

Available online at www.sciencedirect.com

Journal of Pure and Applied Algebra 207 (2006) 575-606

JOURNAL OF PURE AND APPLIED ALGEBRA

www.elsevier.com/locate/jpaa

Continuous and twisted L_{∞} morphisms

Amnon Yekutieli

Department of Mathematics, Ben Gurion University, Be'er Sheva 84105, Israel

Received 21 February 2005; received in revised form 8 September 2005 Available online 27 December 2005 Communicated by C.A. Weibel

Abstract

The purpose of this paper is to develop a suitable notion of continuous L_{∞} morphism between DG Lie algebras, and to study twists of such morphisms. © 2005 Elsevier B.V. All rights reserved.

MSC: primary 53D55; secondary: 13D10, 13N10, 13J10

0. Introduction

Let \mathbb{K} be a field containing \mathbb{R} . Consider two DG Lie algebras associated with the polynomial algebra $\mathbb{K}[t] := \mathbb{K}[t_1, \ldots, t_n]$. The first is the algebra of *poly derivations* $\mathcal{T}_{poly}(\mathbb{K}[t])$, and the second is the algebra of *poly differential operators* $\mathcal{D}_{poly}(\mathbb{K}[t])$. A very important result of Kontsevich [5], known as the Formality Theorem, gives an explicit formula for an L_{∞} quasi-isomorphism

 $\mathcal{U}: \mathcal{T}_{\text{poly}}(\mathbb{K}[t]) \to \mathcal{D}_{\text{poly}}(\mathbb{K}[t]).$

Here is the main result of our paper.

Theorem 0.1. Assume $\mathbb{R} \subset \mathbb{K}$. Let $A = \bigoplus_{i \geq 0} A^i$ be a super-commutative associative unital complete DG algebra in Dir Inv Mod K. Consider the induced continuous A-multilinear L_{∞} morphism

 $\mathcal{U}_A: A \widehat{\otimes} \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]]) \to A \widehat{\otimes} \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]]).$

E-mail address: amyekut@math.bgu.ac.il.

^{0022-4049/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2005.10.006

Suppose $\omega \in A^1 \widehat{\otimes} \mathcal{T}^0_{\text{poly}}(\mathbb{K}[[t]])$ is a solution of the Maurer–Cartan equation in $A \widehat{\otimes} \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]])$. Define $\omega' := (\partial^1 \mathcal{U}_A)(\omega) \in A^1 \widehat{\otimes} \mathcal{D}^0_{\text{poly}}(\mathbb{K}[[t]])$. Then ω' is a solution of the Maurer–Cartan equation in $A \widehat{\otimes} \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]])$, and there is a continuous A-multilinear L_{∞} quasi-isomorphism

$$\mathcal{U}_{A,\omega}: \left(A \widehat{\otimes} \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]])\right)_{\omega} \to \left(A \widehat{\otimes} \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]])\right)_{\omega'}$$

whose Taylor coefficients are

$$(\partial^{j}\mathcal{U}_{A,\omega})(\alpha) \coloneqq \sum_{k\geq 0} \frac{1}{(j+k)!} (\partial^{j+k}\mathcal{U}_{A})(\omega^{k} \wedge \alpha)$$

for $\alpha \in \prod^{j} (A \otimes \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]])).$

Below is an outline of the paper, in which we mention the various terms appearing in the theorem.

In Section 1 we develop the theory of dir-inv modules. A dir-inv structure on a \mathbb{K} -module *M* is a generalization of an adic topology. The category of dir-inv modules and continuous homomorphisms is denoted by Dir Inv Mod \mathbb{K} . The concepts of dir-inv module, and related complete tensor product $\widehat{\otimes}$, are quite flexible, and are particularly well-suited for infinitely generated modules. Among other things we introduce the notion of DG Lie algebra in Dir Inv Mod \mathbb{K} .

Section 2 concentrates on poly differential operators. The results here are mostly generalizations of material from [2].

In Section 3 we review the coalgebra approach to L_{∞} morphisms. The notions of continuous, A-multilinear and twisted L_{∞} morphisms are defined. The main result of this section is Theorem 3.27.

In Section 4 we recall the Kontsevich Formality Theorem. By combining it with Theorem 3.27 we deduce Theorem 0.1 (repeated as Theorem 4.15). In Theorem 0.1 the DG Lie algebras $A \otimes \mathcal{T}_{poly}(\mathbb{K}[[t]])$ and $A \otimes \mathcal{D}_{poly}(\mathbb{K}[[t]])$ are the A-multilinear extensions of $\mathcal{T}_{poly}(\mathbb{K}[[t]])$ and $\mathcal{D}_{poly}(\mathbb{K}[[t]])$ respectively, and $(A \otimes \mathcal{T}_{poly}(\mathbb{K}[[t]]))_{\omega}$ and $(A \otimes \mathcal{D}_{poly}(\mathbb{K}[[t]]))_{\omega'}$ are their twists. The L_{∞} morphism \mathcal{U}_A is the continuous A-multilinear extension of \mathcal{U} , and $\mathcal{U}_{A,\omega}$ is its twist.

Theorem 0.1 is used in [9], in which we study deformation quantization of algebraic varieties.

1. Dir-inv modules

We begin the paper with a generalization of the notion of adic topology. In this section \mathbb{K} is a commutative base ring, and *C* is a commutative \mathbb{K} -algebra. The category Mod *C* is abelian and has direct and inverse limits. Unless specified otherwise, all limits are taken in Mod *C*.

Definition 1.1. (1) Let $M \in Mod C$. An *inv module structure* on M is an inverse system $\{F^i M\}_{i \in \mathbb{N}}$ of C-submodules of M. The pair $(M, \{F^i M\}_{i \in \mathbb{N}})$ is called an *inv C-module*.

(2) Let $(M, \{F^i M\}_{i \in \mathbb{N}})$ and $(N, \{F^i N\}_{i \in \mathbb{N}})$ be two inv *C*-modules. A function $\phi : M \to N$ (*C*-linear or not) is said to be *continuous* if for every $i \in \mathbb{N}$ there exists $i' \in \mathbb{N}$ such that $\phi(F^{i'}M) \subset F^i N$. (3) Define Inv Mod C to be the category whose objects are the inv C-modules, and whose morphisms are the continuous C-linear homomorphisms.

We do not assume that the canonical homomorphism $M \to \lim_{i \to i} M/F^i M$ is surjective nor injective. There is a full embedding Mod $C \hookrightarrow \operatorname{Inv} \operatorname{Mod} C, M \mapsto (M, \{\dots, 0, 0\})$. If $(M, \{F^i M\}_{i \in \mathbb{N}})$ and $(N, \{F^i N\}_{i \in \mathbb{N}})$ are two inv *C*-modules then $M \oplus N$ is an inv module, with inverse system of submodules $F^i(M \oplus N) := F^i M \oplus F^i N$. Thus Inv Mod *C* is a *C*-linear additive category.

Let $(M, \{F^i M\}_{i \in \mathbb{N}})$ be an inv *C*-module, let M', M'' be two *C*-modules, and suppose $\phi : M' \to M$ and $\psi : M \to M''$ are *C*-linear homomorphisms. We get induced inv module structures on M' and M'' by defining $F^i M' := \phi^{-1}(F^i M)$ and $F^i M'' := \psi(F^i M)$.

Recall that a *directed set* is a partially ordered set J with the property that for any $j_1, j_2 \in J$ there exists $j_3 \in J$ such that $j_1, j_2 \leq j_3$.

- **Definition 1.2.** (1) Let $M \in Mod C$. A *dir-inv module structure* on M is a direct system $\{F_jM\}_{j\in J}$ of C-submodules of M, indexed by a nonempty directed set J, together with an inv module structure on each F_jM , such that for every $j_1 \leq j_2$ the inclusion $F_{j_1}M \hookrightarrow F_{j_2}M$ is continuous. The pair $(M, \{F_jM\}_{j\in J})$ is called a *dir-inv C-module*.
- (2) Let $(M, \{F_jM\})_{j\in J}$ and $(N, \{F_kN\}_{k\in K})$ be two dir-inv *C*-modules. A function ϕ : $M \to N$ (*C*-linear or not) is said to be *continuous* if for every $j \in J$ there exists $k \in K$ such that $\phi(F_jM) \subset F_kN$, and $\phi : F_jM \to F_kN$ is a continuous function between these two inv *C*-modules.
- (3) Define Dir Inv Mod C to be the category whose objects are the dir-inv C-modules, and whose morphisms are the continuous C-linear homomorphisms.

There is no requirement that the canonical homomorphism $\lim_{j\to} F_j M \to M$ will be surjective. An inv *C*-module *M* is endowed with the dir-inv module structure $\{F_j M\}_{j \in J}$, where $J := \{0\}$ and $F_0 M := M$. Thus we get a full embedding $\ln v \operatorname{Mod} C \hookrightarrow$ Dir $\ln v \operatorname{Mod} C$. Given two dir-inv *C*-modules $(M, \{F_j M\})_{j \in J}$ and $(N, \{F_k N\}_{k \in K})$, we make $M \oplus N$ into a dir-inv module as follows. The directed set is $J \times K$, with the component-wise partial order, and the direct system of inv modules is $F_{(j,k)}(M \oplus N) :=$ $F_j M \oplus F_k N$. The condition $J \neq \emptyset$ in part (1) of the definition ensures that the zero module $0 \in \operatorname{Mod} C$ is an initial object in Dir $\operatorname{Inv} \operatorname{Mod} C$. So Dir $\operatorname{Inv} \operatorname{Mod} C$ is a *C*-linear additive category.

Let $(M, \{F_jM\}_{j\in J})$ be a dir-inv *C*-module, let M', M'' be two *C*-modules, and suppose $\phi : M' \to M$ and $\psi : M \to M''$ are *C*-linear homomorphisms. We get induced dir-inv module structures $\{F_jM'\}_{j\in J}$ and $\{F_jM''\}_{j\in J}$ on M' and M'' as follows. Define $F_j(M') := \phi^{-1}(F_jM)$ and $F_jM'' := \psi(F_jM)$, which have induced inv module structures via the homomorphisms $\phi : F_jM' \to F_jM$ and $\psi : F_jM \to F_jM''$.

Definition 1.3. (1) An inv C-module $(M, \{F^i M\}_{i \in \mathbb{N}})$ is called *discrete* if $F^i M = 0$ for $i \gg 0$.

- (2) An inv *C*-module $(M, \{F^i M\}_{i \in \mathbb{N}})$ is called *complete* if the canonical homomorphism $M \to \lim_{\leftarrow i} M/F^i M$ is bijective.
- (3) A dir-inv *C*-module *M* is called *complete* (resp. *discrete*) if it isomorphic, in Dir Inv Mod *C*, to a dir-inv module $(N, \{F_iN\}_{i \in J})$, where all the inv modules F_iN

are complete (resp. discrete) as defined above, and the canonical homomorphism $\lim_{i \to} F_i N \to N$ is bijective.

(4) A dir-inv C-module M is called *trivial* if it is isomorphic, in Dir Inv Mod C, to an object of Mod C, via the embedding Mod $C \hookrightarrow$ Dir Inv Mod C.

Note that M is a trivial dir-inv module iff it is isomorphic, in Dir Inv Mod C, to a discrete inv module. There do exist discrete dir-inv modules that are not trivial dir-inv modules; see Example 1.10. It is easy to see that if M is a discrete dir-inv module then it is also complete.

The base ring \mathbb{K} is endowed with the inv structure {..., 0, 0}, so it is a trivial dir-inv \mathbb{K} -module. But the \mathbb{K} -algebra *C* could have more interesting dir-inv structures (cf. Example 1.8).

If $f^* : C \to C'$ is a homomorphism of \mathbb{K} -algebras, then there is a functor $f_* :$ Dir Inv Mod $C' \to$ Dir Inv Mod C. In particular any dir-inv C-module is a dir-inv \mathbb{K} -module.

- **Definition 1.4.** (1) Given an inv *C*-module $(M, \{F^iM\}_{i\in\mathbb{N}})$ its completion is the inv *C*-module $(\widehat{M}, \{F^i\widehat{M}\}_{i\in\mathbb{N}})$, defined as follows: $\widehat{M} := \lim_{i \to i} M/F^iM$ and $F^i\widehat{M} := \text{Ker}(\widehat{M} \to M/F^iM)$. Thus we obtain an additive endofunctor $M \mapsto \widehat{M}$ of Inv Mod *C*.
- (2) Given a dir-inv *C*-module $(M, \{F_jM\}_{j\in J})$ its completion is the dir-inv *C*-module $(\widehat{M}, \{F_j\widehat{M}\}_{j\in J})$ defined as follows. For any $j \in J$ let $\widehat{F_jM}$ be the completion of the inv *C*-module F_jM , as defined above. Then let $\widehat{M} := \lim_{j\to \infty} \widehat{F_jM}$ and $F_j\widehat{M} := \operatorname{Im}(\widehat{F_jM} \to \widehat{M})$. Thus we obtain an additive endofunctor $M \mapsto \widehat{M}$ of Dir Inv Mod *C*.

An inv *C*-module *M* is complete iff the functorial homomorphism $M \to \widehat{M}$ is an isomorphism; and of course \widehat{M} is complete. For a dir-inv *C*-module *M* there is in general no functorial homomorphism between *M* and \widehat{M} , and we do not know if \widehat{M} is complete. Nonetheless:

Proposition 1.5. Suppose $M \in \text{Dir Inv Mod } C$ is complete. Then there is an isomorphism $M \cong \widehat{M}$ in Dir Inv Mod C. This isomorphism is functorial.

Proof. For any dir-inv module $(M, \{F_jM\}_{j \in J})$ let us define $M' := \lim_{j \to F_j} M$. So $(M', \{F_jM\}_{j \in J})$ is a dir-inv module, and there are functorial morphisms $M' \to M$ and $M' \to \widehat{M}$. If M is complete then both these morphisms are isomorphisms. \Box

Suppose $\{M_k\}_{k \in K}$ is a collection of dir-inv modules, indexed by a set K. There is an induced dir-inv module structure on $M := \bigoplus_{k \in K} M_k$, constructed as follows. For any k let us denote by $\{F_j M_k\}_{j \in J_k}$ the dir-inv structure of M_k ; so that each $F_j M_k$ is an inv module. For each finite subset $K_0 \subset K$ let $J_{K_0} := \prod_{k \in K_0} J_k$, made into a directed set by component-wise partial order. Define $J := \coprod_{K_0} J_{K_0}$, where K_0 runs over the finite subsets of K. For two finite subsets $K_0 \subset K_1$, and two elements $j_0 = \{j_{0,k}\}_{k \in K_0} \in J_{K_0}$ and $j_1 = \{j_{1,k}\}_{k \in K_1} \in J_{K_1}$ we declare that $j_0 \leq j_1$ if $j_{0,k} \leq j_{1,k}$ for all $k \in K_0$. This makes J into a directed set. Now for any $j = \{j_k\}_{k \in K_0} \in J_{K_0} \subset J$ let $F_j M := \bigoplus_{k \in K_0} F_{j_k} M_k$, which is an inv module. The dir-inv structure on M is $\{F_j M\}_{i \in J}$.

Proposition 1.6. Let $\{M_k\}_{k \in K}$ be a collection of dir-inv C-modules, and let $M := \bigoplus_{k \in K} M_k$, endowed with the induced dir-inv structure.

- (1) *M* is a coproduct of $\{M_k\}_{k \in K}$ in the category Dir Inv Mod *C*.
- (2) There is a functorial isomorphism $\widehat{M} \cong \bigoplus_{k \in K} \widehat{M}_k$.

Proof. (1) is obvious. For (2) we note that both \widehat{M} and $\bigoplus_{k \in K} \widehat{M}_k$ are direct limits for the direct system $\{\widehat{M}_i\}_{i \in J}$. \Box

Suppose $\{M_k\}_{k\in\mathbb{N}}$ is a collection of inv *C*-modules. For each *k* let $\{F^iM_k\}_{i\in\mathbb{N}}$ be the inv structure of M_k . Then $M := \prod_{k\in\mathbb{N}} M_k$ is an inv module, with inv structure $F^iM := (\prod_{k>i} M_k) \times (\prod_{k\leq i} F^iM_k)$. Next let $\{M_k\}_{k\in\mathbb{N}}$ be a collection of dir-inv *C*-modules, and for each *k* let $\{F_jM_k\}_{j\in J_k}$ be the dir-inv structure of M_k . Then there is an induced dir-inv structure on $M := \prod_{k\in\mathbb{N}} M_k$. Define a directed set $J := \prod_{k\in\mathbb{N}} J_k$, with component-wise partial order. For any $\mathbf{j} = \{j_k\}_{k\in\mathbb{N}} \in J$ define $F_jM := \prod_{k\in\mathbb{N}} F_{jk}M_k$, which is an inv *C*-module as explained above. The dir-inv structure on M is $\{F_iM\}_{i\in J}$.

Proposition 1.7. Let $\{M_k\}_{k\in\mathbb{N}}$ be a collection of dir-inv C-modules, and let $M := \prod_{k\in\mathbb{N}} M_k$, endowed with the induced dir-inv structure. Then M is a product of $\{M_k\}_{k\in\mathbb{N}}$ in Dir Inv Mod C.

Proof. All we need to consider is continuity. First assume that all the M_k are inv *C*-modules. Let us denote by $\pi_k : M \to M_k$ the projection. For each $k, i \in \mathbb{N}$ and $i' \geq \max(i, k)$ we have $\pi_k(\mathbf{F}^{i'}M) = \mathbf{F}^i M_k$. This shows that the π_k are continuous. Suppose *L* is an inv *C*-module and $\phi_k : L \to M_k$ are morphisms in Inv Mod *C*. For any $i \in \mathbb{N}$ there exists $i' \in \mathbb{N}$ such that $\phi_k(\mathbf{F}^{i'}L) \subset \mathbf{F}^i M_k$ for all $k \leq i$. Therefore the homomorphism $\phi : L \to M$ with components ϕ_k is continuous.

Now let M_k be dir-inv *C*-modules, with dir-inv structures $\{F_j M_k\}_{j \in J_k}$. For any $j = \{j_k\} \in J$ one has $\pi_k(F_j M) = F_{j_k} M_k$, and as shown above $\pi_k : F_j M \to F_{j_k} M_k$ is continuous. Given a dir-inv module *L* and morphisms $\phi_k : L \to M_k$ in Dir Inv Mod *C*, we have to prove that $\phi : L \to M$ is continuous. Let $\{F_j L\}_{j \in J_L}$ be the dir-inv structure of *L*. Take any $j \in J_L$. Since ϕ_k is continuous, there exists some $j_k \in J_k$ such that $\phi_k(F_j L) \subset F_{j_k} M_k$. But then $\phi(F_j L) \subset F_j M$ for $j := \{j_k\}_{k \in \mathbb{N}}$, and by the previous paragraph $\phi : F_j L \to F_j M$ is continuous. \Box

The following examples should help to clarify the notion of dir-inv module.

Example 1.8. Let c be an ideal in C. Then each finitely generated C-module M has an inv structure $\{F^i M\}_{i \in \mathbb{N}}$, where we define the submodules $F^i M := c^{i+1}M$. This is called the *c-adic inv structure*. Any C-module M has a dir-inv structure $\{F_j M\}_{j \in J}$, which is the collection of finitely generated C-submodules of M, directed by inclusion, and each $F_j M$ is given the *c*-adic inv structure. We get a fully faithful functor Mod $C \rightarrow$ Dir Inv Mod C. This dir-inv module structure on M is called the *c-adic dir-inv structure*.

If C is noetherian and c-adically complete, then the finitely generated modules are complete as inv C-modules, and hence all modules are complete as dir-inv modules.

Example 1.9. Suppose $(M, \{F^i M\}_{i \in \mathbb{N}})$ is an inv *C*-module, and $\{i_k\}_{k \in \mathbb{N}}$ is a nondecreasing sequence in \mathbb{N} with $\lim_{k\to\infty} i_k = \infty$. Then $\{F^{i_k} M\}_{k\in\mathbb{N}}$ is a new inv structure on *M*, yet the identity map $(M, \{F^i M\}_{i\in\mathbb{N}}) \to (M, \{F^{i_k} M\}_{k\in\mathbb{N}})$ is an isomorphism in Inv Mod *C*.

A similar modification can be done for dir-inv modules. Suppose $(M, \{F_j M\}_{j \in J})$ is a dir-inv *C*-module, and $J' \subset J$ is a subset that is cofinal in *J*. Then $\{F_j M\}_{j \in J'}$ is a new

dir-inv structure on M, yet the identity map $(M, \{F_j M\}_{j \in J}) \rightarrow (M, \{F_j M\}_{j \in J'})$ is an isomorphism in Dir Inv Mod C.

Example 1.10. Let *M* be the free K-module with basis $\{e_p\}_{p\in\mathbb{N}}$; so $M = \bigoplus_{p\in\mathbb{N}} \mathbb{K}e_p$ in Mod K. We put on *M* the inv module structure $\{F^i M\}_{i\in\mathbb{N}}$ with $F^i M := 0$ for all *i*. Let *N* be the same K-module as *M*, but put on it the inv module structure $\{F^i N\}_{i\in\mathbb{N}}$ with $F^i N := \bigoplus_{p=i}^{\infty} \mathbb{K}e_p$. Also let *L* be the K-module *M*, but put on it the dir-inv module structure $\{F_j L\}_{j\in\mathbb{N}}$, with $F_j L := \bigoplus_{p=0}^j \mathbb{K}e_p$ the discrete inv module whose inv structure is $\{\dots, 0, 0\}$. Both *L* and *M* are discrete and complete as dir-inv K-modules, and $\widehat{N} \cong \prod_{p\in\mathbb{N}} \mathbb{K}e_p$. The dir-inv module *M* is trivial. *L* is not a trivial dir-inv K-module, because it is not isomorphic in Dir Inv Mod K to any inv module. The identity maps $L \to M \to N$ are continuous. The only continuous K-linear homomorphisms $M \to L$ are those with finitely generated images.

Remark 1.11. In the situation of the previous example, suppose we put on the three modules L, M, N genuine \mathbb{K} -linear topologies, using the limiting processes and starting from the discrete topology. Namely M, N/F^iN and F_jL get the discrete topologies; $L \cong \lim_{j\to} F_jL$ gets the lim $_{\to}$ topology; and $N \subset \lim_{t\to i} N/F^iN$ gets the lim $_{\leftarrow}$ topology (as in [8, Section 1.1]). Then L and M become the same discrete topological module, and \widehat{N} is the topological completion of N. We see that the notion of a dir-inv structure is more subtle than that of a topology, even though a similar language is used.

Example 1.12. Suppose \mathbb{K} is a field, and let $M := \mathbb{K}$, the free module of rank 1. Up to isomorphism in Dir Inv Mod \mathbb{K} , M has three distinct dir-inv module structures. We can denote them by M_1, M_2, M_3 in such a way that the identity maps $M_1 \to M_2 \to M_3$ are continuous. The only continuous \mathbb{K} -linear homomorphisms $M_i \to M_j$ with i > j are the zero homomorphisms. M_2 is the trivial dir-inv structure, and it is the only interesting one (the others are "pathological").

Example 1.13. Suppose $M = \bigoplus_{p \in \mathbb{Z}} M^p$ is a graded *C*-module. The grading induces a dir-inv structure on *M*, with $J := \mathbb{N}$, $F_j M := \bigoplus_{p=-j}^{\infty} M^p$, and $F^i F_j M := \bigoplus_{p=-j+i}^{\infty} M^p$. The completion satisfies $\widehat{M} \cong (\prod_{p \ge 0} M^p) \oplus (\bigoplus_{p < 0} M^p)$ in Dir Inv Mod *C*, where each M^p has the trivial dir-inv module structure.

It makes sense to talk about convergence of sequences in a dir-inv module. Suppose $(M, \{F^i M\}_{i \in \mathbb{N}})$ is an inv *C*-module and $\{m_i\}_{i \in \mathbb{N}}$ is a sequence in *M*. We say that $\lim_{i\to\infty} m_i = 0$ if for every i_0 there is some i_1 such that $\{m_i\}_{i\geq i_1} \subset F_{i_0}M$. If $(M, \{F_j M\}_{j\in J})$ is a dir-inv module and $\{m_i\}_{i\in \mathbb{N}}$ is a sequence in *M*, then we say that $\lim_{i\to\infty} m_i = 0$ if there exist some *j* and i_1 such that $\{m_i\}_{i\geq i_1} \subset F_j M$, and $\lim_{i\to\infty} m_i = 0$ in the inv module $F_j M$. Having defined $\lim_{i\to\infty} m_i = 0$, it is clear how to define $\lim_{i\to\infty} m_i = m$ and $\sum_{i=0}^{\infty} m_i = m$. Also the notion of Cauchy sequence is clear.

Proposition 1.14. Assume M is a complete dir-inv C-module. Then any Cauchy sequence in M has a unique limit.

Proof. Consider a Cauchy sequence $\{m_i\}_{i\in\mathbb{N}}$ in M. Convergence is an invariant of isomorphisms in Dir Inv Mod C. By Definition 1.3 we may assume that in the dir-inv structure $\{F_jM\}_{j\in J}$ of M each inv module F_jM is complete. By passing to the sequence $\{m_i - m_{i_1}\}_{i\in\mathbb{N}}$ for suitable i_1 , we can also assume the sequence is contained in one of the inv modules F_jM . Thus we reduce to the case of convergence in a complete inv module, which is standard. \Box

Let $(M, \{F^i M\}_{i \in \mathbb{N}})$ and $(N, \{F^i N\}_{i \in \mathbb{N}})$ be two inv *C*-modules. We make $M \otimes_C N$ into an inv module by defining

$$\mathbf{F}^{i}(M \otimes_{C} N) := \mathrm{Im}\left((M \otimes_{C} \mathbf{F}^{i} N) \oplus (\mathbf{F}^{i} M \otimes_{C} N) \to M \otimes_{C} N\right).$$

For two dir-inv *C*-modules $(M, \{F_jM\}_{j \in J})$ and $(N, \{F_kN\}_{k \in K})$, we put on $M \otimes_C N$ the dir-inv module structure $\{F_{(j,k)}(M \otimes_C N)\}_{(j,k) \in J \times K}$, where

$$\mathbf{F}_{(j,k)}(M \otimes_C N) := \mathrm{Im}(\mathbf{F}_j M \otimes_C \mathbf{F}_k N \to M \otimes_C N).$$

Definition 1.15. Given $M, N \in \text{Dir Inv Mod } C$ we define $N \otimes_C M$ to be the completion of the dir-inv *C*-module $N \otimes_C M$.

Example 1.16. Let us examine the behavior of the dir-inv modules L, M, N from Example 1.10 with respect to the complete tensor product. There is an isomorphism $L \otimes_{\mathbb{K}} N \cong \bigoplus_{p \in \mathbb{N}} N$ in Dir Inv Mod K, so according to Proposition 1.6(2) there is also an isomorphism $L \widehat{\otimes}_{\mathbb{K}} N \cong \bigoplus_{p \in \mathbb{N}} \widehat{N}$ in Dir Inv Mod K. On the other hand $M \otimes_{\mathbb{K}} N$ is an inv K-module with inv structure $F^i(M \otimes_{\mathbb{K}} N) = M \otimes_{\mathbb{K}} F^i N$, so $M \widehat{\otimes}_{\mathbb{K}} N \cong \prod_{p \in \mathbb{N}} M$ in Dir Inv Mod K. The series $\sum_{p=0}^{\infty} e_p \otimes e_p$ converges in $M \widehat{\otimes}_{\mathbb{K}} N$, but not in $L \widehat{\otimes}_{\mathbb{K}} N$.

A graded object in Dir Inv Mod C, or a graded dir-inv C-module, is an object $M \in$ Dir Inv Mod C of the form $M = \bigoplus_{i \in \mathbb{Z}} M^i$, with $M^i \in$ Dir Inv Mod C. According to Proposition 1.6 we have $\widehat{M} \cong \bigoplus_{i \in \mathbb{Z}} \widehat{M}^i$. Given two graded objects $M = \bigoplus_{i \in \mathbb{Z}} M^i$ and $N = \bigoplus_{i \in \mathbb{Z}} N^i$ in Dir Inv Mod C, the tensor product is also a graded object in Dir Inv Mod C, with

$$(M \otimes_C N)^i := \bigoplus_{p+q=i} M^p \otimes_C N^q.$$

In this paper "algebra" is taken in the weakest possible sense: by *C*-algebra we mean a *C*-module *A* together with a *C*-bilinear function $\mu_A : A \times A \rightarrow A$. If *A* is associative, or a Lie algebra, then we will specify that. However, "commutative algebra" will mean, by default, a commutative associative unital *C*-algebra. Another convention is that a homomorphism between unital algebras is a unital homomorphism, and a module over a unital algebra is a unital module.

Definition 1.17. (1) An algebra in Dir Inv Mod C is an object $A \in$ Dir Inv Mod C, together with a continuous C-bilinear function $\mu_A : A \times A \to A$.

(2) A differential graded algebra in Dir Inv Mod C is a graded object $A = \bigoplus_{i \in \mathbb{Z}} A^i$ in Dir Inv Mod C, together with continuous C-(bi)linear functions $\mu_A : A \times A \to A$ and

 $d_A : A \to A$, such that A is a differential graded algebra, in the usual sense, with respect to the differential d_A and the multiplication μ_A .

(3) Let A be an algebra in Dir Inv Mod C, with dir-inv structure $\{F_jA\}_{j\in J}$. We say that A is a *unital algebra in* Dir Inv Mod C if it has a unit element 1_A (in the usual sense), such that $1_A \in \bigcup_{i\in J} F_j A$.

The base ring \mathbb{K} , with its trivial dir-inv structure, is a unital algebra in Dir Inv Mod \mathbb{K} . In item (3) above, the condition $1_A \in \bigcup_{j \in J} F_j A$ is equivalent to the ring homomorphism $\mathbb{K} \to A$ being continuous.

We will use the common abbreviation "DG" for "differential graded". An algebra in Dir Inv Mod C can have further attributes, such as "Lie" or "associative", which have their usual meanings. If $A \in \text{Inv Mod } C$ then we also say it is an algebra in Inv Mod C.

Example 1.18. In the situation of Example 1.8, the c-adic inv structure makes C and \widehat{C} into unital algebras in Inv Mod C.

Recall that a graded algebra A is called *super-commutative* if $ba = (-1)^{ij}ab$ and $c^2 = 0$ for all $a \in A^i$, $b \in A^j$, $c \in A^k$ and k odd. There is no essential difference between left and right DG A-modules.

Proposition 1.19. Let A and \mathfrak{g} be DG algebras in Dir Inv Mod C.

- (1) The completion \widehat{A} is a DG algebra in Dir Inv Mod C.
- (2) If A is complete, then the canonical isomorphism $A \cong \widehat{A}$ of Proposition 1.5 is an isomorphism of DG algebras.
- (3) The complete tensor product $A \widehat{\otimes}_C \mathfrak{g}$ is a DG algebra in Dir Inv Mod C.
- (4) If A is a super-commutative associative unital algebra, then so is \widehat{A} .
- (5) If \mathfrak{g} is a DG Lie algebra and A is a super-commutative associative unital algebra, then $A \widehat{\otimes}_C \mathfrak{g}$ is a DG Lie algebra.

Proof. (1) This is a consequence of a slightly more general fact. Consider modules $M_1, \ldots, M_r, N \in \text{Dir Inv Mod } C$ and a continuous *C*-multilinear linear function $\phi : M_1 \times \cdots \times M_r \to N$. We claim that there is an induced continuous *C*-multilinear linear function $\hat{\phi} : \prod_k \hat{M}_k \to \hat{N}$. This operation is functorial (w.r.t. morphisms $M_k \to M'_k$ and $N \to N'$), and monoidal (i.e. it respects composition in the *k*th argument with a continuous multilinear function $\psi : L_1 \times \cdots \times L_s \to M_k$).

First assume $M_1, \ldots, M_r, N \in \mathsf{Inv} \operatorname{\mathsf{Mod}} C$, with inv structures $\{F^i M_1\}_{i \in \mathbb{N}}$ etc. For any $i \in \mathbb{N}$ there exists $i' \in \mathbb{N}$ such that $\phi(\prod_k F^{i'} M_k) \subset F^i N$. Therefore there is an induced continuous *C*-multilinear function $\widehat{\phi} : \prod_k \widehat{M}_k \to \widehat{N}$. It is easy to verify that $\phi \mapsto \widehat{\phi}$ is functorial and monoidal.

Next consider the general case, i.e. $M_1, \ldots, M_r, N \in \text{Dir Inv Mod } C$. Let $\{F_j M_k\}_{j \in J_k}$ be the dir-inv structure of M_k , and let $\{F_j N\}_{j \in J_N}$ be the dir-inv structure of N. By continuity of ϕ , given $(j_1, \ldots, j_r) \in \prod_k J_k$ there exists $j' \in J_N$ such that $\phi(\prod_k F_{j_k} M_k) \subset F_{j'}N$, and $\phi : \prod_k \widehat{F_{j_k}} M_k \to F_{j'}N$ is continuous. By the previous paragraph this extends to $\widehat{\phi} : \prod_k \widehat{F_{j_k}} M_k \to \widehat{F_{j'}N}$. Passing to the direct limit in (j_1, \ldots, j_r) we obtain $\widehat{\phi} : \prod_k \widehat{M}_k \to \widehat{N}$. Again this operation is functorial and monoidal.

(2) Let $A' \subset A$ be as in the proof of Proposition 1.5. This is a subalgebra. The arguments used in the proof of part (1) above show that $A' \to A$ and $A' \to \hat{A}$ are algebra homomorphisms.

(3) Let us write \cdot_A and \cdot_g for the two multiplications, and d_A and d_g for the differentials. Then $A \otimes_C \mathfrak{g}$ is a DG algebra with multiplication

$$(a_1 \otimes \gamma_1) \cdot (a_2 \otimes \gamma_2) \coloneqq (-1)^{l_2 J_1} (a_1 \cdot_A a_2) \otimes (\gamma_1 \cdot_{\mathfrak{g}} \gamma_2)$$

and differential

$$d(a_1 \otimes \gamma_1) := d_A(a_1) \otimes \gamma_1 + (-1)^{i_1} a_1 \otimes d_{\mathfrak{a}}(\gamma_1)$$

for $a_k \in A^{i_k}$ and $\gamma_k \in \mathfrak{g}^{j_k}$. These operations are continuous, so $A \otimes_C \mathfrak{g}$ is a DG algebra in Dir Inv Mod C. Now use part (1).

(4, 5) The various identities (Lie etc.) are preserved by $\widehat{\otimes}$. Definition 1.17(3) ensures that \widehat{A} has a unit element. \Box

Definition 1.20. Suppose A is a DG super-commutative associative unital algebra in Dir Inv Mod C.

- (1) A DG A-module in Dir Inv Mod C is a graded object $M \in$ Dir Inv Mod C, together with continuous C-(bi)linear functions $\mu_M : A \times M \to M$ and $d_M : M \to M$, which make M into a DG A-module in the usual sense.
- (2) A DG A-module Lie algebra in Dir Inv Mod C is a DG Lie algebra $\mathfrak{g} \in$ Dir Inv Mod C, together with a continuous C-bilinear homomorphism $A \times \mathfrak{g} \rightarrow \mathfrak{g}$, such that \mathfrak{g} is a DG A-module, and

$$[a_1\gamma_1, a_2\gamma_2] = (-1)^{l_2 J_1} a_1 a_2 [\gamma_1, \gamma_2]$$

for all $a_k \in A^{i_k}$ and $\gamma_k \in \mathfrak{g}^{j_k}$.

Example 1.21. If A is a DG super-commutative associative unital algebra in Dir Inv Mod C, and g is a DG Lie algebra in Dir Inv Mod C, then $A \otimes_C g$ is a DG \widehat{A} -module Lie algebra in Dir Inv Mod C.

Let A be a DG super-commutative associative unital algebra in Dir Inv Mod C, and let M, N be two DG A-modules in Dir Inv Mod C. The tensor product $M \otimes_A N$ is a quotient of $M \otimes_C N$, and as such it has a dir-inv structure. Moreover, $M \otimes_A N$ is a DG A-module in Dir Inv Mod C, and we define $M \otimes_A N$ to be its completion, which is a DG \widehat{A} -module in Dir Inv Mod C.

Proposition 1.22. Let A and B be DG super-commutative associative unital algebras in Dir Inv Mod C, and let $A \rightarrow B$ be a continuous homomorphism of DG C-algebras.

- (1) Suppose *M* is a DG *A*-module in Dir Inv Mod *C*. Then $B \bigotimes_A M$ is a DG \widehat{B} -module in Dir Inv Mod *C*.
- (2) Suppose \mathfrak{g} is a DG A-module Lie algebra in Dir Inv Mod C. Then $B \otimes_A \mathfrak{g}$ is a DG \widehat{B} -module Lie algebra in Dir Inv Mod C.

Proof. Like Proposition 1.19. \Box

Suppose C, C' are commutative algebras in Dir Inv Mod K, and $f^* : C \to C'$ is a continuous K-algebra homomorphism. There are functors $f^* :$ Dir Inv Mod $C \to$ Dir Inv Mod C' and $\hat{f^*} :$ Dir Inv Mod $C \to$ Dir Inv Mod \hat{C}' , namely $f^*M := C' \otimes_C M$ and $\hat{f^*M} := C' \otimes_C M$.

Let M and N be two dir-inv C-modules. We define

 $\operatorname{Hom}_{C}^{\operatorname{cont}}(M, N) := \operatorname{Hom}_{\operatorname{Dir}\operatorname{Inv}\operatorname{Mod}C}(M, N),$

i.e. the *C*-module of continuous *C*-linear homomorphisms. In general this module has no obvious structure. However, if *M* is an inv *C*-module with inv structure $\{F^iM\}_{i\in\mathbb{N}}$, and *N* is a discrete inv *C*-module, then

$$\operatorname{Hom}_{C}^{\operatorname{cont}}(M, N) \cong \lim_{i \to} \operatorname{Hom}_{C}(M/\operatorname{F}^{i} M, N).$$

In this case we consider each

 $F_i \operatorname{Hom}_C^{\operatorname{cont}}(M, N) := \operatorname{Hom}_C(M/F^i M, N)$

as a discrete inv module, and this endows $Hom_C^{cont}(M, N)$ with a dir-inv structure.

Example 1.23. In the situation of Example 1.10 one has

 $\operatorname{Hom}_{C}^{\operatorname{cont}}(N, M) \cong L \otimes_{C} M$

as dir-inv C-modules.

Example 1.24. This example is taken from [8]. Assume \mathbb{K} is noetherian and *C* is a finitely generated commutative \mathbb{K} -algebra. For $q \in \mathbb{N}$ define $\mathcal{B}_q(C) = \mathcal{B}^{-q}(C) := C^{\otimes (q+2)} = C \otimes_{\mathbb{K}} \cdots \otimes_{\mathbb{K}} C$. Define $\widehat{\mathcal{B}}_q(C) = \widehat{\mathcal{B}}^{-q}(C)$ to be the adic completion of $\mathcal{B}_q(C)$ with respect to the ideal Ker $(\mathcal{B}_q(C) \to C)$.

There is a K-algebra homomorphism $\widehat{\mathcal{B}}^0(C) \to \widehat{\mathcal{B}}^{-q}(C)$, corresponding to the two extreme tensor factors, and in this way we view $\widehat{\mathcal{B}}^{-q}(C)$ as a complete inv $\widehat{\mathcal{B}}^0(C)$ -module. There is a continuous coboundary operator that makes $\widehat{\mathcal{B}}(C) := \bigoplus_{q \in \mathbb{N}} \widehat{\mathcal{B}}^{-q}(C)$ into a complex of $\widehat{\mathcal{B}}^0(C)$ -modules, and there is a quasi-isomorphism $\widehat{\mathcal{B}}(C) \to C$. We call $\widehat{\mathcal{B}}(C)$ the *complete un-normalized bar complex* of *C*.

Next define $\widehat{\mathcal{C}}_q(C) = \widehat{\mathcal{C}}^{-q}(C) := C \otimes_{\widehat{\mathcal{B}}^0(C)} \widehat{\mathcal{B}}^{-q}(C)$. This is a complete inv *C*-module. The complex $\widehat{\mathcal{C}}(C)$ is called the *complete Hochschild chain complex* of *C*. Finally let $\mathcal{C}^q_{cd}(C) := \operatorname{Hom}^{\operatorname{cont}}_C(\widehat{\mathcal{C}}^{-q}(C), C)$. The complex $\mathcal{C}_{cd}(C) := \bigoplus_{q \in \mathbb{N}} \mathcal{C}^q_{cd}(C)$ is called the *continuous Hochschild cochain complex* of *C*.

2. Poly differential operators

In this section \mathbb{K} is a commutative base ring, and *C* is a commutative \mathbb{K} -algebra. The symbol \otimes means $\otimes_{\mathbb{K}}$. We discuss some basic properties of poly differential operators, expanding results from [9].

Definition 2.1. Let M_1, \ldots, M_p, N be *C*-modules. A K-multilinear function $\phi : M_1 \times \cdots \times M_p \to N$ is called a *poly differential operator* (over *C* relative to K) if there exists

some $d \in \mathbb{N}$ such that for any $(m_1, \ldots, m_p) \in \prod M_i$ and any $i \in \{1, \ldots, p\}$ the function $M_i \to N, m \mapsto \phi(m_1, \ldots, m_{i-1}, m, m_{i+1}, \ldots, m_p)$ is a differential operator of order $\leq d$, in the sense of [2, Section 16.8]. In this case we say that ϕ has order $\leq d$ in each argument.

We shall denote the set of poly differential operators $\prod M_i \to N$ over *C* relative to \mathbb{K} , of order $\leq d$ in all arguments, by

$$F_d \mathcal{D}iff_{\text{poly}}(C; M_1, \ldots, M_p; N).$$

And we define

$$\mathcal{D}iff_{\text{poly}}(C; M_1, \dots, M_p; N) := \bigcup_{d \ge 0} \mathcal{F}_d \mathcal{D}iff_{\text{poly}}(C; M_1, \dots, M_p; N),$$

the union being inside the set of all K-multilinear functions $\prod M_i \rightarrow N$. By default we only consider poly differential operators relative to K.

For a natural number p the p-th un-normalized bar module $\mathcal{B}_p(C)$ was defined in Example 1.24. Let $I_p(C)$ be the kernel of the ring homomorphism $\mathcal{B}_p(C) \to C$. Define

$$\mathcal{C}_p(C) := C \otimes_{\mathcal{B}_0(C)} \mathcal{B}_p(C),$$

the *p*-th Hochschild chain module of C (relative to \mathbb{K}). For any $d \in \mathbb{N}$ define

$$\mathcal{B}_{p,d}(C) := \mathcal{B}_p(C) / I_p(C)^{d+1},$$

$$\mathcal{C}_{p,d}(C) := C \otimes_{\mathcal{B}_0(C)} \mathcal{B}_{p,d}(C)$$

and

$$\mathcal{C}_{p,d}(C; M_1, \ldots, M_p) := \mathcal{C}_{p,d}(C) \otimes_{\mathcal{B}_{p-2}(C)} (M_1 \otimes \cdots \otimes M_p).$$

Let

$$\phi_{\mathrm{uni}}:\prod_{i=1}^p M_i \to \mathcal{C}_{p,d}(C; M_1, \ldots, M_p)$$

be the \mathbb{K} -multilinear function

$$\phi_{\mathrm{uni}}(m_1,\ldots,m_p) := 1 \otimes (m_1 \otimes \cdots \otimes m_p).$$

Observe that for p = 1 we get $C_{1,d}(C) = \mathcal{P}^d(C)$, the module of principal parts of order d (see [2]). In the same way that $\mathcal{P}^d(C)$ parametrizes differential operators, $C_{p,d}(C)$ parametrizes poly differential operators:

Lemma 2.2. The assignment $\psi \mapsto \psi \circ \phi_{uni}$ is a bijection

$$\operatorname{Hom}_{C}\left(\mathcal{C}_{p,d}(C; M_{1}, \ldots, M_{p}), N\right) \xrightarrow{} \operatorname{F}_{d}\mathcal{D}iff_{\operatorname{poly}}(C; M_{1}, \ldots, M_{p}; N).$$

Proof. The same arguments used in [2, Section 16.8] also apply here. Cf. [8, Section 1.4]. \Box

In case $M_1 = \cdots = M_p = N = C$ we see that

$$\mathcal{D}iff_{\text{poly}}(C; \underbrace{C, \dots, C}_{p}; C) \cong \lim_{d \to} \text{Hom}_{C} \left(\mathcal{C}_{p,d}(C), C \right)$$
$$\cong \text{Hom}_{C}^{\text{cont}} \left(\widehat{\mathcal{C}}_{p}(C), C \right) = \mathcal{C}_{\text{cd}}^{p}(C), \tag{2.3}$$

with notation of Example 1.24.

Proposition 2.4. Suppose C is a finitely generated \mathbb{K} -algebra, with ideal $\mathfrak{c} \subset C$. Let M_1, \ldots, M_p, N be C-modules, and let $\phi : \prod M_i \to N$ be a multi differential operator over C relative to \mathbb{K} . Then ϕ is continuous for the \mathfrak{c} -adic dir-inv structures on M_1, \ldots, M_p, N .

Proof. Suppose ϕ has order $\leq d$ in each of its arguments, and let

$$\psi: \mathcal{C}_{p,d}(C; M_1, \ldots, M_p) \to N$$

be the corresponding *C*-linear homomorphism. As in [8, Proposition 1.4.3], since *C* is a finitely generated K-algebra, it follows that $\mathcal{B}_{p,d}(C)$ is a finitely generated module over $\mathcal{B}_0(C)$; and hence $\mathcal{C}_{p,d}(C)$ is a finitely generated *C*-module. Let us denote by $\{F_j M_i\}_{j \in J_i}$ and $\{F_k N\}_{k \in K}$ the c-adic dir-inv structures on M_i and *N*. For any j_1, \ldots, j_p the $\mathcal{B}_{p-2}(C)$ -module $F_{j_1} M_1 \otimes \cdots \otimes F_{j_p} M_p$ is finitely generated, and hence the *C*-module $\mathcal{C}_{p,d}(C; F_{j_1} M_1, \ldots, F_{j_p} M_p)$ is finitely generated. Therefore

$$\psi\left(\mathcal{C}_{p,d}(C; \mathbf{F}_{j_1}M_1, \dots, \mathbf{F}_{j_p}M_p)\right) = \mathbf{F}_k N$$

for some $k \in K$.

It remains to prove that $\phi : \prod_{i=1}^{p} F_{j_i} M_i \to F_k N$ is continuous for the c-adic inv structures. But just like [8, Proposition 1.4.6], for any *i* and *l* one has

$$\phi(\mathbf{F}_{i_1}M_1,\ldots,\mathfrak{c}^{i+d}\mathbf{F}_{i_l}M_l,\ldots,\mathbf{F}_{i_n}M_p)\subset\mathfrak{c}^i\mathbf{F}_kN. \quad \Box$$

$$(2.5)$$

Suppose C' is a commutative *C*-algebra with ideal $\mathfrak{c}' \subset C'$. One says that C' is \mathfrak{c}' -adically formally étale over *C* if the following condition holds. Let *D* be a commutative *C*-algebra with nilpotent ideal \mathfrak{d} , and let $f: C' \to D/\mathfrak{d}$ be a *C*-algebra homomorphism such that $f(\mathfrak{c}'^i) = 0$ for $i \gg 0$. Then *f* lifts uniquely to a *C*-algebra homomorphism $\tilde{f}: C' \to D$. The important instances are when $C \to C'$ is étale (and then $\mathfrak{c}' = 0$); and when *C'* is the *c*-adic completion of *C* for some ideal $\mathfrak{c} \subset A$ (and $\mathfrak{c}' = C'\mathfrak{c}$). In both these instances *C'* is *c*-adically complete; and if *C* is noetherian, then $C \to C'$ is also flat.

Lemma 2.6. Let C' be a c'-adically formally étale C-algebra. Define $C'_j := C'/c'^{j+1}$. Consider C' and $C_{p,d}(C)$ as inv C-modules, with the c'-adic and discrete inv structures respectively. Then the canonical homomorphism

$$C' \widehat{\otimes}_C \mathcal{C}_{p,d}(C) \to \lim_{\leftarrow i} \mathcal{C}_{p,d}(C'_j)$$

is bijective.

Proof. Define ideals

$$\mathfrak{c}'_p := \operatorname{Ker}\left(\mathcal{C}_p(C') \to \mathcal{C}_p(C'_0)\right)$$

and

$$J := \operatorname{Ker}(C'_j \otimes_C \mathcal{C}_{p,d}(C) \to C'_j).$$

By the transitivity and the base change properties of formally étale homomorphisms, the ring homomorphism

$$\mathcal{C}_p(C) \cong C \otimes \cdots \otimes C \to C' \otimes \cdots \otimes C' \cong \mathcal{C}_p(C')$$

is c'_p -adically formally étale. Consider the commutative diagram of ring homomorphisms (with solid arrows)

The ideal *J* satisfies $J^{d+1} = 0$, and the ideal $\operatorname{Ker}(\mathcal{C}_{p,d}(C'_j) \to C'_j)$ is nilpotent too. Due to the unique lifting property the dashed arrows exist and are unique, making the whole diagram commutative. Moreover $g : \mathcal{C}_p(C') \to \mathcal{C}_p(C'_j)$ has to be the canonical surjection, and \tilde{f} is surjective.

A little calculation shows that $\tilde{f}(I_p(C')^{d+1}) = 0$, and hence \tilde{f} induces a homomorphism

$$\overline{f}: \mathcal{C}_{p,d}(C') \to C'_j \otimes_C \mathcal{C}_{p,d}(C).$$

Let

$$\mathfrak{c}'_{p,d} \coloneqq \operatorname{Ker} \left(\mathcal{C}_{p,d}(C') \to \mathcal{C}_{p,d}(C'_0) \right).$$

Another calculation shows that $\bar{f}(c'_{p,d})^{(j+1)(d+1)} = 0$. The conclusion is that there are surjections

$$\mathcal{C}_{p,d}(C'_{jd+j+d}) \xrightarrow{f} C'_j \otimes_C \mathcal{C}_{p,d}(C) \xrightarrow{e} \mathcal{C}_{p,d}(C'_j),$$

such that $e \circ \overline{f}$ is the canonical surjection. Passing to the inverse limit we deduce that

$$C' \widehat{\otimes}_C \mathcal{C}_{p,d}(C) \to \lim_{\leftarrow j} \mathcal{C}_{p,d}(C'_j)$$

is bijective. \Box

Proposition 2.7. Assume C is a noetherian finitely generated \mathbb{K} -algebra, and C' is a noetherian, c'-adically complete, flat, c'-adically formally étale C-algebra. Let M_1, \ldots, M_p, N be C-modules, and define $M'_i := C' \otimes_C M_i$ and $N' := C' \otimes_C N$.

- (1) Suppose $\phi : \prod_{i=1}^{p} M_i \to N$ is a poly differential operator over C. Then ϕ extends uniquely to a poly differential operator $\phi' : \prod_{i=1}^{p} M'_{i} \to N'$ over C'. If ϕ has order $\leq d$ then so does ϕ' .
- (2) The homomorphism

$$C' \otimes_C F_d \mathcal{D}iff_{\text{poly}}(C; M_1, \dots, M_p; N) \rightarrow F_d \mathcal{D}iff_{\text{poly}}(C'; M'_1, \dots, M'_p; N'), c' \otimes \phi \mapsto c'\phi, \text{ is bijective.}$$

Proof. By Proposition 2.4, applied to C with the 0-adic inv structure, we may assume that

the *C*-modules M_1, \ldots, M_p, N are finitely generated. Fix $d \in \mathbb{N}$. Define $C'_j \coloneqq C'/c'^{j+1}$ and $N'_j \coloneqq C'_j \otimes_C N$. So $C' \cong \lim_{\leftarrow j} C'_j$ and $N' \cong \lim_{\leftarrow j} N'_j$. By Lemma 2.2 and Proposition 2.4 we have

$$F_{d}\mathcal{D}iff_{\text{poly}}(C'; M'_{1}, \dots, M'_{p}; N')$$

$$\cong \operatorname{Hom}_{C'}(\mathcal{C}_{p,d}(C'; M'_{1}, \dots, M'_{p}), N')$$

$$\cong \lim_{\leftarrow i} \operatorname{Hom}_{C'}(\mathcal{C}_{p,d}(C'; M'_{1}, \dots, M'_{p}), N'_{j}).$$
(2.8)

Now for any $k \ge j + d$ one has

$$\operatorname{Hom}_{C'}(\mathcal{C}_{p,d}(C';M'_1,\ldots,M'_p),N'_j)\cong \operatorname{Hom}_{C'}(\mathcal{C}_{p,d}(C'_k;M'_1,\ldots,M'_p),N'_j).$$

This is because of formula (2.5). Thus, using Lemma 2.6, we obtain

$$\operatorname{Hom}_{C'}(\mathcal{C}_{p,d}(C'; M'_1, \dots, M'_p), N'_j) \\ \cong \operatorname{Hom}_{C'}(\lim_{\leftarrow k} \mathcal{C}_{p,d}(C'_k; M'_1, \dots, M'_p), N'_j) \\ \cong \operatorname{Hom}_{C'}(C' \otimes_C \mathcal{C}_{p,d}(C; M_1, \dots, M_p), N'_j) \\ \cong \operatorname{Hom}_C(\mathcal{C}_{p,d}(C; M_1, \dots, M_p), N'_j).$$

Combining this with (2.8) we get

$$F_{d}\mathcal{D}iff_{\text{poly}}(C'; M'_{1}, \dots, M'_{p}; N')$$

$$\cong \lim_{\leftarrow j} \text{Hom}_{C}(\mathcal{C}_{p,d}(C; M_{1}, \dots, M_{p}), N'_{j})$$

$$\cong \text{Hom}_{C}\left(\mathcal{C}_{p,d}(C; M_{1}, \dots, M_{p}), N'\right).$$

But $C \to C'$ is flat, C is noetherian, and $\mathcal{C}_{p,d}(C; M_1, \ldots, M_p)$ is a finitely generated C-module. Therefore

$$\operatorname{Hom}_{C}\left(\mathcal{C}_{p,d}(C; M_{1}, \ldots, M_{p}), N'\right) \\ \cong C' \otimes_{C} \operatorname{Hom}_{C}\left(\mathcal{C}_{p,d}(C; M_{1}, \ldots, M_{p}), N\right).$$

The conclusion is that

$$F_m \mathcal{D}_{\text{poly}}^{p+1}(C'; M'_1, \dots, M'_p; N')$$

$$\cong C' \otimes_C F_m \mathcal{D}_{\text{poly}}^{p+1}(C; M_1, \dots, M_p; N).$$
(2.9)

Given $\phi : \prod M_i \to N$ of order $\leq d$, let $\phi' := 1 \otimes \phi$ under the isomorphism (2.9). Backtracking, we see that ϕ' is the unique poly differential operator extending ϕ . \Box

3. L_{∞} morphisms and their twists

In this section we expand some results on L_{∞} algebras and morphisms from [5] Section 4. Much of the material presented here is based on discussions with Vladimir Hinich. There is some overlap with Section 2.2 of [3], with Section 6.1 of [6], and possibly with other accounts.

Let \mathbb{K} be a field of characteristic 0. Given a graded \mathbb{K} -module $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}^i$ and a natural number j let $T^j \mathfrak{g} := \underbrace{\mathfrak{g} \otimes \cdots \otimes \mathfrak{g}}_{i}$. The direct sum $T\mathfrak{g} := \bigoplus_{j \in \mathbb{N}} T^j \mathfrak{g}$ is the tensor

algebra. Let us denote the multiplication in $T\mathfrak{g}$ by \circledast . (This is just another way of writing \otimes , but it will be convenient to do so.)

The permutation group \mathfrak{S}_j acts on $T^j\mathfrak{g}$ as follows. For any sequence of integers $d = (d_1, \ldots, d_j)$ there is a group homomorphism $\operatorname{sgn}_d : \mathfrak{S}_j \to \{\pm 1\}$ such that on a transposition $\sigma = (p, p + 1)$ the value is $\operatorname{sgn}_d(\sigma) = (-1)^{d_p d_{p+1}}$. The action of a permutation $\sigma \in \mathfrak{S}_j$ on $T^j\mathfrak{g}$ is then

$$\sigma(\gamma_1 \circledast \cdots \circledast \gamma_j) \coloneqq \operatorname{sgn}_d(\sigma) \gamma_{\sigma(1)} \circledast \cdots \circledast \gamma_{\sigma(j)}$$

for $\gamma_1 \in \mathfrak{g}^{d_1}, \ldots, \gamma_j \in \mathfrak{g}^{d_j}$. Define $\tilde{S}^j \mathfrak{g}$ to be the set of \mathfrak{S}_j -invariants inside $T^j \mathfrak{g}$, and $\tilde{S}\mathfrak{g} := \bigoplus_{j>0} \tilde{S}^j \mathfrak{g}$.

The \mathbb{K} -module $T\mathfrak{g}$ is also a coalgebra, with coproduct $\tilde{\Delta} : T\mathfrak{g} \to T\mathfrak{g} \otimes T\mathfrak{g}$ given by the formula

$$\tilde{\Delta}(\gamma_1 \circledast \cdots \circledast \gamma_j) \coloneqq \sum_{p=0}^j (\gamma_1 \circledast \cdots \circledast \gamma_p) \otimes (\gamma_{p+1} \circledast \cdots \circledast \gamma_j).$$

The submodule $\tilde{S}\mathfrak{g} \subset T\mathfrak{g}$ is a sub-coalgebra (but not a subalgebra!).

The super-symmetric algebra $S\mathfrak{g} = \bigoplus_{j\geq 0} S^j\mathfrak{g}$ is defined to be the quotient of $T\mathfrak{g}$ by the ideal generated by the elements $\gamma_1 \circledast \gamma_2 - (-1)^{d_1d_2}\gamma_2 \circledast \gamma_1$, for all $\gamma_1 \in \mathfrak{g}^{d_1}$ and $\gamma_2 \in \mathfrak{g}^{d_2}$. In other words, $S^j\mathfrak{g}$ is the set of coinvariants of $T^j\mathfrak{g}$ under the action of the group \mathfrak{S}_j . The product in the algebra $S\mathfrak{g}$ is denoted by \cdot . The canonical projection is $\pi : T\mathfrak{g} \to S\mathfrak{g}$ is an algebra homomorphism: $\pi(\gamma_1 \circledast \gamma_2) = \gamma_1 \cdot \gamma_2$.

In fact Sg is a commutative cocommutative Hopf algebra. The comultiplication

 $\varDelta: S\mathfrak{g} \to S\mathfrak{g} \otimes S\mathfrak{g}$

is the unique \mathbb{K} -algebra homomorphism such that

$$\Delta(\gamma) = \gamma \otimes 1 + 1 \otimes \gamma$$

for all $\gamma \in \mathfrak{g}$. The antipode is $\gamma \mapsto -\gamma$. The projection $\pi : T\mathfrak{g} \to S\mathfrak{g}$ is not a coalgebra homomorphism. However:

Lemma 3.1. Let $\tau : Sg \to Tg$ be the \mathbb{K} -module homomorphism defined by

$$\tau(\gamma_1 \cdots \gamma_j) := \sum_{\sigma \in \mathfrak{S}_j} \operatorname{sgn}_{(d_1, \dots, d_j)}(\sigma) \gamma_{\sigma(1)} \circledast \cdots \circledast \gamma_{\sigma(j)}$$

for $\gamma_1 \in \mathfrak{g}^{d_1}, \ldots, \gamma_j \in \mathfrak{g}^{d_j}$. Then $\tau : S\mathfrak{g} \to \tilde{S}\mathfrak{g}$ is a coalgebra isomorphism, where $S\mathfrak{g}$ has the comultiplication Δ and $\tilde{S}\mathfrak{g}$ has the comultiplication $\tilde{\Delta}$.

Proof. Define $\tilde{\pi} : T\mathfrak{g} \to S\mathfrak{g}$ to be the \mathbb{K} -module homomorphism

$$\widetilde{\pi}(\gamma_1 \circledast \cdots \circledast \gamma_j) \coloneqq \frac{1}{j!} \pi(\gamma_1 \circledast \cdots \circledast \gamma_j) = \frac{1}{j!} \gamma_1 \cdots \gamma_j$$

for $\gamma_1, \ldots, \gamma_j \in \mathfrak{g}$. So $\tilde{\pi} \circ \tau$ is the identity map of S \mathfrak{g} , and $\tilde{\pi} : \tilde{S}\mathfrak{g} \to S\mathfrak{g}$ is bijective. It suffices to prove that

$$(\tilde{\pi} \otimes \tilde{\pi}) \circ (\tau \otimes \tau) \circ \Delta = (\tilde{\pi} \otimes \tilde{\pi}) \circ \tilde{\Delta} \circ \tau.$$

Take any $\gamma_1 \in \mathfrak{g}^{d_1}, \ldots, \gamma_j \in \mathfrak{g}^{d_j}$ and write $d := (d_1, \ldots, d_j)$. Then

$$((\tilde{\pi} \otimes \tilde{\pi}) \circ \tilde{\Delta} \circ \tau)(\gamma_1 \cdots \gamma_j)$$

= $\sum_{p=0}^{j} \sum_{\sigma \in \mathfrak{S}_j} \frac{1}{p!} \frac{1}{(j-p)!} \operatorname{sgn}_{d}(\sigma)(\gamma_{\sigma(1)} \cdots \gamma_{\sigma(p)}) \otimes (\gamma_{\sigma(p+1)} \cdots \gamma_{\sigma(j)}).$

On the other hand

$$\begin{aligned} &((\tilde{\pi} \otimes \tilde{\pi}) \circ (\tau \otimes \tau) \circ \Delta) (\gamma_1 \cdots \gamma_j) \\ &= \Delta(\gamma_1 \cdots \gamma_j) = (1 \otimes \gamma_1 + \gamma_1 \otimes 1) \cdots (1 \otimes \gamma_j + \gamma_j \otimes 1) \\ &\times \sum_{p=0}^j \sum_{\sigma \in \mathfrak{S}_{p,j-p}} \operatorname{sgn}_d(\sigma) (\gamma_{\sigma(1)} \cdots \gamma_{\sigma(p)}) \otimes (\gamma_{\sigma(p+1)} \cdots \gamma_{\sigma(j)}), \end{aligned}$$

where $\mathfrak{S}_{p,j-p}$ is the set of (p, j-p)-shuffles inside the group \mathfrak{S}_j . Since the algebra Sg is super-commutative the two sums are equal. \Box

The grading on \mathfrak{g} induces a grading on \mathfrak{Sg} , which we call the *degree*. Thus for $\gamma_i \in \mathfrak{g}^{d_i}$ the degree of $\gamma_1 \cdots \gamma_j \in S^j \mathfrak{g}$ is $d_1 + \cdots + d_j$ (unless $\gamma_1 \cdots \gamma_j = 0$). We consider \mathfrak{Sg} as a graded algebra for this grading. Actually there is another grading on \mathfrak{Sg} , by *order*, where we define the order of $\gamma_1 \cdots \gamma_j$ to be j (again, unless this element is zero). But this grading will have a different role.

By definition the j-th super-exterior power of g is

$$\bigwedge^{j} \mathfrak{g} \coloneqq \mathsf{S}^{j}(\mathfrak{g}[1])[-j], \tag{3.2}$$

where $\mathfrak{g}[1]$ is the shifted graded module whose degree *i* component is $\mathfrak{g}[1]^i = \mathfrak{g}^{i+1}$. When \mathfrak{g} is concentrated in degree 0 then these are the usual constructions of symmetric and exterior algebras, respectively.

We denote by $\ln : Sg \to S^1g = g$ the projection. So $\ln(\gamma)$ is the first order term of $\gamma \in Sg$. (The expression "ln" might stand for "linear" or "logarithm".)

Definition 3.3. Let \mathfrak{g} and \mathfrak{g}' be two graded \mathbb{K} -modules, and let $\Psi : S\mathfrak{g} \to S\mathfrak{g}'$ be a \mathbb{K} -linear homomorphism. For any $j \ge 1$ the *j*-th Taylor coefficient of Ψ is defined to be

$$\partial^j \Psi := \ln \circ \Psi : S^j \mathfrak{g} \to \mathfrak{g}'.$$

We say Ψ is colocal if $\Psi(S^{\geq 1}\mathfrak{g}) \subset S^{\geq 1}\mathfrak{g}'$ and $\Psi(S^0\mathfrak{g}) \subset S^0\mathfrak{g}'$.

Lemma 3.4. Suppose we are given a sequence of \mathbb{K} -linear homomorphisms $\psi_j : S^j \mathfrak{g} \to \mathfrak{g}', j \geq 1$, each of degree 0. Then there is a unique colocal coalgebra homomorphism $\Psi : S\mathfrak{g} \to S\mathfrak{g}'$, homogeneous of degree 0 and satisfying $\Psi(1) = 1$, whose Taylor coefficients are $\partial^j \Psi = \psi_j$.

Proof. Let $\tilde{ln}: \tilde{Sg}' \to \tilde{S}^1g' = g'$ be the projection for this coalgebra. Consider the exact sequence of coalgebras

$$0 \to \mathbb{K} \to \tilde{S}\mathfrak{g} \to \tilde{S}^{\geq 1}\mathfrak{g} \to 0.$$
(3.5)

According to Kontsevich [5, Section 4.1] (see also [3, Lemma 2.1.5]) the sequence $\{\psi_j\}_{j\geq 1}$ uniquely determines a coalgebra homomorphism $\tilde{\Psi}: \tilde{S}^{\geq 1}\mathfrak{g} \to \tilde{S}^{\geq 1}\mathfrak{g}'$ such that

$$\tilde{\ln} \circ \tilde{\Psi}|_{\tilde{S}^{j}\mathfrak{g}} = \psi_{j} \circ \tau^{-1}|_{\tilde{S}^{j}\mathfrak{g}}$$

for all $j \geq 1$. Here $\tau : S\mathfrak{g} \xrightarrow{\simeq} \tilde{S}\mathfrak{g}$ is the coalgebra isomorphism of Lemma 3.1. Using (3.5) we can lift $\tilde{\Psi}$ uniquely to a colocal coalgebra homomorphism $\tilde{\Psi} : \tilde{S}\mathfrak{g} \to \tilde{S}\mathfrak{g}'$ by setting $\tilde{\Psi}(1) := 1$. Now define the coalgebra homomorphism $\Psi : S\mathfrak{g} \to S\mathfrak{g}'$ to be $\Psi := \tau^{-1} \circ \tilde{\Psi} \circ \tau$. \Box

A \mathbb{K} -linear map $Q : Sg \to Sg$ is a *coderivation* if

$$\Delta \circ Q = (Q \otimes \mathbf{1} + \mathbf{1} \otimes Q) \circ \Delta,$$

where $\mathbf{1} := \mathbf{1}_{Sg}$, the identity map.

Lemma 3.6. Given a sequence of \mathbb{K} -linear homomorphisms $\psi_j : S^j \mathfrak{g} \to \mathfrak{g}, j \ge 1$, each of degree 1, there is a unique colocal coderivation Q of degree 1, such that Q(1) = 0 and $\partial^j Q = \psi_j$.

Proof. According to Kontsevich [5, Section 4.3] (see also [3, Lemma 2.1.2]) the sequence $\{\psi_i\}_{i\geq 1}$ uniquely determines a coderivation $\tilde{Q}: \tilde{S}^{\geq 1}\mathfrak{g} \to \tilde{S}^{\geq 1}\mathfrak{g}$ such that

$$\tilde{\ln} \circ \tilde{Q}|_{\tilde{S}^{j}\mathfrak{g}} = \psi_{j} \circ \tau^{-1}|_{\tilde{S}^{j}\mathfrak{g}}$$

for all $j \geq 1$. Using (3.5) this can be lifted uniquely to a colocal coderivation \tilde{Q} : $\tilde{Sg} \rightarrow \tilde{Sg}$ by setting $\tilde{Q}(1) := 0$. Now define the coderivation Q: $Sg \rightarrow Sg$ to be $Q := \tau^{-1} \circ \tilde{Q} \circ \tau$. \Box

We will be mostly interested in the coalgebras $S(\mathfrak{g}[1])$ and $S(\mathfrak{g}'[1])$. Observe that if $\Psi : S(\mathfrak{g}[1]) \to S(\mathfrak{g}'[1])$ is a homogeneous \mathbb{K} -linear homomorphism of degree *i*, then, using formula (3.2), each Taylor coefficient $\partial^j \Psi$ may be viewed as a homogeneous \mathbb{K} -linear homomorphism $\partial^j \Psi : \bigwedge^j \mathfrak{g} \to \mathfrak{g}$ of degree i + 1 - j. **Definition 3.7.** Let \mathfrak{g} be a graded \mathbb{K} -module. An L_{∞} algebra structure on \mathfrak{g} is a colocal coderivation $Q: S(\mathfrak{g}[1]) \to S(\mathfrak{g}[1])$ of degree 1, satisfying Q(1) = 0 and $Q \circ Q = 0$. We call the pair (\mathfrak{g}, Q) an L_{∞} algebra.

The notion of L_{∞} algebra generalizes that of DG Lie algebra in the following sense:

Proposition 3.8 ([5, Section 4.3]). Let $Q : S(\mathfrak{g}[1]) \to S(\mathfrak{g}[1])$ be a colocal coderivation of degree 1 with Q(1) = 0. Then the following conditions are equivalent.

- (i) $\partial^j Q = 0$ for all $j \ge 3$, and $Q \circ Q = 0$.
- (ii) $\partial^j Q = 0$ for all $j \ge 3$, and \mathfrak{g} is a DG Lie algebra with respect to the differential $\mathbf{d} := \partial^1 Q$ and the bracket $[-, -] := \partial^2 Q$.

In view of this, we shall say that (\mathfrak{g}, Q) is a DG Lie algebra if the equivalent conditions of the proposition hold. An easy calculation shows that given an L_{∞} algebra (\mathfrak{g}, Q) , the function $\partial^1 Q : \mathfrak{g} \to \mathfrak{g}$ is a differential, and $\partial^2 Q$ induces a graded Lie bracket on $H(\mathfrak{g}, \partial^1 Q)$. We shall denote this graded Lie algebra by $H(\mathfrak{g}, Q)$.

Definition 3.9. Let (\mathfrak{g}, Q) and (\mathfrak{g}', Q') be L_{∞} algebras. An L_{∞} morphism $\Psi : (\mathfrak{g}, Q) \rightarrow (\mathfrak{g}', Q')$ is a colocal coalgebra homomorphism $\Psi : S(\mathfrak{g}[1]) \rightarrow S(\mathfrak{g}'[1])$ of degree 0, satisfying $\Psi(1) = 1$ and $\Psi \circ Q = Q' \circ \Psi$.

Proposition 3.10 ([5, Section 4.3]). Let (\mathfrak{g}, Q) and (\mathfrak{g}', Q') be DG Lie algebras, and let Ψ : $S(\mathfrak{g}[1]) \to S(\mathfrak{g}'[1])$ be a colocal coalgebra homomorphism of degree 0 such that $\Psi(1) = 1$. Then Ψ is an L_{∞} morphism (i.e. $\Psi \circ Q = Q' \circ \Psi$) iff the Taylor coefficients $\psi_i := \partial^i \Psi : \bigwedge^i \mathfrak{g} \to \mathfrak{g}'$ satisfy the following identity:

$$d\left(\psi_{i}\left(\gamma_{1}\wedge\cdots\wedge\gamma_{i}\right)\right)-\sum_{k=1}^{i}\pm\psi_{i}\left(\gamma_{1}\wedge\cdots\wedge d(\gamma_{k})\wedge\cdots\wedge\gamma_{i}\right)$$

$$=\frac{1}{2}\sum_{\substack{k,l\geq 1\\k+l=i}}\frac{1}{k!l!}\sum_{\sigma\in\mathfrak{S}_{l}}\pm\left[\psi_{k}(\gamma_{\sigma(1)}\wedge\cdots\wedge\gamma_{\sigma(k)}),\psi_{l}(\gamma_{\sigma(k+1)}\wedge\cdots\wedge\gamma_{\sigma(i)})\right]$$

$$+\sum_{k< l}\pm\psi_{i-1}([\gamma_{k},\gamma_{l}]\wedge\gamma_{1}\wedge\cdots\gamma_{k}\cdots\gamma_{l}\cdots\wedge\gamma_{i}).$$

Here $\gamma_k \in \mathfrak{g}$ are homogeneous elements, \mathfrak{S}_i is the permutation group of $\{1, \ldots, i\}$, and the signs depend only on the indices, the permutations and the degrees of the elements γ_k . (See [4, Section 6] or [1, Theorem 3.1] for the explicit signs.)

The proposition shows that when (\mathfrak{g}, Q) and (\mathfrak{g}', Q') are DG Lie algebras and $\partial^j \Psi = 0$ for all $j \geq 2$, then $\partial^1 \Psi : \mathfrak{g} \to \mathfrak{g}'$ is a homomorphism of DG Lie algebras; and conversely. It also implies that for any L_{∞} morphism $\Psi : (\mathfrak{g}, Q) \to (\mathfrak{g}', Q')$, the map $H(\Psi) : H(\mathfrak{g}, Q) \to H(\mathfrak{g}', Q')$ is a homomorphism of graded Lie algebras.

Given DG Lie algebras \mathfrak{g} and \mathfrak{g}' we consider them as L_{∞} algebras (\mathfrak{g}, Q) and (\mathfrak{g}', Q') , as explained in Proposition 3.8. If $\Psi : (\mathfrak{g}, Q) \to (\mathfrak{g}', Q')$ is an L_{∞} morphism, then we shall say (by slight abuse of notation) that $\Psi : \mathfrak{g} \to \mathfrak{g}'$ is an L_{∞} morphism.

From here until Theorem 3.21 (inclusive) *C* is a commutative \mathbb{K} -algebra, and \mathfrak{g} , \mathfrak{g}' are graded *C*-modules. Suppose (\mathfrak{g} , *Q*) is an L_{∞} algebra structure on \mathfrak{g} such that the Taylor

coefficients $\partial^j Q : \bigwedge^j \mathfrak{g} \to \mathfrak{g}$ are all *C*-multilinear. Then we say (\mathfrak{g}, Q) is a *C*-multilinear L_{∞} algebra. Similarly one defines the notion of *C*-multilinear L_{∞} morphism $\Psi : (\mathfrak{g}, Q) \to (\mathfrak{g}', Q')$.

With *C* and \mathfrak{g} as above let $S_C\mathfrak{g}$ be the super-symmetric associative unital free algebra over *C*. Namely $S_C\mathfrak{g}$ is the quotient of the tensor algebra $T_C\mathfrak{g} = C \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes_C \mathfrak{g}) \oplus \cdots$ by the ideal generated by the super-commutativity relations. The algebra $S_C\mathfrak{g}$ is a Hopf algebra over *C*, with comultiplication

$$\Delta_C: S_C \mathfrak{g} \to S_C \mathfrak{g} \otimes_C S_C \mathfrak{g}.$$

The formulas are just as in the case $C = \mathbb{K}$. It will be useful to note that Δ_C preserves the grading by order, namely

$$\Delta_C(\mathbf{S}^i_C\mathfrak{g}) \subset \bigoplus_{j+k=i} \mathbf{S}^j_C\mathfrak{g} \otimes_C \mathbf{S}^k_C\mathfrak{g}.$$

- **Lemma 3.11.** (1) Let \mathfrak{g} be a graded C-module. There is a canonical bijection $Q \mapsto Q_C$ between the set of C-multilinear L_{∞} algebra structures Q on \mathfrak{g} , and the set of colocal coderivations $Q_C : S_C(\mathfrak{g}[1]) \to S_C(\mathfrak{g}[1])$ over C of degree 1, such that $Q_C(1) = 0$ and $Q_C \circ Q_C = 0$.
- (2) Let (\mathfrak{g}, Q) and (\mathfrak{g}', Q') be two *C*-multilinear L_{∞} algebras. The set of *C*-multilinear L_{∞} morphisms $\Psi : (\mathfrak{g}, Q) \rightarrow (\mathfrak{g}', Q')$ is canonically bijective to the set of colocal coalgebra homomorphisms $\Psi_C : S_C(\mathfrak{g}[1]) \rightarrow S_C(\mathfrak{g}'[1])$ over *C* of degree 0, such that $\Psi_C(1) = 1$ and $\Psi_C \circ Q_C = Q'_C \circ \Psi_C$.

Proof. The data for a coderivation $Q_C : S_C(\mathfrak{g}[1]) \to S_C(\mathfrak{g}[1])$ over *C* is its sequence of *C*-linear Taylor coefficients $\partial^j Q_C : \bigwedge_C^j \mathfrak{g} \to \mathfrak{g}$. But giving such a homomorphism $\partial^j Q_C$ is the same as giving a *C*-multilinear homomorphism $\partial^j Q : \bigwedge^j \mathfrak{g} \to \mathfrak{g}$, so there is a corresponding *C*-multilinear coderivation $Q : S(\mathfrak{g}[1]) \to S(\mathfrak{g}[1])$. One checks that $Q \circ Q = 0$ iff $Q_C \circ Q_C = 0$.

Similarly for coalgebra homomorphisms. \Box

An element $\gamma \in S_C(\mathfrak{g}[1])$ is called *primitive* if $\Delta_C(\gamma) = \gamma \otimes 1 + 1 \otimes \gamma$.

Lemma 3.12. The set of primitive elements of $S_C(\mathfrak{g}[1])$ is precisely $S_C^1(\mathfrak{g}[1]) = \mathfrak{g}[1]$.

Proof. By definition of the comultiplication any $\gamma \in \mathfrak{g}[1]$ is primitive. For the converse, let us denote by μ the multiplication in $S_C(\mathfrak{g}[1])$. One checks that $(\mu \circ \Delta_C)(\gamma) = 2^i \gamma$ for $\gamma \in S_C^i(\mathfrak{g}[1])$. If γ is primitive then $(\mu \circ \Delta_C)(\gamma) = 2\gamma$, so indeed $\gamma \in S_C^1(\mathfrak{g}[1])$. \Box

Now let us assume that C is a local ring, with nilpotent maximal ideal m. Suppose we are given two C-multilinear L_{∞} algebras (\mathfrak{g}, Q) and (\mathfrak{g}', Q') , and a C-multilinear L_{∞} morphism $\Psi : (\mathfrak{g}, Q) \to (\mathfrak{g}', Q')$. Because the coderivation Q is C-multilinear, the C-submodule $\mathfrak{mg} \subset \mathfrak{g}$ becomes a C-multilinear L_{∞} algebra (\mathfrak{mg}, Q) . Likewise for \mathfrak{mg}' , and $\Psi : (\mathfrak{mg}, Q) \to (\mathfrak{mg}', Q')$ is a C-multilinear L_{∞} morphism.

The fact that m is nilpotent is essential for the next definition.

Definition 3.13. The *Maurer–Cartan equation* in (\mathfrak{mg}, Q) is

$$\sum_{i=1}^{\infty} \frac{1}{i!} (\partial^i Q)(\omega^i) = 0$$

for $\omega \in (\mathfrak{mg})^1 = (\mathfrak{mg}[1])^0$.

An element $e \in S_C(\mathfrak{g}[1])$ is called *group-like* if $\Delta_C(e) = e \otimes e$. For $\omega \in \mathfrak{mg}^1$ we define

$$\exp(\omega) := \sum_{i>0} \frac{1}{i!} \omega^i \in \mathcal{S}_C(\mathfrak{g}[1]).$$

Lemma 3.14. The function exp is a bijection from $\mathfrak{mg}[1]$ to the set of invertible group-like elements $e \in S_C(\mathfrak{g}[1])$ such that $\ln(e) \in \mathfrak{mg}[1]$. The inverse of exp is \ln .

Proof. Let $\omega \in \mathfrak{mg}[1]$ and $e := \exp(\omega)$. The element e is invertible, with inverse $\exp(-\omega)$. Using the fact that $\Delta_C(\omega) = \omega \otimes 1 + 1 \otimes \omega$ it easily follows that $\Delta_C(e) = e \otimes e$. And trivially $\ln(e) = \omega$.

For the opposite direction, let *e* be invertible and group-like, and assume $\ln(e) \in \mathfrak{mg}[1]$. Write it as $e = \sum_i \gamma_i$, with $\gamma_i \in S_C^i(\mathfrak{g}[1])$. The equation $\Delta_C(e) = e \otimes e$ implies that

$$\Delta_C(\gamma_i) = \sum_{j+k=i} \gamma_j \otimes \gamma_k$$

for all *i*. Hence

$$2^{i}\gamma_{i} = \mu(\Delta_{C}(\gamma_{i})) = \sum_{j+k=i} \gamma_{j}\gamma_{k}.$$
(3.15)

For i = 0 we get $\gamma_0 = \gamma_0^2$, and since γ_0 is invertible, it follows that $\gamma_0 = 1$. Let $\omega := \gamma_1 = \ln(e) \in \mathfrak{mS}_C^1(\mathfrak{g}[1]) = \mathfrak{mg}[1]$. Using induction and Eq. (3.15) we see that $\gamma_i = \frac{1}{i!}\omega^i$ for all *i*. Thus $e = \exp(\omega)$. \Box

Lemma 3.16. Let $\omega \in (\mathfrak{mg}[1])^0 = \mathfrak{mg}^1$ and $e := \exp(\omega)$. Then ω is a solution of the MC equation iff Q(e) = 0.

Proof. Since *e* is group-like and invertible (by Lemma 3.14) we have

 $\Delta_C(Q(e)) = Q(e) \otimes e + e \otimes Q(e)$

and

$$\Delta_C(e^{-1}Q(e)) = \Delta_C(e)^{-1}\Delta_C(Q(e)) = e^{-1}Q(e) \otimes 1 + 1 \otimes e^{-1}Q(e).$$

So the element $e^{-1}Q(e)$ is primitive, and by Lemma 3.12 we get $e^{-1}Q(e) \in \mathfrak{g}[1]$. On the other hand hence Q(e) has no 0-order term, and Q(1) = 0. Thus in the first order term we

get

$$e^{-1}Q(e) = \ln\left(e^{-1}Q(e)\right)$$

= $\ln\left(\left(1 - \omega + \frac{1}{2}\omega^2 \pm \cdots\right)Q(e)\right)$
= $\ln\left(Q(e)\right)$
= $\sum_{i=0}^{\infty} \frac{1}{i!}\ln\left(Q(\omega^i)\right)$
= $\sum_{i=1}^{\infty} \frac{1}{i!}(\partial^i Q)(\omega^i).$ (3.17)

Since *e* is invertible we are done. \Box

Lemma 3.18. Given an element $\omega \in \mathfrak{mg}[1]$, define $\omega' := \sum_{i=1}^{\infty} \frac{1}{i!} (\partial^i \Psi)(\omega^i) \in \mathfrak{mg}'[1]$, $e := \exp(\omega)$ and $e' := \exp(\omega')$. Then $e' = \Psi(e)$.

Proof. From Lemma 3.14 we see that $\Delta_C(e) = e \otimes e$, and therefore also $\Delta_C(\Psi(e)) = \Psi(e) \otimes \Psi(e) \in S_C(\mathfrak{g}'[1])$. Since Ψ is *C*-linear and $\Psi(1) = 1$ we get $\Psi(e) \in 1+\mathfrak{mS}(\mathfrak{g}'[1])$. Thus $\Psi(e)$ is group-like and invertible. According to Lemma 3.14 it suffices to prove that $\ln(e') = \ln(\Psi(e))$. Now $\ln(e') = \omega'$ by definition. Since $\Psi(1) = 1$ and $\ln(1) = 0$ it follows that

$$\ln(\Psi(e)) = \ln\left(\Psi\left(\sum_{i=0}^{\infty} \frac{1}{i!}\omega^{i}\right)\right) = \sum_{i=0}^{\infty} \frac{1}{i!}\ln(\Psi(\omega^{i})) = \sum_{i=1}^{\infty} \frac{1}{i!}(\partial^{i}\Psi)(\omega^{i}) = \omega'. \quad \Box$$

Proposition 3.19. Suppose $\omega \in \mathfrak{mg}^1$ is a solution of the MC equation in (\mathfrak{mg}, Q) . Define $\omega' := \sum_{i=1}^{\infty} \frac{1}{i!} (\partial^i \Psi)(\omega^i) \in \mathfrak{mg}'^1$. Then ω' is a solution of the MC equation in (\mathfrak{mg}', Q') .

Proof. Let $e := \exp(\omega)$ and $e' := \exp(\omega')$. By Lemma 3.16 we get Q(e) = 0. Hence $Q'(\Psi(e)) = \Psi(Q(e)) = 0$. According to Lemma 3.18 we have $\Psi(e) = e'$, so Q'(e') = 0. Again by Lemma 3.16 we deduce that ω' solves the MC equation. \Box

Definition 3.20. Let $\omega \in \mathfrak{mg}^1$.

(1) The colocal coderivation Q_{ω} of $S_C(\mathfrak{g}[1])$ over C, with $Q_{\omega}(1) := 0$ and with Taylor coefficients

$$(\partial^i Q_{\omega})(\gamma) \coloneqq \sum_{j \ge 0} \frac{1}{j!} (\partial^{i+j} Q)(\omega^j \gamma)$$

for $i \ge 1$ and $\gamma \in S_C^i(\mathfrak{g}[1])$, is called the *twist of* Q by ω .

(2) The colocal coalgebra homomorphism Ψ_{ω} : $S_C(\mathfrak{g}[1]) \to S_C(\mathfrak{g}'[1])$ over C, with $\Psi_{\omega}(1) := 1$ and Taylor coefficients

$$(\partial^{i} \Psi_{\omega})(\gamma) \coloneqq \sum_{j \ge 0} \frac{1}{j!} (\partial^{i+j} \Psi)(\omega^{j} \gamma)$$

for $i \ge 1$ and $\gamma \in S_C^i(\mathfrak{g}[1])$, is called the *twist of* Ψ by ω .

Theorem 3.21. Let C be a commutative local \mathbb{K} -algebra with nilpotent maximal ideal \mathfrak{m} . Let (\mathfrak{g}, Q) and (\mathfrak{g}', Q') be C-multilinear \mathcal{L}_{∞} algebras and $\Psi : (\mathfrak{g}, Q) \to (\mathfrak{g}', Q')$ a C-multilinear \mathcal{L}_{∞} morphism. Suppose $\omega \in \mathfrak{mg}^1$ a solution of the MC equation in (\mathfrak{mg}, Q) . Define

$$\omega' := \sum_{i=1}^{\infty} \frac{1}{j!} (\partial^j \Psi)(\omega^j) \in \mathfrak{mg}'^1.$$

Then $(\mathfrak{g}, Q_{\omega})$ *and* $(\mathfrak{g}', Q'_{\omega'})$ *are* L_{∞} *algebras, and*

$$\Psi_{\omega}: (\mathfrak{g}, Q_{\omega}) \to (\mathfrak{g}', Q'_{\omega'})$$

is an L_{∞} morphism.

Proof. Let $e := \exp(\omega)$. Define $\Phi_e : S_C(\mathfrak{g}[1]) \to S_C(\mathfrak{g}[1])$ to be $\Phi_e(\gamma) := e\gamma$. Since e is group-like and invertible it follows that Φ_e is a coalgebra automorphism. Therefore $\tilde{Q}_{\omega} := \Phi_e^{-1} \circ Q \circ \Phi_e$ is a degree 1 colocal coderivation of $S_C(\mathfrak{g}[1])$, satisfying $\tilde{Q}_{\omega} \circ \tilde{Q}_{\omega} = 0$ and $\tilde{Q}_{\omega}(1) = e^{-1}Q(e) = 0$; cf. Lemma 3.16. So $(\mathfrak{g}, \tilde{Q}_{\omega})$ is an \mathcal{L}_{∞} algebra. Likewise we have a coalgebra automorphism $\Phi_{e'}$ and a coderivation $\tilde{Q}'_{\omega'} := \Phi_{e'}^{-1} \circ Q' \circ \Phi_{e'}$ of $S_C(\mathfrak{g}'[1])$, where $e' := \exp(\omega')$. The degree 0 colocal coalgebra homomorphism $\tilde{\Psi}_{\omega} := \Phi_{e'}^{-1} \circ \Psi \circ \Phi_e$ satisfies $\tilde{\Psi}_{\omega} \circ \tilde{Q}_{\omega} = \tilde{Q}'_{\omega'} \circ \tilde{\Psi}_{\omega}$, and also $\tilde{\Psi}_{\omega}(1) = e'^{-1}\Psi(e) = e'^{-1}e' = 1$, by Lemma 3.18. Hence we have an \mathcal{L}_{∞} morphism $\tilde{\Psi}_{\omega} : (\mathfrak{g}, \tilde{Q}_{\omega}) \to (\mathfrak{g}', \tilde{Q}'_{\omega'})$.

Let us calculate the Taylor coefficients of \tilde{Q}_{ω} . For $\gamma \in S_{C}^{i}(\mathfrak{g}[1])$ one has

$$(\partial^i \tilde{Q}_\omega)(\gamma) = \ln(\tilde{Q}_\omega(\gamma)) = \ln(e^{-1}Q(e\gamma))$$

But just as in (3.17), since $Q(e\gamma)$ has no zero order term, we obtain

 $\ln(e^{-1}Q(e\gamma)) = \ln(Q(e\gamma)).$

And

$$\ln(Q(e\gamma)) = \ln\left(Q\left(\sum_{j\geq 0} \frac{1}{j!}\omega^{j}\gamma\right)\right)$$

$$= \sum_{j\geq 0} \frac{1}{j!}\ln(Q(\omega^{j}\gamma))$$

$$= \sum_{j\geq 0} \frac{1}{j!}(\partial^{i+j}Q)(\omega^{j}\gamma)$$

$$= (\partial^{i}Q_{\omega})(\gamma).$$

(3.22)

Therefore $\tilde{Q}_{\omega} = Q_{\omega}$. Similarly we see that $\tilde{Q}'_{\omega'} = Q'_{\omega'}$ and $\tilde{\Psi}_{\omega} = \Psi_{\omega}$. \Box

Remark 3.23. The formulation of Theorem 3.21, as well as the idea for the proof, were suggested by Vladimir Hinich. An analogous result, for A_{∞} algebras, is in [6, Section 6.1].

If (\mathfrak{g}, Q) is a DG Lie algebra then the sum occurring in Definition 3.20(1) is finite, so the coderivation Q_{ω} can be defined without a nilpotence assumption on the coefficients.

Lemma 3.24. Let (\mathfrak{g}, Q) be a DG Lie algebra, and let $\omega \in \mathfrak{g}^1$ be a solution of the MC equation. Then the L_{∞} algebra $(\mathfrak{g}, Q_{\omega})$ is also a DG Lie algebra. In fact, for $\gamma_i \in \mathfrak{g}$ one has

$$(\partial^1 Q_{\omega})(\gamma_1) = (\partial^1 Q)(\gamma_1) + (\partial^2 Q)(\omega \gamma_1) = d(\gamma_1) + [\omega, \gamma_1] = (d + ad(\omega))(\gamma_1)$$
$$(\partial^2 Q_{\omega})(\gamma_1 \gamma_2) = (\partial^2 Q)(\gamma_1 \gamma_2) = [\gamma_1, \gamma_2],$$

and $\partial^j Q_\omega = 0$ for $j \ge 3$.

Proof. Like Eq. (3.22), with $C := \mathbb{K}$ and e := 1. \Box

In the situation of the lemma, the twisted DG Lie algebra $(\mathfrak{g}, Q_{\omega})$ will usually be denoted by \mathfrak{g}_{ω} .

Let A be a super-commutative associative unital DG algebra in Dir Inv Mod \mathbb{K} . The notion of DG A-module Lie algebra in Dir Inv Mod \mathbb{K} was introduced in Definition 1.20.

Definition 3.25. Let A be a super-commutative associative unital DG algebra in Dir Inv Mod K, let g and g' be DG A-module Lie algebras in Dir Inv Mod K, and let $\Psi : \mathfrak{g} \to \mathfrak{g}'$ be an L_{∞} morphism.

- (1) If each Taylor coefficient $\partial^j \Psi : \prod^j \mathfrak{g} \to \mathfrak{g}'$ is continuous then we say that Ψ is a *continuous* L_{∞} *morphism*.
- (2) Assume each Taylor coefficient $\partial^j \Psi : \prod^j \mathfrak{g} \to \mathfrak{g}'$ is A-multilinear, i.e.

 $(\partial^{j} \Psi)(a_{1}\gamma_{1},\ldots,a_{j}\gamma_{j}) = \pm a_{1}\cdots a_{j} \cdot (\partial^{j} \Psi)(\gamma_{1},\ldots,\gamma_{j})$

for all homogeneous elements $a_k \in A$ and $\gamma_k \in \mathfrak{g}$, with sign according to the Koszul rule, then we say that Ψ is an *A*-multilinear L_{∞} morphism.

Proposition 3.26. Let A and B be super-commutative associative unital DG algebras in Dir Inv Mod K, and let g and g' be DG A-module Lie algebras in Dir Inv Mod K. Suppose $A \to B$ is a continuous DG algebra homomorphism, and $\Psi : \mathfrak{g} \to \mathfrak{g}'$ is a continuous A-multilinear \mathcal{L}_{∞} morphism. Let $\partial^{j} \Psi_{\widehat{B}} : \prod^{j} (B \widehat{\otimes}_{A} \mathfrak{g}) \to B \widehat{\otimes}_{A} \mathfrak{g}'$ be the unique continuous \widehat{B} -multilinear homomorphism extending $\partial^{j} \Psi$. Then the degree 0 colocal coalgebra homomorphism

 $\Psi_{\widehat{B}}: \mathbf{S}(B \widehat{\otimes}_A \mathfrak{g}[1]) \to \mathbf{S}(B \widehat{\otimes}_A \mathfrak{g}'[1]),$

with $\Psi_{\widehat{B}}(1) := 1$ and with Taylor coefficients $\partial^j \Psi_{\widehat{B}}$, is an L_{∞} morphism

$$\Psi_{\widehat{B}}: B \widehat{\otimes}_A \mathfrak{g} \to B \widehat{\otimes}_A \mathfrak{g}'.$$

Proof. First consider the continuous *B*-multilinear homomorphisms $\partial^j \Psi_B : \prod^j (B \otimes_A \mathfrak{g}) \to B \otimes_A \mathfrak{g}'$ extending $\partial^j \Psi$. It is a straightforward calculation to verify that the L_{∞} morphism identities of Proposition 3.10 hold for the sequence of operators $\{\partial^j \Psi_B\}_{j\geq 1}$. The completion process respects these identities (cf. proof of Proposition 1.19). \Box

Theorem 3.27. Let \mathfrak{g} and \mathfrak{g}' be DG Lie algebras in Dir Inv Mod \mathbb{K} , and let $\Psi : \mathfrak{g} \to \mathfrak{g}'$ be a continuous \mathcal{L}_{∞} morphism. Let $A = \bigoplus_{i \in \mathbb{N}} A^i$ be a complete associative unital super-commutative DG algebra in Dir Inv Mod \mathbb{K} . By Proposition 3.26 there is an induced continuous A-multilinear \mathcal{L}_{∞} morphism $\Psi_A : A \otimes \mathfrak{g} \to A \otimes \mathfrak{g}'$. Let $\omega \in A^1 \otimes \mathfrak{g}^0$ be a solution of the MC equation in $A \otimes \mathfrak{g}$. Assume $d_{\mathfrak{g}} = 0$, $(\partial^j \Psi_A)(\omega^j) = 0$ for all $j \ge 2$, and also that \mathfrak{g}' is bounded below. Define $\omega' := (\partial^1 \Psi_A)(\omega) \in A^1 \otimes \mathfrak{g}'^0$. Then:

- (1) The element ω' is a solution of the MC equation in $A \otimes \mathfrak{g}'$.
- (2) Given $c \in S^j (A \otimes \mathfrak{g}[1])$ there exists a natural number k_0 such that $(\partial^{j+k} \Psi_A)(\omega^k c) = 0$ for all $k > k_0$.
- (3) The degree 0 colocal coalgebra homomorphism

$$\Psi_{A,\omega}$$
: S $(A \otimes \mathfrak{g}[1]) \to S (A \otimes \mathfrak{g}'[1])$,

with $\Psi_{A,\omega}(1) := 1$ and Taylor coefficients

$$(\partial^{j} \Psi_{A,\omega})(c) := \sum_{k \ge 0} \frac{1}{(j+k)!} (\partial^{j+k} \Psi_{A})(\omega^{k} c)$$

for $c \in S^{j}(A \widehat{\otimes} \mathfrak{g}[1])$, is a continuous A-multilinear L_{∞} morphism $\Psi_{A,\omega} : (A \widehat{\otimes} \mathfrak{g})_{\omega} \to (A \widehat{\otimes} \mathfrak{g}')_{\omega'}.$

Proof. We shall use a "deformation argument". Consider the base field \mathbb{K} as a discrete inv \mathbb{K} -module. The polynomial algebra $\mathbb{K}[\hbar]$ is endowed with the dir-inv \mathbb{K} -module structure such that the homomorphism $\bigoplus_{i \in \mathbb{N}} \mathbb{K} \to \mathbb{K}[\hbar]$, whose *i*-th component is multiplication by \hbar^i , is an isomorphism in Dir Inv Mod \mathbb{K} . Note that $\mathbb{K}[\hbar]$ is a discrete dir-inv module, but it is not trivial. We view $\mathbb{K}[\hbar]$ as a DG algebra concentrated in degree 0 (with zero differential).

For any $i \in \mathbb{N}$ let $A[\hbar]^i := \mathbb{K}[\hbar] \otimes A^i$, and let $A[\hbar] := \bigoplus_{i \in \mathbb{N}} A[\hbar]^i$, which is a DG algebra in Dir Inv Mod K, with differential $d_{A[\hbar]} := \mathbf{1} \otimes d_A$. We will need a "twisted" version of $A[\hbar]$, which we denote by $A[\hbar]^{\sim}$. Let $A[\hbar]^{\sim i} := \hbar^i A[\hbar]^i$, and define $A[\hbar]^{\sim} := \bigoplus_{i \in \mathbb{N}} A[\hbar]^{\sim i}$, which has a graded subalgebra of $A[\hbar]$. The differential is $d_{A[\hbar]} := \hbar d_{A[\hbar]}$. The dir-inv structure is such that the homomorphism $\bigoplus_{i,j\in\mathbb{N}} A^i \to A[\hbar]^{\sim}$, whose (i, j)-th component is multiplication by \hbar^{i+j} , is an isomorphism in Dir Inv Mod K. The specialization $\hbar \mapsto 1$ is a continuous DG algebra homomorphism $A[\hbar]^{\sim} \Rightarrow A.$ There is an induced continuous $A[\hbar]^{\sim}$ -multilinear L_{∞} morphism $\Psi_{A[\hbar]^{\sim}} : A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g} \to A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}'$.

We proceed in several steps.

Step 1. Say r_0 bounds \mathfrak{g}' from below, i.e. $\mathfrak{g}'^r = 0$ for all $r < r_0$. Take some $j \ge 1$. For any $l \in \{1, \ldots, j\}$ choose $p_l, q_l \in \mathbb{Z}, \gamma_l \in \mathfrak{g}^{p_l}$ and $a_l \in A[\hbar]^{\sim q_l}$. Also choose $\gamma_0 \in \mathfrak{g}^0$ and $a_0 \in A[\hbar]^{\sim 1}$. Let $p := \sum_{l=1}^{j} p_l$ and $q := \sum_{l=1}^{j} q_l$. Because $\partial^{j+k} \Psi_{A[\hbar]^{\sim}}$ is induced from $\partial^{j+k} \Psi$, and this is a homogeneous map of degree 1 - j - k, we have

$$(\partial^{j+k} \Psi_{A[\hbar]^{\sim}}) \left((a_0 \otimes \gamma_0)^k (a_1 \otimes \gamma_1) \cdots (a_j \otimes \gamma_j) \right) \\ = \pm a_0^k a_1 \cdots a_j \otimes (\partial^{j+k} \Psi) (\gamma_0^k \gamma_1 \cdots \gamma_j) \in A[\hbar]^{\sim k+q} \widehat{\otimes} \mathfrak{g}^{p+1-j-k}.$$

But $g^{p+1-j-k} = 0$ for all $k > p+1-j-r_0$.

Using multilinearity and continuity we conclude that given any $c \in S^j (A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}[1])$ there exists a natural number k_0 such that $(\partial^{j+k} \Psi_{A[\hbar]^{\sim}}) ((\hbar \omega)^k c) = 0$ for all $k > k_0$. Step 2. We are going to prove that $\hbar \omega$ is a solution of the MC equation in $A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}$. It is given that ω is a solution of the MC equation in $A \widehat{\otimes} \mathfrak{g}$. Because $d_{\mathfrak{g}} = 0$, this means that

$$(\mathbf{d}_A \otimes \mathbf{1})(\omega) + \frac{1}{2}[\omega, \omega] = 0.$$

Hence

$$d_{A[\hbar]^{\sim}\widehat{\otimes} \mathfrak{g}}(\hbar\omega) + \frac{1}{2}[\hbar\omega, \hbar\omega] = \hbar^{2}(d_{A} \otimes \mathbf{1})(\omega) + \frac{1}{2}\hbar^{2}[\omega, \omega] = 0$$

So $\hbar \omega$ solves the MC equation in $A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}$.

Step 3. Now we shall prove that $\hbar\omega'$ solves the MC equation in $A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}'$. This will require an infinitesimal argument. For any natural number *m* define $\mathbb{K}[\hbar]_m := \mathbb{K}[\hbar]/(\hbar^{m+1})$ and $A[\hbar]_m := \mathbb{K}[\hbar]_m \otimes A$. The latter is a DG algebra with differential $d_{A[\hbar]_m} := \mathbf{1} \otimes d_A$. Let $A[\hbar]_m^{\sim} := \bigoplus_{i=0}^m \hbar^i A[\hbar]_m^i$, which is a subalgebra of $A[\hbar]_m$, but its differential is $d_{A[\hbar]_m^{\sim}} := \hbar d_{A[\hbar]_m}$. There is a surjective DG Lie algebra homomorphism $A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}' \to A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g}'$, with kernel $(A[\hbar]^{\sim} \cap \hbar^{m+1} A[\hbar]) \widehat{\otimes} \mathfrak{g}'$. Since $\bigcap_{m\geq 0} \hbar^{m+1} A[\hbar] = 0$, it suffices to prove that $\hbar\omega'$ solves the MC equation in $A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g}'$.

Now $C := \mathbb{K}[\hbar]_m$ is an artinian local ring with maximal ideal $\mathfrak{m} := (\hbar)$. Define the DG Lie algebra $\mathfrak{h} := A[\hbar]_m \widehat{\otimes} \mathfrak{g}$, with differential $d_{\mathfrak{h}} := \hbar d_{A[\hbar]_m} \otimes \mathbf{1} + \mathbf{1} \otimes d_{\mathfrak{g}}$; so $A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g} \subset \mathfrak{h}$ as DG Lie algebras. Similarly define \mathfrak{h}' . There is a *C*-multilinear L_{∞} morphism $\Phi : \mathfrak{h} \to \mathfrak{h}'$ extending $\Psi_{A[\hbar]_m^{\sim}} : A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g} \to A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g}'$. By step 2 the element $\nu := \hbar\omega \in \mathfrak{m}\mathfrak{h}$ is a solution of the MC equation. According to Proposition 3.19 the element $\nu' := \sum_{k\geq 1} (\partial^k \Phi)(\nu^k)$ is a solution of the MC equation in \mathfrak{h}' . But $\nu' = \hbar\omega'$.

Step 4. Pick a natural number *m*. Let $\mathfrak{h}, \mathfrak{h}', \Phi, \nu$ and ν' be as in step 3. According to Theorem 3.21 there is a twisted \mathcal{L}_{∞} morphism $\Phi_{\nu} : \mathfrak{h}_{\nu} \to \mathfrak{h}'_{\nu'}$. Since $(A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g})_{\hbar\omega} \subset \mathfrak{h}_{\nu}$ and $(A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g}')_{\hbar\omega'} \subset \mathfrak{h}'_{\nu'}$ as DG Lie algebras, and Φ_{ν} extends $\Psi_{A[\hbar]_m^{\sim},\hbar\omega}$, it follows that $\Psi_{A[\hbar]_m^{\sim},\hbar\omega} : A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g} \to A[\hbar]_m^{\sim} \widehat{\otimes} \mathfrak{g}'$ is an \mathcal{L}_{∞} morphism. This means that the Taylor coefficients

$$\partial^{j} \Psi_{A[\hbar]_{m}^{\sim},\hbar\omega} : \prod^{j} (A[\hbar]_{m}^{\sim} \widehat{\otimes} \mathfrak{g})_{\hbar\omega} \to (A[\hbar]_{m}^{\sim} \widehat{\otimes} \mathfrak{g}')_{\hbar\omega'}$$

satisfy the identities of Proposition 3.10. As explained in step 3, this implies that

$$\partial^{j} \Psi_{A[\hbar]^{\sim},\hbar\omega} : \prod^{j} (A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g})_{\hbar\omega} \to (A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}')_{\hbar\omega'}$$

also satisfy these identities. We conclude that $\Psi_{A[\hbar]^{\sim},\hbar\omega}$ is an L_{∞} morphism.

Step 5. Specialization $\hbar \mapsto 1$ induces surjective DG Lie algebra homomorphisms $A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g} \rightarrow A \widehat{\otimes} \mathfrak{g}$ and $A[\hbar]^{\sim} \widehat{\otimes} \mathfrak{g}' \rightarrow A \widehat{\otimes} \mathfrak{g}'$, sending $\hbar \omega \mapsto \omega$, $\hbar \omega' \mapsto \omega'$ and $\Psi_{A[\hbar]^{\sim},\hbar\omega} \mapsto \Psi_{A,\omega}$. Therefore assertions (1–3) of the theorem hold. \Box

4. The universal L_{∞} morphism of Kontsevich

In this section \mathbb{K} is a field of characteristic 0 and *C* is a commutative \mathbb{K} -algebra. Recall that we denote by $\mathcal{T}_C = \mathcal{T}(C/\mathbb{K}) := \text{Der}_{\mathbb{K}}(C)$, the module of derivations of *C* relative to \mathbb{K} . This is a Lie algebra over \mathbb{K} . Following [5] we make the next definitions.

Definition 4.1. For $p \ge -1$ let

$$\mathcal{T}_{\text{poly}}^p(C) \coloneqq \bigwedge_C^{p+1} \mathcal{T}_C,$$

the module of *poly derivations* (or *poly tangents*) of degree p of C relative to \mathbb{K} . Let

$$\mathcal{T}_{\text{poly}}(C) := \bigoplus_{p} \mathcal{T}_{\text{poly}}^{p}(C).$$

This is a DG Lie algebra, with zero differential, and with the Schouten–Nijenhuis bracket, which is determined by the formulas

$$[\alpha_1 \wedge \alpha_2, \alpha_3] = \alpha_1 \wedge [\alpha_2, \alpha_3] + (-1)^{(p_2+1)p_3} [\alpha_1, \alpha_3] \wedge \alpha_2$$

and

$$[\alpha_1, \alpha_2] = (-1)^{1+p_1p_2}[\alpha_2, \alpha_1]$$

for elements $\alpha_i \in \mathcal{T}_{\text{poly}}^{p_i}(C)$.

Definition 4.2. For any $p \ge -1$ let $\mathcal{D}_{poly}^{p}(C)$ be the set of K-multilinear multi differential operators $\phi : C^{p+1} \to C$ (see Definition 2.1). The direct sum

$$\mathcal{D}_{\text{poly}}(C) := \bigoplus_{p} \mathcal{D}_{\text{poly}}^{p}(C)$$

is a DG Lie algebra. The differential $d_{\mathcal{D}}$ is the shifted Hochschild differential, and the Lie bracket is the Gerstenhaber bracket (see [5, Section 3.4.2]). The elements of $\mathcal{D}_{poly}(C)$ are called *poly differential operators* relative to \mathbb{K} .

In the notation of Section 2 and Example 1.24 one has

$$\mathcal{D}_{\text{poly}}^{p}(C) = \mathcal{D}iff_{\text{poly}}(C; \underbrace{C, \dots, C}_{p+1}; C) = \mathcal{C}_{\text{cd}}^{p+1}(C);$$

see formula (2.3).

Observe that $\mathcal{D}_{\text{poly}}^{p}(C) \subset \text{Hom}_{\mathbb{K}}(C^{\otimes (p+1)}, C)$, and $\mathcal{D}_{\text{poly}}(C)$ is a sub DG Lie algebra of the shifted Hochschild cochain complex of *C* relative to \mathbb{K} . For p = -1, 0 we have $\mathcal{D}_{\text{poly}}^{-1}(C) = C$ and $\mathcal{D}_{\text{poly}}^{0}(C) = \mathcal{D}(C)$, the ring of differential operators. Note that $\mathcal{D}_{\text{poly}}^{p}(C)$ is a left module over $\mathcal{D}(C)$, by the formula $D \cdot \phi := D \circ \phi$; and in this way it is also a left *C*-module.

When $C := \mathbb{K}[t] = \mathbb{K}[t_1, \dots, t_n]$, the polynomial algebra in $n \ge 1$ variables, and $p \ge 1$, the following is true. The $\mathbb{K}[t]$ -module $\mathcal{T}_{poly}^{p-1}(\mathbb{K}[t])$ is free with finite basis $\{\frac{\partial}{\partial t_i} \land \dots \land \frac{\partial}{\partial t_p}\}$, indexed by the sequences $0 \le i_1 < \dots < i_p \le n$. The $\mathbb{K}[t]$ -module $\mathcal{D}_{poly}^{p-1}(\mathbb{K}[t])$ is also free, with countable basis

$$\left\{ \left(\frac{\partial}{\partial t}\right)^{j_1} \otimes \cdots \otimes \left(\frac{\partial}{\partial t}\right)^{j_p} \right\}_{j_1, \dots, j_p \in \mathbb{N}^n},\tag{4.3}$$

where for $\mathbf{j}_k = (j_{k,1}, \ldots, j_{k,n}) \in \mathbb{N}^n$ we write $(\frac{\partial}{\partial t})^{j_k} := (\frac{\partial}{\partial t_1})^{j_{k,1}} \cdots (\frac{\partial}{\partial t_n})^{j_{k,n}}$.

For any $p \ge -1$ let $F_m \mathcal{D}_{poly}^p(C)$ be the set of poly differential operators of order $\le m$ in each argument. This is a *C*-submodule of $\mathcal{D}_{poly}^p(C)$.

Lemma 4.4. (1) For any m, p one has

$$d_{\mathcal{D}}\left(\mathbf{F}_m\mathcal{D}_{\mathrm{poly}}^p(C)\right)\subset \mathbf{F}_m\mathcal{D}_{\mathrm{poly}}^{p+1}(C).$$

(2) For any m, m', p, p' one has

$$\left[\mathsf{F}_m\mathcal{D}_{\mathrm{poly}}^p(C), \mathsf{F}_{m'}\mathcal{D}_{\mathrm{poly}}^{p'}(C)\right] \subset \mathsf{F}_{m+m'}\mathcal{D}_{\mathrm{poly}}^{p+p'}(C);$$

and

$$[-,-]: F_m \mathcal{D}^p_{\text{poly}}(C) \times F_{m'} \mathcal{D}^{p'}_{\text{poly}}(C) \to \mathcal{D}^{p+p'}_{\text{poly}}(C)$$

is a poly differential operator of order $\leq m + m'$ in each of its two arguments.

Proof. These assertions follow easily from the definitions of the Hochschild differential and the Gerstenhaber bracket; cf. [5, Section 3.4.2]. \Box

Lemma 4.5. Assume C is a finitely generated \mathbb{K} -algebra. Then $\mathcal{T}_{poly}^{p}(C)$ and $F_{m}\mathcal{D}_{poly}^{p}(C)$ are finitely generated C-modules.

Proof. One has

$$\mathcal{T}_{\text{poly}}^p(C) \cong \operatorname{Hom}_A(\Omega_C^{p+1}, A)$$

and

$$\operatorname{F}_m \mathcal{D}_{\operatorname{poly}}^p(C) \cong \operatorname{Hom}_C \left(\mathcal{C}_{p+1,m}(C), C \right);$$

see Lemma 2.2. The *C*-modules Ω_C^{p+1} and $\mathcal{C}_{p+1,m}(C)$ are finitely generated. \Box

Proposition 4.6. Assume C is a finitely generated \mathbb{K} -algebra, and C' is a noetherian, c'adically complete, flat, c'-adically formally étale C-algebra. Let us write G for either T_{poly} or $\mathcal{D}_{\text{poly}}$. Then:

- (1) There is a DG Lie algebra homomorphism $\mathcal{G}(C) \to \mathcal{G}(C')$, which is functorial in $C \to C'$.
- (2) The induced C'-linear homomorphism $C' \otimes_C \mathcal{G}^p(C) \to \mathcal{G}^p(C')$ is bijective.
- (3) For any *m* the isomorphisms in (2), for $\mathcal{G} = \mathcal{D}_{poly}$, restrict to isomorphisms

$$C' \otimes_C \mathrm{F}_m \mathcal{D}^p_{\mathrm{poly}}(C) \xrightarrow{\simeq} \mathrm{F}_m \mathcal{D}^p_{\mathrm{poly}}(C').$$

Proof. Consider $\mathcal{G} = \mathcal{D}_{poly}$. Let $\phi \in \mathcal{D}_{poly}^p(C)$. According to Proposition 2.7, applied to the case $M_1, \ldots, M_{p+1}, N := A$, there is a unique $\phi' \in \mathcal{D}_{poly}^p(C')$ extending ϕ . From the definitions of the Gerstenhaber bracket and the Hochschild differential, it immediately follows that the function $\mathcal{D}_{poly}(C) \to \mathcal{D}_{poly}(C'), \phi \mapsto \phi'$, is a DG Lie algebra homomorphism. Parts (2,3) are also consequences of Proposition 2.7.

The case $\mathcal{G} = \mathcal{T}_{\text{poly}}$ is done similarly (and is well-known).

Consider $C := \mathbb{K}[t]$ and $C' := \mathbb{K}[[t]] = \mathbb{K}[[t_1, \dots, t_n]]$, the power series algebra. Since $\mathcal{T}_{poly}^p(\mathbb{K}[[t]]) \cong \mathbb{K}[[t]] \otimes_{\mathbb{K}[t]} \mathcal{T}_{poly}^p(\mathbb{K}[t])$ is a finitely generated left $\mathbb{K}[[t]]$ -module, it is an

inv $\mathbb{K}[[t]]$ -module with the (*t*)-adic inv structure; cf. Example 1.8. Likewise $\mathcal{D}_{poly}^{p}(\mathbb{K}[[t]])$ is a dir-inv $\mathbb{K}[[t]]$ -module. By Proposition 4.6,

$$\mathbf{F}_m \mathcal{D}_{\mathrm{poly}}^p(\mathbb{K}[[t]]) \cong \mathbb{K}[[t]] \otimes_{\mathbb{K}[t]} \mathbf{F}_m \mathcal{D}_{\mathrm{poly}}^p(\mathbb{K}[t]),$$

which is a finitely generated $\mathbb{K}[[t]]$ -module. So according to Example 1.9 we may take $\{F_m \mathcal{D}_{poly}^p(\mathbb{K}[[t]])\}_{m \in \mathbb{N}}$ as the dir-inv structure of $\mathcal{D}_{poly}^p(\mathbb{K}[[t]])$. Now forgetting the $\mathbb{K}[[t]]$ -module structure, $\mathcal{T}_{poly}^p(\mathbb{K}[[t]])$ becomes an inv \mathbb{K} -module, and $\mathcal{D}_{poly}^p(\mathbb{K}[[t]])$ becomes a dir-inv \mathbb{K} -module.

Proposition 4.7. Let \mathcal{G} stand either for \mathcal{T}_{poly} or \mathcal{D}_{poly} . Then $\mathcal{G}(\mathbb{K}[[t]])$ is a complete DG Lie algebra in Dir Inv Mod \mathbb{K} .

Proof. Use Proposition 2.4, and, for the case $\mathcal{G} = \mathcal{D}_{poly}$, also Lemma 4.4. \Box

Remark 4.8. One might prefer to view $\mathcal{T}_{poly}(\mathbb{K}[[t]])$ and $\mathcal{D}_{poly}(\mathbb{K}[[t]])$ as topological DG Lie algebras. This can certainly be done: put on $\mathcal{T}_{poly}^{p}(\mathbb{K}[[t]])$ and $F_{m}\mathcal{D}_{poly}^{p}(\mathbb{K}[[t]])$ the *t*-adic topology, and put on $\mathcal{D}_{poly}^{p}(\mathbb{K}[[t]]) = \lim_{m \to \infty} F_{m}\mathcal{D}_{poly}^{p}(\mathbb{K}[[t]])$ the direct limit topology (see [8, Section 1.1]). However the dir-inv structure is better suited for our work.

Definition 4.9. For $p \ge 0$ let $\mathcal{D}_{poly}^{nor, p}(C)$ be the submodule of $\mathcal{D}_{poly}^{p}(C)$ consisting of poly differential operators ϕ such that $\phi(c_1, \ldots, c_{p+1}) = 0$ if $c_i = 1$ for some *i*. For p = -1 we let $\mathcal{D}_{poly}^{nor, -1}(C) := C$. Define $\mathcal{D}_{poly}^{nor}(C) := \bigoplus_{p \ge -1} \mathcal{D}_{poly}^{nor, p}(C)$. We call $\mathcal{D}_{poly}^{nor}(C)$ the algebra of *normalized poly differential operators*.

From the formulas for the Gerstenhaber bracket and the Hochschild differential (see [5, Section 3.4.2]) it immediately follows that $\mathcal{D}_{\text{poly}}^{\text{nor}}(C)$ is a sub DG Lie algebra of $\mathcal{D}_{\text{poly}}(C)$.

For any integer $p \ge 1$ there is a *C*-linear homomorphism

$$\mathcal{U}_1: \mathcal{T}_{\text{poly}}^{p-1}(C) \to \mathcal{D}_{\text{poly}}^{\text{nor}, p-1}(C)$$

with formula

$$\mathcal{U}_1(\xi_1 \wedge \dots \wedge \xi_p)(c_1, \dots, c_p) \coloneqq \frac{1}{p!} \sum_{\sigma \in \mathfrak{S}_p} \operatorname{sgn}(\sigma) \xi_{\sigma(1)}(c_1) \cdots \xi_{\sigma(p)}(c_p)$$
(4.10)

for elements $\xi_1, \ldots, \xi_p \in \mathcal{T}_C$ and $c_1, \ldots, c_p \in C$. For p = 0 the map $\mathcal{U}_1 : \mathcal{T}_{\text{poly}}^{-1}(C) \to \mathcal{D}_{\text{poly}}^{\text{nor}, -1}(C)$ is the identity (of *C*).

Suppose *M* and *N* are complexes in Dir Inv Mod *C* and ϕ , $\phi' : M \to N$ are morphisms of complexes in Dir Inv Mod *C* (i.e. all maps are continuous for the dir-inv structures). We say ϕ and ϕ' are homotopic if there is a degree -1 homomorphism of graded dir-inv modules $\eta : M \to N$ such that $d_N \circ \eta + \eta \circ d_M = \phi - \phi'$. We say that $\phi : M \to N$ is a homotopy equivalence in Dir Inv Mod *C* if there is a morphism of complexes $\psi : N \to M$ in Dir Inv Mod *C* such that $\psi \circ \phi$ is homotopic to $\mathbf{1}_M$ and $\phi \circ \psi$ is homotopic to $\mathbf{1}_N$.

Theorem 4.11. Let C be a commutative \mathbb{K} -algebra with ideal c. Assume C is noetherian and c-adically complete. Also assume there is a \mathbb{K} -algebra homomorphism

 $\mathbb{K}[t_1, \ldots, t_n] \to C$ which is flat and c-adically formally étale. Then the homomorphism $\mathcal{U}_1 : \mathcal{T}_{poly}(C) \to \mathcal{D}_{poly}^{nor}(C)$ and the inclusion $\mathcal{D}_{poly}^{nor}(C) \to \mathcal{D}_{poly}(C)$ are both homotopy equivalences in Dir Inv Mod C.

Proof. Recall that $\mathcal{B}_q(C) = \mathcal{B}^{-q}(C) := C^{\otimes (q+2)}$, and this is a $\mathcal{B}_0(C)$ -algebra via the extreme factors. So $\mathcal{B}_q(C) \cong \mathcal{B}_0(C) \otimes C^{\otimes q}$ as $\mathcal{B}_0(C)$ -modules. Let $\overline{C} := C/\mathbb{K}$, the quotient \mathbb{K} -module, and define $\mathcal{B}_q^{\operatorname{nor}}(C) = \mathcal{B}^{\operatorname{nor},-q}(C) := \mathcal{B}_0(C) \otimes \overline{C}^{\otimes q}$, the *q*-th normalized bar module of *C*. According to MacLane [7, Section X.2], $\mathcal{B}^{\operatorname{nor}}(C) := \bigoplus_q \mathcal{B}^{\operatorname{nor},-q}(C)$ has a coboundary operator such that the obvious surjection $\phi : \mathcal{B}(C) \to \mathcal{B}^{\operatorname{nor}}(C)$ is a quasi-isomorphism of complexes of $\mathcal{B}^0(C)$ -modules.

Define

$$\mathcal{C}_q^{\mathrm{nor}}(C) = \mathcal{C}^{\mathrm{nor}, -q}(C) \coloneqq C \otimes_{\mathcal{B}_0(C)} \mathcal{B}_q^{\mathrm{nor}}(C) \cong C \otimes \overline{C}^{\otimes q}$$

Because the complexes $\mathcal{B}(C)$ and $\mathcal{B}^{nor}(C)$ are bounded above and consist of free $\mathcal{B}_0(C)$ modules, it follows that $\phi : \mathcal{C}(C) \to \mathcal{C}^{nor}(C)$ is a quasi-isomorphism of complexes of *C*-modules. Let $\widehat{\Omega}_C^q$ be the c-adic completion of Ω_C^q , so that $\widehat{\Omega}_C^q \cong C \otimes_{\mathbb{K}[t]} \Omega_{\mathbb{K}[t]}^q$. There is a *C*-linear homomorphism $\psi : \mathcal{C}_q^{nor}(C) \to \Omega_C^q$ with formula

$$\psi(1 \otimes (c_1 \otimes \cdots \otimes c_q)) \coloneqq \mathsf{d}(c_1) \wedge \cdots \wedge \mathsf{d}(c_q)$$

Consider the polynomial algebra $\mathbb{K}[t] = \mathbb{K}[t_1, \dots, t_n]$. For $i \in \{1, \dots, n\}$ and $j \in \{1, \dots, q\}$ let

$$\tilde{d}_j(t_i) := \underbrace{1 \otimes \cdots \otimes 1}_i \otimes (t_i \otimes 1 - 1 \otimes t_i) \otimes 1 \otimes \cdots \otimes 1 \in \mathcal{B}_q(\mathbb{K}[t]),$$

and use the same expression to denote the image of this element in $C_q(\mathbb{K}[t])$. It is easy to verify that $C_q(\mathbb{K}[t])$ is a polynomial algebra over $\mathbb{K}[t]$ in the set of generators $\{\tilde{d}_j(t_i)\}$. Another easy calculation shows that $\operatorname{Ker}\left(\phi: C_q(\mathbb{K}[t]) \to C_q^{\operatorname{nor}}(\mathbb{K}[t])\right)$ is generated as $\mathbb{K}[t]$ -module by monomials in elements of the set $\{\tilde{d}_j(t_i)\}$.

Let us introduce a grading on $C_q(\mathbb{K}[t])$ by $\deg(\tilde{d}_j(t_i)) := 1$ and $\deg(t_i) := 0$. The coboundary operator of $C(\mathbb{K}[t])$ has degree 0 in this grading. The grading is inherited by $C_q^{\text{nor}}(\mathbb{K}[t])$, and hence $\phi : C(\mathbb{K}[t]) \to C^{\text{nor}}(\mathbb{K}[t])$ is a quasi-isomorphism of complexes in **GrMod** $\mathbb{K}[t]$, the category of graded $\mathbb{K}[t]$ -modules. Also let us put a grading on $\Omega_{\mathbb{K}[t]}^q$ with $\deg(d(t_i)) := 1$. By [8, Lemma 4.3], $\psi \circ \phi : C(\mathbb{K}[t]) \to \bigoplus_q \Omega_{\mathbb{K}[t]}^q$ is a quasi-isomorphism in **GrMod** $\mathbb{K}[t]$. Because we are dealing with bounded above complexes of free graded $\mathbb{K}[t]$ -modules it follows that both ϕ and ψ are homotopy equivalences in **GrMod** $\mathbb{K}[t]$.

Now let us go back to the formally étale homomorphism $\mathbb{K}[t] \to C$. We get homotopy equivalences

$$C \otimes_{\mathbb{K}[t]} \mathcal{C}(\mathbb{K}[t]) \stackrel{\phi}{\to} C \otimes_{\mathbb{K}[t]} \mathcal{C}^{\mathrm{nor}}(\mathbb{K}[t]) \stackrel{\psi}{\to} \bigoplus_{q} \widehat{\Omega}^{q}_{C}[q]$$

in GrMod *C*. We know that $\widehat{\mathcal{C}}_q(C)$ is a power series algebra in the set of generators $\{\widetilde{d}_j(t_i)\}$; see [8, Lemma 2.6]. Therefore $\widehat{\mathcal{C}}_q(C)$ is isomorphic to the completion of $C \otimes_{\mathbb{K}[t]} \mathcal{C}_q(\mathbb{K}[t])$ with respect to the grading (see Example 1.13). Define $\widehat{C}_q^{\text{nor}}(C)$ to be the completion of $C \otimes_{\mathbb{K}[t]} C_q^{\text{nor}}(\mathbb{K}[t])$ with respect to the grading. We then have a homotopy equivalence of complexes in Inv Mod C

$$\widehat{\mathcal{C}}(C) \to \widehat{\mathcal{C}}^{\operatorname{nor}}(C) \to \bigoplus_{q} \widehat{\Omega}^{q}_{C}[q].$$

Applying $Hom_C^{cont}(-, C)$ we arrive at quasi-isomorphisms

$$\bigoplus_{q} \left(\bigwedge_{C}^{q} \mathcal{T}_{C} \right) [-q] \to \mathcal{C}_{\mathrm{cd}}^{\mathrm{nor}}(C) \to \mathcal{C}_{\mathrm{cd}}(C),$$

where by definition $\mathcal{C}_{cd}^{nor}(C)$ is the continuous dual of $\widehat{\mathcal{C}}^{nor}(C)$. An easy calculation shows that $\mathcal{C}_{cd}^{nor,q}(C) = \mathcal{D}_{poly}^{nor,q-1}(C)$. \Box

One instance to which this theorem applies is $C := \mathbb{K}[[t_1, \dots, t_n]]$. Here is another:

Corollary 4.12. Suppose C is a smooth \mathbb{K} -algebra. Then the homomorphism \mathcal{U}_1 : $\mathcal{T}_{poly}(C) \rightarrow \mathcal{D}_{poly}^{nor}(C)$ and the inclusion $\mathcal{D}_{poly}^{nor}(C) \rightarrow \mathcal{D}_{poly}(C)$ are both quasiisomorphisms.

Proof. There is an open covering Spec $C = \bigcup$ Spec C_i such that for every *i* there is an étale homomorphism $\mathbb{K}[t_1, \ldots, t_n] \rightarrow C_i$. Now use Theorem 4.11, Proposition 2.7 and faithful flatness. \Box

Here is a slight variation of the celebrated result of Kontsevich, known as the *Formality Theorem* [5, Theorem 6.4].

Theorem 4.13. Let $\mathbb{K}[t] = \mathbb{K}[t_1, ..., t_n]$ be the polynomial algebra in *n* variables, and assume that $\mathbb{R} \subset \mathbb{K}$. There is a collection of \mathbb{K} -linear homomorphisms

$$\mathcal{U}_j: \bigwedge^j \mathcal{T}_{\text{poly}}(\mathbb{K}[t]) \to \mathcal{D}_{\text{poly}}(\mathbb{K}[t])$$

indexed by $j \in \{1, 2, ...\}$, satisfying the following conditions.

- (i) The sequence $\mathcal{U} = {\mathcal{U}_j}$ is an L_{∞} -morphism $\mathcal{T}_{\text{poly}}(\mathbb{K}[t]) \to \mathcal{D}_{\text{poly}}(\mathbb{K}[t])$.
- (ii) Each U_j is a poly differential operator of $\mathbb{K}[t]$ -modules.
- (iii) Each \mathcal{U}_i is equivariant for the standard action of $\operatorname{GL}_n(\mathbb{K})$ on $\mathbb{K}[t]$.
- (iv) The homomorphism U_1 is given by Eq. (4.10).
- (v) For any $j \ge 2$ and $\alpha_1, \ldots, \alpha_j \in \mathcal{T}_{\text{poly}}^0(\mathbb{K}[t])$ one has $\mathcal{U}_j(\alpha_1 \wedge \cdots \wedge \alpha_j) = 0$.
- (vi) For any $j \ge 2$, $\alpha_1 \in \mathfrak{gl}_n(\mathbb{K}) \subset \mathcal{T}^0_{\text{poly}}(\mathbb{K}[t])$ and $\alpha_2, \ldots, \alpha_j \in \mathcal{T}_{\text{poly}}(\mathbb{K}[t])$ one has $\mathcal{U}_j(\alpha_1 \wedge \cdots \wedge \alpha_j) = 0$.

Proof. First let us assume that $\mathbb{K} = \mathbb{R}$. Theorem 6.4 in [5] talks about the differentiable manifold \mathbb{R}^n , and considers C^{∞} functions on it, rather than polynomial functions. However, by construction the operators \mathcal{U}_j are multi differential operators with polynomial coefficients (see [5, Section 6.3]). Therefore they descend to operators

$$\mathcal{U}_j: \bigwedge^J \mathcal{T}_{\text{poly}}(\mathbb{R}[t]) \to \mathcal{D}_{\text{poly}}(\mathbb{R}[t]),$$

and conditions (i) and (ii) hold. Conditions (iii), (v) and (vi) are properties P3, P4 and P5 respectively in [5, Section 7]. For condition (iv) see [5, Sections 4.6.1–2].

For a field extension $\mathbb{R} \subset \mathbb{K}$ use base change. \Box

Remark 4.14. It is likely that the operator \mathcal{U}_j sends $\bigwedge^j \mathcal{T}_{\text{poly}}(\mathbb{K}[t])$ into $\mathcal{D}_{\text{poly}}^{\text{nor}}(\mathbb{K}[t])$. This is clear for j = 1, where $\mathcal{U}_1(\mathcal{T}_{\text{poly}}(\mathbb{K}[t])) = F_1 \mathcal{D}_{\text{poly}}^{\text{nor}}(\mathbb{K}[t])$; but this requires checking for $j \ge 2$.

In the next theorem $\mathcal{T}_{poly}(\mathbb{K}[[t]])$ and $\mathcal{D}_{poly}(\mathbb{K}[[t]])$ are considered as DG Lie algebras in Dir Inv Mod K, with their *t*-adic dir-inv structures. Recall the notions of twisted DG Lie algebra (Lemma 3.24) and multilinear extensions of L_{∞} morphisms (Proposition 3.26).

Theorem 4.15. Assume $\mathbb{R} \subset \mathbb{K}$. Let $A = \bigoplus_{i \geq 0} A^i$ be a complete super-commutative associative unital DG algebra in Dir Inv Mod \mathbb{K} . Consider the induced continuous A-multilinear L_{∞} morphism

$$\mathcal{U}_A : A \otimes \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]]) \to A \otimes \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]]).$$

Suppose $\omega \in A^1 \otimes \mathcal{T}^0_{\text{poly}}(\mathbb{K}[[t]])$ is a solution of the Maurer–Cartan equation in $A \otimes \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]])$. Define $\omega' := (\partial^1 \mathcal{U}_A)(\omega) \in A^1 \otimes \mathcal{D}^0_{\text{poly}}(\mathbb{K}[[t]])$. Then ω' is a solution of the Maurer–Cartan equation in $A \otimes \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]])$, and there is continuous A-multilinear L_{∞} quasi-isomorphism

$$\mathcal{U}_{A,\omega}: \left(A \widehat{\otimes} \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]])\right)_{\omega} \to \left(A \widehat{\otimes} \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]])\right)_{\omega'}$$

whose Taylor coefficients are

$$(\partial^{j}\mathcal{U}_{A,\omega})(\alpha) := \sum_{k\geq 0} \frac{1}{(j+k)!} (\partial^{j+k}\mathcal{U}_{A})(\omega^{k} \wedge \alpha)$$

for $\alpha \in \prod^{j} (A \otimes \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]]))$.

Proof. By condition (ii) of Theorem 4.13, and by Proposition 2.4, each operator $\partial^j \mathcal{U} := \mathcal{U}_j$ is continuous for the *t*-adic dir-inv structures on $\mathcal{T}_{poly}(\mathbb{K}[[t]])$ and $\mathcal{D}_{poly}(\mathbb{K}[[t]])$. Therefore there is a unique continuous *A*-multilinear extension $\partial^j \mathcal{U}_A$. Condition (v) of Theorem 4.13 implies that $\partial^j \mathcal{U}_A(\omega^j) = 0$ for $j \ge 2$. By Theorem 3.27 we get an L_∞ morphism $\mathcal{U}_{A,\omega}$.

It remains to prove that $\partial^1 \mathcal{U}_{A,\omega}$ is a quasi-isomorphism. According to Theorem 4.11 for every *i* the K-linear homomorphism

$$\partial^1 \mathcal{U}_A : A^i \widehat{\otimes} \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]]) \to A^i \widehat{\otimes} \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]])$$

is a quasi-isomorphism. Since we are looking at bounded below complexes, a spectral sequence argument implies that

$$\partial^1 \mathcal{U}_{A,\omega} : A \widehat{\otimes} \mathcal{T}_{\text{poly}}(\mathbb{K}[[t]]) \to A \widehat{\otimes} \mathcal{D}_{\text{poly}}(\mathbb{K}[[t]])$$

is a quasi-isomorphism. \Box

Acknowledgments

The author wishes to thank Vladimir Hinich, Bernhard Keller and James Stasheff for their assistance.

References

- S. Cattaneo, G. Felder, L. Tomassini, From local to global deformation quantization of Poisson manifolds, Duke Math. J. 115 (2) (2002) 329–352.
- [2] A. Grothendieck, J. Dieudonné, Éléments de Géometrie Algébrique IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967).
- [3] K. Fukaya, Deformation theory, homological algebra, and mirror symmetry, in: Geometry and Physics of Branes (Como, 2001), in: Ser. High Energy Phys. Cosmol. Gravit., IOP, Bristol, 2003, pp. 121–209.
- [4] B. Keller, Introduction to Kontsevich's quantization theorem (preprint).
- [5] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (3) (2003) 157-216.
- [6] K. Lefévre-Hasegawa, Sur les A_{∞} -catégories, Thesis.
- [7] S. MacLane, Homology, Springer-Verlag, Reprint of the 1975 edition.
- [8] A. Yekutieli, The continuous Hochschild cochain complex of a scheme, Canad. J. Math. 54 (2002) 1319–1337.
- [9] A. Yekutieli, Deformation Quantization in Algebraic Geometry, eprint math.AG/0310399 at http://arxiv.org.