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Let A be a noetherian commutative ring, and let � be an ideal in A. We study questions

of flatness and ���-adic completeness for infinitely generated A-modules. This is done

using the notions of decaying function and ���-adically free A-module.
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INTRODUCTION

Let A be a commutative ring, and let � be an ideal of A. For i ≥ 0, we write
Ai �= A/�i+1. Given an A-module M , its �-adic completion is the A-module

M̂ �= lim
←i

�Ai ⊗A M�� (0.1)

Recall that M is called �-adically complete if the canonical homomorphism M → M̂

is bijective. If M → M̂ is injective, then M is called �-adically separated. It is well
known that if A is noetherian and complete, then all finitely generated A-modules
are complete. But for infinitely generated modules, and for non-noetherian rings,
the picture is quite complicated.

We became interested in the adic completion of infinitely generated modules
in the course of our work on deformation quantization (see end of Introduction).
After a while we realized that this old and apparently simple concept was not treated
adequately in the literature. This article contains our contributions.

In Section 1 we discuss the completion operation in general. In Theorem 1.2
we give a useful criterion to tell whether the �-adic completion M̂ of an A-module M
is itself �-adically complete. We give an example of an �-adically separated module
M whose �-adic completion M̂ is not complete (Example 1.8). The moral (made
precise in Corollary 1.12) is that one should distinguish between the algebraic notion
of �-adic completion of M (i.e. the inverse limit (0.1)), and the topological notion of
completion of the metric space M (with respect to its �-adic metric, see (1.11)).
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4222 YEKUTIELI

In Section 2 of the article we introduce the notion of decaying function. This
idea is inspired by functional analysis. Let Z be a set, and let M be an �-adically
separated A-module. A function f � Z → M is called decaying if for every i the
composed function Z → Ai ⊗A M has finite support. We denote by Fdec�Z�M� the
set of all decaying functions f � Z → M , and this is an A-module in the obvious way.
The submodule of finite support functions is denoted by Ffin�Z�M�. Note that for
M �= A the module Ffin�Z�A� is a free A-module, with basis the collection ��z�z∈Z of
delta functions.

We prove (Corollary 2.9) that, if M is �-adically complete, then Fdec�Z�M�

is the �-adic completion of Ffin�Z�M�. (Recall, however, that the completion need
not be complete!) We also prove a complete version of the Nakayama Lemma
(Theorem 2.11).

In Section 3 we assume A is noetherian. The main result here, Theorem 3.4,
says that for any set Z the A-module Fdec�Z� Â� is flat and �-adically complete.
Theorem 3.4 implies, among other things, Corollary 3.5, which says that for any
A-module M the completion M̂ is �-adically complete. (Note that the content of
Corollary 3.5 is not new; see Remark 3.7 for a bit of history.) We see that the
anomalies of completion disappear when A is noetherian.

An A-module P is called �-adically free if it is isomorphic to Fdec�Z� Â� for
some set Z. We show (Corollary 3.15) that any �-adically complete A-module M is
a quotient of some �-adically free module P. We also introduce the notion of �-
adically projective A-module; and we prove that P is �-adically projective if and only
if it is a direct summand of an �-adically free module (Corollary 3.18). We give an
example (Example 3.20) demonstrating that the completion functor M �→ M̂ is not
right exact.

In Section 4 we specialize to the case of a complete noetherian local ring A,
with maximal ideal �. Corollary 4.5 says that an A-module P is �-adically free
if and only if it is flat and �-adically complete. We discuss �-adic systems of A-
modules.

In Section 5 we study the related geometric problem. Namely, X is a
topological space, and we are interested in sheaves of A-modules on X that are
flat and �-adically complete. Here some geometric property is needed for things to
work well; we call it locally � -simply connectedness, where � is a sheaf of abelian
groups on X (see Definition 5.4).

Here are a few words on the connection between completion and deformation
quantization. Suppose � is a field, and A is a complete noetherian local �-algebra,
with maximal ideal �, such that A/� � �. Let B̄ be a �-algebra. An associative A-
deformation of B̄ is an associative unital (but not necessarily commutative) A-algebra
B, which is flat and �-adically complete, together with a �-algebra isomorphism
�⊗A B � B̄. The main example is � �= �; A �= �		�

, the ring of formal power
series in the variable �; and B̄ �= C��X�, the ring of smooth functions on a
differentiable manifold X. In our article [14] we consider the algebro-geometric
version of deformation quantization, involving sheaves of A-algebras. The results of
Sections 4–5 are needed in [14].

A possible use for the results of Section 3 would be to gain a better
understanding of the Matlis–Greenlees–May duality (cf. [1, 8, 10]).
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FLATNESS AND COMPLETION 4223

1. SOME RESULTS ABOUT COMPLETION

By default, all rings in this article are commutative.
We begin by recalling some facts about completion. Let A be a ring, and let

� be an ideal of A. For i ∈ �, we write Ai �= A/�i+1. Given an A-module M , there
are canonical isomorphisms Ai ⊗A M � M/�i+1M . The �-adic completion of M is the
A-module

M̂ �= lim
←i

�Ai ⊗A M�� (1.1)

There is a canonical homomorphism

�M � M → M̂�

The module M is called �-adically separated if �M is injective, and it is called �-
adically complete if �M is bijective. (Some texts, such as [3], would say that A is
separated and complete if �M is bijective.) Of course, M is �-adically separated if
and only if

⋂
i≥0 �

iM = 0. If M is �-adically complete, then we often identify M with
M̂ via �M .

The �-adic completion Â of A is a ring, and �A � A → Â is ring
homomorphism. Given an A-module M , its completion M̂ is an Â-module, with
action coming from the action of Â on the modules Ai ⊗A M in the inverse system
(1.1). In particular this says that a complete A-module M has a canonical Â-module
structure on it.

Given a homomorphism � � M → N of A-modules, there is an induced
homomorphism �̂ � M̂ → N̂ making the diagram

commutative.
Sometimes we write 


�
M �= M̂ for an A-module M , and 


�
��� �= �̂ for a

homomorphism �, following [1]. This gives a functor



�
� ModA → ModA

on the category of A-modules. The functor 

�
is additive. However, it is not exact,

nor even right exact; cf. Example 3.20. The functor 

�
is not idempotent in general

(see Example 1.8). Corollary 3.6 says that the functor 

�
is idempotent if the ideal

� is finitely generated. All that can be said in general about the functor 

�
is that it

preserves surjections.

Proposition 1.2. Let � � M → N be a surjective homomorphism of A-modules. Then
�̂ � M̂ → N̂ is also surjective.

This result is part of [12, Proposition 2.2.1].
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4224 YEKUTIELI

Proof. For every i ≥ 0, let us write Mi �= Ai ⊗A M and Ni �= Ai ⊗A N . Let �i �

Mi → Ni be the homomorphism induced by �, and let Ki �= Ker��i�. So there is an
inverse system of exact sequences

0 → Ki → Mi

�i
→Ni → 0�

Each Ki is a quotient of Ker���, and therefore, Ki+1 → Ki is surjective. By the
Mittag–Leffler argument (as in [2, Proposition 10.2]), in the limit we get an exact
sequence

0 → lim
←i

Ki → M̂
�̂
→ N̂ → 0�

In particular, �̂ is surjective. �

Let M be an A-module. The homomorphism �M � M → M̂ induces a
homomorphism

�M�i � Ai ⊗A M → Ai ⊗A M̂ (1.3)

for every i ≥ 0. On the other hand, from the inverse limit (1.1), we have surjective
homomorphisms

�M�i � M̂ → Ai ⊗A M� (1.4)

Here is a useful criterion to tell whether the �-adic completion is complete.

Theorem 1.2. Let M be an A-module, with �-adic completion M̂ . The following

conditions are equivalent:

(i) The A-module M̂ is �-adically complete;

(ii) All the homomorphisms �M�i are surjective;

(iii) There is equality Ker��M�i� = �
i+1M̂ for every i ≥ 0.

Proof. The proof is based on ideas in [12, Section 2.2]. Let us write N �= M̂ , and
for i ≥ 0, let Mi �= Ai ⊗A M and Ni �= Ai ⊗A N . There is a commutative diagram

in which �M�i and �N�i are the surjections induced by the ring homomorphism A →
Ai, and �i is the unique homomorphism that makes the diagram commutative. Since
�i 	 �M�i is the identity on Mi, it follows that �M�i is a split injection. Letting M ′

i �=
Ker��i�, we have a canonical decomposition Ni = Mi ⊕M ′

i . So �M�i is surjective if
and only if �i is injective, if and only if M ′

i = 0.
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FLATNESS AND COMPLETION 4225

Note also that Ker��N�i� = �
i+1N , and it equals Ker��M�i� if and only if �i is

injective. This tells us that (ii) ⇔ (iii).
The diagrams (1.6) form an inverse system. Passing to the inverse limit in the

second row, we get a diagram

N
�N
−→ N̂

�
−→N�

where � �= lim←i �i. Again � 	 �N = idN , so �N is a split injection. Writing N ′ �=

Ker���, we have a canonical decomposition N̂ = N ⊕ N ′. So �N is bijective (i.e., N
is complete) if and only N ′ = 0.

The decompositions Ni = Mi ⊕M ′
i are compatible as i varies, and hence

N ′ � lim
←i

M ′
i �

Now in the inverse system �M ′
i�i≥0 the homomorphisms M ′

j → M ′
i , for j ≥ i, are

surjective. Therefore, in the limit, every homomorphism N ′ → M ′
i is surjective. It

follows that N ′ = 0 if and only if M ′
i = 0 for all i. We conclude that (i) ⇔ (ii). �

In the proof above we also showed the following corollary.

Corollary 1.7. Let M be an A-module. Then its �-adic completion M̂ is �-adically

separated. Moreover, the homomorphism �M̂ � M̂ → 

�
M̂ is a split injection.

Some examples of the bad behavior of completion can be found in the
literature. Strooker [12, Subsection 2.2.5] mentions unpublished work of Bartijn.
And there is an example in [3], which is very close to the example we now present.

Example 1.8. Let � be a field, and let A �= �	t1� t2� � � � 
, the ring of polynomials
in countably many variables. In it, consider the maximal ideal � = �t1� t2� � � � �. We
will produce an A-module M whose �-adic completion M̂ is not �-adically complete.
In fact we will take M �= A, the free module of rank 1.

Let Â be the �-adic completion of A, and let � �= Ker��A�0 � Â → A0�. The ring
Â is canonically isomorphic to the ring of formal power series �		t1� t2� � � � 

. In
[3, Exercise III.2.12] it is shown that the ring Â is not �-adically complete (when
� is finite). As stated in the previous paragraph, we will show something slightly
different: the A-module Â is not �-adically complete (with no assumption on the
field �). This is done using Theorem 1.5.

In order to utilize the notation of Theorem 1.5 and its proof, let’s write M �= A
and N �= M̂ . To prove that N is not �-adically complete it suffices to show that the
homomorphism �M�0 � M0 → N0 is not surjective.

Consider an element b ∈ N , with image b̄ �= �N�0�b� ∈ N0. The element b̄ is in
the image of �M�0 if and only if b ∈ �N + Im��M�. Now any element of �N is of
the form

∑n
k=1 tkbk for some n ≥ 0 and bk ∈ N . And any element of Im��M� is a

polynomial; so it lies in �⊕ �N . Thus b ∈ �N + Im��M� if and only if

b = �+
n∑

k=1

tkbk (1.9)

for some � ∈ �, n ≥ 0 and bk ∈ N .
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4226 YEKUTIELI

Let us take b ∈ N = �		t1� t2� � � � 

 to be the power series b �=
∑�

k=1 t
k
k . Then

b cannot be written as in (1.9), and hence b̄ 
 Im��M�0�.

We end this section with a discussion of the topological interpretation of �-
adic completion. Any A-module M has on it the �-adic topology, in which the
collection of submodules ��iM�i≥0 is a basis of open neighborhoods of the element
0. Any homomorphism � � M → N of A-modules is continuous for the �-adic
topologies.

Now consider an �-adically separated A-module M . Recall that for an element
m ∈ M its order (with respect to �) is

ord
�
�m� �= sup�i ∈ � �m ∈ �

iM� ∈ � ∪ ���� (1.10)

Sometimes we shall write ord
��M�m�, when we need to emphasize the module M (e.g.,

in the proof of Lemma 3.1). Since
⋂

i≥0 �
iM = 0, we see that ord

�
�m� = � if and

only if m = 0. And ord
�
�m� = i ∈ � if and only if m ∈ �

iM − �
i+1M .

For elements m�n ∈ M define

dist
�
�m� n� �=

(
1
2

)ord��m−n�
� (1.11)

The function dist
�
is a metric on M , which we call the �-adic metric. This metric

determines the �-adic topology on M . The module M is �-adically complete if and
only if it is a complete metric space with respect to the �-adic metric. See [2, Section
10] or [3, Section III.2.5].

We continue with the assumption that M is �-adically separated; and we view
M as a submodule of M̂ via the homomorphism �M . The �-adically separated A-
module M̂ has on it two descending filtrations, defining two possibly distinct metrics:

(a) The filtration �FiM̂�i≥0, where FiM̂ �= Ker��M�i−1� for i ≥ 1, and F0M̂ �= M̂ .
Here �M�i−1 is the homomorphism in (1.4). There is a corresponding order
function

ord′�m� �= sup�i ∈ � �m ∈ FiM̂�

for m ∈ M̂ , and the corresponding metric is

dist′�m� n� �=
(
1
2

)ord′�m−n�

for m�n ∈ M̂ .

(b) The filtration ��iM̂�i≥0, namely the �-adic filtration of the A-module M̂ itself.
The corresponding order function ord

��M̂ and metric dist
��M̂ are given by

formulas (1.10) and (1.11), replacing M with M̂ .

The standard fact (see [2, Section 10]) is that the metric space �M̂� dist′� is
always the completion of the metric space �M� dist

�
�.
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FLATNESS AND COMPLETION 4227

Corollary 1.12. Let M be an A-module, with �-adic completion M̂ . The following

conditions are equivalent:

(i) The A-module M̂ is �-adically complete;

(ii) The metrics dist
��M̂ and dist′ on M̂ coincide.

Proof. This is immediate from the equivalence (i) ⇔ (iii) in Theorem 1.5. �

Example 1.13. Consider the module M from Example 1.8. Since its �-adic
completion M̂ is not �-adically complete, we know that the metrics dist

��M̂ and dist′

are not the same. Indeed, a little calculation shows that for the element b =
∑�

k=1 t
k
k

we have dist
��M̂�b� 0� = 1, but dist′�b� 0� = 1

2 .

2. MODULES OF DECAYING FUNCTIONS

The ideas in this section are inspired by functional analysis. As in Section 1,
A is a ring and � is an ideal in it.

Let Z be a set, and let M be an A-module. We denote by F�Z�M� the set of all
functions f � Z → M , and by Ffin�Z�M� the set of functions with finite support. So

F�Z�M� �
∏
z∈Z

M

and

Ffin�Z�M� �
⊕
z∈Z

M�

The set F�Z�M� is an A-module, and Ffin�Z�M� is a submodule.
Now let us look at the special case M = A. For every z ∈ Z there is the delta

function �z ∈ Ffin�Z�A�, namely, �z�z� �= 1, and �z�z
′� �= 0 for z′ �= z. The A-module

Ffin�Z�A� is free; as basis we can take the collection of elements ��z�z∈Z.
Suppose M is an �-adically separated A-module, and m ∈ M . Recall the �-adic

order ord
�
�m� from formula (1.10).

Definition 2.1. Let Z be a set and M an �-adically separated A-module. A function
f � Z → M is called decaying if for every i ∈ � the set

�z ∈ Z � ord
�
�f�z�� ≤ i�

is finite. We denote by Fdec�Z�M� the set of all decaying functions f � Z → M .

The support of a decaying function is of course countable. Any function with
finite support is decaying. Thus we have inclusions

Ffin�Z�M� ⊂ Fdec�Z�M� ⊂ F�Z�M��

It is easy to see that Fdec�Z�M� is an A-submodule of F�Z�M�.
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4228 YEKUTIELI

Example 2.2. Suppose that �
iM = 0 for some i. Then a decaying function has

finite support, and we have

Ffin�Z�M� = Fdec�Z�M��

Example 2.3. Suppose A is complete. Take variables t1� � � � � tn, and consider the
ring of restricted formal power series A�t1� � � � � tn� as in [3, Section III.4.2]. Then as
A-modules we have A�t1� � � � � tn� � Fdec��

n� A�.

Proposition 2.4. Let M be an �-adically separated module. Then Fdec�Z�M� is �-

adically separated.

Proof. Let f � Z → M be a decaying function and let a ∈ �
i. Then af�z� ∈ �

iM for
every z ∈ Z. We see that

�
i · Fdec�Z�M� ⊂ Fdec�Z� �

iM��

But M is separated, so

⋂
i≥0

�
i · Fdec�Z�M� ⊂

⋂
i≥0

Fdec�Z� �
iM� = Fdec

(
Z�

⋂
i≥0

�
iM

)
= 0�

�

Let � � M → N be a homomorphism between �-adically separated A-modules.
For any m ∈ M , we have ord

��N ���m�� ≥ ord
��M�m�. Hence there is an induced A-

linear homomorphism

Fdec�Z�M� → Fdec�Z�N�� f �→ � 	 f�

Let us denote by Modsep A the full subcategory of ModA consisting of �-adically
separated modules; this is an additive category. We see that for a fixed set Z, there
is an additive functor

Fdec�Z�−� � Modsep A → Modsep A�

Suppose M is an �-adically separated A-module. Let Z be a set, and let f �

Z → M be a function. One says that the series
∑

z∈Z f�z� converges in the �-adic
topology, to some element m ∈ M , if for any natural number i there is a finite subset
Zi ⊂ Z, such that

m−
∑
z∈Zi

f�z� ∈ �
i+1M�

and f�z� ∈ �
i+1M for all z 
 Zi. In this case one writes

m =
∑
z∈Z

f�z��

Of course, if the series converges, then the sum m is unique. Cf. [3, Section III.2.6].
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FLATNESS AND COMPLETION 4229

Proposition 2.5. Let M be an �-adically complete A-module, and let f � Z → M be

a function. The following conditions are equivalent:

(i) The function f is decaying;

(ii) The series
∑

z∈Z f�z� converges in M for the �-adic topology.

The proof is easy, and we leave it out. An immediate consequence is that for
an �-adically complete module M there is an A-linear homomorphism

Fdec�Z�M� → M� f �→
∑
z∈Z

f�z��

Corollary 2.6. Let Z be a set, let M be an A-module, and let f � Z → M be any

function. Assume A and M are �-adically complete. Then for any g ∈ Fdec�Z�A� the

series
∑

z∈Z g�z�f�z� converges in M . This gives rise to an A-linear homomorphism

� � Fdec�Z�A� → M� ��g� �=
∑
z∈Z

g�z�f�z��

Proof. Given g ∈ Fdec�Z�A� consider the function Z → M , z �→ g�z�f�z�. This
function is decaying, so by Proposition 2.5 the series

∑
z∈Z g�z�f�z� converges. It is

easy to check that the resulting function � is A-linear. �

Theorem 2.7. Let M be an A-module whose �-adic completion M̂ is �-adically

complete. Then the canonical homomorphism

Fdec�Z� M̂� → lim
←i

Ffin�Z�Ai ⊗A M� (2.8)

induced by

�M�i � M̂ → Ai ⊗A M

is bijective.

Proof. Suppose f ∈ Fdec�Z� M̂� is nonzero. So f�z� �= 0 for some z ∈ Z. Since M̂
is separated, there is some i such that the image �M�i�f�z�� of f�z� in Ai ⊗A M is
nonzero. This implies that the homomorphism (2.8) is injective.

Conversely, suppose �fi�i≥0 is an inverse system of functions fi � Z → Ai ⊗A M ,
each with finite support. For any z ∈ Z, let

f�z� �= lim
←i

fi�z� ∈ lim
←i

�Ai ⊗A M� = M̂�

We get a function f � Z → M̂ satisfying �M�i 	 f = fi. Since each fi has finite support,
and by Theorem 1.5 we know that Ker��M�i� = �

i+1M̂ , it follows that f is a decaying
function. �

Corollary 2.9. Let M be as in Theorem 2.7. Then the homomorphism

Ffin�Z�M� → Fdec�Z� M̂�
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4230 YEKUTIELI

induced by �M makes Fdec�Z� M̂� into an �-adic completion of Ffin�Z�M�. More

precisely, there is an isomorphism

Fdec�Z� M̂� � 

�
Ffin�Z�M�

that commutes with the homomorphisms from Ffin�Z�M� and is functorial in M .

The reason for the careful wording of the corollary is because Fdec�Z� M̂�

might fail to be �-adically complete. Cf. Example 1.8 and Corollary 1.12.

Proof. Since there is a canonical isomorphism

Ai ⊗A Ffin�Z�M� � Ffin�Z�Ai ⊗A M�

for every i, this follows from Theorem 2.7. �

Definition 2.10. Let M be an A-module, and let �mz�z∈Z be a collection of elements
of M . Assume A and M are �-adically complete. We say the collection �mz�z∈Z �-
adically generates M if for every element m ∈ M there exists some decaying function
g � Z → A such that

m =
∑
z∈Z

g�z�mz�

Here is a version of the Nakayama Lemma.

Theorem 2.11. Let M be an A-module, and let �mz�z∈Z be a collection of elements of

M . Assume A and M are �-adically complete. Write M0 �= A0 ⊗A M , and let �0 � M →

M0 be the canonical homomorphism. Then the two conditions below are equivalent:

(i) The collection ��0�mz��z∈Z generates the A0-module M0;

(ii) The collection �mz�z∈Z �-adically generates M .

Proof. Let � � Fdec�Z�A� → M be the homomorphism corresponding to the
function f � Z → M , f�z� �= mz, as in Corollary 2.6. Then �mz�z∈Z �-adically
generates M if and only if � is surjective.

For every i ≥ 0, let Mi �= Ai ⊗A M . There is a commutative diagram

in which the vertical arrows are the surjections coming from the ring
homomorphisms A → Ai. For i = 0, we have �0�mz� = �0��z� ∈ M0 for all z ∈ Z.
Hence the collection ��0�mz��z∈Z generates the A0-module M0 if and only if �0 is
surjective. The implication (ii) ⇒ (i) is now clear.
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FLATNESS AND COMPLETION 4231

Now let us assume (i), namely, that �0 is surjective. Since for every i the ideal
�/�i+1 = Ker�Ai → A0� is nilpotent, the usual Nakayama Lemma (see [3, Corollary
II.3.1]) says that �i is surjective. Consider the commutative diagram

gotten as the inverse limit of the sequences (2.12). As in the proof of Proposition
1.2 one shows that the homomorphism lim←i �i is surjective. By Theorem 2.7 the
left vertical arrow is bijective; and by assumption �M is bijective. It follows that � is
surjective. �

To end this section, here are some remarks.

Remark 2.13. Suppose A is complete. There is a canonical pairing

F�Z�A�× Fdec�Z�A� → A�

namely,

�f� g� �=
∑
z∈Z

f�z�g�z��

If we put the discrete topology on Fdec�Z�A�, and a suitable topology on F�Z�A�,
then this becomes a perfect pairing (i.e., it identifies each of these A-modules with
the continuous dual of the other).

Suppose h � Y → Z is a function. Then there is a ring homomorphism

h∗ � F�Z�A� → F�Y� A�

called pullback, namely, h∗�f� = f 	 h. And there is an F�Z�A�-module
homomorphism

h∗ � Fdec�Y� A� → Fdec�Z�A��

which is

h∗�g��z� �=
∑

y∈h−1�z�

g�y� ∈ A�

In this way Fdec�Z�A� resembles the space L1�Z� from functional analysis, and
F�Z�A� resembles the space L��Z�.

Remark 2.14. Suppose �Mz�z∈Z is a collection of �-adically separated A-modules.
By an obvious generalization of Definition 2.1, we can form the decaying direct
product

∏dec
z∈Z Mz, which is a submodule of

∏
z∈Z Mz. In case A is noetherian and
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complete, and all the modules Mz are finitely generated, one can show (just
as in Theorem 3.4) that the module

∏dec
z∈Z Mz is �-adically complete, and it is flat if

and only if all the modules Mz are flat.

3. NOETHERIAN RINGS AND THEIR COMPLETIONS

In this section A is a noetherian ring, and � is an ideal in it. The �-adic
completion of A is Â, and we write �̂ �= �Â, which is an ideal in Â. It is well-known
that the ring Â is �̂-adically complete, flat over A, and for every i ≥ 0 the canonical
homomorphism Ai = A/�i+1 → Â/�̂i+1 is bijective. It is also well-known that every
finitely generated Â-module is �̂-adically complete. We are of course allowing the
case A = Â. See [2, Section 10] or [3, Section III.3].

Let M be an Â-module. Since �
iM = �̂

iM for every i ≥ 0, it follows that



�
M = 


�̂
M . So M is �-adically separated (resp., complete) if and only if it is �̂-

adically separated (resp., complete). And when M is separated we have ord
��M =

ord
�̂�M , so a function f � Z → M is �-adically decaying if and only if it is �̂-adically

decaying.

Lemma 3.1. Suppose M is a finitely generated Â-module, and N is an Â-submodule

of M . Then

Fdec�Z�N� = Fdec�Z�M� ∩ F�Z�N�

as submodules of F�Z�M�.

Proof. Since �iN ⊂ �
iM for any i ≥ 0, it follows that ord

��N �n� ≤ ord
��M�n� for any

n ∈ N . By the Artin–Rees Lemma (cf. [3, Corollary III.3.1]), there is some i0 such
that

N ∩ ��i0+iM� ⊂ �
iN

for all i ≥ 0. Therefore, for n ∈ N we have

ord
��M�n� ≤ ord

��N �n�+ i0�

We conclude that the �-adic decay conditions with respect to M and to N are
equivalent, for a function f � Z → N . �

Let us denote by Modf Â the full subcategory of Mod Â consisting of finitely
generated Â-modules. The subcategory Modf Â is abelian (since Â is noetherian).
Note that Modf Â ⊂ Modsep Â.

Lemma 3.2. For a given set Z, the functor

Fdec�Z�−� � Modf Â → Mod Â

is exact.
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FLATNESS AND COMPLETION 4233

Proof. Consider an exact sequence

0 → M ′ �
→M

�
→M ′′ → 0

of finitely generated Â-modules. We want to show that the sequence

0 → Fdec�Z�M
′�

�
→Fdec�Z�M�

�
→Fdec�Z�M

′′� → 0

is also exact.
Since ��M� = M ′′, it follows that ���iM� = �

iM ′′ for all i. Take any f ∈
Fdec�Z�M

′′�. For any z ∈ Z, we can lift f�z� ∈ M ′′ to some element g�z� ∈ M , such
that ord

��M�g�z�� ≥ ord
��M ′′�f�z��. We get a decaying function g � Z → M lifting f .

So we have exactness at Fdec�Z�M
′′�.

Exactness at Fdec�Z�M� is by Lemma 3.1, and exactness at Fdec�Z�M
′� is

trivial. �

Lemma 3.3. Let M be a finitely generated Â-module. Then the canonical

homomorphism

M ⊗Â Fdec�Z� Â� → Fdec�Z�M�

is bijective.

Proof. We use the standard trick of finite free presentations. Choose some finite
presentation of M ; namely, an exact sequence Q → P → M → 0, where P and Q
are finitely generated free Â-modules. There is an induced commutative diagram

The top row is exact because of right-exactness of the tensor product; and the
bottom row is exact by Lemma 3.2. The homomorphisms �P and �Q are bijective
since P and Q are finite rank free modules. It follows that �M is also bijective. �

Here is the main result of this section. Observe that it refers only to the
complete ring Â.

Theorem 3.4. Let Â be a noetherian ring, �̂-adically complete with respect to some

ideal �̂. Let Z be any set. Then:

(1) For any i ≥ 0 the canonical homomorphism

Ai ⊗Â Fdec�Z� Â� → Ffin�Z�Ai�

is bijective. Here Ai �= Â/�̂i+1.

(2) The Â-module Fdec�Z� Â� is flat and �̂-adically complete.
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4234 YEKUTIELI

Proof. (1) This is true by Lemma 3.3, with M �= Ai.

(2) Since Â is noetherian, the Â-module Fdec�Z� Â� is flat if and only if
the functor −⊗Â Fdec�Z� Â� is exact on Modf Â. The latter is true by Lemmas 3.2
and 3.3.

As for completeness, combining part (1) above with Theorem 2.7 (for the
module M �= Â) we see that the canonical homomorphism

�Fdec�Z�Â�
� Fdec�Z� Â� → lim

←i

(
Ai ⊗Â Fdec�Z� Â�

)

is bijective. �

Here are several corollaries to Theorem 3.4.

Corollary 3.5. Let M be any A-module. Its �-adic completion M̂ is �-adically

complete.

Proof. Choose any surjection � � Ffin�Z�A� → M , where Z is some set, and write
Q �= Ffin�Z�A�. By Proposition 1.2 the homomorphism �̂ � Q̂ → M̂ is surjective.
Hence for every i ≥ 0 we get a commutative diagram

with surjective vertical arrows. By Corollary 2.9 and Theorem 3.4(2) the module
Q̂ is �-adically complete, and hence by Theorem 1.5 the homomorphisms �Q�i is
surjective. It follows that �M�i is also surjective, for every i. Again using Theorem
1.5, we conclude that M̂ is complete. �

Corollary 3.6. Let B be a ring, and let � be a finitely generated ideal in it. Given any

B-module M , its �-adic completion 

�
M is �-adically complete.

Proof. Choose generators b1� � � � � bn of the ideal �. Consider the polynomial ring
A �= �	t1� � � � � tn
, the ideal � �= �t1� � � � � tn� ⊂ A, and the ring homomorphism f �

A → B defined by f�ti� �= bi. Then for any B-module N there is a canonical
isomorphism of B-modules 


�
N � 


�
N , that commutes with the homomorphisms

from N . Since A is noetherian, we know from Corollary 3.5 that N �= 

�
M is �-

adically complete. �

Remark 3.7. The assertions of Corollaries 3.5 and 3.6 are not new, yet they seem
to be virtually unknown. After we proved Theorem 3.4, A.-M. Simon mentioned to
us the book [12], and in Subsection 2.2.5 of that book we located these assertions
(in slightly different wording). We then learned that Corollary 3.6 appeared much
earlier as [10, Theorem 15]. Note that our proof of Theorem 3.4, involving the
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FLATNESS AND COMPLETION 4235

concept of decaying functions, is completely new and is not similar to the proofs in
these cited works.

Corollary 3.6 resembles [3, Proposition III.14]. However, a close inspection
reveals that these two assertions refer to distinct notions of completion. See Example
1.8, Corollary 1.12, and the discussion between them.

Corollary 3.8. Let M be any A-module. Then the A-module Fdec�Z� M̂� is �-adically
complete.

Proof. According to Corollary 3.5, the module M̂ is complete. By Corollary 2.9
we know that Fdec�Z� M̂� is (canonically isomorphic to) the �-adic completion of
Ffin�Z�M�. Now use Corollary 3.5 again to conclude that Fdec�Z� M̂� is complete. �

Corollary 3.9. Let Z be a set, let M be an �-adically complete A-module, and let

f � Z → M be any function. Then there is a unique A-linear homomorphism

� � Fdec�Z� Â� → M

such that ���z� = f�z� for all z ∈ Z.

Proof. The existence of such a homomorphism was already proved in Corollary
2.6. Recall that the formula is

��g� =
∑
z∈Z

g�z�f�z� ∈ M

for g ∈ Fdec�Z� Â�. Uniqueness is because M is complete, and the image of Ffin�Z�A�

in Fdec�Z� Â�, which is the A-submodule generated by the collection ��z�z∈Z, is dense
in Fdec�Z� Â�, by Theorem 3.4(1). �

Example 3.10. Take any set Z. Consider the function f � Z → Fdec�Z� Â�, f�z� �=
�z. The corresponding homomorphism � is the identity of Fdec�Z� Â�. This says that

g =
∑
z∈Z

g�z��z

for any g ∈ Fdec�Z� Â�.

Definition 3.11. An A-module P is called �-adically free if it isomorphic to the A-
module Fdec�Z� Â� for some set Z.

Corollary 3.12. Suppose B is another noetherian ring, � ⊂ B is an ideal, and f � A →
B is a ring homomorphism satisfying f��� ⊂ �. If P is an �-adically free A-module, then
the B-module

B ⊗̂A P �= 

�
�B ⊗A P�

is �-adically free.
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4236 YEKUTIELI

Proof. Letting Bi �= B/�i+1, we have induced ring homomorphisms Ai → Bi for all
i ≥ 0. Choose an A-module isomorphism P � Fdec�Z� Â�. Then by Theorem 3.4 we
have canonical isomorphisms

Bi ⊗A P � Bi ⊗Ai
Ai ⊗A Fdec�Z� Â� � Bi ⊗Ai

Ffin�Z�Ai� � Ffin�Z� Bi��

We see that



�
�B ⊗A P� � lim

←i
�Bi ⊗A P� � lim

←i
Ffin�Z� Bi� � Fdec/��Z�
�

B��

where Fdec/��Z�−� refers to the �-adic decay condition. �

Proposition 3.13. The following two conditions are equivalent for an A-module P:

(i) P is �-adically free;

(ii) P is isomorphic to �-adic completion Q̂ of some free A-module Q.

Proof. First suppose P � Q̂ for some free A-module Q. By choosing a basis
for Q, indexed by a set Z, we get an isomorphism Q � Ffin�Z�A�. According to
Corollary 2.9 we get an isomorphism P � Fdec�Z� Â�. The reverse implication is
proved similarly. �

Example 3.14. Suppose A is complete, � is a field, and � → A is a ring
homomorphism. Let V be a �-module. The A-module A⊗

�
V is free, and therefore,

its �-adic completion A ⊗̂
�
V �= 


�
�A⊗

�
V� is �-adically free.

Corollary 3.15. Suppose M is an �-adically complete A-module. Then there is a

surjection � � P → M for some �-adically free A-module P.

Proof. Choose a surjection � � Q → M , where Q is some free A-module. By
Proposition 1.2 the induced homomorphism �̂ � Q̂ → M̂ is surjective. We know that
P �= Q̂ is �-adically free (see Proposition 3.13), and that �M � M → M̂ is bijective.
So we can take � �= �−1

M 	 �̂. �

Definition 3.16. An A-module P is called �-adically projective if it satisfies the
following two conditions:

(i) P is �-adically complete;
(ii) Suppose M and N are �-adically complete A-modules, and � � M → N a

surjective homomorphism. Then any homomorphism � � P → N can be lifted
to a homomorphism �̃ � P → M , such that � = � 	 �̃.

Remark 3.17. It can be shown that condition (ii) above is equivalent to P being
topologically projective, in the sense of [6, Section 0IV.19.2]

Corollary 3.18. An A-module P is �-adically projective if and only if it is a direct

summand of an �-adically free module.
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FLATNESS AND COMPLETION 4237

Proof. First assume that P is a direct summand of an �-adically free module; say
P ⊕ P ′ = Q. By Theorem 3.4(2) and Corollary 3.9, the �-adically free module Q is
�-adically projective. And it is easy to see that a direct summand of an �-adically
projective module is also �-adically projective.

Conversely, assume that P is �-adically projective. Because P is complete, by
Corollary 3.15 there exists a surjection � � Q → P for some �-adically free module
Q. Since P and Q are both complete, condition (ii) says that � is split. �

To finish this section, here are a couple of examples and a remark. The first
example is a bit facile, but instructive.

Example 3.19. Let � be a field, and let A �= �		t

, the ring of formal power
series in one variable. It is a complete noetherian local ring with maximal ideal
� = �t�. Let K �= ���t��, the field of fractions of A. Consider the inclusion � � A →

K. For any i ≥ 0, we have Ai ⊗A K = 0. Therefore, K̂ = 0, and �̂ � Â → K̂ is not
injective.

We see that the functor 

�
does not respect injections. Since it does respect

surjections (Proposition 1.2), one is tempted to guess that 

�
is right exact. But here

is a counterexample.

Example 3.20. With A �= �		t

 and � = �t� as in the previous example, let
P�Q �= Fdec��� A�. Define a homomorphism � � P → Q by ���i� �= ti�i, where �i ∈
Fdec��� A� are the delta functions. It is easy to see that � is injective.

We claim that the submodule L �= Im��� is not closed in Q. Indeed, consider
the element f �=

∑
i∈� ti�i ∈ Q. Clearly, f is in the closure L̄ of L. If there were some

g ∈ P such that f = ��g�, then writing ai �= g�i� ∈ A, we would have g =
∑

i ai�i.
Hence

f = ��g� =
∑
i

ai���i� =
∑
i

ait
i�i�

By uniqueness of the series expansion, it would follow that ai = 1 for all i. But then
the function g � � → A would not be decaying; so we arrive at a contradiction.

Let us define M �= Q/L. So there is an exact sequence of A-modules

0 → P
�
→Q

�
→M → 0� (3.21)

Now P and Q are complete, so we can identify them with their completions P̂ and
Q̂. According to Proposition 1.2 the homomorphism �̂ � Q → M̂ is surjective, and
by Corollary 3.5 the module M̂ is complete. Therefore, Ker��̂� = L̄. Because L �

L̄ we see that �M � M → M̂ is surjective but not bijective. Thus M is not �-adically
complete. Also, since �̂ = �, we see that the sequence

0 → P̂
�̂
→ Q̂

�̂
→ M̂ → 0

that we get by completing (3.21) is not exact at Q̂. This shows that the functor 

�
is

not right exact.
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4238 YEKUTIELI

Remark 3.22. Suppose A is complete and Q is a free A-module of countable rank.
V. Drinfeld and M. Hochster mentioned to us an alternative proof of the fact that
Q̂ is flat and �-adically complete. In this case Q is isomorphic, as A-module, to the
polynomial algebra A	t
. Then the completion Q̂ is isomorphic, as A-module, to the
algebra A�t� of restricted formal power series; see Example 2.3. It is shown in [3]
that A�t� is �-adically complete and flat over A.

4. COMPLETE NOETHERIAN LOCAL RINGS

In this section, A is a complete noetherian local commutative ring, with
maximal ideal �. For i ≥ 0, we write Ai �= A/�i+1.

Definition 4.1. An �-adic system of A-modules is a collection �Mi�i∈� of A-
modules, together with a collection ��i�i∈� of homomorphisms �i � Mi+1 → Mi. The
conditions are:

(i) For every i, one has �i+1Mi = 0. Thus Mi is an Ai-module;
(ii) For every i, the Ai-linear homomorphism Ai ⊗Ai+1

Mi+1 → Mi induced by �i is
an isomorphism.

Usually, the collection of homomorphisms ��i�i∈� remains implicit.

Example 4.2. Suppose M is an A-module, and let Mi �= Ai ⊗A M . Then �Mi�i∈� is
an �-adic system of A-modules.

Theorem 4.3. Let A be a complete noetherian local ring, with maximal ideal �, and

let �Mi�i∈� be an �-adic system of A-modules. Assume that Mi is flat over Ai for every

i. Define M �= lim←i Mi. Then the following hold:

(1) The A-module M is �-adically free;

(2) For every i ≥ 0, the canonical homomorphism Ai ⊗A M → Mi is bijective.

We need an auxiliary result.

Lemma 4.4. In the setup of the theorem, suppose Mi is a free Ai-module with basis

�m̄z�z∈Z. Let mz ∈ Mi+1 be a lifting of m̄z. Then Mi+1 is a free Ai+1-module with basis

�mz�z∈Z.

This result must be well known, but we could not locate a reference in the
literature. The closest we got is [11, Proposition 3.G].

Proof. Since the ideal �
i+1/�i+2 = Ker�Ai+1 → Ai� is nilpotent, Nakayama’s

Lemma says that the collection �mz�z∈Z generates Mi+1. So there is an exact sequence
of Ai+1-modules

0 → N → Ffin�Z�Ai+1�
�
→Mi+1 → 0�
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FLATNESS AND COMPLETION 4239

where ���z� �= mz and N �= Ker���. Applying the operation Ai ⊗Ai+1
− to this

sequence we get an exact sequence

TorAi+1
1 �Ai�Mi+1� → Ai ⊗Ai+1

N → Ffin�Z�Ai�
�̄
→Mi → 0�

Since Mi+1 is flat we get TorAi+1
1 �Ai�Mi+1� = 0. On the other hand, since �m̄z�z∈Z is

a basis, we see that �̄ � Ffin�Z�Ai� → Mi is bijective. It follows that Ai ⊗Ai+1
N = 0.

Using the Nakayama Lemma once more we see that N = 0. �

Proof of the Theorem. Since A0 is a field, the A0-module M0 is free. Let us choose
a basis �mz�z∈Z for M0. By the lemma above, used recursively, we can lift this basis
to a basis of Mi for every i ≥ 0. Thus we get an inverse system of isomorphisms
Mi � Ffin�Z�Ai�. In the limit we get M � Fdec�Z�A�, by Theorem 3.4(1,2). So M is
�-adically free.

Finally, according to Theorem 3.4(1), we have Ai ⊗A M � Mi. �

Corollary 4.5. The following conditions are equivalent for an A-module M:

(i) M is flat and �-adically complete;

(ii) There is an �-adic system of A-modules �Mi�i∈�, such that Mi is flat over Ai for

every i, and an isomorphism of A-modules M � lim←i Mi;

(iii) M is �-adically free.

Proof. The implication (i) ⇒ (ii) is trivial. The implication (ii) ⇒ (iii) is Theorem
4.3(1). And the implication (iii) ⇒ (i) is Theorem 3.4(2). �

Remark 4.6. A special case of Corollary 4.5, namely, when A = �		t

, the ring of
formal power series in a variable t over a field �, was proved in [4, Lemma A.1].

Remark 4.7. Assume A is an equal characteristic complete local ring, namely, it
contains a field � such that � � A/�. Let Q be a free A-module and P �= Q̂.
In this case there is an alternative way to prove Theorem 3.4(2). First choose an
isomorphism Q � A⊗

�
V for some �-module V . Next choose a filtered �-basis

�aj�j∈� for A (cf. [13, Definition 6.5]; we may assume � is not nilpotent). Then we
obtain �-module isomorphisms A �

∏
j≥0 �, P �

∏
j≥0 V and �

iP �
∏

j≥ji
V , where

0 = j0 < j1 < j2 · · · . This implies completeness of P. Flatness is proved similarly, but
it is a bit more complicated.

5. FLAT COMPLETE SHEAVES OF MODULES

In this section there is some overlap with material from [9].
Let X be a topological space and A a commutative ring. Recall that given

sheaves ℳ�� of A-modules on X, the sheaf of A-modules � ⊗A ℳ is the sheaf
associated to the presheaf

U �→ ��U�� �⊗A ��U�ℳ��
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4240 YEKUTIELI

for open sets U ⊂ X. If N is an A-module, then we can similarly consider the sheaf
N ⊗A ℳ on X; this is the sheaf associated to the presheaf

U �→ N ⊗A ��U�ℳ��

Given an A-algebra B, the sheaf B ⊗A ℳ becomes a sheaf of B-modules. If
�ℳi�i∈� is an inverse system of sheaves of modules on X, then lim←i ℳi is the sheaf
U �→ lim←i ��U�ℳi�. Recall that the sheaf ℳ is said to be flat over A if for every
point x ∈ X the stalk ℳx is a flat A-module.

Now suppose A is a complete noetherian local ring, with maximal ideal �.
For i ≥ 0 we write Ai �= A/�i+1.

Definition 5.1. Let ℳ be a sheaf of A-modules on X.

(1) The �-adic completion of ℳ is the sheaf

ℳ̂ �= lim←i�Ai ⊗A ℳ��

(2) The sheaf ℳ is called �-adically complete if the canonical sheaf homomorphism
�
ℳ
� ℳ → ℳ̂ is an isomorphism.

We sometimes use the notation 

�
ℳ �= ℳ̂. With this notation we have an

additive functor



�
� ModAX → ModAX�

Here AX is the constant sheaf A on X, and ModAX is the category of sheaves of
AX-modules, which is the same as the category of sheaves of A-modules on X.

Suppose B is another complete noetherian local ring, with maximal ideal 
,
and we are given a local homomorphism A → B. For any sheaf of A-modules ℳ on
X, and any B-module N , we write

N ⊗̂Aℳ �= 



�N ⊗A ℳ��

The inverse limit in the completion operation does not commute with the
direct limit of passing to stalks. Hence the stalk ℳx of an �-adically complete sheaf
of A-modules ℳ, at a point x ∈ X, is usually not an �-adically complete A-module.
This is a well known fact; see [5, Paragraph 10.1.5], or the next example.

Example 5.2. Take X �= A1
�
= Spec�	t
, the affine line over an infinite field �,

with coordinate t and structure sheaf �X . Let A �= �		s

, the formal power series
ring in the variable s. This is a complete noetherian local ring, whose maximal ideal
is � = �s�. Let

ℳ �= �X		s

 � A ⊗̂
�
�X�

The sheaf ℳ is �-adically complete; indeed on any open set U ⊂ X (they are all
affine) one has ��U�ℳ� � ��U��X�		s

.
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FLATNESS AND COMPLETION 4241

Now let us look at the closed point x �= �t� ∈ X. Here the stalk is

ℳx � limU→��U��X�		s

�

where U runs over the open neighborhoods of x. This is a dense submodule of its
completion ℳ̂x � �X�x		s

 � �	t
�t�		s

. Given an element a ∈ ℳx, there is an open
neighborhood U of x, such that a =

∑
i≥0 ais

i, with ai ∈ ��U��X�. Thus if we choose
a sequence ��i�i≥0 of distinct elements of �, all nonzero, then the power series a �=∑

i≥0�t − �i�
−1si is in ℳ̂x but not in ℳx.

Even if the ideal � is nilpotent, so completion is not an issue, it is not very
useful to consider sheaves of A-modules on X that are locally free. This is because
such a sheaf must be locally constant. The standard practice is to talk about flat
sheaves of A-modules.

Let ℳ be a sheaf of A-modules on X. For i ≥ 0 we define �i
ℳ to be the image

of the canonical sheaf homomorphism �
i ⊗A ℳ → ℳ. Let

gri
�
ℳ �= �

i
ℳ/�i+1

ℳ�

The direct sum gr
�
ℳ �=

⊕
i gr

i
�
ℳ is a sheaf of graded modules over the graded ring

gr
�
A.

Proposition 5.3. Let ℳ be a flat sheaf of A-modules on X. Then the canonical sheaf

homomorphism

�gr
�
A�⊗A0

gr0
�
ℳ → gr

�
ℳ

is an isomorphism.

Proof. It is enough to show that this homomorphism becomes an isomorphism at
stalks. But at a point x ∈ X the A-module ℳx is flat, so we can use [3, Theorem
III.5.1]. �

Definition 5.4. Let � be a sheaf of abelian groups on X.

(1) We say that an open set U of X is � -simply connected if H1�U�� � = 0. Here
H1�u� N� denotes sheaf cohomology.

(2) The space X is said to be locally � -simply connected if it has a basis of the
topology consisting of open sets that are � -simply connected.

Example 5.5. Here are a few typical examples of a topological space X, and a
sheaf � , such that X is locally � -simply connected:

(1) X is an algebraic variety over a field, with structure sheaf �X , and � is a coherent
�X-module. Then any affine open set U is � -simply connected;

(2) X is a complex analytic manifold, with structure sheaf �X , and � is a coherent
�X-module. Then any Stein open set U is � -simply connected;

(3) X is a differentiable manifold, with structure sheaf �X , and � is any �X-module.
Then any open set U is � -simply connected;

(4) X is a differentiable manifold, and � is a constant sheaf of abelian groups. Then
any contractible open set U is � -simply connected.
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4242 YEKUTIELI

Theorem 5.6. Let A be a complete noetherian local ring, with maximal ideal �. Let

X be a topological space, and let ℳ be a flat �-adically complete sheaf of A-modules
on X. We write ℳi �= Ai ⊗A ℳ, M �= ��X�ℳ� and Mi �= ��X�ℳi� for i ≥ 0. Assume
that X is ℳ0-simply connected. Then the following are true:

(1) The A-module M is �-adically free.

(2) For every i ≥ 0 the canonical homomorphism Ai ⊗A M → Mi is bijective.

We need a lemma first.

Lemma 5.7. In the setup of the theorem, let N be an Ai-module. Then:

(1) H1�X�N ⊗Ai
ℳi� = 0.

(2) The canonical homomorphism

N ⊗Ai
Mi → ��X�N ⊗Ai

ℳi�

is bijective.

Again this is familiar, but we did not find a reference.

Proof. (1) The proof is by induction on i. For i = 0 the ring � �= A0 is a field,
so N is a free �-module, and

H1�X�N ⊗
�
ℳ0� � N ⊗

�
H1�X�ℳ0� = 0�

Now assume i ≥ 1. We have an exact sequence of Ai-modules

0 → V → N → Ai−1 ⊗Ai
N → 0�

where V is some �-module. Since the sheaf ℳi is flat over Ai, there is an exact
sequence of sheaves

0 → V ⊗Ai
ℳi → N ⊗Ai

ℳi → Ai−1 ⊗Ai
N ⊗Ai

ℳi → 0�

which can be rewritten as

0 → V ⊗
�
ℳ0 → N ⊗Ai

ℳi → N̄ ⊗Ai−1
ℳi−1 → 0�

where N̄ �= Ai−1 ⊗Ai
N . In global cohomology we get an an exact sequence

· · · → H1�X� V ⊗
�
ℳ0� → H1�X�N ⊗Ai

ℳi� → H1�X� N̄ ⊗Ai−1
ℳi−1� → · · · �

The induction hypothesis says that the two extremes vanish; and hence so does the
middle term.

(2) The proof is like the first part. For i = 0 we have N ⊗
�
M0 �

��X�N ⊗
�
ℳ0� since N is a free �-module. For i ≥ 1 we have a commutative

diagram
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FLATNESS AND COMPLETION 4243

with exact rows. By induction the extreme vertical arrows are bijective. Hence so is
the middle one. �

Proof of the Theorem. We know that M � lim←iMi. In view of Theorem 4.3 it
suffices to prove that for each i the module Mi is flat over Ai, and the canonical
homomorphism Ai−1 ⊗Ai

Mi → Mi−1 is bijective. The second assertion is true by
Lemma 5.7(2), taking N �= Ai−1.

As for flatness of Mi, take an exact sequence

0 → N ′ → N → N ′′ → 0

of Ai-modules. Since the sheaf ℳi is flat over Ai, we get an exact sequence of sheaves

0 → N ′ ⊗Ai
ℳi → N ⊗Ai

ℳi → N ′′ ⊗Ai
ℳi → 0�

By Lemma 5.7(1) we know that H1�X�N ′ ⊗Ai
ℳi� = 0, so the sequence

0 → ��X�N ′ ⊗Ai
ℳi� → ��X�N ⊗Ai

ℳi� → ��X�N ′′ ⊗Ai
ℳi� → 0

is exact. Finally, using Lemma 5.7(2) we see that the sequence

0 → N ′ ⊗Ai
Mi → N ⊗Ai

Mi → N ′′ ⊗Ai
Mi → 0

is also exact. �

Here is the geometric version of Definition 4.1.

Definition 5.8. An �-adic system of sheaves of A-modules on X is a collection
�ℳi�i∈� of sheaves of A-modules, together with a collection ��i�i∈� of A-linear sheaf
homomorphisms �i � ℳi+1 → ℳi. The conditions are:

(i) For every i one has �i+1
ℳi = 0. Thus ℳi is a sheaf of Ai-modules;

(ii) For every i the Ai-linear sheaf homomorphism Ai ⊗Ai+1
ℳi+1 → ℳi induced by

�i is an isomorphism.

Remark 5.9. When A = �̂l, the l-adic completion of � for some prime number l,
this is called an l-adic sheaf. Cf. [7, Section 12].

Corollary 5.10. Let A be a complete noetherian local ring, with maximal ideal �, and

let �ℳi�i∈� be an �-adic system of sheaves of A-modules on X. Assume these conditions

hold:
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4244 YEKUTIELI

(i) For every i ≥ 0 the sheaf of Ai-modules ℳi is flat;

(ii) X is locally ℳ0-simply connected.

Define the sheaf of A-modules ℳ �= lim←iℳi. Then the following are true:

(1) ℳ is flat and �-adically complete;

(2) For every i the canonical sheaf homomorphism Ai ⊗A ℳ → ℳi is an isomorphism;

(3) Let U be an open set of X that is ℳ0-simply connected. Then the A-module ��U�ℳ�

is �-adically free.

Proof. Let U be an ℳ0-simply connected open set in X. Write M �= ��U�ℳ� and
Mi �= ��U�ℳi�, so that M � lim←i Mi. Fix some j ≥ 0. Theorem 5.6, applied to the
artinian ring Aj and the sheaf of Aj-modules ℳj�U , says that Mj is a free Aj-module,
and for every i ≤ j the canonical homomorphism Ai ⊗Aj

Mj → Mi is bijective. Hence
the collection �Mi�i≥0 satisfies the assumptions of Theorem 4.3, and we conclude that
M is �-adically free over A, and Ai ⊗A M � Mi for every i.

We have shown that the canonical homomorphism

Ai ⊗A ��U�ℳ� → ��U�ℳi�

is bijective for every open set U that is ℳ0-simply connected. Since these open sets
form a basis of the topology, it follows that Ai ⊗A ℳ → ℳi is an isomorphism of
sheaves for all i. So ℳ is �-adically complete.

Finally, we must prove that for any point x ∈ X the stalk ℳx is a flat A-
module. But ℳx � limU→��U�ℳ�, where the limit is over the open neighborhoods
of x that are ℳ0-simply connected. Since each ��U�ℳ� is flat over A (by Corollary
4.5), so is their direct limit. �

Corollary 5.11. Suppose B is another complete noetherian local ring, with maximal

ideal 
, and A → B is a local homomorphism. Let ℳ be a flat �-adically complete

sheaf of A-modules on X. Assume that X is locally ℳ0-simply connected, where ℳ0 �=

A0 ⊗A ℳ. Then the sheaf of B-modules B ⊗̂A ℳ is flat and 
-adically complete.

Proof. Write ℳi �= Ai ⊗A ℳ; so �ℳi�i∈� is an �-adic system of sheaves A-modules,
and ℳi is flat over Ai. Let � �= B ⊗̂A ℳ, Bi �= B/
i+1 and �i �= Bi ⊗Ai

ℳi. Then
��i�i∈� is an 
-adic system of sheaves B-modules, �i is flat over Bi, and � �

lim←i�i. Since B0 is a free module over the field A0, we have

H1�U��0� � B0 ⊗A0
H1�U�ℳ0�

for every open set U in X. Therefore X is locally �0-simply connected. Now we can
use Corollary 5.10. �
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