
Deformation Quantization in
Algebraic Geometry

Amnon Yekutieli
Ben Gurion University, ISRAEL

Lecture notes (with bibliography) at:
http://www.math.bgu.ac.il/

∼amyekut/lectures/def-quant.html

written: 19 June 2006

Deformation Quantization in Algebraic Geometry – p.1/40



plan

Here is the plan of my lecture:

Deformation Quantization in Algebraic Geometry – p.2/40



plan

Here is the plan of my lecture:

1. What is Deformation Quantization?

Deformation Quantization in Algebraic Geometry – p.2/40



plan

Here is the plan of my lecture:

1. What is Deformation Quantization?

2. The Local Picture

Deformation Quantization in Algebraic Geometry – p.2/40



plan

Here is the plan of my lecture:

1. What is Deformation Quantization?

2. The Local Picture

3. Deforming Algebraic Varieties

Deformation Quantization in Algebraic Geometry – p.2/40



What is Deformation Quantization?

1 What is Deformation Quantization?

Deformation Quantization in Algebraic Geometry – p.3/40



What is Deformation Quantization?

1 What is Deformation Quantization?

Let K be a field of characteristic 0 and let C be a
commutative K-algebra.
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What is Deformation Quantization?

1 What is Deformation Quantization?

Let K be a field of characteristic 0 and let C be a
commutative K-algebra.

A Poisson bracket on C is a K-bilinear function

{−,−} : C × C → C

which makes C into a Lie algebra, and is a bi-derivation (i.e.
a derivation in each argument).
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What is Deformation Quantization?

Let TC = DerK(C) be the module of derivations of C. Given
α ∈

∧2
C TC we can define a bi-derivation {−,−}α by

{f, g}α := 〈df ∧ dg, α〉

for f, g ∈ C.
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What is Deformation Quantization?

Let TC = DerK(C) be the module of derivations of C. Given
α ∈

∧2
C TC we can define a bi-derivation {−,−}α by

{f, g}α := 〈df ∧ dg, α〉

for f, g ∈ C.

If {−,−}α is a Poisson bracket on C (i.e. the Jacobi identity
holds) then we call α a Poisson structure.

Deformation Quantization in Algebraic Geometry – p.4/40



What is Deformation Quantization?

Poisson brackets arise in several ways.
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What is Deformation Quantization?

Poisson brackets arise in several ways.

Example 1. Classical Hamiltonian mechanics. Here K = R,
X is an even dimensional differentiable manifold (the phase
space; often X = T∗Y , the cotangent bundle of a manifold
Y ) and C := C∞(X), the ring of differentiable R-valued
functions. See [GS].
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What is Deformation Quantization?

Example 2. Lie theory: let g be a finite dimensional Lie
algebra. Then C := Sym g can be identified with O(g∗), the
ring of algebraic functions on the dual g

∗. There is an
intrinsically defined Poisson bracket called the Kostant -
Kirillov bracket.
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What is Deformation Quantization?

Example 3. Here is an explicit formula.
Take n = 2m and C := K[t1, . . . , tn], the polynomial algebra.
Then

α :=
m∑

i=1

∂
∂ti

∧ ∂
∂ti+m

is a Poisson structure on C.
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What is Deformation Quantization?

Example 4.
Let ~ denote a central variable (the “Planck constant”).
Suppose A is a flat K[[~]]-algebra with multiplication ⋆, and
ψ : A/(~)

≃
→ C is a K-algebra isomorphism.
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What is Deformation Quantization?

Example 4.
Let ~ denote a central variable (the “Planck constant”).
Suppose A is a flat K[[~]]-algebra with multiplication ⋆, and
ψ : A/(~)

≃
→ C is a K-algebra isomorphism.

Given f, g ∈ C choose arbitrary lifts f̃ , g̃ ∈ A, and define

{f, g}⋆ := ψ
(

1
2~

(f̃ ⋆ g̃ − g̃ ⋆ f̃)
)
.

This makes sense because ~ divides f̃ ⋆ g̃ − g̃ ⋆ f̃ in A.
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What is Deformation Quantization?

Example 4.
Let ~ denote a central variable (the “Planck constant”).
Suppose A is a flat K[[~]]-algebra with multiplication ⋆, and
ψ : A/(~)

≃
→ C is a K-algebra isomorphism.

Given f, g ∈ C choose arbitrary lifts f̃ , g̃ ∈ A, and define

{f, g}⋆ := ψ
(

1
2~

(f̃ ⋆ g̃ − g̃ ⋆ f̃)
)
.

This makes sense because ~ divides f̃ ⋆ g̃ − g̃ ⋆ f̃ in A.

The element {f, g}⋆ ∈ C turns out to be independent of the
choice of lifts, and this is a Poisson bracket.
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What is Deformation Quantization?

Deformation quantization seeks to reverse Example 4.
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What is Deformation Quantization?

Deformation quantization seeks to reverse Example 4.

Definition 5. A deformation quantization of C is a
K[[~]]-bilinear associative multiplication ⋆ on the
K[[~]]-module C[[~]], of the form

f ⋆ g = fg +
∞∑

j=1

βj(f, g)~j

for g, f ∈ C,
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Deformation quantization seeks to reverse Example 4.

Definition 5. A deformation quantization of C is a
K[[~]]-bilinear associative multiplication ⋆ on the
K[[~]]-module C[[~]], of the form

f ⋆ g = fg +
∞∑

j=1

βj(f, g)~j

for g, f ∈ C, where

βj : C × C → C

are bi-differential operators.
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What is Deformation Quantization?

Deformation quantization seeks to reverse Example 4.

Definition 5. A deformation quantization of C is a
K[[~]]-bilinear associative multiplication ⋆ on the
K[[~]]-module C[[~]], of the form

f ⋆ g = fg +
∞∑

j=1

βj(f, g)~j

for g, f ∈ C, where

βj : C × C → C

are bi-differential operators. The multiplication ⋆ is called a
star product.
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What is Deformation Quantization?

The reason that the βj have to be bi-differential operators is
to make the star product ⋆ local; otherwise the deformation
has no geometric significance.
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What is Deformation Quantization?

The reason that the βj have to be bi-differential operators is
to make the star product ⋆ local; otherwise the deformation
has no geometric significance.

Definition 6. Given a Poisson structure α on the algebra C, a
deformation quantization of the Poisson algebra (C, α) is a
deformation quantization ⋆ of C such that

{f, g}⋆ = {f, g}α

for all f, g ∈ C.
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What is Deformation Quantization?

The original idea by the physicists Flato et. al. [BFFLS] in
1978 was that in the setup of Example 1 the quantization
process should model the transition from classical to
quantum mechanics.
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What is Deformation Quantization?

The original idea by the physicists Flato et. al. [BFFLS] in
1978 was that in the setup of Example 1 the quantization
process should model the transition from classical to
quantum mechanics.

For a symplectic manifold X and C = C∞(X) the problem
was solved by De Wilde and Lacomte in 1983 [DL]. A more
geometric solution was discovered by Fedosov in 1994 [Fe].
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What is Deformation Quantization?

The original idea by the physicists Flato et. al. [BFFLS] in
1978 was that in the setup of Example 1 the quantization
process should model the transition from classical to
quantum mechanics.

For a symplectic manifold X and C = C∞(X) the problem
was solved by De Wilde and Lacomte in 1983 [DL]. A more
geometric solution was discovered by Fedosov in 1994 [Fe].

The general case, i.e. C = C∞(X) for a Poisson manifold X,
was solved by Kontsevich in 1997 [Ko1]. See the survey
articles [Ke] and [CI].
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What is Deformation Quantization?

To state Kontsevich’s result we need the notion of gauge
equivalence.
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What is Deformation Quantization?

To state Kontsevich’s result we need the notion of gauge
equivalence.

A gauge equivalence is a K[[~]]-linear automorphism
γ : C[[~]]

≃
→ C[[~]] of the form γ = 1 +

∑∞

j=1 γj~
j, where

1 : C
≃
→ C is the identity, and each γj : C → C is a

differential operator.
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What is Deformation Quantization?

To state Kontsevich’s result we need the notion of gauge
equivalence.

A gauge equivalence is a K[[~]]-linear automorphism
γ : C[[~]]

≃
→ C[[~]] of the form γ = 1 +

∑∞

j=1 γj~
j, where

1 : C
≃
→ C is the identity, and each γj : C → C is a

differential operator.

Two star products ⋆ and ⋆′ on C[[~]] are called gauge
equivalent if

γ(f ⋆′ g) = γ(f) ⋆ γ(g)

for some gauge equivalence γ.
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What is Deformation Quantization?

A formal Poisson structure on C is a series α =
∑∞

j=1 αj~
j,

with αj ∈
∧2

C TC , which is a Poisson structure on the
commutative algebra C[[~]].
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What is Deformation Quantization?

A formal Poisson structure on C is a series α =
∑∞

j=1 αj~
j,

with αj ∈
∧2

C TC , which is a Poisson structure on the
commutative algebra C[[~]].

There is a similar notion of gauge equivalence of formal
Poisson structures.
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What is Deformation Quantization?

A formal Poisson structure on C is a series α =
∑∞

j=1 αj~
j,

with αj ∈
∧2

C TC , which is a Poisson structure on the
commutative algebra C[[~]].

There is a similar notion of gauge equivalence of formal
Poisson structures.

Example 7. If α1 is a Poisson structure on C then α := α1~ is
a formal Poisson structure.
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What is Deformation Quantization?

Theorem 8. (Kontsevich)
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What is Deformation Quantization?

Theorem 8. (Kontsevich)
Let X be a differentiable R-manifold and C := C∞(X).
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What is Deformation Quantization?

Theorem 8. (Kontsevich)
Let X be a differentiable R-manifold and C := C∞(X).
Then there is a canonical bijection

Q :
{formal Poisson structures on C}

gauge equivalence

≃
→

{deformation quantizations of C}

gauge equivalence

preserving first order terms.
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What is Deformation Quantization?

Theorem 8. (Kontsevich)
Let X be a differentiable R-manifold and C := C∞(X).
Then there is a canonical bijection

Q :
{formal Poisson structures on C}

gauge equivalence

≃
→

{deformation quantizations of C}

gauge equivalence

preserving first order terms.

The function Q is called the quantization map.
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What is Deformation Quantization?

By “preserving first order terms” I mean that given a formal
Poisson structure α =

∑∞

j=1 αj~
j, and corresponding

deformation quantization ⋆ = Q(α), one has

{−,−}⋆ = {−,−}α1

as Poisson brackets on C.
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What is Deformation Quantization?

By “preserving first order terms” I mean that given a formal
Poisson structure α =

∑∞

j=1 αj~
j, and corresponding

deformation quantization ⋆ = Q(α), one has

{−,−}⋆ = {−,−}α1

as Poisson brackets on C.

The proof has a local aspect, which I will explain next. The
global part of the proof uses formal geometry, and I will talk
about it later, in the context of algebraic geometry.
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2 The Local Picture
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2 The Local Picture

Suppose C is one of the following kinds of K-algebras:
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The Local Picture

2 The Local Picture

Suppose C is one of the following kinds of K-algebras:

(i) C = O(U), the coordinate ring of some affine Zariski
open set U ⊂ A

n
K

= Spec K[t1, . . . , tn].
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2 The Local Picture

Suppose C is one of the following kinds of K-algebras:

(i) C = O(U), the coordinate ring of some affine Zariski
open set U ⊂ A

n
K

= Spec K[t1, . . . , tn].

(ii) C = K[[t1, . . . , tn]], the power series ring.
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The Local Picture

2 The Local Picture

Suppose C is one of the following kinds of K-algebras:

(i) C = O(U), the coordinate ring of some affine Zariski
open set U ⊂ A

n
K

= Spec K[t1, . . . , tn].

(ii) C = K[[t1, . . . , tn]], the power series ring.

(iii) K = R, and C = C∞(U), the ring of differentiable
functions on some open set U ⊂ R

n (in the classical
topology), with coordinates t1, . . . , tn.
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The Local Picture

2 The Local Picture

Suppose C is one of the following kinds of K-algebras:

(i) C = O(U), the coordinate ring of some affine Zariski
open set U ⊂ A

n
K

= Spec K[t1, . . . , tn].

(ii) C = K[[t1, . . . , tn]], the power series ring.

(iii) K = R, and C = C∞(U), the ring of differentiable
functions on some open set U ⊂ R

n (in the classical
topology), with coordinates t1, . . . , tn.

It is crucial that C is equipped with coordinates.
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The Local Picture

It turns out that the local deformation problem is best
handled using differential graded Lie algebras. This idea is
attributed to Deligne.
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The Local Picture

It turns out that the local deformation problem is best
handled using differential graded Lie algebras. This idea is
attributed to Deligne.

A DG (differential graded) Lie algebra is a graded K-module
g =

⊕
i∈Z

g
i, with a bracket [−,−] satisfying the graded

version of the Lie algebra identities, together with a
differential d : g

i → g
i+1 compatible with [−,−].
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The Local Picture

It turns out that the local deformation problem is best
handled using differential graded Lie algebras. This idea is
attributed to Deligne.

A DG (differential graded) Lie algebra is a graded K-module
g =

⊕
i∈Z

g
i, with a bracket [−,−] satisfying the graded

version of the Lie algebra identities, together with a
differential d : g

i → g
i+1 compatible with [−,−].

Given a DG Lie algebra g, let us define a new DG Lie
algebra

g[[~]]+ :=
⊕

i
~g

i[[~]] ⊂
⊕

i
g

i[[~]],

in which ~ is central.
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The Local Picture

The Maurer-Cartan equation in g[[~]]+ is

d(α) + 1
2 [α, α] = 0

for

α =
∞∑

j=1

αj~
j ∈ g

1[[~]]+.
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The Local Picture

Let exp(g0[[~]]+) be the pro-unipotent group associated to
the pro-nilpotent Lie algebra g

0[[~]]+.

Deformation Quantization in Algebraic Geometry – p.19/40



The Local Picture

Let exp(g0[[~]]+) be the pro-unipotent group associated to
the pro-nilpotent Lie algebra g

0[[~]]+.

There is a canonical action of the group exp(g0[[~]]+) on
g
1[[~]]+ by affine transformations, called gauge

equivalences.
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The Local Picture

Let exp(g0[[~]]+) be the pro-unipotent group associated to
the pro-nilpotent Lie algebra g

0[[~]]+.

There is a canonical action of the group exp(g0[[~]]+) on
g
1[[~]]+ by affine transformations, called gauge

equivalences.

The gauge equivalences preserve the set of solutions of the
Maurer-Cartan equation; see [GM].
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The Local Picture

Let exp(g0[[~]]+) be the pro-unipotent group associated to
the pro-nilpotent Lie algebra g

0[[~]]+.

There is a canonical action of the group exp(g0[[~]]+) on
g
1[[~]]+ by affine transformations, called gauge

equivalences.

The gauge equivalences preserve the set of solutions of the
Maurer-Cartan equation; see [GM].

One defines

MC(g[[~]]+) :=

{solutions of MC equation in g[[~]]+}

gauge equivalences
.
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The Local Picture

Let us return to our deformation problem, where C is one of
the commutative K-algebras (i)-(iii) above.
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The Local Picture

Let us return to our deformation problem, where C is one of
the commutative K-algebras (i)-(iii) above.

Recall the module of derivations TC . For i ≥ −1 define

T i
poly(C) :=

∧i+1

C
TC .

So T −1
poly(C) = C and T 0

poly(C) = TC .
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The Local Picture

The direct sum

Tpoly(C) :=
⊕

i
T i

poly(C)

is a DG Lie algebra, called the algebra of poly derivations of
C. The Lie bracket is the Schouten-Nijenhuis bracket, and
the differential is 0.
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The Local Picture

The direct sum

Tpoly(C) :=
⊕

i
T i

poly(C)

is a DG Lie algebra, called the algebra of poly derivations of
C. The Lie bracket is the Schouten-Nijenhuis bracket, and
the differential is 0.

The solutions of the Maurer-Cartan equation in
Tpoly(C)[[~]]+ are precisely the formal Poisson structures on
C.
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The Local Picture

The second DG Lie algebra in this picture is that of the poly
differential operators.
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The Local Picture

The second DG Lie algebra in this picture is that of the poly
differential operators.

For i ≥ −1 one defines

Di
poly(C) :=

{φ : Ci+1 → C | φ is a differential

operator in each argument}.
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The Local Picture

The second DG Lie algebra in this picture is that of the poly
differential operators.

For i ≥ −1 one defines

Di
poly(C) :=

{φ : Ci+1 → C | φ is a differential

operator in each argument}.

So D−1
poly(C) = C and D0

poly(C) = D(C), the ring of
differential operators.
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The Local Picture

Dpoly(C) is a sub DG Lie algebra of the Hochschild cochain
complex of C, with the Gerstenhaber bracket.
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The Local Picture

Dpoly(C) is a sub DG Lie algebra of the Hochschild cochain
complex of C, with the Gerstenhaber bracket.

A solution β =
∑∞

j=1 βj~
j of the Maurer-Cartan equation in

Dpoly(C)[[~]]+ is a deformation quantization of C,
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The Local Picture

Dpoly(C) is a sub DG Lie algebra of the Hochschild cochain
complex of C, with the Gerstenhaber bracket.

A solution β =
∑∞

j=1 βj~
j of the Maurer-Cartan equation in

Dpoly(C)[[~]]+ is a deformation quantization of C, i.e.

f ⋆ g := fg +
∞∑

j=1

βj(f, g)~j

is an associative deformation of the multiplication of C.
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The Local Picture

There is a canonical map of complexes

U1 : Tpoly(C) → Dpoly(C)
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The Local Picture

There is a canonical map of complexes

U1 : Tpoly(C) → Dpoly(C)

given by

U1(∂1 ∧ · · · ∧ ∂k)(f1, . . . , fk) :=

1
k!

∑
σ∈Sk

sgn(σ)∂σ(1)(f1) · · · ∂σ(k)(fk)

for fi ∈ C and ∂i ∈ TC .
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The Local Picture

It is known that U1 is a quasi-isomorphism – see [Ko1] for
the case C = C∞(U), and [Ye1] for the case C = O(U) –
and it induces an isomorphism of graded Lie algebras in
cohomology.
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The Local Picture

It is known that U1 is a quasi-isomorphism – see [Ko1] for
the case C = C∞(U), and [Ye1] for the case C = O(U) –
and it induces an isomorphism of graded Lie algebras in
cohomology.

But U1 is not a DG Lie algebra homomorphism!
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The Local Picture

Theorem 9. (Kontsevich Formality Theorem)
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The Local Picture

Theorem 9. (Kontsevich Formality Theorem)
Let C be one of the algebras (i)-(iii) above. Assume R ⊂ K.
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The Local Picture

Theorem 9. (Kontsevich Formality Theorem)
Let C be one of the algebras (i)-(iii) above. Assume R ⊂ K.

Then U1 extends to an L∞ quasi-isomorphism

U = {Uj}
∞
j=1 : Tpoly(C) → Dpoly(C).
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The Local Picture

Theorem 9. (Kontsevich Formality Theorem)
Let C be one of the algebras (i)-(iii) above. Assume R ⊂ K.

Then U1 extends to an L∞ quasi-isomorphism

U = {Uj}
∞
j=1 : Tpoly(C) → Dpoly(C).

In other words, U1 is a DG Lie algebra quasi-isomorphism,
up to specified higher homotopies U2,U3, . . ..
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The Local Picture

Theorem 9. (Kontsevich Formality Theorem)
Let C be one of the algebras (i)-(iii) above. Assume R ⊂ K.

Then U1 extends to an L∞ quasi-isomorphism

U = {Uj}
∞
j=1 : Tpoly(C) → Dpoly(C).

In other words, U1 is a DG Lie algebra quasi-isomorphism,
up to specified higher homotopies U2,U3, . . ..

Moreover, each of the maps Uj is invariant under linear
change of coordinates.
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The Local Picture

There is an induced L∞ quasi-isomorphism

U : Tpoly(C)[[~]]+ → Dpoly(C)[[~]]+.
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The Local Picture

There is an induced L∞ quasi-isomorphism

U : Tpoly(C)[[~]]+ → Dpoly(C)[[~]]+.

A calculation shows that we get a bijection

MC(U) : MC
(
Tpoly(C)[[~]]+

)

≃
→ MC

(
Dpoly(C)[[~]]+

)

with an explicit formula.
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The Local Picture

Therefore:

Corollary 10. Assume R ⊂ K. In each of the cases (i) - (iii)
above there is a canonical bijection of sets

Q :
{formal Poisson structures on C}

gauge equivalence

≃
→

{deformation quantizations of C}

gauge equivalence

preserving first order terms.
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Deforming Algebraic Varieties

3 Deforming Algebraic Varieties
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Deforming Algebraic Varieties

3 Deforming Algebraic Varieties

Let X be an n-dimensional smooth variety over the field K.

Deformation Quantization in Algebraic Geometry – p.29/40



Deforming Algebraic Varieties

3 Deforming Algebraic Varieties

Let X be an n-dimensional smooth variety over the field K.

A Poisson structure on X is an element α ∈ Γ(X,
∧2

OX
TX)

such that the bi-derivation {−,−}α is a Poisson bracket on
the sheaf of functions OX .
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Deforming Algebraic Varieties

3 Deforming Algebraic Varieties

Let X be an n-dimensional smooth variety over the field K.

A Poisson structure on X is an element α ∈ Γ(X,
∧2

OX
TX)

such that the bi-derivation {−,−}α is a Poisson bracket on
the sheaf of functions OX .

The aim is to deform the sheaf OX .
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Deforming Algebraic Varieties

So we are looking for a sequence of bi-differential operators

βj : OX ×OX → OX
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Deforming Algebraic Varieties

So we are looking for a sequence of bi-differential operators

βj : OX ×OX → OX

such that the formula

f ⋆ g := fg +
∞∑

j=1

βj(f, g)~j ,

for local sections f, g ∈ OX , defines an associative
K[[~]]-algebra structure on the sheaf OX [[~]].
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Deforming Algebraic Varieties

Remark 11. Actually there is a more refined notion of
deformation quantization of OX .
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Deforming Algebraic Varieties

Remark 11. Actually there is a more refined notion of
deformation quantization of OX .

But when H1(X,DX) = 0, which holds in many cases, the
two notions of deformation quantization coincide. Here DX

is the sheaf of differential operators on X.
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Deforming Algebraic Varieties

Remark 11. Actually there is a more refined notion of
deformation quantization of OX .

But when H1(X,DX) = 0, which holds in many cases, the
two notions of deformation quantization coincide. Here DX

is the sheaf of differential operators on X.

Recall that X is called D-affine if Hi(X,M) = 0 for any
quasi-coherent left DX-module M and any i > 0.
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Here is our main result from [Ye2]:
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Here is our main result from [Ye2]:

Theorem 12. (Y)
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Here is our main result from [Ye2]:

Theorem 12. (Y) Assume X is D-affine and R ⊂ K.
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Here is our main result from [Ye2]:

Theorem 12. (Y) Assume X is D-affine and R ⊂ K.

Then there is a canonical function

Q :
{formal Poisson structures on X}

gauge equivalence

→
{deformation quantizations of OX}

gauge equivalence
.
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Here is our main result from [Ye2]:

Theorem 12. (Y) Assume X is D-affine and R ⊂ K.

Then there is a canonical function

Q :
{formal Poisson structures on X}

gauge equivalence

→
{deformation quantizations of OX}

gauge equivalence
.

The function Q preserves first order terms, and respects
étale morphisms X ′ → X. If X is affine then Q is bijective.
There is an explicit formula for Q.
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Theorem 12 applies to two large classes of varieties.
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Deforming Algebraic Varieties

Theorem 12 applies to two large classes of varieties.

1. Affine varieties. Note that if X = Spec C is affine, but
does not admit an étale morphism to A

n
K

, then this
result is not trivial, since there has to be some gluing.
Cf. case (i) earlier.
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Theorem 12 applies to two large classes of varieties.

1. Affine varieties. Note that if X = Spec C is affine, but
does not admit an étale morphism to A

n
K

, then this
result is not trivial, since there has to be some gluing.
Cf. case (i) earlier.

2. The flag varieties X = G/P , where G is a connected
reductive algebraic group and P is a parabolic
subgroup. By the Beilinson-Bernstein Theorem the
variety X is D-affine. This class of varieties includes the
projective spaces P

n
K

.
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Let me conclude with an explanation of the proof of
Theorem 12.
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Let me conclude with an explanation of the proof of
Theorem 12.

There is an infinite dimensional bundle

π : Coor X → X,

called the coordinate bundle of X, which is a moduli space
for formal coordinate systems.
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Let me conclude with an explanation of the proof of
Theorem 12.

There is an infinite dimensional bundle

π : Coor X → X,

called the coordinate bundle of X, which is a moduli space
for formal coordinate systems.

The universal Taylor expansion is a canonical embedding of
algebras

π−1OX ⊂ OCoor X [[t]].
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Due to the Formality Theorem we obtain an L∞

quasi-isomorphism

U : OCoor X ⊗̂ Tpoly(K[[t]]) → OCoor X ⊗̂ Dpoly(K[[t]])

of sheaves of DG Lie algebras on Coor X.
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Due to the Formality Theorem we obtain an L∞

quasi-isomorphism

U : OCoor X ⊗̂ Tpoly(K[[t]]) → OCoor X ⊗̂ Dpoly(K[[t]])

of sheaves of DG Lie algebras on Coor X.

If we had a section σ : X → Coor X then we could pull U
down to an L∞ quasi-isomorphism

Tpoly,X → Dpoly,X

of sheaves of DG Lie algebras on X.
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Due to the Formality Theorem we obtain an L∞

quasi-isomorphism

U : OCoor X ⊗̂ Tpoly(K[[t]]) → OCoor X ⊗̂ Dpoly(K[[t]])

of sheaves of DG Lie algebras on Coor X.

If we had a section σ : X → Coor X then we could pull U
down to an L∞ quasi-isomorphism

Tpoly,X → Dpoly,X

of sheaves of DG Lie algebras on X.

However usually there are no global sections of Coor X.
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Now the group GLn acts on Coor X by linear change of
coordinates. Let us define LCC X to be the quotient bundle
Coor X/ GLn.
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Now the group GLn acts on Coor X by linear change of
coordinates. Let us define LCC X to be the quotient bundle
Coor X/ GLn.

The GLn-invariance in the Formality Theorem says that it
suffices to find a section σ : X → LCC X.
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Now the group GLn acts on Coor X by linear change of
coordinates. Let us define LCC X to be the quotient bundle
Coor X/ GLn.

The GLn-invariance in the Formality Theorem says that it
suffices to find a section σ : X → LCC X.

In the C∞ context such global sections σ : X → LCC X do
exists (because the fibers of this bundle are contractible).
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Now the group GLn acts on Coor X by linear change of
coordinates. Let us define LCC X to be the quotient bundle
Coor X/ GLn.

The GLn-invariance in the Formality Theorem says that it
suffices to find a section σ : X → LCC X.

In the C∞ context such global sections σ : X → LCC X do
exists (because the fibers of this bundle are contractible).

But this is not the case in algebraic geometry. (Here is
where our work diverges from that of Kontsevich.) So we
must use a trick.
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Our geometric trick is called simplicial sections.
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Our geometric trick is called simplicial sections.

We can choose an open covering X =
⋃

Ui with sections
σi : Ui → LCC X.
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Our geometric trick is called simplicial sections.

We can choose an open covering X =
⋃

Ui with sections
σi : Ui → LCC X.

For any q ≥ 0 let ∆
q
K

be the q-dimensional geometric
simplex.
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Our geometric trick is called simplicial sections.

We can choose an open covering X =
⋃

Ui with sections
σi : Ui → LCC X.

For any q ≥ 0 let ∆
q
K

be the q-dimensional geometric
simplex.

Using an averaging process for unipotent group actions
[Ye3], for any i0, . . . , iq we then obtain a morphism

σ(i0,...,iq) : ∆q
K
× (Ui0 ∩ · · · ∩ Uiq) → LCC X.
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Our geometric trick is called simplicial sections.

We can choose an open covering X =
⋃

Ui with sections
σi : Ui → LCC X.

For any q ≥ 0 let ∆
q
K

be the q-dimensional geometric
simplex.

Using an averaging process for unipotent group actions
[Ye3], for any i0, . . . , iq we then obtain a morphism

σ(i0,...,iq) : ∆q
K
× (Ui0 ∩ · · · ∩ Uiq) → LCC X.

As q varies we have a simplicial section σ, i.e. the simplicial
relations are satisfied.
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Here is an illustration
of the case q = 1.
We start with sections over
two open sets

σi : Ui → LCC X

U0
U1

X

LCC X

π σ1

σ0
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and we pass to a simplicial
section σ(0,1) interpolating
between them

U0 ∩ U1

π

σ

∆
1 × (U0 ∩ U1)
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Another technical gadget we need is the mixed resolution
Mix(−) of sheaves on X. It takes into account the open
covering X =

⋃
Ui.
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Another technical gadget we need is the mixed resolution
Mix(−) of sheaves on X. It takes into account the open
covering X =

⋃
Ui.

The simplicial section σ gives rise to an L∞ quasi-
isomorphism

Ψσ : Mix(Tpoly,X) → Mix(Dpoly,X)

between sheaves of DG Lie algebras on X.
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Another technical gadget we need is the mixed resolution
Mix(−) of sheaves on X. It takes into account the open
covering X =

⋃
Ui.

The simplicial section σ gives rise to an L∞ quasi-
isomorphism

Ψσ : Mix(Tpoly,X) → Mix(Dpoly,X)

between sheaves of DG Lie algebras on X.

It is now pretty easy to deduce Theorem 12, including the
cohomological conditions.
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Another technical gadget we need is the mixed resolution
Mix(−) of sheaves on X. It takes into account the open
covering X =

⋃
Ui.

The simplicial section σ gives rise to an L∞ quasi-
isomorphism

Ψσ : Mix(Tpoly,X) → Mix(Dpoly,X)

between sheaves of DG Lie algebras on X.

It is now pretty easy to deduce Theorem 12, including the
cohomological conditions.

– end –
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