J(p) in I.

Now suppose that A is a Gorenstein noetherian ring, and let A → I0 → I1 → · · ·
be a minimal injective resolution of A as left module. (This resolution is unique up
to non-unique isomorphism.) For any i ≥ 0 and prime ideal p let µi(p) denote the
multiplicity of J(p) in Ii. It is a classical fact that when A is commutative these
multiplicities are either 0 or 1; and they are called Bass numbers in that context.
The determination of the multiplicities for noncommutative rings was the subject of
quite a few papers: Barou-Malliavin [7], Malliavin [56], and Brown-Levasseur [11]
studies universal enveloping algebras of finite dimensional solvable Lie algebras; and
Brown [14], Brown-Hajarnavis [15] and Stafford-Zhang [64] looked at Gorenstein
noetherian PI algebras. The last term of the minimal injective resolution of A was
also studied, by the above authors and by Ajitabh-Smith-Zhang [1].

The theme of our paper with Zhang [93] is to generalize and unify the existing re-
sults mentioned above. The tool we use is rigid Auslander dualizing complexes. Here
is a reminder of the definitions. Suppose K is a base field, and A is some noetherian
K-algebra, possibly noncommutative. Let Ae := A⊗K Aop, so that Ae-modules are
A-A-bimodules. A dualizing complex over A [85] is a complex R ∈ Db(Mod Ae)
which has finite injective dimension and finitely generated cohomologies on both
sides, and such that RHomA(R, R) = A and RHomAop(R, R) = A. As in Subsec-
tion 2.2, R is called rigid [67] if R ∼= RHomAe(A,R⊗KR). The complex R is said to
be Auslander [74] if Extq

Aop(N, R) = 0 for every Aop-submodule N ⊂ Extp
A(M, R)

and every q > p; and if the same holds after exchanging A and Aop.
Suppose A is a K-algebra admitting a filtration such that the associated graded

algebra is connected, noetherian and commutative (or just PI). It is known from
[87] that A has an Auslander rigid dualizing complex RA. Suppose RA → J is
a minimal injective resolution of RA as complex of left A-modules. We prove a
theorem that calculates the multiplicities of indecomposable injectives in the terms
of J . As one of the corollaries we determine the multiplicities µi(p) in the minimal
injective resolution of the algebra A := U(g), the universal enveloping algebra of a
finite dimensional Lie algebra g. The multiplicities turn out to be either µi(p) = 0
or µi(p) = GrankA/p, depending on the Gelfand-Kirillov dimension of A/p. Note
that the earlier results [56, 11] only treated the case of solvable Lie algebras.

3.2. Homological Transcendence Degree. Let K be a base field, and consider
a division ring D which is an essentially finitely generated K-algebra (i.e. finitely
generated as division ring), but possibly infinite over its center. One would like to
define the transcendence degree of D over K. In case D is finite over its center
Z(D), the obvious definition would be to take the transcendence degree of the field
Z(D). But otherwise a good definition was missing. There are a few properties that
would be expected of such a definition. First one would expect it to coincide with
the usual transcendence degree when D is commutative. Second, if D1 ⊂ D2 is a
finite extension of division algebras (on either side) then these two algebras should
have the same transcendence degree. A third condition is that in case D is the ring
of fractions of some finitely generated subalgebra A ⊂ D, then the transcendence
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degree of D should coincide with the Gelfand-Kirillov dimension GKdimA, or with
the global dimension gl.dim A, if the latter if finite.

The earliest definition of such a transcendence degree goes back to Gelfand-
Kirillov [29]. They used it to distinguish between the various Weyl division rings.
The problem is that this invariant is hard to compute. Since then several authors
have looked into this problem: [54], [94], [95], [61], [63], [66]. The problem of finding
a good definition of transcendence degree for division rings became more urgent in
recent years, with the developments in noncommutative algebraic geometry.

In [90] Zhang and I propose the following definition. Given a division ring D
over K we write De := D ⊗K Dop, and we define the homological transcendence
degree of D over K to be

HtrD := inj.dimDe D,

the injective dimension of D as De-module. (It is easy to see that this definition
is left-right symmetric, i.e. Htr D = Htr D

op
.) We prove that this invariant has the

first two expected properties listed above. As for the third property, assume D is
the ring of fractions of a domain A which admits a filtration, such that associated
graded algebra gr A is connected, noetherian and commutative (or just PI). In this
case we prove that Htr D = GKdim A. This case includes, of course, the Weyl
algebras and the universal enveloping algebras of finite dimensional Lie algebras.
Finally we prove that for an Artin-Schelter regular graded Ore domain A, the
ring of fractions D satisfies Htr D = gl.dim A. We do not need to assume that A is
noetherian in this last case. The proofs rely on various properties of rigid Auslander
dualizing complexes.

4. Research in Progress and Future Plans

4.1. Rigid Dualizing Complexes. The rigid dualizing complex RA of an algebra
A (over a base field K) is a very special and useful object (cf. Section 3). There are
several questions about rigid dualizing complexes that we consider to be interesting
and important. The first has to do with existence. To date, the best existence
criterion for a rigid dualizing complex is the one due to Van den Bergh [67], which
goes via local duality for connected graded algebras. This criterion is very useful,
yet does not cover all cases (e.g. there are noetherian affine PI algebras for which
this criterion does not apply). We wish to find new, alternative methods to prove
existence of rigid dualizing complexes.

The second question is about the behavior of rigid dualizing complexes in fam-
ilies. Namely, suppose A is a flat algebra over a commutative ring C. Is there a
good notion of relative rigid dualizing complex RA/C? In case A is commutative
the answer is of course yes: take RA/C := f !C, where f∗ : C → A is the struc-
tural homomorphism, and f ! is Grothendieck’s twisted inverse image functor (see
Subsection 2.1).

The third question concerns the Auslander property of a dualizing complex (see
Subsection 3.1). In all known examples, the rigid dualizing complex RA has the
Auslander property. Is this true in general? If not, what is the condition?

4.2. Duality for Abstract Noncommutative Spaces. Duality for affine non-
commutative schemes (i.e. rings) is quite well-developed by now. So is duality for
projective noncommutative schemes (in the sense of Artin-Zhang; see [86], [43] and
[60]), and for noncommutative quasi-coherent ringed schemes (see [91]). However,
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so far nothing was done for the abstract quasi-schemes of Van den Bergh [68], or
the noncommutative spaces of Kontsevich and Rosenberg [48]. We propose to per-
form research in this direction. Some problems: (a) find a good formulation of
Grothendieck duality on an abstract noncommutative space; (b) define a notion
of dimension, perhaps using a suitable Auslander property of dualizing complexes
(cf. Subsection 3.1); (c) study regularity properties of the space as reflected by
its dualizing complexes; (d) try to construct (analogues) of canonical projective
embeddings, building on the properties of the rigid dualizing complex. Note the
potential similarity of this item to Subsection 4.3, since the Kontsevich-Rosenberg
construction resembles an algebraic stack.

4.3. Dualizing Complexes on Algebraic Stacks. Despite the fact that alge-
braic stacks (i.e. Deligne-Mumford stacks and Artin stacks) are used a lot nowadays,
and much is known about their structure, still there is no theory of Grothendieck
duality for stacks. This omission might be because the conventional approach to
Grothendieck duality does not generalize well to algebraic stacks. On the face of
it, the approach of [93] (see Subsection 2.4) might be suitable for algebraic stacks.
Indeed, the core ingredient of [93], namely the theory of rigid dualizing complexes
for commutative algebras, has a very well-understood variance behavior with re-
spect to smooth homomorphisms. Presumably the second main ingredient of [85],
which is the stack property of Cohen-Macaulay complexes for the Zariski topology,
could be extended to bigger sites (such as the étale or smooth topologies), thus
permitting gluing Cohen-Macaulay complexes defined locally on a suitable atlas of
an algebraic stack.

Assuming success in formulating a Grothendieck duality theory for stacks, we
shall want to apply it in particular to stacks of stable maps, which are the underlying
geometric objects for the quantum cohomology of a scheme.

4.4. The Derived Picard Group. Let K be a field, and let A be a K-algebra.
The derived Picard group DPic(A) is the group of isomorphism classes of two-sided
tilting complexes, and the operation is derived tensor product. It is known [77] that
DPic(A) parameterizes the isomorphism classes of dualizing complexes over A.

An intriguing question about DPic(A) is its relation to the link graph on Spec A,
where A is a noetherian K-algebra. If A is finite dimensional hereditary this was
solved in [57]. In general, do any properties of the group DPic(A) constitute ob-
structions to noncommutative localization? What do conditions on dualizing com-
plexes, like the Auslander condition, mean in terms of the group DPic(A)?

4.5. Homological Transcendence Degree and Noncommutative Birational
Geometry. Let K be a field. Division rings of transcendence degree 1 over K (i.e.
“function fields of noncommutative curves”) were classified by Artin and Stafford
[6]. The case of transcendence degree 2 (i.e. “function fields of noncommutative sur-
faces”) is work in progress. We propose to apply homological transcendence degree
(see Subsection 3.2), and related ideas, to study division rings, and to contribute
to the classification project.

There are also some questions pertaining to the invariant Htr itself. Let D be a
division ring, essentially finitely generated over K, and suppose that D ⊗K Dop is
noetherian. Is HtrD < ∞? If HtrD = n, is Dσ[n] a rigid dualizing complex over
D for some automorphism σ? Both questions have positive answers in all examples
we looked at.
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4.6. Geometry of Hopf Algebras. The structure of the prime spectrum of a
Hopf algebra H is the subject of a few recent papers [30, 31, 32, 12]. We propose
to contribute to this subject. Our idea is to try to use the rigid dualizing complex
RH as follows. Presumably H is a Gorenstein ring (this is known to be true is some
cases, e.g. when H is PI [70]), and RH

∼= ωH [n]. In analogy to the Haar measure on
a Lie group, we think that the dualizing bimodule ωH should be “invariant,” namely
it should be a “comodule” over H in some generalized way. Also RH = ωH [n] should
be Auslander. These strong properties of ωH should allow us to gain new insights
into the geometry associated to H.

4.7. Algebraic Aspects of Deformation Quantization. In connection with
this topic we wish to look into four problems. First, we would like to understand
the relation between deformation quantization and other deformation processes that
occur in noncommutative algebraic geometry, most notably the Sklyanin process of
deforming P2. The methods of [91] are expected to help in this investigation.

The second problem is taken from Kontsevich’s paper [47]: to work out precise
formulas for the star product given by his quantization map (see Subsection 1.2).
For instance, consider the polynomial algebra K[s, t] with Poisson structure st ∂

∂s ∧
∂
∂t . Kontsevich speculated that the quantization is the K[[~]]-algebra generated by
s, t with single relation t ? s = exp(~)s ? t; see [47, Section 2.3].

The third problem also emerges from [47]. It is to study semi-formal deformations
a commutative algebra C. Kontsevich proved existence of such deformations in case
the Poisson scheme Spec C has a suitable compactification. We want to get a better
understanding of the significance of semi-formal deformations; to try to find other
existence criteria; and maybe even to obtain a classification.

Finally we wish to extend the results of [79] by removing the hypothesis that the
scheme X is D-affine. This would force us to allow weak deformation quantizations,
i.e. instead of a sheaf of K[[~]]-algebras A we only have a K[[~]]-linear prestack of
algebroids (cf. [47], [16] and [55]). This is work in progress, jointly with F. Leitner.

4.8. The Two Multiplications on Hochschild Cohomology. Suppose K is a
field of characteristic 0 and X is a smooth separated n-dimensional scheme over K.
The ith Hochschild cohomology of X is

HHi(X) := Exti
X2(OX ,OX),

where X2 := X×KX, andOX is considered a coherentOX2-module via the diagonal
embedding. The ith tangent cohomology of X is

HTi(X) :=
⊕

p+q=i
Hq

(
X,

∧p

OX

TX

)
,

where TX is the tangent sheaf of X. There is a canonical isomorphism

(4.8.1) HHi(X) ∼= HTi(X),

which was first established by Swan [Sw], and a more general proof appeared in
our paper [78]. Our proof goes like this: we introduced the continuous Hochschild
cochain complex Ccd,X =

⊕
p≥0 Cp

cd,X , and proved that it is canonically isomorphic
to RHomOX2 (OX ,OX) in the derived category of OX2-modules. Next we proved
that the canonical map

⊕
p

(∧p

OX

TX

)
[−p] → Ccd,X
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is a quasi-isomorphism of complexes of OX -modules. (After shifting this is exactly
the quasi-isomorphism U1 : Tpoly,X → Dpoly,X occurring in deformation quanti-
zation; see Subsection 1.2.) Applying global cohomology one obtains the isomor-
phisms HHi(X) ∼= HTi(X). Our proof also shows that the isomorphism (4.8.1) is
compatible with étale morphisms X ′ → X.

Note that when X is affine the isomorphism (4.8.1) becomes the Hochschild-
Kostant-Rosenberg Theorem.

The graded K-module HH(X) :=
⊕

i HHi(X) is a graded algebra with the
Yoneda product, whereas HT(X) :=

⊕
i HTi(X) becomes a graded K-algebra by

combining the wedge product with the cup product on cohomology. In the last
page of his paper [45], Kontsevich makes the following unproved claim: there is an
isomorphism of graded algebras HH(X) ∼= HT(X), which is compatible with étale
morphisms. Kontsevich states that this isomorphism is important for mirror sym-
metry. Some authors (e.g. [17]) say that the formula for the algebra isomorphism
is as follows. There is an element c in the Hodge cohomology

⊕
p,q Hq(X, Ωp

X),
which represents the square root of the Todd class. The algebra isomorphism
HT(X) → HH(X) should be multiplication by c on HT(X), composed with the
isomorphism (4.8.1).

I propose to prove this claim of Kontsevich. The idea is to use the methods of
[79] to obtain an A∞ quasi-isomorphism

MixU (Tpoly,X [−1]) → MixU (Dpoly,X [−1]).

The twisting corresponding to the Grothendieck connection (cf. Subsection 1.4) is
expected to give rise to the twisting of HT(X) by the element c. There are some
preliminary results, and a collaboration with C. Torossian.

4.9. Homological Mirror Symmetry and Noncommutative Algebraic Ge-
ometry. There are several points of contact between homological mirror symmetry
(and its surrounding mathematical envelope) and noncommutative algebraic geom-
etry. We plan to see if some of the techniques that we have developed over the
years may be applied to this area of research. In particular we are thinking about
the following techniques: (a) duality for noncommutative projective schemes; (b)
dualizing complexes over noncommutative ringed schemes, which by definition act
on the derived category by a dual Fourier-Mukai transform; and (c) Auslander-
Reiten quivers of derived categories [57]. Some evidence in this direction can be
found in the recent paper [2], in which the homological mirror symmetry conjecture
is proved for weighted projective spaces and their noncommutative deformations,
and which uses our duality for noncommutative projective schemes [86].
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IHES 32 (1967).

[24] B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential
Geom. 40 (1994), no. 2, 21-238.

[25] R. Fioresi, M. A. Lledo and V. S. Varadarajan, On the deformation quantization of affine
algebraic varieties, eprint math.QA/0406196 at http://arxiv.org.

[26] K. Fukaya, Deformation theory, homological algebra and mirror symmetry, pp. 121209 in “Ge-
ometry and Physics of Branes”, Series in High Energy Physics-Cosmology and Gravitation,
Bristol, 2003.

[27] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103.
[28] I.M. Gelfand and D.A. Kazhdan, Some problems of differential geometry and the calculation

of cohomologies of Lie algebras of vector fields, Soviet Math. Dokl. 12 (1971), no. 5, 1367-
1370.

[29] I.M. Gelfand and A.A. Kirillov, Sur les corps ĺıes aux algebres enveloppantes des algèbres de
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