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Abstract

The purpose of this paper is to develop a suitable notion of continuous L∞ morphism between
DG Lie algebras, and to study twists of such morphisms.
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0. Introduction

Let K be a field containing R. Consider two DG Lie algebras associated with the
polynomial algebra K[t] := K[t1, . . . , tn]. The first is the algebra of poly derivations
Tpoly(K[t]), and the second is the algebra of poly differential operators Dpoly(K[t]). A very
important result of Kontsevich [5], known as the Formality Theorem, gives an explicit
formula for an L∞ quasi-isomorphism

U : Tpoly(K[t])→ Dpoly(K[t]).

Here is the main result of our paper.

Theorem 0.1. Assume R ⊂ K. Let A =
⊕

i≥0 Ai be a super-commutative associative
unital complete DG algebra in Dir Inv Mod K. Consider the induced continuous
A-multilinear L∞ morphism

UA : A ⊗̂ Tpoly(K[[t]])→ A ⊗̂Dpoly(K[[t]]).
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Suppose ω ∈ A1
⊗̂ T 0

poly(K[[t]]) is a solution of the Maurer–Cartan equation in

A ⊗̂ Tpoly(K[[t]]). Define ω′ := (∂1UA)(ω) ∈ A1
⊗̂D0

poly(K[[t]]). Then ω′ is a solution of
the Maurer–Cartan equation in A ⊗̂Dpoly(K[[t]]), and there is a continuous A-multilinear
L∞ quasi-isomorphism

UA,ω :
(

A ⊗̂ Tpoly(K[[t]])
)
ω
→
(

A ⊗̂Dpoly(K[[t]])
)
ω′

whose Taylor coefficients are

(∂ jUA,ω)(α) :=
∑
k≥0

1
( j + k)!

(∂ j+kUA)(ω
k
∧ α)

for α ∈
∏ j (A ⊗̂ Tpoly(K[[t]])

)
.

Below is an outline of the paper, in which we mention the various terms appearing in
the theorem.

In Section 1 we develop the theory of dir-inv modules. A dir-inv structure on a
K-module M is a generalization of an adic topology. The category of dir-inv modules and
continuous homomorphisms is denoted by Dir Inv Mod K. The concepts of dir-inv module,
and related complete tensor product ⊗̂ , are quite flexible, and are particularly well-suited
for infinitely generated modules. Among other things we introduce the notion of DG Lie
algebra in Dir Inv Mod K.

Section 2 concentrates on poly differential operators. The results here are mostly
generalizations of material from [2].

In Section 3 we review the coalgebra approach to L∞ morphisms. The notions of
continuous, A-multilinear and twisted L∞ morphisms are defined. The main result of this
section is Theorem 3.27.

In Section 4 we recall the Kontsevich Formality Theorem. By combining it with
Theorem 3.27 we deduce Theorem 0.1 (repeated as Theorem 4.15). In Theorem 0.1
the DG Lie algebras A ⊗̂ Tpoly(K[[t]]) and A ⊗̂Dpoly(K[[t]]) are the A-multilinear
extensions of Tpoly(K[[t]]) and Dpoly(K[[t]]) respectively, and

(
A ⊗̂ Tpoly(K[[t]])

)
ω

and
(

A ⊗̂Dpoly(K[[t]])
)
ω′

are their twists. The L∞ morphism UA is the continuous
A-multilinear extension of U , and UA,ω is its twist.

Theorem 0.1 is used in [9], in which we study deformation quantization of algebraic
varieties.

1. Dir-inv modules

We begin the paper with a generalization of the notion of adic topology. In this section
K is a commutative base ring, and C is a commutative K-algebra. The category Mod C is
abelian and has direct and inverse limits. Unless specified otherwise, all limits are taken in
Mod C .

Definition 1.1. (1) Let M ∈ Mod C . An inv module structure on M is an inverse system
{Fi M}i∈N of C-submodules of M . The pair (M, {Fi M}i∈N) is called an inv C-module.

(2) Let (M, {Fi M}i∈N) and (N , {Fi N }i∈N) be two inv C-modules. A function φ : M → N
(C-linear or not) is said to be continuous if for every i ∈ N there exists i ′ ∈ N such
that φ(Fi ′M) ⊂ Fi N .
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(3) Define Inv Mod C to be the category whose objects are the inv C-modules, and whose
morphisms are the continuous C-linear homomorphisms.

We do not assume that the canonical homomorphism M → lim←i M/Fi M is surjective
nor injective. There is a full embedding Mod C ↪→ Inv Mod C , M 7→ (M, {. . . , 0, 0}). If
(M, {Fi M}i∈N) and (N , {Fi N }i∈N) are two inv C-modules then M ⊕ N is an inv module,
with inverse system of submodules Fi (M ⊕ N ) := Fi M ⊕ Fi N . Thus Inv Mod C is a
C-linear additive category.

Let (M, {Fi M}i∈N) be an inv C-module, let M ′,M ′′ be two C-modules, and suppose
φ : M ′ → M and ψ : M → M ′′ are C-linear homomorphisms. We get induced inv
module structures on M ′ and M ′′ by defining Fi M ′ := φ−1(Fi M) and Fi M ′′ := ψ(Fi M).

Recall that a directed set is a partially ordered set J with the property that for any
j1, j2 ∈ J there exists j3 ∈ J such that j1, j2 ≤ j3.

Definition 1.2. (1) Let M ∈ Mod C . A dir-inv module structure on M is a direct system
{F j M} j∈J of C-submodules of M , indexed by a nonempty directed set J , together
with an inv module structure on each F j M , such that for every j1 ≤ j2 the inclusion
F j1 M ↪→ F j2 M is continuous. The pair (M, {F j M} j∈J ) is called a dir-inv C-module.

(2) Let (M, {F j M}) j∈J and (N , {Fk N }k∈K ) be two dir-inv C-modules. A function φ :
M → N (C-linear or not) is said to be continuous if for every j ∈ J there exists
k ∈ K such that φ(F j M) ⊂ Fk N , and φ : F j M → Fk N is a continuous function
between these two inv C-modules.

(3) Define Dir Inv Mod C to be the category whose objects are the dir-inv C-modules, and
whose morphisms are the continuous C-linear homomorphisms.

There is no requirement that the canonical homomorphism lim j→ F j M → M will be
surjective. An inv C-module M is endowed with the dir-inv module structure {F j M} j∈J ,
where J := {0} and F0 M := M . Thus we get a full embedding Inv Mod C ↪→

Dir Inv Mod C . Given two dir-inv C-modules (M, {F j M}) j∈J and (N , {Fk N }k∈K ), we
make M ⊕ N into a dir-inv module as follows. The directed set is J × K , with the
component-wise partial order, and the direct system of inv modules is F( j,k)(M ⊕ N ) :=
F j M⊕Fk N . The condition J 6= ∅ in part (1) of the definition ensures that the zero module
0 ∈ Mod C is an initial object in Dir Inv Mod C . So Dir Inv Mod C is a C-linear additive
category.

Let (M, {F j M} j∈J ) be a dir-inv C-module, let M ′,M ′′ be two C-modules, and suppose
φ : M ′ → M and ψ : M → M ′′ are C-linear homomorphisms. We get induced
dir-inv module structures {F j M ′} j∈J and {F j M ′′} j∈J on M ′ and M ′′ as follows. Define
F j (M ′) := φ−1(F j M) and F j M ′′ := ψ(F j M), which have induced inv module structures
via the homomorphisms φ : F j M ′→ F j M and ψ : F j M → F j M ′′.

Definition 1.3. (1) An inv C-module (M, {Fi M}i∈N) is called discrete if Fi M = 0 for
i � 0.

(2) An inv C-module (M, {Fi M}i∈N) is called complete if the canonical homomorphism
M → lim←i M/Fi M is bijective.

(3) A dir-inv C-module M is called complete (resp. discrete) if it isomorphic, in
Dir Inv Mod C , to a dir-inv module (N , {F j N } j∈J ), where all the inv modules F j N
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are complete (resp. discrete) as defined above, and the canonical homomorphism
lim j→ F j N → N is bijective.

(4) A dir-inv C-module M is called trivial if it is isomorphic, in Dir Inv Mod C , to an
object of Mod C , via the embedding Mod C ↪→ Dir Inv Mod C .

Note that M is a trivial dir-inv module iff it is isomorphic, in Dir Inv Mod C , to a discrete
inv module. There do exist discrete dir-inv modules that are not trivial dir-inv modules; see
Example 1.10. It is easy to see that if M is a discrete dir-inv module then it is also complete.

The base ring K is endowed with the inv structure {. . . , 0, 0}, so it is a trivial
dir-inv K-module. But the K-algebra C could have more interesting dir-inv structures
(cf. Example 1.8).

If f ∗ : C → C ′ is a homomorphism of K-algebras, then there is a functor f∗ :
Dir Inv Mod C ′ → Dir Inv Mod C . In particular any dir-inv C-module is a dir-inv K-
module.

Definition 1.4. (1) Given an inv C-module (M, {Fi M}i∈N) its completion is the inv
C-module (M̂, {Fi M̂}i∈N), defined as follows: M̂ := lim←i M/Fi M and Fi M̂ :=

Ker(M̂ → M/Fi M). Thus we obtain an additive endofunctor M 7→ M̂ of Inv Mod C .
(2) Given a dir-inv C-module (M, {F j M} j∈J ) its completion is the dir-inv C-module

(M̂, {F j M̂} j∈J ) defined as follows. For any j ∈ J let F̂ j M be the completion of

the inv C-module F j M , as defined above. Then let M̂ := lim j→ F̂ j M and F j M̂ :=

Im(F̂ j M → M̂). Thus we obtain an additive endofunctor M 7→ M̂ of Dir Inv Mod C .

An inv C-module M is complete iff the functorial homomorphism M → M̂ is an
isomorphism; and of course M̂ is complete. For a dir-inv C-module M there is in general
no functorial homomorphism between M and M̂ , and we do not know if M̂ is complete.
Nonetheless:

Proposition 1.5. Suppose M ∈ Dir Inv Mod C is complete. Then there is an isomorphism
M ∼= M̂ in Dir Inv Mod C. This isomorphism is functorial.

Proof. For any dir-inv module (M, {F j M} j∈J ) let us define M ′ := lim j→ F j M . So
(M ′, {F j M} j∈J ) is a dir-inv module, and there are functorial morphisms M ′ → M and
M ′→ M̂ . If M is complete then both these morphisms are isomorphisms. �

Suppose {Mk}k∈K is a collection of dir-inv modules, indexed by a set K . There is an
induced dir-inv module structure on M :=

⊕
k∈K Mk , constructed as follows. For any

k let us denote by {F j Mk} j∈Jk the dir-inv structure of Mk ; so that each F j Mk is an inv
module. For each finite subset K0 ⊂ K let JK0 :=

∏
k∈K0

Jk , made into a directed set by
component-wise partial order. Define J :=

∐
K0

JK0 , where K0 runs over the finite subsets
of K . For two finite subsets K0 ⊂ K1, and two elements j0 = { j0,k}k∈K0 ∈ JK0 and
j1 = { j1,k}k∈K1 ∈ JK1 we declare that j0 ≤ j1 if j0,k ≤ j1,k for all k ∈ K0. This makes J
into a directed set. Now for any j = { jk}k∈K0 ∈ JK0 ⊂ J let Fj M :=

⊕
k∈K0

F jk Mk , which
is an inv module. The dir-inv structure on M is {Fj M}j∈J .

Proposition 1.6. Let {Mk}k∈K be a collection of dir-inv C-modules, and let M :=⊕
k∈K Mk , endowed with the induced dir-inv structure.
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(1) M is a coproduct of {Mk}k∈K in the category Dir Inv Mod C.
(2) There is a functorial isomorphism M̂ ∼=

⊕
k∈K M̂k .

Proof. (1) is obvious. For (2) we note that both M̂ and
⊕

k∈K M̂k are direct limits for the
direct system {M̂j}j∈J . �

Suppose {Mk}k∈N is a collection of inv C-modules. For each k let {Fi Mk}i∈N be the
inv structure of Mk . Then M :=

∏
k∈N Mk is an inv module, with inv structure Fi M :=(∏

k>i Mk
)
×
(∏

k≤i Fi Mk
)
. Next let {Mk}k∈N be a collection of dir-inv C-modules, and

for each k let {F j Mk} j∈Jk be the dir-inv structure of Mk . Then there is an induced dir-inv
structure on M :=

∏
k∈N Mk . Define a directed set J :=

∏
k∈N Jk , with component-wise

partial order. For any j = { jk}k∈N ∈ J define Fj M :=
∏

k∈N F jk Mk , which is an inv
C-module as explained above. The dir-inv structure on M is {Fj M}j∈J .

Proposition 1.7. Let {Mk}k∈N be a collection of dir-inv C-modules, and let M :=∏
k∈N Mk , endowed with the induced dir-inv structure. Then M is a product of {Mk}k∈N in

Dir Inv Mod C.

Proof. All we need to consider is continuity. First assume that all the Mk are inv
C-modules. Let us denote by πk : M → Mk the projection. For each k, i ∈ N and
i ′ ≥ max(i, k)we have πk(Fi ′M) = Fi Mk . This shows that the πk are continuous. Suppose
L is an inv C-module and φk : L → Mk are morphisms in Inv Mod C . For any i ∈ N there
exists i ′ ∈ N such that φk(Fi ′L) ⊂ Fi Mk for all k ≤ i . Therefore the homomorphism
φ : L → M with components φk is continuous.

Now let Mk be dir-inv C-modules, with dir-inv structures {F j Mk} j∈Jk . For any j =
{ jk} ∈ J one has πk(Fj M) = F jk Mk , and as shown above πk : Fj M → F jk Mk is
continuous. Given a dir-inv module L and morphisms φk : L → Mk in Dir Inv Mod C ,
we have to prove that φ : L → M is continuous. Let {F j L} j∈JL be the dir-inv structure
of L . Take any j ∈ JL . Since φk is continuous, there exists some jk ∈ Jk such that
φk(F j L) ⊂ F jk Mk . But then φ(F j L) ⊂ Fj M for j := { jk}k∈N, and by the previous
paragraph φ : F j L → Fj M is continuous. �

The following examples should help to clarify the notion of dir-inv module.

Example 1.8. Let c be an ideal in C . Then each finitely generated C-module M has an
inv structure {Fi M}i∈N, where we define the submodules Fi M := ci+1 M . This is called
the c-adic inv structure. Any C-module M has a dir-inv structure {F j M} j∈J , which is the
collection of finitely generated C-submodules of M , directed by inclusion, and each F j M
is given the c-adic inv structure. We get a fully faithful functor Mod C → Dir Inv Mod C .
This dir-inv module structure on M is called the c-adic dir-inv structure.

If C is noetherian and c-adically complete, then the finitely generated modules are
complete as inv C-modules, and hence all modules are complete as dir-inv modules.

Example 1.9. Suppose (M, {Fi M}i∈N) is an inv C-module, and {ik}k∈N is a nondecreasing
sequence in N with limk→∞ ik = ∞. Then {Fik M}k∈N is a new inv structure on M , yet the
identity map (M, {Fi M}i∈N)→ (M, {Fik M}k∈N) is an isomorphism in Inv Mod C .

A similar modification can be done for dir-inv modules. Suppose (M, {F j M} j∈J ) is a
dir-inv C-module, and J ′ ⊂ J is a subset that is cofinal in J . Then {F j M} j∈J ′ is a new
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dir-inv structure on M , yet the identity map (M, {F j M} j∈J ) → (M, {F j M} j∈J ′) is an
isomorphism in Dir Inv Mod C .

Example 1.10. Let M be the free K-module with basis {ep}p∈N; so M =
⊕

p∈NKep

in Mod K. We put on M the inv module structure {Fi M}i∈N with Fi M := 0 for all i .
Let N be the same K-module as M , but put on it the inv module structure {Fi N }i∈N
with Fi N :=

⊕
∞

p=i Kep. Also let L be the K-module M , but put on it the dir-inv

module structure {F j L} j∈N, with F j L :=
⊕ j

p=0 Kep the discrete inv module whose inv
structure is {. . . , 0, 0}. Both L and M are discrete and complete as dir-inv K-modules, and
N̂ ∼=

∏
p∈NKep. The dir-inv module M is trivial. L is not a trivial dir-inv K-module,

because it is not isomorphic in Dir Inv Mod K to any inv module. The identity maps
L → M → N are continuous. The only continuous K-linear homomorphisms M → L
are those with finitely generated images.

Remark 1.11. In the situation of the previous example, suppose we put on the three
modules L ,M, N genuine K-linear topologies, using the limiting processes and starting
from the discrete topology. Namely M , N/Fi N and F j L get the discrete topologies;
L ∼= lim j→ F j L gets the lim→ topology; and N ⊂ lim←i N/Fi N gets the lim← topology
(as in [8, Section 1.1]). Then L and M become the same discrete topological module, and
N̂ is the topological completion of N . We see that the notion of a dir-inv structure is more
subtle than that of a topology, even though a similar language is used.

Example 1.12. Suppose K is a field, and let M := K, the free module of rank 1. Up to
isomorphism in Dir Inv Mod K, M has three distinct dir-inv module structures. We can
denote them by M1,M2,M3 in such a way that the identity maps M1 → M2 → M3 are
continuous. The only continuous K-linear homomorphisms Mi → M j with i > j are the
zero homomorphisms. M2 is the trivial dir-inv structure, and it is the only interesting one
(the others are “pathological”).

Example 1.13. Suppose M =
⊕

p∈Z M p is a graded C-module. The grading induces a
dir-inv structure on M , with J := N, F j M :=

⊕
∞

p=− j M p, and Fi F j M :=
⊕
∞

p=− j+i M p.

The completion satisfies M̂ ∼=
(∏

p≥0 M p
)
⊕

(⊕
p<0 M p

)
in Dir Inv Mod C , where each

M p has the trivial dir-inv module structure.

It makes sense to talk about convergence of sequences in a dir-inv module. Suppose
(M, {Fi M}i∈N) is an inv C-module and {mi }i∈N is a sequence in M . We say that
limi→∞ mi = 0 if for every i0 there is some i1 such that {mi }i≥i1 ⊂ Fi0 M . If
(M, {F j M} j∈J ) is a dir-inv module and {mi }i∈N is a sequence in M , then we say that
limi→∞ mi = 0 if there exist some j and i1 such that {mi }i≥i1 ⊂ F j M , and limi→∞ mi =

0 in the inv module F j M . Having defined limi→∞ mi = 0, it is clear how to define
limi→∞ mi = m and

∑
∞

i=0 mi = m. Also the notion of Cauchy sequence is clear.

Proposition 1.14. Assume M is a complete dir-inv C-module. Then any Cauchy sequence
in M has a unique limit.
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Proof. Consider a Cauchy sequence {mi }i∈N in M . Convergence is an invariant of
isomorphisms in Dir Inv Mod C . By Definition 1.3 we may assume that in the dir-inv
structure {F j M} j∈J of M each inv module F j M is complete. By passing to the sequence
{mi − mi1}i∈N for suitable i1, we can also assume the sequence is contained in one of the
inv modules F j M . Thus we reduce to the case of convergence in a complete inv module,
which is standard. �

Let (M, {Fi M}i∈N) and (N , {Fi N }i∈N) be two inv C-modules. We make M ⊗C N into
an inv module by defining

Fi (M ⊗C N ) := Im
(
(M ⊗C Fi N )⊕ (Fi M ⊗C N )→ M ⊗C N

)
.

For two dir-inv C-modules (M, {F j M} j∈J ) and (N , {Fk N }k∈K ), we put on M ⊗C N the
dir-inv module structure {F( j,k)(M ⊗C N )}( j,k)∈J×K , where

F( j,k)(M ⊗C N ) := Im(F j M ⊗C Fk N → M ⊗C N ).

Definition 1.15. Given M, N ∈ Dir Inv Mod C we define N ⊗̂C M to be the completion
of the dir-inv C-module N ⊗C M .

Example 1.16. Let us examine the behavior of the dir-inv modules L ,M, N from
Example 1.10 with respect to the complete tensor product. There is an isomorphism
L ⊗K N ∼=

⊕
p∈N N in Dir Inv Mod K, so according to Proposition 1.6(2) there is also

an isomorphism L ⊗̂K N ∼=
⊕

p∈N N̂ in Dir Inv Mod K. On the other hand M ⊗K N is an
inv K-module with inv structure Fi (M ⊗K N ) = M ⊗K Fi N , so M ⊗̂K N ∼=

∏
p∈N M in

Dir Inv Mod K. The series
∑
∞

p=0 ep ⊗ ep converges in M ⊗̂K N , but not in L ⊗̂K N .

A graded object in Dir Inv Mod C , or a graded dir-inv C-module, is an object M ∈
Dir Inv Mod C of the form M =

⊕
i∈Z M i , with M i

∈ Dir Inv Mod C . According to
Proposition 1.6 we have M̂ ∼=

⊕
i∈Z M̂ i . Given two graded objects M =

⊕
i∈Z M i

and N =
⊕

i∈Z N i in Dir Inv Mod C , the tensor product is also a graded object in
Dir Inv Mod C , with

(M ⊗C N )i :=
⊕

p+q=i

M p
⊗C N q .

In this paper “algebra” is taken in the weakest possible sense: by C-algebra we mean
a C-module A together with a C-bilinear function µA : A × A → A. If A is associative,
or a Lie algebra, then we will specify that. However, “commutative algebra” will mean,
by default, a commutative associative unital C-algebra. Another convention is that a
homomorphism between unital algebras is a unital homomorphism, and a module over
a unital algebra is a unital module.

Definition 1.17. (1) An algebra in Dir Inv Mod C is an object A ∈ Dir Inv Mod C ,
together with a continuous C-bilinear function µA : A × A→ A.

(2) A differential graded algebra in Dir Inv Mod C is a graded object A =
⊕

i∈Z Ai in
Dir Inv Mod C , together with continuous C-(bi)linear functions µA : A × A→ A and
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dA : A → A, such that A is a differential graded algebra, in the usual sense, with
respect to the differential dA and the multiplication µA.

(3) Let A be an algebra in Dir Inv Mod C , with dir-inv structure {F j A} j∈J . We say that A
is a unital algebra in Dir Inv Mod C if it has a unit element 1A (in the usual sense),
such that 1A ∈

⋃
j∈J F j A.

The base ring K, with its trivial dir-inv structure, is a unital algebra in Dir Inv Mod K.
In item (3) above, the condition 1A ∈

⋃
j∈J F j A is equivalent to the ring homomorphism

K→ A being continuous.
We will use the common abbreviation “DG” for “differential graded”. An algebra in

Dir Inv Mod C can have further attributes, such as “Lie” or “associative”, which have their
usual meanings. If A ∈ Inv Mod C then we also say it is an algebra in Inv Mod C .

Example 1.18. In the situation of Example 1.8, the c-adic inv structure makes C and Ĉ
into unital algebras in Inv Mod C .

Recall that a graded algebra A is called super-commutative if ba = (−1)i j ab and
c2
= 0 for all a ∈ Ai , b ∈ A j , c ∈ Ak and k odd. There is no essential difference

between left and right DG A-modules.

Proposition 1.19. Let A and g be DG algebras in Dir Inv Mod C.

(1) The completion Â is a DG algebra in Dir Inv Mod C.
(2) If A is complete, then the canonical isomorphism A ∼= Â of Proposition 1.5 is an

isomorphism of DG algebras.
(3) The complete tensor product A⊗̂C g is a DG algebra in Dir Inv Mod C.
(4) If A is a super-commutative associative unital algebra, then so is Â.
(5) If g is a DG Lie algebra and A is a super-commutative associative unital algebra, then

A⊗̂C g is a DG Lie algebra.

Proof. (1) This is a consequence of a slightly more general fact. Consider modules
M1, . . . ,Mr , N ∈ Dir Inv Mod C and a continuous C-multilinear linear function φ :

M1 × · · · × Mr → N . We claim that there is an induced continuous C-multilinear linear
function φ̂ :

∏
k M̂k → N̂ . This operation is functorial (w.r.t. morphisms Mk → M ′k and

N → N ′), and monoidal (i.e. it respects composition in the kth argument with a continuous
multilinear function ψ : L1 × · · · × Ls → Mk).

First assume M1, . . . ,Mr , N ∈ Inv Mod C , with inv structures {Fi M1}i∈N etc. For any
i ∈ N there exists i ′ ∈ N such that φ(

∏
k Fi ′Mk) ⊂ Fi N . Therefore there is an induced

continuous C-multilinear function φ̂ :
∏

k M̂k → N̂ . It is easy to verify that φ 7→ φ̂ is
functorial and monoidal.

Next consider the general case, i.e. M1, . . . ,Mr , N ∈ Dir Inv Mod C . Let {F j Mk} j∈Jk

be the dir-inv structure of Mk , and let {F j N } j∈JN be the dir-inv structure of N . By
continuity of φ, given ( j1, . . . , jr ) ∈

∏
k Jk there exists j ′ ∈ JN such that φ(

∏
k F jk Mk) ⊂

F j ′N , and φ :
∏

k F jk Mk → F j ′N is continuous. By the previous paragraph this

extends to φ̂ :
∏

k F̂ jk Mk → F̂ j ′N . Passing to the direct limit in ( j1, . . . , jr ) we obtain
φ̂ :

∏
k M̂k → N̂ . Again this operation is functorial and monoidal.
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(2) Let A′ ⊂ A be as in the proof of Proposition 1.5. This is a subalgebra. The arguments
used in the proof of part (1) above show that A′ → A and A′ → Â are algebra
homomorphisms.
(3) Let us write ·A and ·g for the two multiplications, and dA and dg for the differentials.
Then A⊗C g is a DG algebra with multiplication

(a1 ⊗ γ1) · (a2 ⊗ γ2) := (−1)i2 j1(a1 ·A a2)⊗ (γ1 ·g γ2)

and differential

d(a1 ⊗ γ1) := dA(a1)⊗ γ1 + (−1)i1a1 ⊗ dg(γ1)

for ak ∈ Aik and γk ∈ g jk . These operations are continuous, so A⊗C g is a DG algebra in
Dir Inv Mod C . Now use part (1).
(4, 5) The various identities (Lie etc.) are preserved by ⊗̂ . Definition 1.17(3) ensures that
Â has a unit element. �

Definition 1.20. Suppose A is a DG super-commutative associative unital algebra in
Dir Inv Mod C .

(1) A DG A-module in Dir Inv Mod C is a graded object M ∈ Dir Inv Mod C , together
with continuous C-(bi)linear functions µM : A × M → M and dM : M → M , which
make M into a DG A-module in the usual sense.

(2) A DG A-module Lie algebra in Dir Inv Mod C is a DG Lie algebra g ∈ Dir Inv Mod C ,
together with a continuous C-bilinear homomorphism A× g→ g, such that g is a DG
A-module, and

[a1γ1, a2γ2] = (−1)i2 j1a1a2 [γ1, γ2]

for all ak ∈ Aik and γk ∈ g jk .

Example 1.21. If A is a DG super-commutative associative unital algebra in
Dir Inv Mod C , and g is a DG Lie algebra in Dir Inv Mod C , then A ⊗̂C g is a DG Â-module
Lie algebra in Dir Inv Mod C .

Let A be a DG super-commutative associative unital algebra in Dir Inv Mod C , and let
M, N be two DG A-modules in Dir Inv Mod C . The tensor product M ⊗A N is a quotient
of M ⊗C N , and as such it has a dir-inv structure. Moreover, M ⊗A N is a DG A-module
in Dir Inv Mod C , and we define M ⊗̂A N to be its completion, which is a DG Â-module
in Dir Inv Mod C .

Proposition 1.22. Let A and B be DG super-commutative associative unital algebras in
Dir Inv Mod C, and let A→ B be a continuous homomorphism of DG C-algebras.

(1) Suppose M is a DG A-module in Dir Inv Mod C. Then B ⊗̂A M is a DG B̂-module in
Dir Inv Mod C.

(2) Suppose g is a DG A-module Lie algebra in Dir Inv Mod C. Then B ⊗̂A g is a DG
B̂-module Lie algebra in Dir Inv Mod C.

Proof. Like Proposition 1.19. �
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Suppose C,C ′ are commutative algebras in Dir Inv Mod K, and f ∗ : C → C ′ is
a continuous K-algebra homomorphism. There are functors f ∗ : Dir Inv Mod C →

Dir Inv Mod C ′ and f ∗̂ : Dir Inv Mod C → Dir Inv Mod Ĉ ′, namely f ∗M := C ′⊗C M
and f ∗̂M := C ′ ⊗̂C M .

Let M and N be two dir-inv C-modules. We define

Homcont
C (M, N ) := HomDir Inv Mod C (M, N ),

i.e. the C-module of continuous C-linear homomorphisms. In general this module has no
obvious structure. However, if M is an inv C-module with inv structure {Fi M}i∈N, and N
is a discrete inv C-module, then

Homcont
C (M, N ) ∼= lim

i→
HomC (M/Fi M, N ).

In this case we consider each

Fi Homcont
C (M, N ) := HomC (M/Fi M, N )

as a discrete inv module, and this endows Homcont
C (M, N ) with a dir-inv structure.

Example 1.23. In the situation of Example 1.10 one has

Homcont
C (N ,M) ∼= L ⊗C M

as dir-inv C-modules.

Example 1.24. This example is taken from [8]. Assume K is noetherian and C is a finitely
generated commutative K-algebra. For q ∈ N define Bq(C) = B−q(C) := C⊗(q+2)

=

C ⊗K · · · ⊗K C . Define B̂q(C) = B̂−q(C) to be the adic completion of Bq(C) with respect
to the ideal Ker(Bq(C)→ C).

There is a K-algebra homomorphism B̂0(C) → B̂−q(C), corresponding to the two
extreme tensor factors, and in this way we view B̂−q(C) as a complete inv B̂0(C)-module.
There is a continuous coboundary operator that makes B̂(C) :=

⊕
q∈N B̂−q(C) into a

complex of B̂0(C)-modules, and there is a quasi-isomorphism B̂(C)→ C . We call B̂(C)
the complete un-normalized bar complex of C .

Next define Ĉq(C) = Ĉ−q(C) := C ⊗B̂0(C) B̂
−q(C). This is a complete inv C-module.

The complex Ĉ(C) is called the complete Hochschild chain complex of C . Finally let
Cq

cd(C) := Homcont
C (Ĉ−q(C),C). The complex Ccd(C) :=

⊕
q∈N C

q
cd(C) is called the

continuous Hochschild cochain complex of C .

2. Poly differential operators

In this section K is a commutative base ring, and C is a commutative K-algebra. The
symbol ⊗ means ⊗K. We discuss some basic properties of poly differential operators,
expanding results from [9].

Definition 2.1. Let M1, . . . ,Mp, N be C-modules. A K-multilinear function φ : M1 ×

· · · × Mp → N is called a poly differential operator (over C relative to K) if there exists
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some d ∈ N such that for any (m1, . . . ,m p) ∈
∏

Mi and any i ∈ {1, . . . , p} the function
Mi → N , m 7→ φ(m1, . . . ,mi−1,m,mi+1, . . . ,m p) is a differential operator of order≤d,
in the sense of [2, Section 16.8]. In this case we say that φ has order ≤d in each argument.

We shall denote the set of poly differential operators
∏

Mi → N over C relative to K,
of order ≤d in all arguments, by

FdDiff poly(C;M1, . . . ,Mp; N ).

And we define

Diff poly(C;M1, . . . ,Mp; N ) :=
⋃
d≥0

FdDiff poly(C;M1, . . . ,Mp; N ),

the union being inside the set of all K-multilinear functions
∏

Mi → N . By default we
only consider poly differential operators relative to K.

For a natural number p the p-th un-normalized bar module Bp(C) was defined in
Example 1.24. Let Ip(C) be the kernel of the ring homomorphism Bp(C)→ C . Define

Cp(C) := C ⊗B0(C) Bp(C),

the p-th Hochschild chain module of C (relative to K). For any d ∈ N define

Bp,d(C) := Bp(C) / Ip(C)
d+1,

Cp,d(C) := C ⊗B0(C) Bp,d(C)

and

Cp,d(C;M1, . . . ,Mp) := Cp,d(C)⊗Bp−2(C)(M1 ⊗ · · · ⊗ Mp).

Let

φuni :

p∏
i=1

Mi → Cp,d(C;M1, . . . ,Mp)

be the K-multilinear function

φuni(m1, . . . ,m p) := 1⊗ (m1 ⊗ · · · ⊗ m p).

Observe that for p = 1 we get C1,d(C) = Pd(C), the module of principal parts of
order d (see [2]). In the same way that Pd(C) parametrizes differential operators, Cp,d(C)
parametrizes poly differential operators:

Lemma 2.2. The assignment ψ 7→ ψ ◦ φuni is a bijection

HomC
(
Cp,d(C;M1, . . . ,Mp), N

) '
→ FdDiff poly(C;M1, . . . ,Mp; N ).

Proof. The same arguments used in [2, Section 16.8] also apply here. Cf. [8,
Section 1.4]. �
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In case M1 = · · · = Mp = N = C we see that

Diff poly(C;C, . . . ,C︸ ︷︷ ︸
p

;C) ∼= lim
d→

HomC
(
Cp,d(C),C

)
∼= Homcont

C

(
Ĉp(C),C

)
= C p

cd(C), (2.3)

with notation of Example 1.24.

Proposition 2.4. Suppose C is a finitely generated K-algebra, with ideal c ⊂ C.
Let M1, . . . ,Mp, N be C-modules, and let φ :

∏
Mi → N be a multi differential

operator over C relative to K. Then φ is continuous for the c-adic dir-inv structures on
M1, . . . ,Mp, N.

Proof. Suppose φ has order ≤d in each of its arguments, and let

ψ : Cp,d(C;M1, . . . ,Mp)→ N

be the corresponding C-linear homomorphism. As in [8, Proposition 1.4.3], since C is
a finitely generated K-algebra, it follows that Bp,d(C) is a finitely generated module
over B0(C); and hence Cp,d(C) is a finitely generated C-module. Let us denote by
{F j Mi } j∈Ji and {Fk N }k∈K the c-adic dir-inv structures on Mi and N . For any j1, . . . , jp
the Bp−2(C)-module F j1 M1⊗ · · · ⊗ F jp Mp is finitely generated, and hence the C-module
Cp,d(C;F j1 M1, . . . ,F jp Mp) is finitely generated. Therefore

ψ
(
Cp,d(C;F j1 M1, . . . ,F jp Mp)

)
= Fk N

for some k ∈ K .
It remains to prove that φ :

∏p
i=1 F ji Mi → Fk N is continuous for the c-adic inv

structures. But just like [8, Proposition 1.4.6], for any i and l one has

φ(F j1 M1, . . . , c
i+dF jl Ml , . . . ,F jp Mp) ⊂ ci Fk N . � (2.5)

Suppose C ′ is a commutative C-algebra with ideal c′ ⊂ C ′. One says that C ′ is
c′-adically formally étale over C if the following condition holds. Let D be a commutative
C-algebra with nilpotent ideal d, and let f : C ′ → D/d be a C-algebra homomorphism
such that f (c′i ) = 0 for i � 0. Then f lifts uniquely to a C-algebra homomorphism
f̃ : C ′ → D. The important instances are when C → C ′ is étale (and then c′ = 0); and
when C ′ is the c-adic completion of C for some ideal c ⊂ A (and c′ = C ′c). In both these
instances C ′ is c-adically complete; and if C is noetherian, then C → C ′ is also flat.

Lemma 2.6. Let C ′ be a c′-adically formally étale C-algebra. Define C ′j := C ′/c′ j+1.
Consider C ′ and Cp,d(C) as inv C-modules, with the c′-adic and discrete inv structures
respectively. Then the canonical homomorphism

C ′ ⊗̂C Cp,d(C)→ lim
← j

Cp,d(C
′

j )

is bijective.
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Proof. Define ideals

c′p := Ker
(
Cp(C

′)→ Cp(C
′

0)
)

and

J := Ker(C ′j ⊗C Cp,d(C)→ C ′j ).

By the transitivity and the base change properties of formally étale homomorphisms, the
ring homomorphism

Cp(C) ∼= C ⊗ · · · ⊗ C → C ′ ⊗ · · · ⊗ C ′ ∼= Cp(C
′)

is c′p-adically formally étale. Consider the commutative diagram of ring homomorphisms
(with solid arrows)

C //

��

Cp(C) //

��

C ′j ⊗C Cp,d(C)
e //

��

Cp,d(C ′j )

��

C ′ //

55kkkkkkkkkkkkk Cp(C ′)
f

//

f̃ssss

99ssss g

44iiiiiiiiiiiiiii
C ′j

= // C ′j .

The ideal J satisfies J d+1
= 0, and the ideal Ker(Cp,d(C ′j ) → C ′j ) is nilpotent too. Due

to the unique lifting property the dashed arrows exist and are unique, making the whole
diagram commutative. Moreover g : Cp(C ′)→ Cp(C ′j ) has to be the canonical surjection,

and f̃ is surjective.
A little calculation shows that f̃ (Ip(C ′)d+1) = 0, and hence f̃ induces a

homomorphism

f̄ : Cp,d(C
′)→ C ′j ⊗C Cp,d(C).

Let

c′p,d := Ker
(
Cp,d(C

′)→ Cp,d(C
′

0)
)
.

Another calculation shows that f̄ (c′p,d
( j+1)(d+1)) = 0. The conclusion is that there are

surjections

Cp,d(C
′

jd+ j+d)
f̄
→ C ′j ⊗C Cp,d(C)

e
→ Cp,d(C

′

j ),

such that e ◦ f̄ is the canonical surjection. Passing to the inverse limit we deduce that

C ′ ⊗̂C Cp,d(C)→ lim
← j

Cp,d(C
′

j )

is bijective. �

Proposition 2.7. Assume C is a noetherian finitely generated K-algebra, and C ′

is a noetherian, c′-adically complete, flat, c′-adically formally étale C-algebra. Let
M1, . . . ,Mp, N be C-modules, and define M ′i := C ′⊗C Mi and N ′ := C ′⊗C N.
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(1) Suppose φ :
∏p

i=1 Mi → N is a poly differential operator over C. Then φ extends
uniquely to a poly differential operator φ′ :

∏p
i=1 M ′i → N ′ over C ′. If φ has order

≤d then so does φ′.
(2) The homomorphism

C ′⊗C FdDiff poly(C;M1, . . . ,Mp; N )

→ FdDiff poly(C
′
;M ′1, . . . ,M ′p; N ′),

c′ ⊗ φ 7→ c′φ, is bijective.

Proof. By Proposition 2.4, applied to C with the 0-adic inv structure, we may assume that
the C-modules M1, . . . ,Mp, N are finitely generated.

Fix d ∈ N. Define C ′j := C ′/c′ j+1 and N ′j := C ′j ⊗C N . So C ′ ∼= lim← j C ′j and
N ′ ∼= lim← j N ′j .

By Lemma 2.2 and Proposition 2.4 we have

FdDiff poly(C
′
;M ′1, . . . ,M ′p; N ′)

∼= HomC ′(Cp,d(C
′
;M ′1, . . . ,M ′p), N ′)

∼= lim
← j

HomC ′(Cp,d(C
′
;M ′1, . . . ,M ′p), N ′j ). (2.8)

Now for any k ≥ j + d one has

HomC ′(Cp,d(C
′
;M ′1, . . . ,M ′p), N ′j ) ∼= HomC ′(Cp,d(C

′

k;M ′1, . . . ,M ′p), N ′j ).

This is because of formula (2.5). Thus, using Lemma 2.6, we obtain

HomC ′(Cp,d(C
′
;M ′1, . . . ,M ′p), N ′j )

∼= HomC ′(lim
←k

Cp,d(C
′

k;M ′1, . . . ,M ′p), N ′j )

∼= HomC ′(C
′
⊗C Cp,d(C;M1, . . . ,Mp), N ′j )

∼= HomC (Cp,d(C;M1, . . . ,Mp), N ′j ).

Combining this with (2.8) we get

FdDiff poly(C
′
;M ′1, . . . ,M ′p; N ′)

∼= lim
← j

HomC (Cp,d(C;M1, . . . ,Mp), N ′j )

∼= HomC
(
Cp,d(C;M1, . . . ,Mp), N ′

)
.

But C → C ′ is flat, C is noetherian, and Cp,d(C;M1, . . . ,Mp) is a finitely generated
C-module. Therefore

HomC
(
Cp,d(C;M1, . . . ,Mp), N ′

)
∼= C ′⊗C HomC

(
Cp,d(C;M1, . . . ,Mp), N

)
.

The conclusion is that

FmD p+1
poly (C

′
;M ′1, . . . ,M ′p; N ′)

∼= C ′⊗C FmD p+1
poly (C;M1, . . . ,Mp; N ). (2.9)
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Given φ :
∏

Mi → N of order ≤d , let φ′ := 1 ⊗ φ under the isomorphism (2.9).
Backtracking, we see that φ′ is the unique poly differential operator extending φ. �

3. L∞ morphisms and their twists

In this section we expand some results on L∞ algebras and morphisms from [5] Section
4. Much of the material presented here is based on discussions with Vladimir Hinich. There
is some overlap with Section 2.2 of [3], with Section 6.1 of [6], and possibly with other
accounts.

Let K be a field of characteristic 0. Given a graded K-module g =
⊕

i∈Z gi and a
natural number j let T jg := g⊗ · · · ⊗ g︸ ︷︷ ︸

j

. The direct sum Tg :=
⊕

j∈N T jg is the tensor

algebra. Let us denote the multiplication in Tg by ~. (This is just another way of writing
⊗, but it will be convenient to do so.)

The permutation group S j acts on T jg as follows. For any sequence of integers
d = (d1, . . . , d j ) there is a group homomorphism sgnd : S j → {±1} such that on
a transposition σ = (p, p + 1) the value is sgnd(σ ) = (−1)dpdp+1 . The action of a
permutation σ ∈ S j on T jg is then

σ(γ1 ~ · · · ~ γ j ) := sgnd(σ )γσ(1) ~ · · · ~ γσ( j)

for γ1 ∈ gd1 , . . . , γ j ∈ gd j . Define S̃ jg to be the set of S j -invariants inside T jg, and
S̃g :=

⊕
j≥0 S̃ jg.

The K-module Tg is also a coalgebra, with coproduct ∆̃ : Tg→ Tg⊗ Tg given by the
formula

∆̃(γ1 ~ · · · ~ γ j ) :=

j∑
p=0

(γ1 ~ · · · ~ γp)⊗ (γp+1 ~ · · · ~ γ j ).

The submodule S̃g ⊂ Tg is a sub-coalgebra (but not a subalgebra!).
The super-symmetric algebra Sg =

⊕
j≥0 S jg is defined to be the quotient of Tg by the

ideal generated by the elements γ1 ~ γ2 − (−1)d1d2γ2 ~ γ1, for all γ1 ∈ gd1 and γ2 ∈ gd2 .
In other words, S jg is the set of coinvariants of T jg under the action of the group S j . The
product in the algebra Sg is denoted by ·. The canonical projection is π : Tg → Sg is an
algebra homomorphism: π(γ1 ~ γ2) = γ1 · γ2.

In fact Sg is a commutative cocommutative Hopf algebra. The comultiplication

∆ : Sg→ Sg⊗ Sg

is the unique K-algebra homomorphism such that

∆(γ ) = γ ⊗ 1+ 1⊗ γ

for all γ ∈ g. The antipode is γ 7→ −γ . The projection π : Tg → Sg is not a coalgebra
homomorphism. However:
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Lemma 3.1. Let τ : Sg→ Tg be the K-module homomorphism defined by

τ(γ1 · · · γ j ) :=
∑
σ∈S j

sgn(d1,...,d j )
(σ )γσ(1) ~ · · · ~ γσ( j)

for γ1 ∈ gd1 , . . . , γ j ∈ gd j . Then τ : Sg→ S̃g is a coalgebra isomorphism, where Sg has
the comultiplication ∆ and S̃g has the comultiplication ∆̃.

Proof. Define π̃ : Tg→ Sg to be the K-module homomorphism

π̃(γ1 ~ · · · ~ γ j ) :=
1
j !
π(γ1 ~ · · · ~ γ j ) =

1
j !
γ1 · · · γ j

for γ1, . . . , γ j ∈ g. So π̃ ◦ τ is the identity map of Sg, and π̃ : S̃g → Sg is bijective. It
suffices to prove that

(π̃ ⊗ π̃) ◦ (τ ⊗ τ) ◦∆ = (π̃ ⊗ π̃) ◦ ∆̃ ◦ τ.

Take any γ1 ∈ gd1 , . . . , γ j ∈ gd j and write d := (d1, . . . , d j ). Then

((π̃ ⊗ π̃) ◦ ∆̃ ◦ τ)(γ1 · · · γ j )

=

j∑
p=0

∑
σ∈S j

1
p!

1
( j − p)!

sgnd(σ )(γσ(1) · · · γσ(p))⊗ (γσ(p+1) · · · γσ( j)).

On the other hand

((π̃ ⊗ π̃) ◦ (τ ⊗ τ) ◦∆) (γ1 · · · γ j )

= ∆(γ1 · · · γ j ) = (1⊗ γ1 + γ1 ⊗ 1) · · · (1⊗ γ j + γ j ⊗ 1)

×

j∑
p=0

∑
σ∈Sp, j−p

sgnd(σ )(γσ(1) · · · γσ(p))⊗ (γσ(p+1) · · · γσ( j)),

where Sp, j−p is the set of (p, j − p)-shuffles inside the group S j . Since the algebra Sg
is super-commutative the two sums are equal. �

The grading on g induces a grading on Sg, which we call the degree. Thus for γi ∈ gdi

the degree of γ1 · · · γ j ∈ S jg is d1 + · · · + d j (unless γ1 · · · γ j = 0). We consider Sg as a
graded algebra for this grading. Actually there is another grading on Sg, by order, where
we define the order of γ1 · · · γ j to be j (again, unless this element is zero). But this grading
will have a different role.

By definition the j-th super-exterior power of g is∧ j
g := S j (g[1])[− j], (3.2)

where g[1] is the shifted graded module whose degree i component is g[1]i = gi+1.
When g is concentrated in degree 0 then these are the usual constructions of symmetric
and exterior algebras, respectively.

We denote by ln : Sg → S1g = g the projection. So ln(γ ) is the first order term of
γ ∈ Sg. (The expression “ln” might stand for “linear” or “logarithm”.)
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Definition 3.3. Let g and g′ be two graded K-modules, and let Ψ : Sg→ Sg′ be a K-linear
homomorphism. For any j ≥ 1 the j-th Taylor coefficient of Ψ is defined to be

∂ jΨ := ln ◦Ψ : S jg→ g′.

We say Ψ is colocal if Ψ(S≥1g) ⊂ S≥1g′ and Ψ(S0g) ⊂ S0g′.

Lemma 3.4. Suppose we are given a sequence of K-linear homomorphisms ψ j : S jg→
g′, j ≥ 1, each of degree 0. Then there is a unique colocal coalgebra homomorphism
Ψ : Sg → Sg′, homogeneous of degree 0 and satisfying Ψ(1) = 1, whose Taylor
coefficients are ∂ jΨ = ψ j .

Proof. Let l̃n : S̃g′ → S̃1g′ = g′ be the projection for this coalgebra. Consider the exact
sequence of coalgebras

0→ K→ S̃g→ S̃≥1g→ 0. (3.5)

According to Kontsevich [5, Section 4.1] (see also [3, Lemma 2.1.5]) the sequence {ψ j } j≥1

uniquely determines a coalgebra homomorphism Ψ̃ : S̃≥1g→ S̃≥1g′ such that

l̃n ◦ Ψ̃ |S̃ jg = ψ j ◦ τ
−1
|S̃ jg

for all j ≥ 1. Here τ : Sg
'
→ S̃g is the coalgebra isomorphism of Lemma 3.1. Using

(3.5) we can lift Ψ̃ uniquely to a colocal coalgebra homomorphism Ψ̃ : S̃g → S̃g′

by setting Ψ̃(1) := 1. Now define the coalgebra homomorphism Ψ : Sg → Sg′ to be
Ψ := τ−1

◦ Ψ̃ ◦ τ . �

A K-linear map Q : Sg→ Sg is a coderivation if

∆ ◦ Q = (Q ⊗ 1+ 1⊗ Q) ◦∆,

where 1 := 1Sg, the identity map.

Lemma 3.6. Given a sequence of K-linear homomorphisms ψ j : S jg → g, j ≥ 1, each
of degree 1, there is a unique colocal coderivation Q of degree 1, such that Q(1) = 0 and
∂ j Q = ψ j .

Proof. According to Kontsevich [5, Section 4.3] (see also [3, Lemma 2.1.2]) the sequence
{ψ j } j≥1 uniquely determines a coderivation Q̃ : S̃≥1g→ S̃≥1g such that

l̃n ◦ Q̃|S̃ jg = ψ j ◦ τ
−1
|S̃ jg

for all j ≥ 1. Using (3.5) this can be lifted uniquely to a colocal coderivation Q̃ :
S̃g → S̃g by setting Q̃(1) := 0. Now define the coderivation Q : Sg → Sg to be
Q := τ−1

◦ Q̃ ◦ τ . �

We will be mostly interested in the coalgebras S(g[1]) and S(g′[1]). Observe that
if Ψ : S(g[1]) → S(g′[1]) is a homogeneous K-linear homomorphism of degree i ,
then, using formula (3.2), each Taylor coefficient ∂ jΨ may be viewed as a homogeneous
K-linear homomorphism ∂ jΨ :

∧ j g→ g of degree i + 1− j .
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Definition 3.7. Let g be a graded K-module. An L∞ algebra structure on g is a colocal
coderivation Q : S(g[1])→ S(g[1]) of degree 1, satisfying Q(1) = 0 and Q ◦ Q = 0. We
call the pair (g, Q) an L∞ algebra.

The notion of L∞ algebra generalizes that of DG Lie algebra in the following sense:

Proposition 3.8 ([5, Section 4.3]). Let Q : S(g[1]) → S(g[1]) be a colocal coderivation
of degree 1 with Q(1) = 0. Then the following conditions are equivalent.

(i) ∂ j Q = 0 for all j ≥ 3, and Q ◦ Q = 0.
(ii) ∂ j Q = 0 for all j ≥ 3, and g is a DG Lie algebra with respect to the differential

d := ∂1 Q and the bracket [−,−] := ∂2 Q.

In view of this, we shall say that (g, Q) is a DG Lie algebra if the equivalent conditions
of the proposition hold. An easy calculation shows that given an L∞ algebra (g, Q),
the function ∂1 Q : g → g is a differential, and ∂2 Q induces a graded Lie bracket on
H(g, ∂1 Q). We shall denote this graded Lie algebra by H(g, Q).

Definition 3.9. Let (g, Q) and (g′, Q′) be L∞ algebras. An L∞ morphism Ψ : (g, Q)→
(g′, Q′) is a colocal coalgebra homomorphism Ψ : S(g[1]) → S(g′[1]) of degree 0,
satisfying Ψ(1) = 1 and Ψ ◦ Q = Q′ ◦Ψ .

Proposition 3.10 ([5, Section 4.3]). Let (g, Q) and (g′, Q′) be DG Lie algebras, and let
Ψ : S(g[1]) → S(g′[1]) be a colocal coalgebra homomorphism of degree 0 such that
Ψ(1) = 1. Then Ψ is an L∞ morphism (i.e. Ψ ◦ Q = Q′ ◦ Ψ ) iff the Taylor coefficients
ψi := ∂

iΨ :
∧i g→ g′ satisfy the following identity:

d (ψi (γ1 ∧ · · · ∧ γi ))−

i∑
k=1

±ψi (γ1 ∧ · · · ∧ d(γk) ∧ · · · ∧ γi )

=
1
2

∑
k,l≥1

k+l=i

1
k! l!

∑
σ∈Si

±
[
ψk(γσ(1) ∧ · · · ∧ γσ(k)), ψl(γσ(k+1) ∧ · · · ∧ γσ(i))

]
+

∑
k<l

±ψi−1([γk, γl ] ∧ γ1 ∧ · · · 6γk · · · 6γl · · · ∧ γi ).

Here γk ∈ g are homogeneous elements, Si is the permutation group of {1, . . . , i}, and
the signs depend only on the indices, the permutations and the degrees of the elements γk .
(See [4, Section 6] or [1, Theorem 3.1] for the explicit signs.)

The proposition shows that when (g, Q) and (g′, Q′) are DG Lie algebras and ∂ jΨ = 0
for all j ≥ 2, then ∂1Ψ : g → g′ is a homomorphism of DG Lie algebras; and
conversely. It also implies that for any L∞ morphism Ψ : (g, Q) → (g′, Q′), the map
H(Ψ) : H(g, Q)→ H(g′, Q′) is a homomorphism of graded Lie algebras.

Given DG Lie algebras g and g′ we consider them as L∞ algebras (g, Q) and (g′, Q′),
as explained in Proposition 3.8. If Ψ : (g, Q) → (g′, Q′) is an L∞ morphism, then we
shall say (by slight abuse of notation) that Ψ : g→ g′ is an L∞ morphism.

From here until Theorem 3.21 (inclusive) C is a commutative K-algebra, and g, g′ are
graded C-modules. Suppose (g, Q) is an L∞ algebra structure on g such that the Taylor
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coefficients ∂ j Q :
∧ j g→ g are all C-multilinear. Then we say (g, Q) is a C-multilinear

L∞ algebra. Similarly one defines the notion of C-multilinear L∞ morphism
Ψ : (g, Q)→ (g′, Q′).

With C and g as above let SCg be the super-symmetric associative unital free algebra
over C . Namely SCg is the quotient of the tensor algebra TCg = C ⊕ g⊕ (g⊗C g)⊕ · · ·
by the ideal generated by the super-commutativity relations. The algebra SCg is a Hopf
algebra over C , with comultiplication

∆C : SCg→ SCg⊗C SCg.

The formulas are just as in the case C = K. It will be useful to note that ∆C preserves the
grading by order, namely

∆C (Si
Cg) ⊂

⊕
j+k=i

S j
Cg⊗C Sk

Cg.

Lemma 3.11. (1) Let g be a graded C-module. There is a canonical bijection Q 7→ QC
between the set of C-multilinear L∞ algebra structures Q on g, and the set of colocal
coderivations QC : SC (g[1]) → SC (g[1]) over C of degree 1, such that QC (1) = 0
and QC ◦ QC = 0.

(2) Let (g, Q) and (g′, Q′) be two C-multilinear L∞ algebras. The set of C-multilinear
L∞ morphisms Ψ : (g, Q) → (g′, Q′) is canonically bijective to the set of colocal
coalgebra homomorphisms ΨC : SC (g[1])→ SC (g

′
[1]) over C of degree 0, such that

ΨC (1) = 1 and ΨC ◦ QC = Q′C ◦ΨC .

Proof. The data for a coderivation QC : SC (g[1]) → SC (g[1]) over C is its sequence
of C-linear Taylor coefficients ∂ j QC :

∧ j
C g → g. But giving such a homomorphism

∂ j QC is the same as giving a C-multilinear homomorphism ∂ j Q :
∧ j g → g, so there

is a corresponding C-multilinear coderivation Q : S(g[1]) → S(g[1]). One checks that
Q ◦ Q = 0 iff QC ◦ QC = 0.

Similarly for coalgebra homomorphisms. �

An element γ ∈ SC (g[1]) is called primitive if ∆C (γ ) = γ ⊗ 1+ 1⊗ γ .

Lemma 3.12. The set of primitive elements of SC (g[1]) is precisely S1
C (g[1]) = g[1].

Proof. By definition of the comultiplication any γ ∈ g[1] is primitive. For the converse,
let us denote by µ the multiplication in SC (g[1]). One checks that (µ ◦∆C )(γ ) = 2iγ for
γ ∈ Si

C (g[1]). If γ is primitive then (µ ◦∆C )(γ ) = 2γ , so indeed γ ∈ S1
C (g[1]). �

Now let us assume that C is a local ring, with nilpotent maximal ideal m. Suppose
we are given two C-multilinear L∞ algebras (g, Q) and (g′, Q′), and a C-multilinear
L∞ morphism Ψ : (g, Q) → (g′, Q′). Because the coderivation Q is C-multilinear, the
C-submodule mg ⊂ g becomes a C-multilinear L∞ algebra (mg, Q). Likewise for mg′,
and Ψ : (mg, Q)→ (mg′, Q′) is a C-multilinear L∞ morphism.

The fact that m is nilpotent is essential for the next definition.
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Definition 3.13. The Maurer–Cartan equation in (mg, Q) is

∞∑
i=1

1
i !
(∂ i Q)(ωi ) = 0

for ω ∈ (mg)1 = (mg[1])0.

An element e ∈ SC (g[1]) is called group-like if ∆C (e) = e⊗ e. For ω ∈ mg1 we define

exp(ω) :=
∑
i≥0

1
i !
ωi
∈ SC (g[1]).

Lemma 3.14. The function exp is a bijection from mg[1] to the set of invertible group-like
elements e ∈ SC (g[1]) such that ln(e) ∈ mg[1]. The inverse of exp is ln.

Proof. Let ω ∈ mg[1] and e := exp(ω). The element e is invertible, with inverse exp(−ω).
Using the fact that ∆C (ω) = ω ⊗ 1 + 1 ⊗ ω it easily follows that ∆C (e) = e ⊗ e. And
trivially ln(e) = ω.

For the opposite direction, let e be invertible and group-like, and assume ln(e) ∈ mg[1].
Write it as e =

∑
i γi , with γi ∈ Si

C (g[1]). The equation ∆C (e) = e ⊗ e implies that

∆C (γi ) =
∑

j+k=i

γ j ⊗ γk

for all i . Hence

2iγi = µ(∆C (γi )) =
∑

j+k=i

γ jγk . (3.15)

For i = 0 we get γ0 = γ 2
0 , and since γ0 is invertible, it follows that γ0 = 1. Let ω :=

γ1 = ln(e) ∈ mS1
C (g[1]) = mg[1]. Using induction and Eq. (3.15) we see that γi =

1
i !ω

i

for all i . Thus e = exp(ω). �

Lemma 3.16. Let ω ∈ (mg[1])0 = mg1 and e := exp(ω). Then ω is a solution of the MC
equation iff Q(e) = 0.

Proof. Since e is group-like and invertible (by Lemma 3.14) we have

∆C (Q(e)) = Q(e)⊗ e + e ⊗ Q(e)

and

∆C (e
−1 Q(e)) = ∆C (e)

−1∆C (Q(e)) = e−1 Q(e)⊗ 1+ 1⊗ e−1 Q(e).

So the element e−1 Q(e) is primitive, and by Lemma 3.12 we get e−1 Q(e) ∈ g[1]. On the
other hand hence Q(e) has no 0-order term, and Q(1) = 0. Thus in the first order term we
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get

e−1 Q(e) = ln
(

e−1 Q(e)
)

= ln
((

1− ω +
1
2
ω2
± · · ·

)
Q(e)

)
= ln (Q(e))

=

∞∑
i=0

1
i !

ln
(

Q(ωi )
)

=

∞∑
i=1

1
i !
(∂ i Q)(ωi ).

(3.17)

Since e is invertible we are done. �

Lemma 3.18. Given an element ω ∈ mg[1], define ω′ :=
∑
∞

i=1
1
i ! (∂

iΨ)(ωi ) ∈ mg′[1],
e := exp(ω) and e′ := exp(ω′). Then e′ = Ψ(e).

Proof. From Lemma 3.14 we see that ∆C (e) = e ⊗ e, and therefore also ∆C (Ψ(e)) =
Ψ(e)⊗Ψ(e) ∈ SC (g

′
[1]). Since Ψ is C-linear and Ψ(1) = 1 we get Ψ(e) ∈ 1+mS(g′[1]).

Thus Ψ(e) is group-like and invertible. According to Lemma 3.14 it suffices to prove that
ln(e′) = ln(Ψ(e)). Now ln(e′) = ω′ by definition. Since Ψ(1) = 1 and ln(1) = 0 it
follows that

ln(Ψ(e)) = ln

(
Ψ

(
∞∑

i=0

1
i !
ωi

))
=

∞∑
i=0

1
i !

ln(Ψ(ωi )) =

∞∑
i=1

1
i !
(∂ iΨ)(ωi ) = ω′. �

Proposition 3.19. Suppose ω ∈ mg1 is a solution of the MC equation in (mg, Q). Define
ω′ :=

∑
∞

i=1
1
i ! (∂

iΨ)(ωi ) ∈ mg′1. Then ω′ is a solution of the MC equation in (mg′, Q′).

Proof. Let e := exp(ω) and e′ := exp(ω′). By Lemma 3.16 we get Q(e) = 0. Hence
Q′(Ψ(e)) = Ψ(Q(e)) = 0. According to Lemma 3.18 we have Ψ(e) = e′, so Q′(e′) = 0.
Again by Lemma 3.16 we deduce that ω′ solves the MC equation. �

Definition 3.20. Let ω ∈ mg1.

(1) The colocal coderivation Qω of SC (g[1]) over C , with Qω(1) := 0 and with Taylor
coefficients

(∂ i Qω)(γ ) :=
∑
j≥0

1
j !
(∂ i+ j Q)(ω jγ )

for i ≥ 1 and γ ∈ Si
C (g[1]), is called the twist of Q by ω.

(2) The colocal coalgebra homomorphism Ψω : SC (g[1]) → SC (g
′
[1]) over C , with

Ψω(1) := 1 and Taylor coefficients

(∂ iΨω)(γ ) :=
∑
j≥0

1
j !
(∂ i+ jΨ)(ω jγ )

for i ≥ 1 and γ ∈ Si
C (g[1]), is called the twist of Ψ by ω.
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Theorem 3.21. Let C be a commutative local K-algebra with nilpotent maximal ideal m.
Let (g, Q) and (g′, Q′) be C-multilinear L∞ algebras and Ψ : (g, Q) → (g′, Q′) a
C-multilinear L∞ morphism. Suppose ω ∈ mg1 a solution of the MC equation in (mg, Q).
Define

ω′ :=

∞∑
i=1

1
j !
(∂ jΨ)(ω j ) ∈ mg′1.

Then (g, Qω) and (g′, Q′
ω′
) are L∞ algebras, and

Ψω : (g, Qω)→ (g′, Q′ω′)

is an L∞ morphism.

Proof. Let e := exp(ω). Define Φe : SC (g[1]) → SC (g[1]) to be Φe(γ ) := eγ . Since
e is group-like and invertible it follows that Φe is a coalgebra automorphism. Therefore
Q̃ω := Φ−1

e ◦Q◦Φe is a degree 1 colocal coderivation of SC (g[1]), satisfying Q̃ω◦ Q̃ω = 0
and Q̃ω(1) = e−1 Q(e) = 0; cf. Lemma 3.16. So (g, Q̃ω) is an L∞ algebra. Likewise we
have a coalgebra automorphism Φe′ and a coderivation Q̃′

ω′
:= Φ−1

e′ ◦Q′◦Φe′ of SC (g
′
[1]),

where e′ := exp(ω′). The degree 0 colocal coalgebra homomorphism Ψ̃ω := Φ−1
e′ ◦Ψ ◦Φe

satisfies Ψ̃ω ◦ Q̃ω = Q̃′
ω′
◦Ψ̃ω, and also Ψ̃ω(1) = e′−1Ψ(e) = e′−1e′ = 1, by Lemma 3.18.

Hence we have an L∞ morphism Ψ̃ω : (g, Q̃ω)→ (g′, Q̃′
ω′
).

Let us calculate the Taylor coefficients of Q̃ω. For γ ∈ Si
C (g[1]) one has

(∂ i Q̃ω)(γ ) = ln(Q̃ω(γ )) = ln(e−1 Q(eγ )).

But just as in (3.17), since Q(eγ ) has no zero order term, we obtain

ln(e−1 Q(eγ )) = ln(Q(eγ )).

And

ln(Q(eγ )) = ln
(

Q

(∑
j≥0

1
j !
ω jγ

))
=

∑
j≥0

1
j !

ln(Q(ω jγ ))

=

∑
j≥0

1
j !
(∂ i+ j Q)(ω jγ )

= (∂ i Qω)(γ ).

(3.22)

Therefore Q̃ω = Qω. Similarly we see that Q̃′
ω′
= Q′

ω′
and Ψ̃ω = Ψω. �

Remark 3.23. The formulation of Theorem 3.21, as well as the idea for the proof, were
suggested by Vladimir Hinich. An analogous result, for A∞ algebras, is in [6, Section 6.1].

If (g, Q) is a DG Lie algebra then the sum occurring in Definition 3.20(1) is finite, so
the coderivation Qω can be defined without a nilpotence assumption on the coefficients.
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Lemma 3.24. Let (g, Q) be a DG Lie algebra, and let ω ∈ g1 be a solution of the MC
equation. Then the L∞ algebra (g, Qω) is also a DG Lie algebra. In fact, for γi ∈ g one
has

(∂1 Qω)(γ1) = (∂
1 Q)(γ1)+ (∂

2 Q)(ωγ1) = d(γ1)+ [ω, γ1] = (d+ ad(ω))(γ1),

(∂2 Qω)(γ1γ2) = (∂
2 Q)(γ1γ2) = [γ1, γ2],

and ∂ j Qω = 0 for j ≥ 3.

Proof. Like Eq. (3.22), with C := K and e := 1. �

In the situation of the lemma, the twisted DG Lie algebra (g, Qω) will usually be
denoted by gω.

Let A be a super-commutative associative unital DG algebra in Dir Inv Mod K. The
notion of DG A-module Lie algebra in Dir Inv Mod K was introduced in Definition 1.20.

Definition 3.25. Let A be a super-commutative associative unital DG algebra in
Dir Inv Mod K, let g and g′ be DG A-module Lie algebras in Dir Inv Mod K, and let
Ψ : g→ g′ be an L∞ morphism.

(1) If each Taylor coefficient ∂ jΨ :
∏ j g → g′ is continuous then we say that Ψ is a

continuous L∞ morphism.
(2) Assume each Taylor coefficient ∂ jΨ :

∏ j g→ g′ is A-multilinear, i.e.

(∂ jΨ)(a1γ1, . . . , a jγ j ) = ±a1 · · · a j · (∂
jΨ)(γ1, . . . , γ j )

for all homogeneous elements ak ∈ A and γk ∈ g, with sign according to the Koszul
rule, then we say that Ψ is an A-multilinear L∞ morphism.

Proposition 3.26. Let A and B be super-commutative associative unital DG algebras in
Dir Inv Mod K, and let g and g′ be DG A-module Lie algebras in Dir Inv Mod K. Suppose
A → B is a continuous DG algebra homomorphism, and Ψ : g → g′ is a continuous
A-multilinear L∞ morphism. Let ∂ jΨB̂ :

∏ j
(B ⊗̂A g) → B ⊗̂A g′ be the unique

continuous B̂-multilinear homomorphism extending ∂ jΨ . Then the degree 0 colocal
coalgebra homomorphism

ΨB̂ : S(B ⊗̂A g[1])→ S(B ⊗̂A g′[1]),

with ΨB̂(1) := 1 and with Taylor coefficients ∂ jΨB̂ , is an L∞ morphism

ΨB̂ : B ⊗̂A g→ B ⊗̂A g′.

Proof. First consider the continuous B-multilinear homomorphisms ∂ jΨB :
∏ j
(B⊗A g)

→ B⊗A g′ extending ∂ jΨ . It is a straightforward calculation to verify that the L∞
morphism identities of Proposition 3.10 hold for the sequence of operators {∂ jΨB} j≥1.
The completion process respects these identities (cf. proof of Proposition 1.19). �

Theorem 3.27. Let g and g′ be DG Lie algebras in Dir Inv Mod K, and let Ψ : g → g′

be a continuous L∞ morphism. Let A =
⊕

i∈N Ai be a complete associative unital
super-commutative DG algebra in Dir Inv Mod K. By Proposition 3.26 there is an induced
continuous A-multilinear L∞ morphism ΨA : A ⊗̂ g → A ⊗̂ g′. Let ω ∈ A1

⊗̂ g0 be a
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solution of the MC equation in A ⊗̂ g. Assume dg = 0, (∂ jΨA)(ω
j ) = 0 for all j ≥ 2, and

also that g′ is bounded below. Define ω′ := (∂1ΨA)(ω) ∈ A1
⊗̂ g′0. Then:

(1) The element ω′ is a solution of the MC equation in A ⊗̂ g′.
(2) Given c ∈ S j

(
A ⊗̂ g[1]

)
there exists a natural number k0 such that (∂ j+kΨA)(ω

kc) =
0 for all k > k0.

(3) The degree 0 colocal coalgebra homomorphism

ΨA,ω : S
(

A ⊗̂ g[1]
)
→ S

(
A ⊗̂ g′[1]

)
,

with ΨA,ω(1) := 1 and Taylor coefficients

(∂ jΨA,ω)(c) :=
∑
k≥0

1
( j + k)!

(∂ j+kΨA)(ω
kc)

for c ∈ S j
(

A ⊗̂ g[1]
)
, is a continuous A-multilinear L∞ morphism

ΨA,ω :
(

A ⊗̂ g
)
ω
→
(

A ⊗̂ g′
)
ω′
.

Proof. We shall use a “deformation argument”. Consider the base field K as a discrete inv
K-module. The polynomial algebra K[h̄] is endowed with the dir-inv K-module structure
such that the homomorphism

⊕
i∈NK → K[h̄], whose i-th component is multiplication

by h̄i , is an isomorphism in Dir Inv Mod K. Note that K[h̄] is a discrete dir-inv module,
but it is not trivial. We view K[h̄] as a DG algebra concentrated in degree 0 (with zero
differential).

For any i ∈ N let A[h̄]i := K[h̄] ⊗ Ai , and let A[h̄] :=
⊕

i∈N A[h̄]i , which is a DG
algebra in Dir Inv Mod K, with differential dA[h̄] := 1 ⊗ dA. We will need a “twisted”
version of A[h̄], which we denote by A[h̄]∼. Let A[h̄]∼ i

:= h̄i A[h̄]i , and define A[h̄]∼ :=⊕
i∈N A[h̄]∼ i , which has a graded subalgebra of A[h̄]. The differential is dA[h̄]∼ := h̄dA[h̄].

The dir-inv structure is such that the homomorphism
⊕

i, j∈N Ai
→ A[h̄]∼, whose

(i, j)-th component is multiplication by h̄i+ j , is an isomorphism in Dir Inv Mod K. The
specialization h̄ 7→ 1 is a continuous DG algebra homomorphism A[h̄]∼→ A. There is an
induced continuous A[h̄]∼-multilinear L∞ morphism ΨA[h̄]∼ : A[h̄]∼ ⊗̂ g→ A[h̄]∼ ⊗̂ g′.

We proceed in several steps.

Step 1. Say r0 bounds g′ from below, i.e. g′r = 0 for all r < r0. Take some j ≥ 1. For any
l ∈ {1, . . . , j} choose pl , ql ∈ Z, γl ∈ gpl and al ∈ A[h̄]∼ ql . Also choose γ0 ∈ g0 and
a0 ∈ A[h̄]∼ 1. Let p :=

∑ j
l=1 pl and q :=

∑ j
l=1 ql . Because ∂ j+kΨA[h̄]∼ is induced from

∂ j+kΨ , and this is a homogeneous map of degree 1− j − k, we have

(∂ j+kΨA[h̄]∼)
(
(a0 ⊗ γ0)

k(a1 ⊗ γ1) · · · (a j ⊗ γ j )
)

= ±ak
0a1 · · · a j ⊗ (∂

j+kΨ)(γ k
0 γ1 · · · γ j ) ∈ A[h̄]∼ k+q

⊗̂ gp+1− j−k .

But gp+1− j−k
= 0 for all k > p + 1− j − r0.

Using multilinearity and continuity we conclude that given any c ∈ S j
(

A[h̄]∼ ⊗̂ g[1]
)

there exists a natural number k0 such that (∂ j+kΨA[h̄]∼)
(
(h̄ω)kc

)
= 0 for all k > k0.

Step 2. We are going to prove that h̄ω is a solution of the MC equation in A[h̄]∼ ⊗̂ g. It is
given that ω is a solution of the MC equation in A ⊗̂ g. Because dg = 0, this means that

(dA ⊗ 1)(ω)+
1
2
[ω,ω] = 0.
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Hence

dA[h̄]∼ ⊗̂ g(h̄ω)+
1
2
[h̄ω, h̄ω] = h̄2(dA ⊗ 1)(ω)+

1
2

h̄2
[ω,ω] = 0.

So h̄ω solves the MC equation in A[h̄]∼ ⊗̂ g.

Step 3. Now we shall prove that h̄ω′ solves the MC equation in A[h̄]∼ ⊗̂ g′. This
will require an infinitesimal argument. For any natural number m define K[h̄]m :=
K[h̄]/(h̄m+1) and A[h̄]m := K[h̄]m ⊗ A. The latter is a DG algebra with differential
dA[h̄]m := 1 ⊗ dA. Let A[h̄]∼m :=

⊕m
i=0 h̄i A[h̄]im , which is a subalgebra of A[h̄]m ,

but its differential is dA[h̄]∼m := h̄dA[h̄]m . There is a surjective DG Lie algebra
homomorphism A[h̄]∼ ⊗̂ g′→ A[h̄]∼m ⊗̂ g′, with kernel

(
A[h̄]∼ ∩ h̄m+1 A[h̄]

)
⊗̂ g′. Since⋂

m≥0 h̄m+1 A[h̄] = 0, it suffices to prove that h̄ω′ solves the MC equation in A[h̄]∼m ⊗̂ g′.
Now C := K[h̄]m is an artinian local ring with maximal ideal m := (h̄). Define the

DG Lie algebra h := A[h̄]m ⊗̂ g, with differential dh := h̄dA[h̄]m ⊗ 1 + 1 ⊗ dg; so
A[h̄]∼m ⊗̂ g ⊂ h as DG Lie algebras. Similarly define h′. There is a C-multilinear L∞
morphism Φ : h → h′ extending ΨA[h̄]∼m : A[h̄]∼m ⊗̂ g → A[h̄]∼m ⊗̂ g′. By step 2 the
element ν := h̄ω ∈ mh is a solution of the MC equation. According to Proposition 3.19
the element ν′ :=

∑
k≥1(∂

kΦ)(νk) is a solution of the MC equation in h′. But ν′ = h̄ω′.

Step 4. Pick a natural number m. Let h, h′,Φ, ν and ν′ be as in step 3. According to
Theorem 3.21 there is a twisted L∞ morphism Φν : hν → h′

ν′
. Since (A[h̄]∼m ⊗̂ g)h̄ω ⊂ hν

and (A[h̄]∼m ⊗̂ g′)h̄ω′ ⊂ h′
ν′

as DG Lie algebras, and Φν extends ΨA[h̄]∼m ,h̄ω, it follows that
ΨA[h̄]∼m ,h̄ω : A[h̄]∼m ⊗̂ g → A[h̄]∼m ⊗̂ g′ is an L∞ morphism. This means that the Taylor
coefficients

∂ jΨA[h̄]∼m ,h̄ω :
∏ j

(A[h̄]∼m ⊗̂ g)h̄ω → (A[h̄]∼m ⊗̂ g′)h̄ω′

satisfy the identities of Proposition 3.10. As explained in step 3, this implies that

∂ jΨA[h̄]∼,h̄ω :
∏ j

(A[h̄]∼ ⊗̂ g)h̄ω → (A[h̄]∼ ⊗̂ g′)h̄ω′

also satisfy these identities. We conclude that ΨA[h̄]∼,h̄ω is an L∞ morphism.

Step 5. Specialization h̄ 7→ 1 induces surjective DG Lie algebra homomorphisms
A[h̄]∼ ⊗̂ g → A ⊗̂ g and A[h̄]∼ ⊗̂ g′ → A ⊗̂ g′, sending h̄ω 7→ ω, h̄ω′ 7→ ω′ and
ΨA[h̄]∼,h̄ω 7→ ΨA,ω. Therefore assertions (1–3) of the theorem hold. �

4. The universal L∞ morphism of Kontsevich

In this section K is a field of characteristic 0 and C is a commutative K-algebra. Recall
that we denote by TC = T (C/K) := DerK(C), the module of derivations of C relative to
K. This is a Lie algebra over K. Following [5] we make the next definitions.

Definition 4.1. For p ≥ −1 let

T p
poly(C) :=

∧p+1

C
TC ,
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the module of poly derivations (or poly tangents) of degree p of C relative to K. Let

Tpoly(C) :=
⊕

p
T p

poly(C).

This is a DG Lie algebra, with zero differential, and with the Schouten–Nijenhuis bracket,
which is determined by the formulas

[α1 ∧ α2, α3] = α1 ∧ [α2, α3] + (−1)(p2+1)p3 [α1, α3] ∧ α2

and

[α1, α2] = (−1)1+p1 p2 [α2, α1]

for elements αi ∈ T pi
poly(C).

Definition 4.2. For any p ≥ −1 let D p
poly(C) be the set of K-multilinear multi differential

operators φ : C p+1
→ C (see Definition 2.1). The direct sum

Dpoly(C) :=
⊕

p
D p

poly(C)

is a DG Lie algebra. The differential dD is the shifted Hochschild differential, and the Lie
bracket is the Gerstenhaber bracket (see [5, Section 3.4.2]). The elements of Dpoly(C) are
called poly differential operators relative to K.

In the notation of Section 2 and Example 1.24 one has

D p
poly(C) = Diff poly(C;C, . . . ,C︸ ︷︷ ︸

p+1

;C) = C p+1
cd (C);

see formula (2.3).
Observe that D p

poly(C) ⊂ HomK(C⊗(p+1),C), and Dpoly(C) is a sub DG Lie algebra
of the shifted Hochschild cochain complex of C relative to K. For p = −1, 0 we have
D−1

poly(C) = C andD0
poly(C) = D(C), the ring of differential operators. Note thatD p

poly(C)
is a left module over D(C), by the formula D · φ := D ◦ φ; and in this way it is also a left
C-module.

When C := K[t] = K[t1, . . . , tn], the polynomial algebra in n ≥ 1 variables, and p ≥ 1,
the following is true. The K[t]-module T p−1

poly (K[t]) is free with finite basis { ∂
∂ti1
∧· · ·∧

∂
∂ti p
},

indexed by the sequences 0 ≤ i1 < · · · < i p ≤ n. The K[t]-module D p−1
poly (K[t]) is also

free, with countable basis{(
∂

∂t

)j1
⊗ · · · ⊗

(
∂

∂t

)jp
}

j1,..., jp∈Nn

, (4.3)

where for jk = ( jk,1, . . . , jk,n) ∈ Nn we write ( ∂
∂t )

jk := ( ∂
∂t1
) jk,1 · · · ( ∂

∂tn
) jk,n .

For any p ≥ −1 let FmD p
poly(C) be the set of poly differential operators of order ≤m in

each argument. This is a C-submodule of D p
poly(C).
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Lemma 4.4. (1) For any m, p one has

dD
(

FmD p
poly(C)

)
⊂ FmD p+1

poly (C).

(2) For any m,m′, p, p′ one has[
FmD p

poly(C),Fm′D
p′

poly(C)
]
⊂ Fm+m′D

p+p′

poly (C);

and

[−,−] : FmD p
poly(C)× Fm′D

p′

poly(C)→ D p+p′

poly (C)

is a poly differential operator of order ≤m + m′ in each of its two arguments.

Proof. These assertions follow easily from the definitions of the Hochschild differential
and the Gerstenhaber bracket; cf. [5, Section 3.4.2]. �

Lemma 4.5. Assume C is a finitely generated K-algebra. Then T p
poly(C) and FmD p

poly(C)
are finitely generated C-modules.

Proof. One has

T p
poly(C)

∼= HomA(Ω
p+1

C , A)

and

FmD p
poly(C)

∼= HomC
(
Cp+1,m(C),C

)
;

see Lemma 2.2. The C-modules Ω p+1
C and Cp+1,m(C) are finitely generated. �

Proposition 4.6. Assume C is a finitely generated K-algebra, and C ′ is a noetherian, c′-
adically complete, flat, c′-adically formally étale C-algebra. Let us write G for either Tpoly
or Dpoly. Then:

(1) There is a DG Lie algebra homomorphism G(C) → G(C ′), which is functorial in
C → C ′.

(2) The induced C ′-linear homomorphism C ′⊗C G p(C)→ G p(C ′) is bijective.
(3) For any m the isomorphisms in (2), for G = Dpoly, restrict to isomorphisms

C ′⊗C FmD p
poly(C)

'
→ FmD p

poly(C
′).

Proof. Consider G = Dpoly. Let φ ∈ D p
poly(C). According to Proposition 2.7, applied

to the case M1, . . . ,Mp+1, N := A, there is a unique φ′ ∈ D p
poly(C

′) extending
φ. From the definitions of the Gerstenhaber bracket and the Hochschild differential, it
immediately follows that the functionDpoly(C)→ Dpoly(C

′), φ 7→ φ′, is a DG Lie algebra
homomorphism. Parts (2,3) are also consequences of Proposition 2.7.

The case G = Tpoly is done similarly (and is well-known). �

Consider C := K[t] and C ′ := K[[t]] = K[[t1, . . . , tn]], the power series algebra. Since
T p

poly(K[[t]]) ∼= K[[t]]⊗K[t] T
p

poly(K[t]) is a finitely generated left K[[t]]-module, it is an
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inv K[[t]]-module with the (t)-adic inv structure; cf. Example 1.8. Likewise D p
poly(K[[t]])

is a dir-inv K[[t]]-module. By Proposition 4.6,

FmD p
poly(K[[t]]) ∼= K[[t]]⊗K[t] FmD p

poly(K[t]),

which is a finitely generated K[[t]]-module. So according to Example 1.9 we may take
{FmD p

poly(K[[t]])}m∈N as the dir-inv structure of D p
poly(K[[t]]). Now forgetting the K[[t]]-

module structure, T p
poly(K[[t]]) becomes an inv K-module, and D p

poly(K[[t]]) becomes a
dir-inv K-module.

Proposition 4.7. Let G stand either for Tpoly or Dpoly. Then G(K[[t]]) is a complete DG
Lie algebra in Dir Inv Mod K.

Proof. Use Proposition 2.4, and, for the case G = Dpoly, also Lemma 4.4. �

Remark 4.8. One might prefer to view Tpoly(K[[t]]) and Dpoly(K[[t]]) as topological DG

Lie algebras. This can certainly be done: put on T p
poly(K[[t]]) and FmD p

poly(K[[t]]) the t-

adic topology, and put onD p
poly(K[[t]]) = limm→ FmD p

poly(K[[t]]) the direct limit topology
(see [8, Section 1.1]). However the dir-inv structure is better suited for our work.

Definition 4.9. For p ≥ 0 let Dnor,p
poly (C) be the submodule of D p

poly(C) consisting of poly
differential operators φ such that φ(c1, . . . , cp+1) = 0 if ci = 1 for some i . For p = −1
we let Dnor,−1

poly (C) := C . Define Dnor
poly(C) :=

⊕
p≥−1 D

nor,p
poly (C). We call Dnor

poly(C) the
algebra of normalized poly differential operators.

From the formulas for the Gerstenhaber bracket and the Hochschild differential (see [5,
Section 3.4.2]) it immediately follows that Dnor

poly(C) is a sub DG Lie algebra of Dpoly(C).
For any integer p ≥ 1 there is a C-linear homomorphism

U1 : T p−1
poly (C)→ Dnor,p−1

poly (C)

with formula

U1(ξ1 ∧ · · · ∧ ξp)(c1, . . . , cp) :=
1
p!

∑
σ∈Sp

sgn(σ )ξσ(1)(c1) · · · ξσ(p)(cp) (4.10)

for elements ξ1, . . . , ξp ∈ TC and c1, . . . , cp ∈ C . For p = 0 the map U1 : T −1
poly(C) →

Dnor,−1
poly (C) is the identity (of C).
Suppose M and N are complexes in Dir Inv Mod C and φ, φ′ : M → N are morphisms

of complexes in Dir Inv Mod C (i.e. all maps are continuous for the dir-inv structures).
We say φ and φ′ are homotopic if there is a degree −1 homomorphism of graded dir-inv
modules η : M → N such that dN ◦ η + η ◦ dM = φ − φ

′. We say that φ : M → N is a
homotopy equivalence in Dir Inv Mod C if there is a morphism of complexes ψ : N → M
in Dir Inv Mod C such that ψ ◦ φ is homotopic to 1M and φ ◦ ψ is homotopic to 1N .

Theorem 4.11. Let C be a commutative K-algebra with ideal c. Assume C is
noetherian and c-adically complete. Also assume there is a K-algebra homomorphism
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K[t1, . . . , tn] → C which is flat and c-adically formally étale. Then the homomorphism
U1 : Tpoly(C) → Dnor

poly(C) and the inclusion Dnor
poly(C) → Dpoly(C) are both homotopy

equivalences in Dir Inv Mod C.

Proof. Recall that Bq(C) = B−q(C) := C⊗(q+2), and this is a B0(C)-algebra via
the extreme factors. So Bq(C) ∼= B0(C) ⊗ C⊗q as B0(C)-modules. Let C := C/K,

the quotient K-module, and define Bnor
q (C) = Bnor,−q(C) := B0(C) ⊗ C

⊗q
, the q-th

normalized bar module of C . According to MacLane [7, Section X.2], Bnor(C) :=⊕
q Bnor,−q(C) has a coboundary operator such that the obvious surjection φ : B(C) →

Bnor(C) is a quasi-isomorphism of complexes of B0(C)-modules.
Define

Cnor
q (C) = Cnor,−q(C) := C ⊗B0(C) B

nor
q (C) ∼= C ⊗ C

⊗q
.

Because the complexes B(C) and Bnor(C) are bounded above and consist of free B0(C)-
modules, it follows that φ : C(C) → Cnor(C) is a quasi-isomorphism of complexes of
C-modules. Let Ω̂q

C be the c-adic completion of Ωq
C , so that Ω̂q

C
∼= C ⊗K[t] Ω

q
K[t]. There is

a C-linear homomorphism ψ : Cnor
q (C)→ Ωq

C with formula

ψ(1⊗ (c1 ⊗ · · · ⊗ cq)) := d(c1) ∧ · · · ∧ d(cq).

Consider the polynomial algebra K[t] = K[t1, . . . , tn]. For i ∈ {1, . . . , n} and j ∈
{1, . . . , q} let

d̃ j (ti ) := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j

⊗(ti ⊗ 1− 1⊗ ti )⊗ 1⊗ · · · ⊗ 1 ∈ Bq(K[t]),

and use the same expression to denote the image of this element in Cq(K[t]). It is easy to
verify that Cq(K[t]) is a polynomial algebra over K[t] in the set of generators {d̃ j (ti )}.

Another easy calculation shows that Ker
(
φ : Cq(K[t])→ Cnor

q (K[t])
)

is generated as

K[t]-module by monomials in elements of the set {d̃ j (ti )}.
Let us introduce a grading on Cq(K[t]) by deg(d̃ j (ti )) := 1 and deg(ti ) := 0. The

coboundary operator of C(K[t]) has degree 0 in this grading. The grading is inherited by
Cnor

q (K[t]), and hence φ : C(K[t]) → Cnor(K[t]) is a quasi-isomorphism of complexes
in GrMod K[t], the category of graded K[t]-modules. Also let us put a grading on Ωq

K[t]
with deg(d(ti )) := 1. By [8, Lemma 4.3], ψ ◦ φ : C(K[t]) →

⊕
q Ωq
K[t][q] is a quasi-

isomorphism in GrMod K[t]. Because we are dealing with bounded above complexes
of free graded K[t]-modules it follows that both φ and ψ are homotopy equivalences in
GrMod K[t].

Now let us go back to the formally étale homomorphism K[t] → C . We get homotopy
equivalences

C ⊗K[t] C(K[t])
φ
→ C ⊗K[t] Cnor(K[t])

ψ
→

⊕
q

Ω̂q
C [q]

in GrMod C . We know that Ĉq(C) is a power series algebra in the set of generators {d̃ j (ti )};
see [8, Lemma 2.6]. Therefore Ĉq(C) is isomorphic to the completion of C ⊗K[t] Cq(K[t])
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with respect to the grading (see Example 1.13). Define Ĉnor
q (C) to be the completion of

C ⊗K[t] Cnor
q (K[t]) with respect to the grading. We then have a homotopy equivalence of

complexes in Inv Mod C

Ĉ(C)→ Ĉnor(C)→
⊕

q
Ω̂q

C [q].

Applying Homcont
C (−,C) we arrive at quasi-isomorphisms⊕

q

(∧q

C
TC

)
[−q] → Cnor

cd (C)→ Ccd(C),

where by definition Cnor
cd (C) is the continuous dual of Ĉnor(C). An easy calculation shows

that Cnor,q
cd (C) = Dnor,q−1

poly (C). �

One instance to which this theorem applies is C := K[[t1, . . . , tn]]. Here is another:

Corollary 4.12. Suppose C is a smooth K-algebra. Then the homomorphism U1 :

Tpoly(C) → Dnor
poly(C) and the inclusion Dnor

poly(C) → Dpoly(C) are both quasi-
isomorphisms.

Proof. There is an open covering Spec C =
⋃

Spec Ci such that for every i there is an
étale homomorphism K[t1, . . . , tn] → Ci . Now use Theorem 4.11, Proposition 2.7 and
faithful flatness. �

Here is a slight variation of the celebrated result of Kontsevich, known as the Formality
Theorem [5, Theorem 6.4].

Theorem 4.13. Let K[t] = K[t1, . . . , tn] be the polynomial algebra in n variables, and
assume that R ⊂ K. There is a collection of K-linear homomorphisms

U j :
∧ j Tpoly(K[t])→ Dpoly(K[t]),

indexed by j ∈ {1, 2, . . .}, satisfying the following conditions.

(i) The sequence U = {U j } is an L∞-morphism Tpoly(K[t])→ Dpoly(K[t]).
(ii) Each U j is a poly differential operator of K[t]-modules.

(iii) Each U j is equivariant for the standard action of GLn(K) on K[t].
(iv) The homomorphism U1 is given by Eq. (4.10).
(v) For any j ≥ 2 and α1, . . . , α j ∈ T 0

poly(K[t]) one has U j (α1 ∧ · · · ∧ α j ) = 0.

(vi) For any j ≥ 2, α1 ∈ gln(K) ⊂ T 0
poly(K[t]) and α2, . . . , α j ∈ Tpoly(K[t]) one has

U j (α1 ∧ · · · ∧ α j ) = 0.

Proof. First let us assume that K = R. Theorem 6.4 in [5] talks about the differentiable
manifold Rn , and considers C∞ functions on it, rather than polynomial functions.
However, by construction the operators U j are multi differential operators with polynomial
coefficients (see [5, Section 6.3]). Therefore they descend to operators

U j :
∧ j Tpoly(R[t])→ Dpoly(R[t]),
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and conditions (i) and (ii) hold. Conditions (iii), (v) and (vi) are properties P3, P4 and P5
respectively in [5, Section 7]. For condition (iv) see [5, Sections 4.6.1–2].

For a field extension R ⊂ K use base change. �

Remark 4.14. It is likely that the operator U j sends
∧ j Tpoly(K[t]) into Dnor

poly(K[t]). This
is clear for j = 1, where U1(Tpoly(K[t])) = F1Dnor

poly(K[t]); but this requires checking for
j ≥ 2.

In the next theorem Tpoly(K[[t]]) and Dpoly(K[[t]]) are considered as DG Lie algebras
in Dir Inv Mod K, with their t-adic dir-inv structures. Recall the notions of twisted DG Lie
algebra (Lemma 3.24) and multilinear extensions of L∞ morphisms (Proposition 3.26).

Theorem 4.15. Assume R ⊂ K. Let A =
⊕

i≥0 Ai be a complete super-commutative
associative unital DG algebra in Dir Inv Mod K. Consider the induced continuous A-
multilinear L∞ morphism

UA : A ⊗̂ Tpoly(K[[t]])→ A ⊗̂Dpoly(K[[t]]).

Suppose ω ∈ A1
⊗̂ T 0

poly(K[[t]]) is a solution of the Maurer–Cartan equation in A ⊗̂

Tpoly(K[[t]]). Define ω′ := (∂1UA)(ω) ∈ A1
⊗̂D0

poly(K[[t]]). Then ω′ is a solution of
the Maurer–Cartan equation in A ⊗̂Dpoly(K[[t]]), and there is continuous A-multilinear
L∞ quasi-isomorphism

UA,ω :
(

A ⊗̂ Tpoly(K[[t]])
)
ω
→
(

A ⊗̂Dpoly(K[[t]])
)
ω′

whose Taylor coefficients are

(∂ jUA,ω)(α) :=
∑
k≥0

1
( j + k)!

(∂ j+kUA)(ω
k
∧ α)

for α ∈
∏ j (A ⊗̂ Tpoly(K[[t]])

)
.

Proof. By condition (ii) of Theorem 4.13, and by Proposition 2.4, each operator ∂ jU := U j
is continuous for the t-adic dir-inv structures on Tpoly(K[[t]]) and Dpoly(K[[t]]). Therefore
there is a unique continuous A-multilinear extension ∂ jUA. Condition (v) of Theorem 4.13
implies that ∂ jUA(ω

j ) = 0 for j ≥ 2. By Theorem 3.27 we get an L∞ morphism UA,ω.
It remains to prove that ∂1UA,ω is a quasi-isomorphism. According to Theorem 4.11 for

every i the K-linear homomorphism

∂1UA : Ai
⊗̂ Tpoly(K[[t]])→ Ai

⊗̂Dpoly(K[[t]])

is a quasi-isomorphism. Since we are looking at bounded below complexes, a spectral
sequence argument implies that

∂1UA,ω : A ⊗̂ Tpoly(K[[t]])→ A ⊗̂Dpoly(K[[t]])

is a quasi-isomorphism. �
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