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Adeles and differential forms

By Reinhold Hiibl') at Regensburg and Amnon Yekutieli?) at Rehovot

In algebraic number theory global fields and their rings of integers are studied by
looking at the associated adele ring, a restricted direct product of the completions of the
global fields at its — finite and infinite — primes. In this situation the underlying algebraic
scheme is a curve. A.N. Parshin, in [Pa,], [Pa,], was able to generalize the definition of
adeles to algebraic surfaces over a field and to develop a satisfactory theory for them. In
his short note “residues and adeles” A.A. Beilinson introduced adeles for arbitrary
noetherian schemes. Beilinson notes that adeles define in a canonical way for any guasi-
coherent Oy-module & a flasque resolution 0 —— #F —— A°(F) L Al (F) L -
hence can be used to calculate the cohomology of & ([Be], see also [Hr,], [Hr,] for
detailed proofs).

It turns out to be extremely useful to extend the definition of adeles to the category
of quasi-coherent ()y-modules with the morphisms being locally differential operators (in-
stead of Oy-linear morphisms). This allows to apply the adelic construction to the de Rham
complex Q% of a variety, thus obtaining a canonical and functorial resolution of Q5. It is
very well suited to study the de Rham cohomology, and it has many formal similarities
to the Dolbeault double complex 23" studied in complex algebraic geometry. In fact in
[HY7] it will be used as an algebraic substitute for A" in our construction of Chern classes
and our proof of the Bott residue formula.

Our main interest in adeles and locally differential operators arose however from an
attempt to understand Beilinson’s work [Be] on residues and adeles. Beilinson uses the
Parshin-Lomadze theory of residues on higher-dimensional local fields (cf. [Pa,], [Lo])
to obtain an adelic definition of the integral of Grothendieck duality theory for proper
smooth morphisms over perfect fields. As the local factors of adeles and higher dimensional
local fields and their residues play an important role in higher dimensional local class field
theory ([Pa,], [Kao]), it seems reasonable to assume that global adeles and their integrals
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will figure prominently in any higher dimensional global class field theory (though such a
theory is not available yet). An extension of this theory to Z-varieties should be of con-
siderable interest also for arithmetic schemes (Soule, in the introduction to [SABK],
suggests to try an adelic approach to a dynamical version of arithmetic algebraic geometry).

Though having many functorial advantages, the global traces defined via adeles are
often hard to calculate in concrete situations. Much easier to handle are the traces defined
via generalized fractions ([Li], [HK]) and the approach developed by the second author
in [Ye,]. In [Hii, ], [SY] it was shown that — at least up to a sign depending on dim (X)
only — these two traces agree, and in this note we will complete this program by examining
the relations to Beilinson’s construction. In particular we are able to extend Beilinson’s
results form the case of smooth k-varieties to reduced k-varieties (using regular differential
forms in the singular case instead of holomorphic ones), and we show that — again up to
a sign — the trace obtained this way is the trace of [Li] resp. [Ye,]. Hence all three
construction lead essentially to the same result.

We are very grateful to A.N. Parshin for explaining [Be], theorem to us.

§ 1. The Parshin-Beilinson adeles

In this section we will extend the definition of higher dimensional adeles (cf. [Be],
[Hr,], [Hr,]) to the category of quasi-coherent sheaves with the morphisms being locally
differential operators. Many facts about the local theory are contained in [Ye,], some of
which we will generalize to the global case. Furthermore we will prove some new results
about local and global adeles which will be useful in this paper and also in [HY].

Throughout this section X will be a noetherian scheme, and all sheaves will be
quasi-coherent (y-modules.

Let P(X) be the set of points of X, and for x € P(X) denote by {x} the closure of
{x} in X. For me N set

SX)"i={E = (Xgs X1y -+ r Xp) i X, € P(X), X; 41 € (X3},
S)ng=1{&=(Xgs X15...» X)) : E€S(X)" and x; + x;,,}
and for K £ S(X)™ and x € P(X) set
2K={¢=p- V) ESA)" (X, ¥y, Y EK} S ST,
An element ¢ € K is called an m-chain. If ¢ = {y,, ..., »,,) then ¢ is called saturated
if codimy, (37-;7) = 1foralli=1, ..., m. For a chain { = (x,, ..., x,), and for 0 £ i < n set

dré=(xq,..., %, ..., x,). Recall

1.1. Proposition / Definition ([Hr,], (2.4.1), [Hr,], (2.1.1)). For each n€ N and each
K = S(X)" there exists an additive exact functor

A(K,_):Qco(X) — (ab)
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satisfying and being uniquely determined by:

1) A(K, _) commutes with direct limits.

—
eN

(2) For n=0 and # coherent A (K, ¥ l_[ lim % /m! Z,

(3) For n>0and F coherent A(K, #) = [] limAR®K,[£/m Z],)

xeP(X) leN

where for each Uy .-module M we denote by [M ] the associated skyscraper sheaf on X with
support in {x}.

1.2. Remark. (i) If K= {¢}, then A(K, #) = 4 is the Beilinson completion of &
along ¢ as defined in [Ye, ], (3.2). In this case Oy , is a semi- topologlcal k-algebra (in the
sense of [Ye,], (1.2)), and for a quasi-coherent (y-module # the completion % is a
semi-topological Oy é-module with the fine Oy é-module topology. Note that for & = (x,)
and # coherent &% = Z, is the completion of %, with respect to the m, -adic topology.

(ii) By [Hr,], (2.1.4) we have a functorial inclusion

AK. 7)o [] %

teK

which is an isomorphism in case K< S(X)° and & is coherent. Via this inclusion the
k-algebra structure on the local factors Oy . induces a k-algebra structure on A (K, 0y) by
[Hr,], (3.3.7). Thus in analogy to the classical case of adeles in number theory, the global
groups may be viewed as restricted direct product of their local factors (see also [Pa,], § 2).
In particular this means that all the explicit calculations can be done in the local factors.

(iii) If X = Spec(R) is affine we will not distinguish between quasicoherent ¢y-modules
and associated R-modules. In particular we frequently will write A (K, R) instead of
A (K, Oy) etc.

1.3. Remark. If X is a noetherian scheme and if & is a quasi-coherent (y-module
we write A"(X, #):=A(S(X)", #) and A" (X, F)=A(S(X)"4, ). Then

U A"(U,Z|U) resp. Um— AL (U, #) (Ug X open)
define flasque sheaves A" (%) resp. A%, ,(#) on X ([Hr,], (4.2.2), [Be]).

Letd": S(X)" = S(X)" ™, (xg, -5 X,) > (X5 ..., X}, ..., X,,) be the canonical bound-
ary maps of the simplicial set {S(X)"},.n. Then the 4} induce for each quasi-coherent &
well defined morphisms

o AT(F) - ANF)

by [Hr,], (2.5.3), (4.3.2). Setting 8":= Y. (—1)/9" makes (A" (%), ) a complex of sheaves
j=o
of abelian groups, and we have
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1.4. Theorem ([Be], Cor, [Hr,], (4.2.3)). (A*(F),0") and (A;.4(F), ") are flasque
resolutions of & .

Before dealing with the adelization of locally differential operators we will prove
some more facts about global and local adeles that will be useful later as well.

Let X = Spec(R) be an affine noetherian scheme, let M be an R-module, .# = M,

and let K < S(X)" be a subset. For each € K the canonical map M — .#, induces a
functorial isomorphism on the local factors

Ox,e Qg M — M,

by [Hr,], (3.2.1). Similarly the diagonal homomorphism M — A (K, .#) induces an
A (K, Oy)-linear morphism

o, AK, O) g M - AK, MH)
and we get a commutative diagram

H(QX’§®RM = l_[../”é

¢eK teK
(] Ox) ®x M 1
¢eK .

A(K, O) ®x M 2 A(K, M).
1.5. Lemma. a, is an isomorphism.

Proof. First assume that M is finitely generated. Then the proposition is obvious if
M = R¢ as A(K, _) is additive and as A(K,_) — n (-) is a transformation of additive
teK
functors. In the general case choose a presentation

R—5 R—2 M —— 0.

Then the claim follows easily in this case from the (right-)exactness of A (K, _) and the
five-lemma.

If A is quasi-coherent we obtain that « , is an isomorphism by a direct limit argument.

1.6. Proposition ([Be], Lemma). For any quasi-coherent sheaf & on X and any pe N
the canonical map

tg: Aleg(Ox) ®o, F = Aly(F)
is an isomorphism. The same statement holds true for AP(_).
Proof. First note that 1.6 is not an immediate consequence of 1.5 as AZ (%) will

not be quasi-coherent in general. However in case X = Spec(R) is affine and & = M we
have for any quasi-coherent (x-module that the canonical map
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Acea(X, Op) @ F (X) = (A4 (O) ®p, F)(X)

is an isomorphism. (Again this is obvious in case that M is a finitely generated and free
R-module, and from this it follows in general by the five lemma and direct limit arguments.)

Now let X be arbitrary, let U < X be an open subset and let {}}},., be an open affine
cover of U, ¥, = Spec(R,). Then for each i e I we have canonical isomorphisms

(Area(Ox) @ FI(F) = ALea(V, Op) @, F (V) > Ag (Vi F)

which are obviously compatible with each other (as they are induced by canonical mor-
phisms on the local factors), hence they glue to give a global isomorphism

(Area(Ox) ®oy F)(U) = A; (U, F).
As U < X was arbitrary, the claim follows.

1.7. Corollary. If X = Spec(R) is affine, then A (K, Oy) is flat as an R-algebra. Hence,
for a general X, A" (0Oy) and A;.;(O) are sheaves of flat Oy-algebras.

Proof. Let0 - M, - M, - M, — 0 be an exact sequence of R-modules and set
M= M ;fori=1,2,3. From the exactness of A (K, _) we deduce a commutative diagram
with exact top row

0 AK.M) - AKM) - AKM) >0

ZT“M IT“ﬂz IT%"!

0 - AK, Oy) Qg M, > AK,O0x) @ M, - A(K,0y) Qg M; — 0
with the isomorphisms o, of 1.5. Thus the bottom row is exact as well.

As was pointed out in the introduction, it will be crucial to extend the definition of
adeles to the category of quasi-coherent ()y-modules and locally differential operators in
the sense of [Ye,], (3.1.8). The most interesting example (at least for us) of a locally
differential operator is given by the residue map:

1.8. Remark. Let k be a perfect field and let X/k be a scheme of finite type. Suppose
¢ =(x,...,») is a saturated chain in X and o :k(y) — 0Oy, is a coefficient field for Oy ,.
In this case a residue map

Res: o  Qiom = Ligyn

(depending on ¢ and o) is defined ([Lo], p. 516, [Ye, ], (4.1.3)) and it is a locally differential
operator over Oy relative k by [Ye,], (4.1.4).

It was shown in [Ye,], (3.1.10) that differential operators respectively locally diffe-
rential operators behave well with respect to completion along a single chain &. This result
generalizes as follows:
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1.9. Proposition. Let K< S(X),, let # and N be quasi-coherent Oy-modules and
suppose D : M — N is a locally differential operator (resp. a differential operator of order

=< d). Then D can be extended to a locally differential operator (resp. a differential operator
of order < d)

A(K,D): AK, #) > A(K, V)
such that for each & € K the following diagram commutes:

A(K, #) AKD) A(K, )

l can can l

D
My — N

where D, is the locally differential operator of [Ye,], (3.1.10).
Proof (cf. [Ye,], (3.1.10)). By induction on #n:

For n = — 1 there is nothing to show, so assume » = 0 and let .# be coherent. By
[Ye,], (3.1.9) we may assume that 4" is coherent as well. Let d be the order of D. Then
we have for each x € X that D(mJ***'.4,) € m/ "' 4, hence we get well defined differential
operators (of order < d)

D; i MM > N fmTIA
which induce by induction differential operators

A (2K, D) : im A (RK, M /w1 ) - m A RK, A [mi™ A

JjeN JjeN
compatible with the maps D;. Taking direct products we obtain

A(K,D) n li«—mA('fK"/”x/mi+j+l.//fx) - l—[ llEA()eK,%/mi+l./‘/;)
xeX jeN xeX jeN

I I

A(K, #) A(K, )
and the following diagram commutes:

AK, M) 5 AKN)

l !

1.2 12 114

fekK éeK

As [] D, is a differential operator of order < d over IT . & we conclude that A (K, D)
ek ek
is a differential operator of order <d over A (K, Oy).

If # is a quasi-coherent sheaf we obtain A (K, D) by a direct limit argument.
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The topological structure on Beilinson completions allows to study continuous mor-
phisms on dense subsets. Of particular interest in this context is the following

1.10. Proposition (Approximation Theorem). Let &= (x,...,y,...,z) be a (not ne-
cessarily saturated) chain in X, let n = (x, ..., y) and let M be a quasi-coherent Ox-module.
Then the face map 0 : M, — My has dense image.

1.11. Remark. If ¢ is a saturated chain and Oy, is a Zariski semi-topological ring
for all saturated chains { of length at most 1, then 1.10 follows from [Ye,], (3.2.12).

Proof. We may assume that X = Spec(R) is affine. Clearly we also may assume that
n = (x) = (p) for some prime p € Spec(R). First suppose that £ = (p, q) and &, = k(x),
hence .#,,, = k(x) (with the discrete topology). Then by [Hr,], (3.2.1) we have

"”C = k(x)(v.q) = Rp/pRv ®r ((ﬁq)p)A= Rv/pRv ®r iéq/pRa

PN |
S¢v

Recall the construction of the topology on ./, :

M, = k(x) comes equipped with the discrete topology.

k(p) = limR/p .
Sép f

.12' 1 ] .lz‘*.i..A/\
<R/p f>¢ %%(R/p f>q/q <R/P f>q (R,/PR,) 7 (inside (R,/pR,),)

carries the g-adic topology, and finally

. 1 PP
(k) = lf_lg;}<R/p 7){ = %,2 JPR, )i

carries the direct limit topology. Clearly the face map

~ a1
— R,/pR, -

R,/PR,- ' 7

1
f
has dense image. Passing to the direct limit we obtain that also

d:k(x) > (R,/pR,), = M,
has dense image ([Ye, ], (1.1.8) c)). Starting with this the points (2) (3) and (4) of the proof

of [Ye,], (3.2.11) carry over immediately to the generalized situation to give the desired
result.
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§ 2. Adeles and de Rham cohomology

The adelic construction gives a canonical flasque resolution of a sheaf % on a
noetherian scheme X. Using the results of §1 we can extend this result to complexes of
quasi-coherent (y-modules and locally differential operators. Applied to de Rham coho-
mology we obtain an explicit description of the de Rham cohomology and its cup product.
The case of smooth morphisms (in characteristic 0) is particularly easy. However it is also
the most interesting one, and it may serve as a motivation for the way we proceed in the
singular case. Thus we will spend some time on it. We note that the adelic approach is
completely functorial and canonical, however it also has many of the nice features of the
(non-canonical) Cech resolutions, a fact we will illustrate by giving an explicit description
of the GauB3-Manin connection (cf. [Kaz]) and a construction of the cohomology class of
a divisor.

First assume that we have a complex of quasi-coherent ¢y-modules, .#?,

MO — ML M s gL

with the d” being locally differential operators. By 1.4 we have flasque resolutions

0 —— M7 —— AL (M) —To AL (M7) —o AL (M7) — -

—'red —red

Setting o/?9(M ") := A,,(#") we therefore obtain a double complex with exact rows:

1 i i T

0 > M2 N MZ.O(J/{-) a ﬂz’l(.ﬂ.) i} dZ.Z(J”-) i

Td T %@ TaL@ Taz,@
0 > J”l N Jgl,O('//{-) -0 Ml‘l(./{.) —d dl’z(.//l') —d
B 1 A%, @) AL(d) Taz,@

0 > MO N ﬂO,O(J”O) a MO.I(J”O) i) dO,Z(ﬂ-) il
1 I ! 1
0 0 0 0
Thus the associated total complex is acyclic, hence defines a quasi-isomorphism
M — Tot(l** (M*), Ae4(d), +0) = (L (M"),D")
i.e. o (MA") is a flasque resolution of #°, and we conclude for its hypercohomology
2.1. Proposition. H*(X, .#*) =~ H'(I'(X, " (A"))).

Proposition 2.1 can be applied directly to a smooth morphism f: X — Y of noetherian
schemes, its relative de Rham complex (2y,y, dx,y) and its hypercohomology, the relative
de Rham cohomology of X/Y. For each subset I = {iy, ..., ,} of {0, ..., n} the canonical
projection
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Pry: S(X)fea = S(Xfeas (X5 -5 Xp) 2 (Xy0 -0, X))
defines for each Oy-module & a functorial morphism

a:g,...,rg) AP (F) - AL (F)

..... ip) *

which is induced by the obvious morphism Oy ,, . ., ) = Ox ..., On the local factors.
Crucial for [HY] will be '

2.2. Proposition. In the above situation the relative de Rham cohomology Hpg (X]Y)
is the sheaf associated to the presheaf

U H (T (f(U), " (Q%y))) (U Y open)
on Y. In particular in case Y is affine
Hpp(X]Y) = H* (I (X, o° Q1))
is the quasi-coherent Oy-module associated to H*(I'(X, o/ (R2y,y))). The cup product in

Hpg (X/Y) is induced by the Alexander-Whitney product on of* (Q%,y) which can be described
explicitly as follows:

Writing /74(Q%,y) = X/y ®o, ALa(Ox) and taking local sections ae Al (0y),
be AL (Oy), we Q% y and ne Q% y, the product is given by

(@®a) M®b) =(—D"Morn® e 4" @) 85115 (b)

.......... q+q)

where the product on the right hand side is the obvious product of ALY (Oy).

2.3. Remark. In case Y = Spec(k), k a field of characteristic 0, Parshin has given a
similar construction ([Pa,], (1.2)). He uses however a different sign convention.

The proposition is clear by the cosimplicial structure of the adelic resolution. Let us
however note that it easily can be seen directly as well. The formula given in 2.2 is easily
seen to define a product on &/ (Qy,y) such that

D(a-b)=D(a) b+ (—1)"a-D(b)

for local sections a € " (Qy,y), b€ & (Q%,y). From [God], II, thm. (6.6.1) it follows that
it induces the cup product in de Rham cohomology.

2.4. Remark. The adelic construction provides additional insight into the de Rham
cohomology, in particular its functorial behaviour (cf. [ Ye,;]): Given a morphismg: X —» Z
of (smooth) Y-schemes, the obvious morphisms 27,y ;) = Q%y,. (x € X) induce a canonical
map g*: o/ *(23,y) = g, ¥ (Qx,y) which is compatible with the product defined above and
which in cohomology induces the functorial morphism

g*: Hpr(Z]Y) — Hpr(X]Y).
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For the next few remarks let ¥ = Spec(k) for some perfect field k. When studying
cycles on a variety X the de Rham homology H™® (X/Y) together with the cap product
on it is of particular interest (cf. [EZ], (2.3), [Har,], II, (7.6)). In case X/Y is smooth the
de Rham homology can be calculated as the homology of the total complex associated
to the de Rham-adele complex % ‘of El Zein [EZ] (cf. [Ye;]). Recall that
T = Homg, (Qxfy, Hy), where (Hy, 0y) is a residual complex (which we always assume
to be given as in [Ye, ], § 4; see also § 3 below), and where the boundary operators of % *
are given by

d,=(~1)p+1dV:%p,q — g‘,xpﬂ,q’ 5:=(_1)p+q+15':egrxp,q — %{p,qﬂ

where d¥ = dual(dy,y) is the differential operator dual to dy, and where § is induced by
oy (cf. [EZ], 111, [Ye;]). Note however that Yekutieli’s %* differs from El Zein’s by a
shift in indices and signs. To make the homology classes of cycles more lucid it will be of
advantage to find explicit representatives of these classes and their cap products. To this
end we have

2.5. Proposition. Let X/Y be an algebraic scheme. Then the de Rham-residue complex
Fx'" comes equipped with a canonical of*(Qy,y)-module structure which in terms of local
sections may be described as follows: Write

Ay = B A (x) with A (x) = Homis (Ux. oy Qo) -

dim({x})=q

For a chain & = (z,, ...,2,) e S(X)™, ae O, ., a local section v € QF,, and
Y q q X, XY

D € Homy, (Q;’UY, A (x))
we define the product ® - (0 ® a) in Hom, (k™ A (2,)) by the formula

(=% Res,(P(w-n) -a) if z,=x and & saturated,
¢'(w®a)(n)={ (@0 a) i 2=
otherwise.
In case X is smooth (so that Tot(%") can be used to calculate the de Rham homology of
X), the above product induces the cap product

HPX(X/Y)x Hyp (X]Y) - HPR(X]Y)
on the de Rham homology (cf. [Ye,] and [HY] for more details and applications).

Proof. It may be checked directly that the above formula induces a right .o/ * (25 y)-
module structure on Tot (% °"). As a complete account of these results (including a gener-
alization to the singular case) can be found in [Ye, ], we omit details here. For applications
we refer to [HY], §4.

In [HY] we will construct Chern classes of vector bundles. In view of the splitting
principle it will be crucial to understand in particular the case of line bundles and their
cohomology classes. So suppose that ¥ = Spec(k) for some field & with char(k) = 0 and
that X/Y is smooth. Let 4 € Z"(X) be a cycle of dimension r on X. Then we can associate
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to it a cohomology class n(4) € H3s~ %" (X/k), which only depends on the rational equiva-
lence class of Y (cf. [Har, ], II, (7.8)). (Via the identification H28 %" (X/Y) =~ HER(X/Y)
the cohomology class #(4) of an irreducible cycle i: 4 < X is the class of tr,(CJ)
in HX(X/Y), where C{e % """ is the element defined by the fundamental class
Cayt iy~ 0y S Qo of 4 as introduced in [KW], § 4, and where tr;: i, £ —> %
is the trace of El Zein [EZ].) For two cycles 4 € Z"(X) and Be Z*(X) we have

n(A4-B)=n(4)vun(B)

by [Har,], II, (7.8.2), where 4 - B denotes the rational equivalence class intersection.
Suppose now that {U;} is an open affine cover of X, and that C = {(U,, f;)} is a Cartier
divisor on X. Then 5 (C) can be represented by the Cech-cocycle

{dlog (jé)} e C' (U}, 2L)

(where for a unit fe OF (U) we set dlog(f):= d—f).

2.6. Proposition. In the above situation let f, be a local equation for C at x € X. Then
n(C) can be represented by the adele

{d log <[’i>} eALJX, Q% ).
fy (x,y)eS(X)}eq

In case C,, ..., C; are d divisors on the (d-dimensional) variety X, intersecting in a finite
number of points only, and f; . is a local equation of C; at x€ X, the cohomology class
n(C,--- C,) is represented by the adele

{(— 1)(g)dlog (;’ﬁ) A ndlog (J—rdi”—‘>} € Al (X, Q%y)
(X0, +++1 Xa) € S(X)feq

1,xy d,xq / J(xo0,...,

and
j”(clu'cd)Z(Cla---’cd)'lk
be

is the intersection index of C,, ..., C, in the sense of Parshin [Pa,]. Here

[ Hop(X/Y) = HU (X, Qyyy) — k
X

is the integral constructed by Beilinson [Be].

Proof. The first part can be obtained from the double complex relating Cech- and
adelic resolutions. Alternatively this can be done by going through El Zein’s construction
of the fundamental class of a complete intersection ([EZ], III) in terms of adeles. From
this the product formula is immediate in view of 2.2, and 3.3 below in connection with
[Hii,], 3.6 implies the integral formula for the intersection product.

Assume now that f: X — Yis smooth and that Qj} is an exterior differential algebra of
Y such that Q} is locally free of rank r. Of particular interest in this context are the GauB-
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Manin connections of X/Y (being, in case Y is a smooth C-variety and Q} = Q;, the
unique integrable connections associated to the local systems R'f,C). The GauB-
Manin is the boundary operator VM = dP?: Rif, (Qy,y) — 2} ® R, (Qy;y) of the
spectral sequence RIf, (f*Qf ® Q%y) = R"f,(Q%) associated to the filtration
FP=im(f*Q) ® Q5 ? — Q3. Usingadelicresolutions it may be abtained as the connecting
morphism of the long exact cohomology sequence associated to

(x) 0o I'(X, " (F'/F?) > I'(X, " (F°|F?) - I'(X, o (F°/FY)) - 0.

In the context of Cech resolutions the following construction goes back to Katz and Oda
[KO]. Itislocal in Y, so assume that ¥ = Spec(R) is affine and that there existr,, ..., r,€ R

such that dry, ..., dr, is a basis of Q}. For each x € X choose elements s, ,, ..., s, ,€ Oy ,
. . . 0 0
such that ds, |, ..., ds, 4 is a basis of Q% y . Denoting by 0, ,, ..., 0, ,,, FPIRRRE the
x,1 x,d
basis of Hom,, (2 ,,0 ) dual to dry,...,dr, ds,,,...,ds,,, we define “partial”
derivatives on Q% . by
di (hdr, -~ dr, ds, ; - ds, ;) Z 0..(hydrdr, - dr, ds,; - ds,
n
dxy(hdr, ---dr, ds, ; -~ ds, ;) v A, cdrds, o ds,

so that dy, =dy+dyy Next define a local section ¢,:Q%y, = Q% . by
@ (h-dg, - dg,):=hdgy(g,) - diy(g,). From 1.7 it follows that the family {¢,} . x
defines a global section

@A (Qyyy) = A7 (2%)

with (,0(}3)(xo ..... xa) = Pxo(Bxo,...,xp)- Finally we define Ly:.o/P9(Qy) — LPTH(Q5) by
Bixo. . =dy° (B, .. ) and a total interior product on Q} . by the formula
Y (X0, ..., X, (x0,...,Xq) WX

p
I*(h-dg,---dg,) =Y h-dg, - dj(g) - dg,.

i=1

SetA: P9(Q%) > AP Q) A(B) s xqrn) = (—DPI™ = T) (B,

by v the composition

x4+ ) @nd denote

.....

Ly+4

r(x, " (F°|FY) —2 (X, o (F%) 225 r(x, o" (FY) =22 I(X, o (F\/F?)).

One easily checks that all maps are well defined, and that v is the connecting morphism
of (*). As ¢ is a section of o/°(F° — o/"(gr°) and (Ly + A)(*(F')) < o/*(F?), this
connecting morphism is deduced from

Yo (gr0) = o (FO) /" (FY) 25

A (F)| o (F?) = o (gr")
and we get (cf. [KO], §3):

2.7.Theorem. Themap ¥ :I' (X, o (F°/F')) - I'(X, o/"(F!/F?)) induces the Gauf-
Manin connection on the relative de Rham cohomology
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VM Hpp (X]Y) - Qy ® Hip(X/Y).

2.8. Remark. In the situation of 2.7 suppose we are given an algebraic differential
equation (.#,V) on X (in the sense of [Kaz]), i.e. a locally free (y-module .# together
with an integrable connection V on it. Then the relative de Rham cohomology of (#,V)
on Y is defined and it comes equipped with a canonical integrable connection. This con-
nection can be described similarly in terms of adeles ([Hii, ], §10). By the monodromy
theorem this connection will define a regular singular differential equation on Y if (/#,V)
defines one on X.

In the singular case the situation is more complicated. To simplify matters we will
only treat the case of an embeddable morphism f: X — S of Q-schemes, i.e. we assume
that there exists a closed immersion i : X — Y into a smooth S-scheme Y, and we furthermore
restrict ourselves to the case that S is affine.

Let 3 be the ideal of X in Y, let X, be the ™ infinitesimal neighbourhood of X in
Y,ie X, = B(3I"), let O,:= O/ J" be its structure sheaf, and let X be the formal completion
of Y along X, i.e. as a topological space X = X with structure sheaf (), = }lm 0,1 X. Given

neN

a coherent sheaf .# on Y we define the sheaf .#* on X to be the J-adic completion of .#,
i.e. if M,:= M |I" M (viewed as a sheaf on X), then 4% = lim .#,. More generally, given

neN
0,-modules %, and (,-morphisms 6,,,:%, — % for mzn with §,, 09, =79, for

[2m=n, then F4 ==li_r£97,,, the projective limit of the &%, exists as a sheaf of abelian
neN
groups and comes equipped with a canonical structure of an ();-module (EGA I, (10.6.6)).

If V<Y is an open subset, if Ui=VnX, U:=VnX, (neN), and if U is the formal
completion of ¥ along U, then #*(U) = lim %,(U},) by [Har,], II, ex. (1.12).

neN

Assume now that {.#, },. is a projective system of quasi-coherent ¢/,-modules, viewed
as sheaves on X, and let .#*:=lim.#,|X. Then {A? (A,)},. is a projective system of
(not necessarily quasi-coherent) ¢,-modules, hence

ALy (M®)=lim AT (A,)

neN

is an Ox-module, and A%, (A*) () = AL (U, (A |W)*) = lim A?4(U,, 4, U,) for any
open U = X as above. neN

2.9. Lemma. The sheaves AP, (.#"*) are flasque.

Proof. Let V= U< X =X be open subsets. Then by [Hr,], (2.4.7) we have a
canonical isomorphism

Afed(Un’ '//{n) = AII',ed(I{v '/[n) @ A(Ls ‘///n)

where L = S(U),\S(V),, and such that the restriction gy, is the projection on the first
factor. Thus AZ, (U, (#|W)?*) = AZ, (B, (#|B)*) @ im A (L, #,) hence AL,y (M%) is
flasque. neN

2 Journal fiir Mathematik. Band 471
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Suppose now that {.#,},.n is a surjective projective system, i.e. the morphisms
M, - M, are surjective. In this situation we have

2.10. Proposition. The exact sequences

(%), 0 > M, b, pO (M) _L /_\rled('/;[") _a .

—red

induce an exact sequence

0 — Mt s ALY (M) T Al (M) T

i.e. A (MP) is a flasque resolution of M".

Proof. Let V= Spec(S) < Y be an open affine subset, let U= XNV < X be the
corresponding open affine subset of X, and let U be the formal completion of ¥ along U.
As the morphisms #,,, — #, are surjective for all ne N, and as U is affine, also the
induced morphisms on global sections I'(U,,,, #,.,) = ['(U,,,, #,) =T (U,, #,) are
surjective for all n e N. In particular the system {I"(U, .#,)},. satisfies the Mittag-Leffler
condition (ML) of [EGA 0y], (13.1). By the exactness of Al 4(U,,,,_) also the maps
ALy (U, qs Mypy) = Aly(U,,y, M,) = Al (U, M,) are surjective for ne N, hence the
projective system {A! ,(U,, #,)},. satisfies (ML). The sequences (*), induce exact se-
quences of global sections over U by [Hr,], (4.2.1), hence split into short exact sequences
0 - r,#,) - A°U,, #,) - C? — 0 respectively, for n> 0,

0 - Cr:'_l - Af—ed([]n"/”n) - Cr: - O
with C}:= coker (I'(U, 0%)). Thus the projective systems {C’}, _ satisfy (ML) by [EGA 0y],
(13.2.1), and we conclude from [EGA 0,,], (13.2.2) that the following sequence is exact
0 —— TQL.A5 22 AL QL% —T AL QLAY -2 -t

As V < Y was an arbitrary open affine subset, and as the open subsets U < X obtained
this way form a basis of the topology of X, the assertion of 2.10 follows.

Hence, if we denote by Qi the formal completion of Qjs along X, and by
ULd = A 4 (QF5) we therefore obtain a double complex with exact rows

1 I 1

0 — gy — g T w2
Ta Tasw Tal@)

0 — Qfs — AL =5 wd =%
ta tac@ Tal)

00— 0y — mg}(s) — Uzs —— -

! ! !

0 0 0
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so that again the associated double complex defines a quasi-isomorphism

Qys — (Tot (UL, A4(d), +0)=: (Uys, D)

from Qs to the complex U s of flasque sheaves. The wedge product on Q; ¢ induces a
wedge product A on the adeles Wy s as follows easily from the proof of [Hr,], (3.3.7) (see
also the discussion in the smooth case), which again passes to cohomology. We may
summarize our results as follows:

2.11. Theorem. In the above situation, i.e. S is affine and f: X — S is embeddable,
we have a canonical isomorphism

Hpp (X/S) = H* (T (X,Uy5))
and the adelic wedge product makes the following diagram commutative:

H*(I'(X, Uy 5)) x H' (I (X, Uzy9) —— H" (X, Agys))
Ilcan Ilcan

Hpr (X/S) % Hpg (X/S) ——  Hy(X/S)

i.e. the cup product in the de Rham cohomology can be computed by the wedge product on
the adeles of Q5.

2.12. Remark. For singular morphisms f: X — S, equidimensional of relative di-
mension d, we have GauB-Manin connections as well, which are of particular interest in
this case (cf. [Har,], (IIL.5)). Assume for simplicity that S = Spec(R) is a smooth and
affine k-variety, and that i: X ¢, Y is a closed immersion into a smooth S-scheme. Denote
by & the filtration on Q, deduced from the exact sequence

0 _'f*Q;/k - Q;(/k - Qi{/s - 0.

The GauB-Manin connections VO™ : R4f, Q; ¢ — Rf, Q35 ® Q4 can again be described
as the connecting morphism of the long exact cohomology sequence associated to

(*) 0 - AWEF/F) » WEFUF) > WEF/F) -0

(where U* (X, M) denotes the total complex associated to {AZ (X, MP)}). Here the exactness
of (x) follows as in the proof of 2.10. The arguments of 2.7 now carry over almost verbatim
to give an explicit adelic representative of VM. In the context of singular morphisms it is
of great interest as it gives (in many cases) an easy and purely algebraic description of the
(purely topological) Picard-Lefschetz monodromy (at least for isolated complete intersec-
tion singularities) which in turn greatly determines the topology of these singularities by
the work of Brieskorn, Greuel, Hamm and Saito (cf. [Gre] and the references given there).

2.13. Remark. The above description of the de Rham cohomology of singular va-
rieties can be extended to the case of non-embeddable varieties X, cf. [Ye,].
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§ 3. Residues and adeles

Suppose k is a perfect field and X/k is a reduced and irreducible scheme of finite
type of dimension d. By [Be], theorem, residues on higher dimensional local fields define
a morphism

res: AY(X, Q%) — k
such that res in case X/k is smooth and proper induces the trace
try, s HAY(X, Q%) — k

of Grothendieck duality theory. Other constructions of traces have been given by J. Lip-
man in [Li] and by the second author in [Ye,]. In this section we will show that —
up to a sign — all these constructions agree, thus completing the program begun in [Hi, ],
[SY].

In [Ye,] the construction of the trace is based on an explicit construction of a residual
complex Xy for X. Recall that Ay was constructed as follows: Given a point xe X
with codimy({x}) =n, leto:k(x) — 0y, be a coefficient field Oy, over k and set
A (x) = Hompgy (@X,x, Q,‘(’(;)"/k), which up to a canonical isomorphism is independent of the
choice of the coefficient field (cf. [Ye,], (4.3.12)) and let

Hy = D [ @),

codimx(x)=n

Given points x, y € X with ye_{—k—} and codim;(y) =1 and compatible coefficient fields
g:k(x) » @X,x and t: k(y) » @X,y the residue map

Res . ). - det(Q ) = det (i)

of [Ye,], § 4 defines a map 4, ,,: # (x) - A (), which is independent of ¢ and 1. The
collection of all these maps gives the boundary operator of the complex #y (see [Ye,],

§ 4 for more details).

Now let w}’(/k be the sheaf of regular d-forms on X as defined in [KW]. According
to [Ye,], (4.4.16) vy, = H™*(Ay). Note that o}, ®,, K(X) = Qi) Let A (wf,) be
the complex of adeles with values in w% . Then

r(x, A_’I(wd}(/k)) = A"(X, wg(/k) = H w?(/k,{'
feS(X)"

For & = (x,, ..., x,) a saturated chain with x, the generic point of X we get

d — Od — O4d,sep
WXk, = ‘QK(X)/k ®K(X) 0}(»{ - Qk(é)/k

where K(X) is the field of rational functions on X, where k(¢) is the completion of K(X)
along the chain £, and where Q,‘féfﬁ‘ denotes the module of segarated d-differentials of
k(&)/k of [Ye,], (1.5.3). Given a coefficient field o : k(x,) = Oy , we get a morphism
G :k(x,) = k(&) of topological local fields, and thus we have a well defined residue map
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N | d, sep d—n
Resy &) koo * Oxjke = Sk = Lk
inducing an Oy , -linear morphism
Lod -d
G Ok > K (%) S T(X, A7)

defined by ¢.(w)(r) = (— 1) ReSy )k (xm. o (F®). By [Ye,], (4.3.12) the map is independent
of the choice of . If £ is not a saturated chain, or if x, is not the generic point of X, we define

Pt w;{/k,é - T'(X, #y™%)
by ¢, = 0, and we obtain
3.1. Theorem. The family (¢;)sc5x) defines a morphism of complexes
P Al(wg(/k) - Ay [—d]

such that the following diagram commutes:

A (0%,) 2= A [—d].

Suppose now in addition that the variety X/k is proper. Then by [Be], theorem, the
morphism res : A?(X, Q%,) — k induced by the residues on the local factors passes to
cohomology to give a morphism

try: HYX, Q%) — k

(which in case X/k is smooth is the trace of Grothendieck duality theory). Similarly the
canonical traces define a map Tr: I'(X, #5’) — k which also induces a trace

Oy : HUX, 0,) - k

(cf. [Ye,], (4.4.13), (4.4.16)). The canonical inclusion Q;‘{,k < A, ?induces, by [Li], §3, a
map cy . : Q% = O the so called fundamental class, and 3.1 implies

3.2. Corollary. The residue map res : AY(X, cu"x,k) — k factors to give a trace morphism
try, - HY(X, wg,) — k such that

try ) = (=1 Ox/k
and such that the following diagram commutes:

HA(X, Q%) 50 Hi(X, )

try N ¢t
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Proof of the corollary. For each closed point x € X there is a unique coefficient field
k(x) - Oy .. Then Tr is induced by

“evaluation at 1”’: " (x) = Homgn (Oy ,, k(x)) - k(x)

followed by the canonical trace Try,),. Thus the claim follows from the (obvious) com-
mutativity of the diagram

ALK, ol ) T2, X, 40)

res Y (DT Tr
k.

_ (—qyihe

3.3. Remark. By [Hii,]resp.[SY]wehave 0y, } j for X/k proper,
X/k

where | is the trace map of [Li]. Hence try, = (—1) . | by3.2.
X/k X/k

Obviously it suffices to prove the theorem on the level of global sections. Set
K:={¢=(xq,...,x,)€S(X),:codimy(x;) =iforalli=0,...,n}.
If L = S(X),\K then we have canonically
A™(X, wgy) = A(K, 0%,) @ AL, o) -
Thus to prove that ¢° is well defined it suffices to show

3.4. Proposition. Ler a = (). x S A(K, w‘,’(/k) be an adele. Then for all but finitely
many chains £ € K the component o, € wj{,/k,g is holomorphic along & in the sense of [Ye,],
(4.2.3).

Remark. Note that for each ¢ € K we have wg, . = 2555, so it makes sense to talk
of holomorphicity.

By [Hr,], (3.3.2) we may assume for the proof of Proposition 3.4 that X = Spec(R)
is affine. We will proceed by induction on d, the case d =1, i.e. X is a curve, being well
known. Recall that for & = (x,, ..., x,) we denote dy &= (x, ..., x,).

3.5. Lemma. In the above situation assume that we have for some chain ¢ € K that
H d d
o € 1M (W% 4 4o = Dxjk,e)- Then

() =0.

Proof. We have X = Spec(R) is affine, so write £ = (py, ..., p,) with ht(p;) = i. Let
{ =Py, py)andn=(py...,p,), and let 7: k (p,) — Rm be a coeflicient field, compatible
with ¢. Then
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k() = k() - k(vdyn) =k(©)
Tz iz
k(p,) — k(n)
1s
k(p,)

is a finitely ramified base change diagram by [Ye,], (4.1.11). Thus the following diagram
commutes:

~d 4 0 d
OR, jk = ORjk,do; — > DRyk,doc

l ) lReskm/krrn
d—1 s (Qd—1,sep
Qk(doC)/k Qk(ﬂ)/k :

Since wy, = ker (A; ¢ - Hy Y, we get Resk(g)/k(,,oq(a?%p/k) = 0. As im(d) is dense in
wﬁ,k,dog by 1.10, we obtain by the continuity of the residue map

Resy ki rwe) =0 forallreR,, w,€wf; a0
hence for all re R, we get
P () (1) = Resy gy ke (1) = ReSe o,y (ReSkcgmen () = 0.
Proof of 3.4. We proceed by induction on n:
If n =1, the proposition is well known.
Let n>1, and for a prime p € X with ht(p) = 1 define
K,={(PosP1s---» P) €Ki P, = p}.

(Note that p, is the generic point of X.) By [Hr,], (3.3.4), (2.4.3) there exists an fe R
such that

(fr %)k €A (DK, w‘;(/k) = H A(poK,, wg(/k) .

ht(p)=1

In particular f- o, € 0% 4. for all & € K. There is a finite set E = {p?, ..., p®} of primes
with ht(p"¥) =1 such that for all pe X with ht(p) =1, p ¢ E we will have f¢ p, hence
already o, € w? aoe forallé e K, p ¢ E. Thus by 3.5 all these a, will be holomorphic along £.

Now we restrict ourselves to the primes of E. Fix some p € E and choose a coefficient
field o : k(p) — R,. Then the associated residue map

— . d d—1
D, =Resy, 00 Lk = Lk

is a locally differential operator over Oy relative k, hence induces by 1.9 a locally differential
operator
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D; = A(poK,. D,) : A(po K,, Qg((X)/k) - AP, K, Qli(p)l/k
such that for each ¢ € K, the following diagram commutes:

d d—1
QK(X)/k Qk(!:')/k

(4

| l
A (Kp’ wi’/k) = A(50\1(';), Q?((X)/k) T’ A (;/)EK‘,, Qf(;)l/k)

l l

d — 04 d
Ox k¢ = LK)k, doc Due Qoo -

Note that D, , is the residue Res, 4z, arising from D, by the finitely ramified base
change k(p) = k(p) 4.

As D;| R - (o), g, 1s a differential operator over R relative k we get ([Ye,], (3.1.9)):

D)(R- (“:)cex)—- Z R-B;c Ap,y p’gk(p)/k)

for suitable B, = (By 5), .- -» B = (Bp.s) € ADoK, o)) Nowlet Y= {p} with its reduced
induced subscheme structure let R:= R/p and set

L={(@0,--»0n-1) €S(Y),:ht(q) = i} .

Then A (Fy K,, Qi) = AL, 2ot = AL, w§,"), hence by the inductive assumption
there ist a finite subset F < L such that for all e L\F, B, ,, ..., B, s are holomorphic
along 6, ie if 6=(q0,...,9,-,)€L\F and if q,,...,q,_;€Y are such that
n:=(qg,---> G4-1) IS @ maximal saturated chain of Y, then

Resk(,,)/k(ﬁ “Bs)=0 foralll=1,....m

Gn -1

Now fix such a chain é = (qq, ..., q,-;) € L\F, let (p,, ..., p,) be its preimage in p, K,
and set & = (Pg, Py ---5 Py)- AS R /R is topologically étale we obtain from the commuta-
tivity of the above dlagram

A

m m
Resk(c)/k(a),é(ﬁp..'“c) SY R, Bs=) R, ., Bis
j=1

j=1

Hence if { = (p,+4 - .-, P4) is @ chain of primes in R such that, for some given chain ¢ € X,
& =(py, ---» P,), the concatenation & v { = (Pg, ..., Pps Pps1s - --» P4) s @ maximal saturated
chain, and if # is the image of d, (¢ v {) in S(Y'), we deduce from the transmvny of residues
that

Resy vk (Ron' %) = Reskw)/k(Resk(cvc)/km)‘& (Rv"' %)) =0

for all £ € K, except the finitely many chains that arise as preimages of the é € F, completing
the proof of Proposition 3.4.

To complete the proof of Theorem 3.2, it remains to show that ¢° is a morphism of
complexes. Again we may assume that X = Spec(R) is affine.
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First let &= (po,...,p,) with ht(p,)=i and let & =(py,...,P,, P,4;) With
ht(p,+;) = n+ 1. Then by the definition of residue data ([Ye,], (4.3.2)) the following
diagram commutes:

O,z % Oy, ¢
I o)

(- 1)46 PP+ 1
‘%/(pn) i, X(pn+1)'
Thus to show that ¢° is a morphism of complexes it remains to show

3.6. Proposition. Let ie{0,...,n—1}, let {=(Pgs-..s Pic1sPit1s>---»Pn} With
ht(p;) = j for all j, and set

K, = {€=Wo>- s Piz1> @ Piys--n P) €SX), 195y $9& pi+1}'

Then for each w € wh ;..

Y. Resy gy . (@) =0

{EK;

where T : k(p,) — ﬁpn is a fixed coefficient field.

Proof. Again we may assume that X = Spec(R) is affine. If i = 0 then Res, . (w) = 0
for each £ € K, by Lemma 3.4, so we may assume that i > 0. In this situation the face map
01 Qe = Wk, has dense image by 1.10, hence it suffices to show

d
Y, Resikn. (@) =0 for all we Qfx) -
$eky

As i > 0 this is just the residue theorem of [Ye,], (4.2.15)a), resp. [Lo], thm. 3.
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