AN AVERAGING PROCESS FOR UNIPOTENT GROUP ACTIONS

AMNON YEKUTIELI

ABSTRACT. We present an averaging process for sections of a torsor under a unipotent group. This process allows one to integrate local sections of such a torsor into a global simplicial section. The results of this paper have applications to deformation quantization of algebraic varieties.

0. Introduction

Let \mathbb{K} be a field of characteristic 0. For any natural number q let $\mathbb{K}[t_0,\ldots,t_q]$ be the polynomial algebra, and let $\Delta^q_{\mathbb{K}}$ be the geometric q-dimensional simplex

$$\mathbf{\Delta}_{\mathbb{K}}^q := \operatorname{Spec} \mathbb{K}[t_0, \dots, t_q]/(t_0 + \dots + t_q - 1).$$

Our main result is the following theorem.

Theorem 0.1. Let G be a unipotent algebraic group over \mathbb{K} , let X be a \mathbb{K} -scheme, let Z be a G-torsor over X, and let Y be any X-scheme. Suppose $\mathbf{f} = (f_0, \dots, f_q)$ is a sequence of X-morphisms $f_i: Y \to Z$. Then there is an X-morphism

$$\operatorname{wav}_G(\boldsymbol{f}): \boldsymbol{\Delta}_{\mathbb{K}}^q \times Y \to Z$$

called the weighted average, such that the operation wav_G is symmetric, simplicial, functorial in the data (G, X, Y, Z), and is the identity for q = 0.

"Symmetric" means that wav_G is equivariant for the action of the permutation group of $\{0,\ldots,q\}$ on the sequence \boldsymbol{f} and the scheme $\boldsymbol{\Delta}_{\mathbb{K}}^q$. "Simplicial" says that as q varies

$$\operatorname{wav}_G : \operatorname{Hom}_X(Y, Z)^{q+1} \to \operatorname{Hom}_X(\Delta_{\mathbb{K}}^q \times Y, Z)$$

is a map of simplicial sets. "Functorial in the data (G, X, Y, Z)" means that e.g. given a morphism $h: Z \to Z'$ of G-torsors over X, one has

$$h \circ \text{wav}_G(\mathbf{f}) = \text{wav}_G(h \circ \mathbf{f}),$$

where $h \circ f$ is the sequence $(h \circ f_0, \dots, h \circ f_q)$. Theorem 0.1 is repeated, in full detail, as Theorem 1.11.

Observe that when we restrict the morphism $\operatorname{wav}_G(f)$ to each of the vertices of $\Delta_{\mathbb{K}}^q$ we recover the original morphisms f_0, \ldots, f_q . This is due to the simplicial property of wav_G . Thus $\operatorname{wav}_G(f)$ interpolates between f_0, \ldots, f_q . This is illustrated in Figure 1.

 $Date \hbox{: } 12 \hbox{ January 2006}.$

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ Unipotent group, torsor, simplicial set.

Mathematics Subject Classification 2000. Primary: 14L30; Secondary: 18G30, 20G15.

This work was partially supported by the US - Israel Binational Science Foundation.

Here is a naive corollary of Theorem 0.1, which can further explain the result. Let us write $G(\mathbb{K})$ for the group of \mathbb{K} -rational points of G. By a weight sequence in \mathbb{K} we mean a sequence $\mathbf{w} = (w_0, \dots, w_q)$ of elements of \mathbb{K} such that $\sum w_i = 1$.

Corollary 0.2. Let G be a unipotent group over \mathbb{K} . Suppose Z is a set with $G(\mathbb{K})$ -action which is transitive and has trivial stabilizers. Let $\mathbf{z} = (z_0, \ldots, z_q)$ be a sequence of points in Z and let \mathbf{w} be a weight sequence in \mathbb{K} . Then there is a point $\operatorname{wav}_{G,\mathbf{w}}(\mathbf{z}) \in Z$ called the weighted average. The operation wav_G is symmetric, functorial, simplicial, and is the identity for q = 0.

The corollary is proved in Section 1. The idea is of course to take $Y = X := \operatorname{Spec} \mathbb{K}$ in the theorem, and to note that \boldsymbol{w} is a \mathbb{K} -rational point of $\Delta^q_{\mathbb{K}}$.

Another consequence of Theorem 0.1 is a new proof of the fact that a unipotent group in characteristic 0 is special. See Remark 1.12. (This observation is due to Reichstein.)

Theorem 0.1 was discovered in the course of research on deformation quantization in algebraic geometry [Ye], in which we tried to apply ideas of Kontsevich [Ko] to the algebraic context. Here is a brief outline. Suppose X is a smooth n-dimensional \mathbb{K} -scheme. The coordinate bundle of X [GK, Ko] is an infinite dimensional bundle $Z \to X$ which parameterizes formal coordinate systems on X. The bundle Z is a torsor under an affine group scheme $\mathrm{GL}_{n,\mathbb{K}} \ltimes G$, where G is pro-unipotent. One is interested in sections of the quotient bundle $\bar{Z} := Z/\mathrm{GL}_{n,\mathbb{K}}$. If we are in the differentiable setup (i.e. $\mathbb{K} = \mathbb{R}$ and X is a C^{∞} manifold) then the fibers of \bar{Z} are contractible (since they are isomorphic to $G(\mathbb{R})$), and therefore global C^{∞} sections exist. However in the setup of algebraic geometry such an argument is invalid, and we were forced to seek an alternative approach.

Our solution was to use *simplicial sections* of \bar{Z} (see Section 2, and especially Corollary 2.7). This approach was inspired by work of Bott [Bo] on simplicial connections (cf. also [HY]).

Acknowledgments. The author thanks David Kazhdan and Zinovy Reichstein for useful conversations. Also thanks to the referee for reading the paper carefully and suggesting a few improvements.

1. The Averaging Process

Throughout the paper \mathbb{K} denotes a fixed base field of characteristic 0. All schemes and all morphisms are over \mathbb{K} .

We begin by recalling some standard facts about the combinatorics of simplicial objects. Let Δ denote the category with objects the ordered sets $[q] := \{0, 1, \dots, q\}$, $q \in \mathbb{N}$. The morphisms $[p] \to [q]$ are the order preserving functions, and we write $\Delta_p^q := \operatorname{Hom}_{\Delta}([p], [q])$. The *i*-th co-face map $\partial^i : [p] \to [p+1]$ is the injective function that does not take the value i; and the *i*-th co-degeneracy map $\mathbf{s}^i : [p] \to [p-1]$ is the surjective function that takes the value i twice. All morphisms in Δ are compositions of various ∂^i and \mathbf{s}^i .

An element of $\boldsymbol{\Delta}_p^q$ may be thought of as a sequence $\boldsymbol{i}=(i_0,\ldots,i_p)$ of integers with $0\leq i_0\leq\cdots\leq i_p\leq q$. Given $\boldsymbol{i}\in\boldsymbol{\Delta}_q^m$, $\boldsymbol{j}\in\boldsymbol{\Delta}_m^p$ and $\alpha\in\boldsymbol{\Delta}_p^q$, we sometimes write $\alpha_*(\boldsymbol{i}):=\boldsymbol{i}\circ\alpha\in\boldsymbol{\Delta}_p^m$ and $\alpha^*(\boldsymbol{j}):=\alpha\circ\boldsymbol{j}\in\boldsymbol{\Delta}_m^q$.

Let C be some category. A cosimplicial object in C is a functor $C: \Delta \to C$. We shall usually refer to the cosimplicial object as $C = \{C^p\}_{p \in \mathbb{N}}$, and for any $\alpha \in \Delta_p^q$ the corresponding morphism in C will be denoted by $\alpha^*: C^p \to C^q$. A simplicial

object in C is a functor $C: \Delta^{\text{op}} \to C$. The notation for a simplicial object will be $C = \{C_p\}_{p \in \mathbb{N}}$ and $\alpha_*: C_q \to C_p$.

An important example is the cosimplicial scheme $\{\Delta_{\mathbb{K}}^p\}_{p\in\mathbb{N}}$. The morphisms are defined as follows. For any p we identify the ordered set [p] with the set of vertices of $\Delta_{\mathbb{K}}^p$. Given $\alpha \in \Delta_p^q$ the morphism $\alpha^* : \Delta_{\mathbb{K}}^p \to \Delta_{\mathbb{K}}^q$ is then the unique linear morphism extending $\alpha : [p] \to [q]$.

Let G be a unipotent (affine finite type) algebraic group over \mathbb{K} , with (nilpotent) Lie algebra \mathfrak{g} . We write d(G) for the minimal number d such that there exists a chain of closed normal subgroups $G = G_0 \supset G_1 \cdots \supset G_d = 1$ with G_k/G_{k+1} abelian for all $k \in \{0, \ldots, d-1\}$. The exponential map $\exp_G : \mathfrak{g} \to G$ is an isomorphism of schemes, with inverse \log_G ; see [Ho, Theorem VIII.1.1].

Given a \mathbb{K} -scheme X there is a Lie algebra $\mathfrak{g} \times X$ (in the category of X-schemes), and a group-scheme $G \times X$. There is also an induced exponential map

$$\exp_{G\times X}:=\exp_G\times \mathbf{1}_X:\mathfrak{g}\times X\to G\times X.$$

We will need the following result.

Lemma 1.1. Let G, G' be two unipotent groups, with Lie algebras $\mathfrak{g}, \mathfrak{g}'$. Let X, X' be schemes, let $X \to X'$ be a morphism of schemes, and let $\phi : G \times X \to G' \times X'$ be a morphism of group-schemes over X'. Denote by $d\phi : \mathfrak{g} \times X \to \mathfrak{g}' \times X'$ the induced Lie algebra morphism (the differential of ϕ). Then the diagram

(1.2)
$$\begin{aligned}
\mathfrak{g} \times X & \xrightarrow{\exp_{G \times X}} & G \times X \\
d\phi \downarrow & \phi \downarrow \\
\mathfrak{g}' \times X' & \xrightarrow{\exp_{G' \times X'}} & G' \times X'
\end{aligned}$$

commutes.

Proof. For the case $X=X'=\operatorname{Spec}\mathbb{K}$ this is contained in the proof of [Ho, Theorem VIII.1.2].

In order to handle the general case we first recall the Campbell-Baker-Hausdorff formula:

$$\exp_G(\gamma_1) \cdot \exp_G(\gamma_2) = \exp_G(F(\gamma_1, \gamma_2)),$$

where

$$F(\gamma_1, \gamma_2) = \gamma_1 + \gamma_2 + \frac{1}{2}[\gamma_1, \gamma_2] + \cdots$$

is a universal power series (see [Ho, Section XVI.2]). Hence if we define $\gamma_1 * \gamma_2 := F(\gamma_1, \gamma_2)$, then $(\mathfrak{g}, *)$ becomes an algebraic group (with unit element 0), and $\exp_G : (\mathfrak{g}, *) \to (G, \cdot)$ is a group isomorphism. In this way we may eliminate G altogether, and just look at the scheme \mathfrak{g} with its two structures: a Lie algebra and a group-scheme. Note that now \mathfrak{g} is its own Lie algebra, as can be seen from the 2-nd order term in the series $F(\gamma_1, \gamma_2)$.

Consider a morphism $\phi: \mathfrak{g} \times X \to \mathfrak{g}' \times X'$ of X'-schemes. Then ϕ is a morphism of Lie algebras over X' iff it is a morphism of group-schemes (for the multiplications *). And moreover $d\phi = \phi$. Therefore the diagram (1.2) is commutative.

From now on we shall write \exp_G instead of $\exp_{G\times X},$ for the sake of brevity.

Consider the following setup: X is a \mathbb{K} -scheme, and Y, Z are two X-schemes. Suppose Z is a torsor under the group scheme $G \times X$. We denote the action of G on Z by $(g, z) \mapsto g \cdot z$.

Let $f_0, \ldots, f_q: \Delta_{\mathbb{K}}^q \times Y \to Z$ be X-morphisms. We are going to define a new sequence of X-morphisms $f'_0, \ldots, f'_q: \Delta_{\mathbb{K}}^q \times Y \to Z$. Because Z is a torsor under $G \times X$, for any $i, j \in \{0, \ldots, q\}$ there exists a unique morphism $g_{i,j}: \Delta_{\mathbb{K}}^q \times Y \to G$ such that $f_j(w, y) = g_{i,j}(w, y) \cdot f_i(w, y)$ for all points $w \in \Delta_{\mathbb{K}}^q$ and $y \in Y$. Here w and y are scheme-theoretic points, i.e. $w \in \Delta_{\mathbb{K}}^q(U) = \operatorname{Hom}_{\mathbb{K}}(U, \Delta_{\mathbb{K}}^q)$ and $y \in Y(U) = \operatorname{Hom}_{\mathbb{K}}(U, Y)$ for some \mathbb{K} -scheme U. Define

(1.3)
$$f'_{i}(w,y) := \exp_{G} \left(\sum_{j=0}^{q} t_{j}(w) \cdot \log_{G}(g_{i,j}(w,y)) \right) \cdot f_{i}(w,y).$$

In this formula we view t_j as a morphism $t_j: \Delta_{\mathbb{K}}^q \to \mathbf{A}_{\mathbb{K}}^1$, and we use the fact that \mathfrak{g} is a vector space (in the category of \mathbb{K} -schemes).

For any set S let us write $S^{\Delta_0^q}$ for the set of functions $\Delta_0^q \to S$, which is the same as the set of sequences (s_0, \ldots, s_q) in S. As usual $\operatorname{Hom}_X(\Delta_{\mathbb{K}}^q \times Y, Z)$ is the set of X-morphisms $\Delta_{\mathbb{K}}^q \times Y \to Z$. In this notation the sequences (f_0, \ldots, f_q) and (f'_0, \ldots, f'_q) are elements of $\operatorname{Hom}_X(\Delta_{\mathbb{K}}^q \times Y, Z)^{\Delta_0^q}$. We denote by

$$\operatorname{wsym}_G:\operatorname{Hom}_X(\boldsymbol{\Delta}_{\mathbb{K}}^q\times Y,Z)^{\boldsymbol{\Delta}_0^q}\to\operatorname{Hom}_X(\boldsymbol{\Delta}_{\mathbb{K}}^q\times Y,Z)^{\boldsymbol{\Delta}_0^q}$$

the operation $(f_0, \ldots, f_q) \mapsto (f'_0, \ldots, f'_q)$ given by the formula (1.3). We will also need a similar operation

$$\mathbf{w}_G: \mathrm{Hom}_X(Y,Z)^{\mathbf{\Delta}_0^q} \to \mathrm{Hom}_X(\mathbf{\Delta}_{\mathbb{K}}^q \times Y,Z)^{\mathbf{\Delta}_0^q},$$

defined by

$$w_G(f_0, ..., f_q) := (f'_0, ..., f'_q)$$

with

(1.4)
$$f'_{i}(w,y) := \exp_{G} \left(\sum_{i=0}^{q} t_{j}(w) \cdot \log_{G}(g_{i,j}(y)) \right) \cdot f_{i}(y).$$

It is clear that for q=0 both operations \mathbf{w}_G and wsym_G act as the identity, i.e. $\mathbf{w}_G(f_0)=\mathrm{wsym}_G(f_0)=f_0$ for all $f_0\in\mathrm{Hom}_X(Y,Z)$. Both operations \mathbf{w}_G and wsym_G are symmetric, namely they are equivariant for the simultaneous action of the permutation group of $\{0,\ldots,q\}$ on $\mathbf{\Delta}_0^q$ and $\mathbf{\Delta}_{\mathbb{K}}^q$. Also if $\mathbf{f}=(f_0,\ldots,f_q)\in\mathrm{Hom}_X(\mathbf{\Delta}_{\mathbb{K}}^q\times Y,Z)^{\mathbf{\Delta}_0^q}$ is a constant sequence, i.e. $f_0=\cdots=f_q$, then $\mathrm{wsym}_G(\mathbf{f})=\mathbf{f}$.

Lemma 1.5. Both operations \mathbf{w}_G and wsym_G are simplicial. Namely, given $\alpha \in \Delta_p^q$ the diagram

is commutative, and likewise for w_G .

Proof. It suffices to consider $\alpha = \partial^i$ or $\alpha = \mathbf{s}^i$. Since wsym_G is symmetric, we may assume that $\alpha = \partial^q : [q-1] \to [q]$ or $\alpha = \mathbf{s}^q : [q+1] \to [q]$. Fix a sequence $\mathbf{f} = (f_0, \dots, f_q) \in \operatorname{Hom}_X(\mathbf{\Delta}_{\mathbb{K}}^q \times Y, Z)^{\mathbf{\Delta}_0^q}$. Let $g_{i,j} \in \operatorname{Hom}_{\mathbb{K}}(\mathbf{\Delta}_{\mathbb{K}}^q \times Y, G)$ be such that $f_j = g_{i,j} \cdot f_i$, and let $\mathbf{f}' = (f'_0, \dots, f'_q) := \operatorname{wsym}_G(\mathbf{f})$.

First let's look at the case $\alpha = \partial^q$. Take $w \in \Delta_{\mathbb{K}}^{q-1}$ and $y \in Y$, and let $v := \alpha^*(w) \in \Delta_{\mathbb{K}}^q$. The coordinates of v are $t_j(v) = t_j(w)$ for $j \leq q-1$, and

 $t_q(v) = 0$. Then for any *i* the *i*-th term in the sequence $\alpha_*(\mathbf{f}')$, evaluated at (w, y), equals

(1.6)
$$f_i'(v,y) = \exp_G\left(\sum_{j=0}^q t_j(v) \cdot \log_G(g_{i,j}(v,y))\right) \cdot f_i(v,y)$$
$$= \exp_G\left(\sum_{j=0}^{q-1} t_j(w) \cdot \log_G(g_{i,j}(v,y))\right) \cdot f_i(v,y).$$

On the other hand, the *i*-th term of the sequence $\operatorname{wsym}_G(\alpha_*(f))$ is

$$\exp_G\left(\sum_{j=0}^{q-1} t_j(w) \cdot \log_G(\alpha_*(g_{i,j})(w,y))\right) \cdot \alpha_*(f_i)(w,y)$$
$$= \exp_G\left(\sum_{j=0}^{q-1} t_j(w) \cdot \log_G(g_{i,j}(v,y))\right) \cdot f_i(v,y).$$

So indeed $\alpha_* \circ \operatorname{wsym}_G = \operatorname{wsym}_G \circ \alpha_*$ in this case.

Next consider the case $\alpha = s^q$. Take $w \in \Delta_{\mathbb{K}}^{q+1}$ and $y \in Y$, and let $v := \alpha^*(w) \in \Delta_{\mathbb{K}}^q$. The coordinates of v are $t_j(v) = t_j(w)$ for $j \leq q-1$, and $t_q(v) = t_q(w) + t_{q+1}(w)$. For any $i \leq q$ the i-th term in the sequence $\alpha_*(\mathbf{f})$, evaluated at (w, y), is $f'_i(v, y)$, which was calculated in (1.6). The (q+1)-st term is also $f'_q(v, y)$. On the other hand, for any $i \leq q$ the i-th term in the sequence wsym $_G(\alpha_*(\mathbf{f}'))$, evaluated at (w, y), is

$$z_i := \exp_G \left(\sum_{j=0}^{q+1} t_j(w) \cdot \log_G(\alpha_*(g_{i,j})(w,y)) \right) \cdot \alpha_*(f_i)(w,y).$$

But $t_q(w)+t_{q+1}(w)=t_q(v), \ \alpha_*(g_{i,j})(w,y)=g_{i,j}(v,y)$ for $j\leq q,$ and $\alpha_*(g_{i,q+1})(w,y)=g_{i,q}(v,y).$ Therefore

$$z_i = \exp_G \left(\sum_{j=0}^q t_j(v) \cdot \log_G(g_{i,j}(v,y)) \right) \cdot f_i(v,y).$$

For i = q + 1 one has $z_{q+1} = z_q$. We conclude that $\alpha_* \circ \operatorname{wsym}_G = \operatorname{wsym}_G \circ \alpha_*$ in this case too.

The proof for \mathbf{w}_G is the same.

Lemma 1.7. Both operations w_G and $wsym_G$ are functorial in the data (G, X, Y, Z). Namely, given another such quadruple (G', X', Y', Z'), a morphism of schemes $X \to X'$, a morphism of schemes $e: Y' \to Y$ over X', a morphism of group-schemes $\phi: G \times X \to G' \times X'$ over X', and a $G \times X$ -equivariant morphism of schemes $f: Z \to Z'$ over X', the diagram

$$\operatorname{Hom}_{X}(\boldsymbol{\Delta}_{\mathbb{K}}^{q} \times Y, Z)^{\boldsymbol{\Delta}_{0}^{q}} \xrightarrow{\operatorname{wsym}_{G}} \operatorname{Hom}_{X}(\boldsymbol{\Delta}_{\mathbb{K}}^{q} \times Y, Z)^{\boldsymbol{\Delta}_{0}^{q}}$$

$$(e, f) \downarrow \qquad \qquad (e, f) \downarrow$$

 $\operatorname{Hom}_{X'}(\Delta_{\mathbb{K}}^{q} \times Y', Z')^{\Delta_{0}^{q}} \xrightarrow{\operatorname{wsym}_{G'}} \operatorname{Hom}_{X'}(\Delta_{\mathbb{K}}^{q} \times Y', Z')^{\Delta_{0}^{q}}$

is commutative, and likewise for w_G .

Proof. This is due to the functoriality of the exponential map, see Lemma 1.1. \Box

Lemma 1.8. Assume G is abelian. Then for any $(f_0, \ldots, f_q) \in \operatorname{Hom}_X(\Delta_{\mathbb{K}}^q \times Y, Z)^{\Delta_0^q}$ the sequence $\operatorname{wsym}_G(f_0, \ldots, f_q)$ is constant.

Proof. In this case $\exp: \mathfrak{g} \to G$ is an isomorphism of algebraic groups, where \mathfrak{g} is viewed as an additive group. So we may assume that Z is a torsor under $\mathfrak{g} \times X$. Let $(f'_0,\ldots,f'_q):=\mathrm{wsym}_G(f_0,\ldots,f_q)$, and let $\gamma_{i,j}: \Delta^q_{\mathbb{K}} \times Y \to \mathfrak{g}$ be morphisms such that $f_j=\gamma_{i,j}+f_i$. Take $(w,y)\in \Delta^q_{\mathbb{K}} \times Y$. Then

$$f'_{i}(w,y) = \left(\sum_{j=0}^{q} t_{j}(w) \cdot \gamma_{i,j}(w,y)\right) + f_{i}(w,y)$$

for any *i*. Because $\gamma_{i,j} = -\gamma_{j,i} = \gamma_{0,j} - \gamma_{0,i}$, $f_i = f_0 + \gamma_{0,i}$ and $\sum_{j=0}^{q} t_j(w) = 1$, it follows that $f'_i(w,y) = f'_0(w,y)$.

Let's write wsym_G^d for the d-th iteration of the operation wsym_G .

Lemma 1.9. For any $\mathbf{f} = (f_0, \dots, f_q) \in \operatorname{Hom}_X(\mathbf{\Delta}_{\mathbb{K}}^q \times Y, Z)^{\mathbf{\Delta}_0^q}$ the sequence $\operatorname{wsym}_G^{d(G)}(\mathbf{f})$ is constant. For any $d \geq d(G)$ one has $\operatorname{wsym}_G^d(\mathbf{f}) = \operatorname{wsym}_G^{d(G)}(\mathbf{f})$.

Proof. For any k, the orbit of $f_0 \in \operatorname{Hom}_X(\Delta^q_{\mathbb K} \times Y, Z)$ under the action of the group $G_k(\Delta^q_{\mathbb K} \times Y)$ will be denoted by $G_k(\Delta^q_{\mathbb K} \times Y) \cdot f_0$. Let $(f'_0, \ldots, f'_q) := \operatorname{wsym}_G(f_0, \ldots, f_q)$. We will prove that if $f_1, \ldots, f_q \in G_k(\Delta^q_{\mathbb K} \times Y) \cdot f_0$ then $f'_1, \ldots, f'_q \in G_{k+1}(\Delta^q_{\mathbb K} \times Y) \cdot f'_0$. The assertions of the lemma will then follow.

Let $\tilde{Y} = \tilde{X} := \Delta_{\mathbb{K}}^q \times Y$ and $\tilde{Z} := \tilde{X} \times_X Z$. So \tilde{Z} is a torsor under $G \times \tilde{X}$, and f_0 induces a morphism $\tilde{f}_0 \in \operatorname{Hom}_{\tilde{X}}(\tilde{Y}, \tilde{Z})$. The morphism $\tau : G \times \tilde{X} \to \tilde{Z}$, $(g, \tilde{x}) \mapsto g \cdot \tilde{f}_0(\tilde{x})$, is an isomorphism of \tilde{X} -schemes. Define $\tilde{W} := \tau(G_k \times \tilde{X}) \subset \tilde{Z}$. Then \tilde{W} is the "geometric orbit" of \tilde{f}_0 under $G_k \times \tilde{X}$; and in particular \tilde{W} is a torsor under $G_k \times \tilde{X}$. By assumption $\tilde{f}_1, \dots, \tilde{f}_q \in \operatorname{Hom}_{\tilde{X}}(\tilde{Y}, \tilde{W})$. Define $(\tilde{f}'_0, \dots, \tilde{f}'_q) := \operatorname{wsym}_{G_k}(\tilde{f}_0, \dots, \tilde{f}_q)$. By Lemma 1.7 it suffices to prove that $\tilde{f}'_1, \dots, \tilde{f}'_q \in G_{k+1}(\tilde{Y}) \cdot \tilde{f}'_0$.

Define $\bar{W} := \tilde{W}/G_{k+1}$. This is a torsor under the group scheme $(G_k/G_{k+1}) \times \tilde{X}$. Let $\bar{f}_0, \ldots, \bar{f}_q \in \operatorname{Hom}_{\tilde{X}}(\tilde{Y}, \bar{W})$ be the images of $(\tilde{f}_0, \ldots, \tilde{f}_q)$. Because the group G_k/G_{k+1} is abelian, Lemma 1.8 says that $\operatorname{wsym}_{G_k/G_{k+1}}(\bar{f}_0, \ldots, \bar{f}_q)$ is a constant sequence. Again using Lemma 1.7, we see that in fact $\tilde{f}'_1, \ldots, \tilde{f}'_q \in G_{k+1}(\tilde{Y}) \cdot \tilde{f}'_0$. \square

Given an X-scheme Y the collections $\left\{\operatorname{Hom}_X(\boldsymbol{\Delta}_{\mathbb K}^q\times Y,Z)\right\}_{q\in\mathbb N}$ and $\left\{\operatorname{Hom}_X(Y,Z)^{\boldsymbol{\Delta}_0^q}\right\}_{q\in\mathbb N}$ are simplicial sets. For q=0 there are equalities

(1.10)
$$\operatorname{Hom}_X(\mathbf{\Delta}_{\mathbb{K}}^0 \times Y, Z) = \operatorname{Hom}_X(Y, Z) = \operatorname{Hom}_X(Y, Z)^{\mathbf{\Delta}_0^0}.$$

Theorem 1.11. Let G be a unipotent algebraic group over \mathbb{K} , let X be a \mathbb{K} -scheme, and let $Z \to X$ be a G-torsor over X. For any X-scheme Y and natural number q there is a function

$$\operatorname{wav}_G : \operatorname{Hom}_X(Y, Z)^{\Delta_0^q} \to \operatorname{Hom}_X(\Delta_{\mathbb{K}}^q \times Y, Z)$$

called the weighted average. The function wav_G enjoys the following properties.

- (1) Symmetric: wav_G is equivariant for the action of the permutation group of $\{0,\ldots,q\}$ on $\boldsymbol{\Delta}_0^q$ and on $\boldsymbol{\Delta}_{\mathbb{K}}^q$.
- (2) Simplicial: wav_G is a map of simplicial sets

$$\left\{\operatorname{Hom}_X(Y,Z)^{\mathbf{\Delta}_0^q}\right\}_{q\in\mathbb{N}}\to \left\{\operatorname{Hom}_X(\mathbf{\Delta}_\mathbb{K}^q\times Y,Z)\right\}_{q\in\mathbb{N}}.$$

(3) Functorial: given another such quadruple (G', X', Y', Z'), a morphism of schemes $X \to X'$, a morphism of X'-group-schemes $G \times X \to G' \times X'$, a $G \times X$ -equivariant morphism of X'-schemes $f : Z \to Z'$ and a morphism of X'-schemes $e : Y' \to Y$, the diagram

$$\begin{array}{ccc} \operatorname{Hom}_{X}(Y,Z)^{\boldsymbol{\Delta}_{0}^{q}} & \stackrel{\operatorname{wav}_{G}}{\longrightarrow} & \operatorname{Hom}_{X}(\boldsymbol{\Delta}_{\mathbb{K}}^{q} \times Y,Z) \\ & (e,f) \Big\downarrow & (e,f) \Big\downarrow \\ \operatorname{Hom}_{X'}(Y',Z')^{\boldsymbol{\Delta}_{0}^{q}} & \stackrel{\operatorname{wsym}_{G'}}{\longrightarrow} & \operatorname{Hom}_{X'}(\boldsymbol{\Delta}_{\mathbb{K}}^{q} \times Y',Z') \end{array}$$

is commutative.

(4) If q = 0 then wav_G is the identity map of $\operatorname{Hom}_X(Y, Z)$.

Proof. Given a sequence $\boldsymbol{f}=(f_0,\ldots,f_q)\in \operatorname{Hom}_X(Y,Z)^{\boldsymbol{\Delta}_0^q}$ define $\operatorname{wav}_G(\boldsymbol{f}):=f'\in \operatorname{Hom}_X(\boldsymbol{\Delta}_{\mathbb K}^q\times Y,Z)$ to be the morphism such that

$$(\operatorname{wsym}_G^{d(G)} \circ \operatorname{w}_G)(f_0, \dots, f_q) = (f', \dots, f');$$

see Lemma 1.9. Properties (1)-(4) follow from the corresponding properties of \mathbf{w}_G and \mathbf{wsym}_G .

Proof of Corollary 0.2. Take $X = Y := \operatorname{Spec} \mathbb{K}$ in Theorem 1.11, and consider the G-torsor $\underline{Z} := G$. Choose any base point $z \in Z$; this defines an isomorphism of left $G(\mathbb{K})$ -sets $\underline{Z}(\mathbb{K}) \cong Z$. The weight sequence \boldsymbol{w} can be considered as a \mathbb{K} -rational point of $\boldsymbol{\Delta}_{\mathbb{K}}^q$, and we define

$$\operatorname{wav}_{G, \boldsymbol{w}}(\boldsymbol{z}) := \operatorname{wav}_{G}(\boldsymbol{z})(\boldsymbol{w}) \in Z.$$

If we were to choose another base point $z' \in Z$ this would amount to applying an automorphism of the torsor \underline{Z} , namely right multiplication by some element of $G(\mathbb{K})$. Due to the functoriality of wav_G the point wav_{G,w}(z) will be unchanged.

The properties of this set-theoretical averaging process are now immediate consequences of the corresponding properties of the geometric average. \Box

Remark 1.12. Z. Reichstein observed that our averaging process provides a new proof (in characteristic 0) of the fact that a unipotent group G is special, namely any G-torsor Z over \mathbb{K} has a \mathbb{K} -rational point. Let us explain the idea.

Let $z_0 \in Z$ be some closed point. Choose a finite Galois extension L of \mathbb{K} containing the residue field $\mathbf{k}(z_0)$. Let Γ be the Galois group of L over \mathbb{K} , which acts on the set Z(L). Let $z_0, \ldots, z_q \in Z(L)$ be the Γ -conjugates of z_0 . The group Γ acts on the sequence $\mathbf{z} := (z_0, \ldots, z_q)$ by permutations. Thus the simultaneous action of Γ on

$$Z(L)^{\Delta_0^q} = \operatorname{Hom}_{\operatorname{Spec} \mathbb{K}} (\operatorname{Spec} L, Z)^{\Delta_0^q}$$

fixes z.

We know that the operator wav_G is symmetric. And functoriality says that the action of the Galois group on $\operatorname{Spec} L$ is also respected. Since z is fixed by the simultaneous action of Γ , so is $\operatorname{wav}_G(z)$. Take the uniform weight sequence $w := (\frac{1}{q+1}, \dots, \frac{1}{q+1})$ and define $z' := \operatorname{wav}_G(z)(w) \in Z(L)$. Because w is fixed by the permutation group we conclude that z' is Γ -invariant, and hence $z' \in Z(\mathbb{K})$.

Remark 1.13. Theorem 1.11 has a rather obvious parallel in differential geometry. Indeed, a simply connected nilpotent Lie group is the same as the group $G(\mathbb{R})$ of rational points of a unipotent algebraic group G over \mathbb{R} .

2. Simplicial Sections

In this section we show how the averaging process is used to obtain simplicial sections of certain bundles.

Suppose H and G are affine group schemes over \mathbb{K} , and H acts on G by automorphisms. Namely there is a morphism of schemes $H \times G \to G$ which for every \mathbb{K} -scheme Y induces a group homomorphism $H(Y) \to \operatorname{Aut}_{\mathsf{Groups}}(G(Y))$. Then $H \times G$ has a structure of a group scheme, and we denote this group by $H \ltimes G$; it is a geometric semi-direct product.

Recall that an affine group scheme G is called *pro-unipotent* if it is isomorphic to an inverse limit $\lim_{i \to \infty} G_i$ of an inverse system $\{G_i\}_{i \ge 0}$ of (finite type affine) unipotent groups. One may assume that each of the morphisms $G \to G_i \to G_{i-1}$ is surjective. Thus $G_i \cong G/N_i$ where N_i is a normal closed subgroup of G.

We will be concerned with the following geometric situation.

Scenario 2.1. Let $H \ltimes G$ be an affine group scheme over \mathbb{K} . Assume G is prounipotent, and moreover there exists a sequence $\{N_i\}_{i\geq 0}$ of H-invariant closed normal subgroups of G such that $G\cong \lim_{\longleftarrow i} G/N_i$ and each G/N_i is unipotent. Let $\pi:Z\to X$ be an $H\ltimes G$ -torsor over X which is locally trivial for the Zariski topology of X. Define $\bar{Z}:=Z/H$ and let $\bar{\pi}:\bar{Z}\to X$ be the projection.

Theorem 2.2. Assume Scenario 2.1. Suppose $U \subset X$ is an open set and $\sigma_0, \ldots, \sigma_q : U \to \overline{Z}$ are sections of $\overline{\pi}$. Then there exists a morphism

$$\sigma: \mathbf{\Delta}_{\mathbb{K}}^q \times U \to \bar{Z}$$

such that the diagram

$$\begin{array}{ccc} \boldsymbol{\Delta}_{\mathbb{K}}^{q} \times U & \stackrel{\sigma}{\longrightarrow} & \bar{Z} \\ & & \\ p_{2} \downarrow & & \bar{\pi} \downarrow \\ & U & \longrightarrow & X \end{array}$$

is commutative. The morphism σ depends functorially on U and simplicially on the sequence $(\sigma_0, \ldots, \sigma_q)$. If q = 0 then $\sigma = \sigma_0$.

Proof. We might as well assume that U=X. Consider the quotient Z/G. Since G is normal in $H \ltimes G$ it follows that Z/G is a torsor under $H \times X$. Let's write $\pi_H: Z \to \bar{Z} = Z/H$ and $\pi_G: Z \to Z/G$ for the projections.

Pick an open set $V \subset X$ which trivializes $\pi: Z \to X$. Let's write $Z|_V := \pi^{-1}(V)$. Because $\pi_H|_V: Z|_V \to \bar{Z}|_V$ is a trivial torsor under $H \times \bar{Z}|_V$, we can lift the sections $\sigma_0, \ldots, \sigma_q$ to sections $\tilde{\sigma}_0, \ldots, \tilde{\sigma}_q: V \to Z$ such that $\pi_H \circ \tilde{\sigma}_j = \sigma_j$. Furthermore, since $\pi_G: Z \to Z/G$ is H-equivariant and Z/G is a torsor under $H \times X$, it follows that we can choose $\tilde{\sigma}_0, \ldots, \tilde{\sigma}_q$ such that $\pi_G \circ \tilde{\sigma}_j = \tau$ for some section $\tau: V \to Z/G$.

Let $F \subset Z|_V$ be the fiber over τ , i.e. $F := V \times_{Z/G} Z$ via the morphisms $\pi_G : Z \to Z/G$ and $\tau : V \to Z/G$. Then F is a torsor under $G \times V$, and $\tilde{\sigma}_0, \ldots, \tilde{\sigma}_q \in Z$

 $\operatorname{Hom}_X(V, F)$. See diagram below.

For any *i* define $F_i := F/N_i$, which is a torsor under $(G/N_i) \times V$. Let $\alpha_i : F \to F_i$ be the projection, so $\alpha_i \circ \tilde{\sigma}_i \in \operatorname{Hom}_X(V, F_i)$. By Theorem 1.11 we get an average

(2.3)
$$\rho_i := \operatorname{wav}_{G/N_i}(\alpha_i \circ \tilde{\sigma}_0, \dots, \alpha_i \circ \tilde{\sigma}_q) : \Delta_{\mathbb{K}}^q \times V \to F_i.$$

The functoriality of wav says that the ρ_i form an inverse system, and we let

(2.4)
$$\rho := \lim_{\leftarrow i} \rho_i : \mathbf{\Delta}_{\mathbb{K}}^q \times V \to F$$

and

(2.5)
$$\sigma := \pi_H \circ \rho : \Delta_{\mathbb{K}}^q \times V \to \bar{Z}.$$

We claim that the morphism σ does not depend on the choice of the section $\tau: V \to Z/G$. Suppose $\tau': V \to Z/G$ is another such section. Let F' be the fiber over τ' , and let $\rho': \Delta_{\mathbb{K}}^q \times V \to F'$ be the corresponding morphism as in (2.4). Now $\tau' = h \cdot \tau$ for some morphism $h: V \to H$. Then $F' = h \cdot F$, and $h: F \to F'$ is a $G \times V$ -equivariant morphism of torsors, with respect to the group-scheme automorphism $\mathrm{Ad}(h): G \times V \to G \times V$. The new lift of σ_j is $\tilde{\sigma}'_j := h \cdot \tilde{\sigma}_j : V \to F'$. Define $F'_i := F'/N_i$, and let $\rho'_i : \Delta_{\mathbb{K}}^q \times V \to F'_i$ be the morphism as in (2.3). Since $N_i \times V = \mathrm{Ad}(h)(N_i \times V)$, we get a group-scheme automorphism $\mathrm{Ad}(h): (G/N_i) \times V \to (G/N_i) \times V$, and a $(G/N_i) \times V$ -equivariant morphism of torsors $h: F_i \to h \cdot F'_i$. By functoriality of wav (property 3 in Theorem 1.11) it follows that $\rho'_i = h \cdot \rho_i$. Therefore $\rho' = h \cdot \rho$, and $\pi_H \circ \rho' = \pi_H \circ \rho = \sigma$.

Property 2 in Theorem 1.11 implies that σ depends simplicially on $(\sigma_0, \ldots, \sigma_q)$. Finally take an open covering $X = \bigcup V_j$ such that each V_j trivializes $\pi: Z \to X$, and let $\sigma_j: \Delta_{\mathbb{K}}^q \times V_j \to \bar{Z}|_{V_j}$ be the morphism constructed in (2.5). Since no choices were made we have $\sigma_j|_{V_j \cap V_k} = \sigma_k|_{V_j \cap V_k}$ for any two indices. Therefore these sections can be glued to a morphism $\sigma: \Delta_{\mathbb{K}}^q \times X \to \bar{Z}$. The functorial and simplicial properties of σ are clear from its construction.

Let X be a \mathbb{K} -scheme, and let $X = \bigcup_{i=0}^m U_{(i)}$ be an open covering, with inclusions $g_{(i)}: U_{(i)} \to X$. We denote this covering by U. For any multi-index $i = (i_0, \ldots, i_q) \in \Delta_q^m$ we write $U_i := \bigcap_{j=0}^q U_{(i_j)}$, and we define the scheme $U_q := \coprod_{i \in \Delta_q^m} U_i$. Given $\alpha \in \Delta_p^q$ and $i \in \Delta_q^m$ there is an inclusion of open sets $\alpha_*: U_i \to U_{\alpha_*(i)}$. These patch to a morphism of schemes $\alpha_*: U_q \to U_p$, making $\{U_q\}_{q \in \mathbb{N}}$ into a simplicial scheme. The inclusions $g_{(i)}: U_{(i)} \to X$ induce inclusions $g_i: U_i \to X$ and morphisms $g_q: U_q \to X$; and one has the relations $g_p \circ \alpha_* = g_q$ for any $\alpha \in \Delta_p^q$.

Definition 2.6. Let $\pi: Z \to X$ be a morphism of \mathbb{K} -schemes. A *simplicial section* of π based on the covering U is a sequence of morphisms

$$\boldsymbol{\sigma} = \{ \sigma_q : \boldsymbol{\Delta}_{\mathbb{K}}^q \times U_q \to Z \}_{q \in \mathbb{N}}$$

satisfying the following conditions.

(i) For any q the diagram

$$\begin{array}{ccc} \boldsymbol{\Delta}_{\mathbb{K}}^{q} \times U_{q} & \stackrel{\sigma_{q}}{\longrightarrow} & Z \\ & & & & \\ p_{2} \downarrow & & & \pi \downarrow \\ & U_{q} & \stackrel{g_{q}}{\longrightarrow} & X \end{array}$$

is commutative.

(ii) For any $\alpha \in \mathbf{\Delta}_p^q$ the diagram

is commutative.

Corollary 2.7. Assume Scenario 2.1. Let $U = \{U_{(i)}\}_{i=0}^m$ be an open covering of X. Suppose that for any $i \in \{0, \ldots, m\}$ we are given some section $\sigma_{(i)} : U_{(i)} \to \bar{Z}$ of $\bar{\pi}$. Then there exists a simplicial section

$$\boldsymbol{\sigma} = \{ \sigma_q : \boldsymbol{\Delta}_{\mathbb{K}}^q \times U_q \to \bar{Z} \}_{q \in \mathbb{N}}$$

based on U, such that $\sigma_0|_{U_{(i)}} = \sigma_{(i)}$ for all $i \in \{0, \dots, m\}$.

Proof. For any multi-index $i = (i_0, \ldots, i_q)$ we have sections $\sigma_{(i_0)}, \ldots, \sigma_{(i_q)} : U_i \to \bar{Z}$. Let $\sigma_i : \Delta_{\mathbb{K}}^q \times U_i \to \bar{Z}$ be the morphism provided by Theorem 2.2. For fixed q these patch to a morphism $\sigma_q : \Delta_{\mathbb{K}}^q \times U_q \to \bar{Z}$. The functorial and simplicial properties in Theorem 2.2 imply that this is a simplicial section.

This result (with H trivial) is illustrated in Figure 1.

References

- [Bo] R. Bott, "Lectures on Characteristic Classes and Polarizations", Lecture Notes in Math. 279, Springer, Berlin, 1972.
- [GK] I.M. Gelfand and D.A. Kazhdan, Some problems of differential geometry and the calculation of cohomologies of Lie algebras of vector fields, Soviet Math. Dokl. 12 (1971), no. 5, 1367-1370.
- [Ho] G. Hochschild, "Basic Theory of Algebraic Groups and Lie Algebras," Springer, 1981.
- [HY] R. Hübl and A. Yekutieli, Adelic Chern forms and applications, Amer. J. Math. 121 (1999), 797-839.
- [Ko] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216.
- [Ye] A. Yekutieli, Deformation Quantization in Algebraic Geometry, Adv. Math. 198 (2005), 383-432.

FIGURE 1. Simplicial sections, q=1. We start with sections over two open sets $U_{(0)}$ and $U_{(1)}$ in the left diagram; and we pass to a simplicial section $\sigma_{(0,1)}$ on the right. As can be seen, $\sigma_{(0,1)}$ interpolates between $\sigma_{(0)}$ and $\sigma_{(1)}$.

Department of Mathematics, Ben Gurion University, Be'er Sheva 84105, Israel $E\text{-}mail\ address$: amyekut@math.bgu.ac.il