
Algebr Represent Theor
DOI 10.1007/s10468-008-9102-9

Rigid Dualizing Complexes Over Commutative Rings

Amnon Yekutieli · James J. Zhang

Received: 8 November 2006 / Accepted: 7 August 2007
© Springer Science + Business Media B.V. 2008

Abstract In this paper we present a new approach to Grothendieck duality over
commutative rings. Our approach is based on the idea of rigid dualizing complexes,
which was introduced by Van den Bergh in the context of noncommutative algebraic
geometry. The method of rigidity was modified to work over general commutative
base rings in our paper (Yekutieli and Zhang, Trans AMS 360:3211–3248, 2008). In
the present paper we obtain many of the important local features of Grothendieck
duality, yet manage to avoid lengthy and difficult compatibility verifications. Our
results apply to essentially finite type algebras over a regular noetherian finite
dimensional base ring, and hence are suitable for arithmetic rings. In the sequel paper
(Yekutieli, Rigid dualizing complexes on schemes, in preparation) these results will
be used to construct and study rigid dualizing complexes on schemes.
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1 Introduction

Grothendieck duality for schemes was introduced in the book “Residues and
Duality” [15] by R. Hartshorne. This duality theory has applications in various areas
of algebraic geometry, including moduli spaces, resolution of singularities, arithmetic
geometry, enumerative geometry and more.

In the 40 years since the publication of [15] a number of related papers appeared
in the literature. Some of these papers provided elaborations on, or more explicit
versions of Grothendieck duality (e.g. [6, 9, 11, 12, 16, 21, 22]). Other papers
contained alternative approaches (e.g. [15, Appendix], [19] and [14]). The recent
book [2] is a complement to [15] that fills gaps in the proofs, and also contains the first
proof of the Base Change Theorem. A noncommutative version of Grothendieck
duality was developed in [20], which has applications in algebra (e.g. [3]) and even
in mathematical physics (e.g. [8]). Other papers sought to extend the scope of
Grothendieck duality to formal schemes (e.g. [1] and [13]) or to differential graded
algebras (see [4]).

One of the fascinating features of Grothendieck duality is the complicated inter-
play between its local and global components. Another feature of this theory (in
some sense parallel to the first) is the gap between formal categorical statements
and their concrete realizations. Much of the effort in studying Grothendieck duality
was aimed at clarifying the local-global interplay, and at bridging the above-
mentioned gap.

In this paper we present a new approach to Grothendieck duality for commutative
rings (i.e. affine schemes). The sequel (Yekutieli, in preparation) will treat schemes in
general (including duality for proper morphisms). The key idea in our approach is the
use of rigid dualizing complexes. This notion was introduced by Van den Bergh [18]
in the context of noncommutative algebraic geometry, and was developed further, in
the noncommutative direction, in our papers [24–27]. In the paper [28] we worked
out the fundamental properties of rigid complexes over commutative rings relative
to an arbitrary commutative base ring (as opposed to a base field). Attaching a rigid
structure to a dualizing complex eliminates all nontrivial automorphisms. Moreover,
rigid dualizing complexes admit several useful operations, such as localization and
traces.

The general concept of “rigidity” is familiar in other areas of algebraic geometry
(e.g. level structures on elliptic curves, or marked points on higher genus curves).
Actually, in Grothendieck’s original treatment [15] duality (local and global) itself
was used as a sort of “rigid structure” on dualizing complexes, but this was very
cumbersome (amounting to big commutative diagrams) and hard to employ. On the
other hand, Van den Bergh’s rigidity is very neat, and enjoys remarkable functorial
properties.

The background material we need in this paper is standard commutative algebra,
the theory of derived categories, and the theory of rigid complexes over commutative
rings from [28]. All of that is reviewed is Section 1 of the paper, for the convenience
of the reader. We also need a few isolated results on dualizing complexes from [15].

Let us explain what are rigid dualizing complexes and how they are used in our
paper. Fix for the rest of the introduction a finite dimensional, regular, noetherian,
commutative base ring K (e.g. a field, or the ring of integers). Recall that an
essentially finite type commutative K-algebra A is by definition a localization (with
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respect to a multiplicatively closed subset) of some finitely generated K-algebra.
Note that the rings �(U,OX) and OX,x, where X is a finite type K-scheme, U ⊂ X is
an affine open set and x ∈ X is a point, are both essentially finite type K-algebras. We
denote by EFTAlg /K the category of essentially finite type commutative K-algebras,
and by default we will stay within this category.

We shall use notation such as f ∗ : A → B for a homomorphism of algebras, corre-
sponding to a morphism of schemes f : Spec B → Spec A. This convention, although
perhaps awkward at first sight, fits better with the usual notation for associated
functors. Thus there are functors f∗ : Mod B → Mod A (restriction of scalars, which
is push-forward geometrically) and f ∗ : Mod A → Mod B (extension of scalars, i.e.

B ⊗A −, which is pull-back geometrically). For composable homomorphisms A
f ∗

−→
B

g∗
−→ C we sometimes write ( f ◦ g)∗ instead of g∗ ◦ f ∗.
For a K-algebra A the derived category of complexes of A-modules is denoted

by D(Mod A), with the usual modifiers (e.g. Db
f (Mod A) is the full subcategory of

bounded complexes with finitely generated cohomologies).
Given a complex M ∈ D(Mod A) we define its square SqA/K M ∈ D(Mod A). The

functor SqA/K from the category D(Mod A) to itself is quadratic, in the sense
that given a morphism φ : M → N in D(Mod A) and an element a ∈ A, one has
SqA/K(aφ) = a2 SqA/K(φ).

A rigidifying isomorphism for M is an isomorphism ρ : M
�−→ SqA/K M in

D(Mod A). If M ∈ Db
f (Mod A) then the pair (M, ρ) is called a rigid complex over

A relative to K. Suppose (M, ρM) and (N, ρN) are two rigid complexes. A rigid
morphism φ : (M, ρM) → (N, ρN) is a morphism φ : M → N in D(Mod A) such
that ρN ◦ φ = SqA/K(φ) ◦ ρM. Observe that if (M, ρM) is a rigid complex such that
RHomA(M, M) = A, and φ : (M, ρM) → (M, ρM) is a rigid isomorphism, then φ is
multiplication by some invertible element a ∈ A satisfying a = a2; and therefore
a = 1. We conclude that the identity is the only rigid automorphism of (M, ρM).

Let B be another K-algebra, and let f ∗ : A → B be a finite K-algebra homo-
morphism. Define

f �M := RHomA(B, M) ∈ D+
f (Mod B).

If f �M has bounded cohomology then there is an induced rigidifying isomorphism
f �(ρM) : f �M

�−→ SqB/K f �M. We write f �(M, ρM) := ( f �M, f �(ρM)).
Next we consider essentially smooth homomorphisms. By definition f ∗ : A → B

is essentially smooth if it is essentially finite type and formally smooth. Then B is
flat over A, and the module of differentials �1

B/A is a finitely generated projective
B-module. The rank of �1

B/A might vary on Spec B; but if it has constant rank n
then we say f ∗ is essentially smooth of relative dimension n. An essentially smooth
homomorphism of relative dimension 0 is called an essentially étale homomorphism.

Let f ∗ : A → B be an essentially smooth homomorphism, let B = ∏
Bi be

the decomposition of Spec B into connected components, and for any i let ni :=
rankBi �

1
Bi/A. We then define

f �M :=
⊕

i
�

ni
Bi/A[ni] ⊗A M ∈ Db

f (Mod B).
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There is an induced rigidifying isomorphism f �(ρM) : f �M
�−→ SqB/K f �M, and thus

a new rigid complex f �(M, ρM) := ( f �M, f �(ρM)).
Now let’s consider dualizing complexes. Recall that a complex R ∈ Db

f (Mod A) is
dualizing if it has finite injective dimension over A, and if the canonical morphism
A → RHomA(R, R) is an isomorphism. A rigid dualizing complex over A relative to
K is a rigid complex (R, ρ) such that R is dualizing.

Here is the main result of our paper.

Theorem 1.1 Let K be a regular finite dimensional noetherian ring, and let A be an
essentially finite type K-algebra.

(1) The algebra A has a rigid dualizing complex (RA, ρA), which is unique up to a
unique rigid isomorphism.

(2) Given a finite homomorphism f ∗ : A → B, there is a unique rigid isomorphism
f �(RA, ρA)

�−→ (RB, ρB).
(3) Given an essentially smooth homomorphism f ∗ : A → B , there is a unique rigid

isomorphism f �(RA, ρA)
�−→ (RB, ρB).

This theorem is repeated as Theorem 3.6 in the body of the paper.
The next result is one we find quite surprising. Its significance is not yet

understood.

Theorem 1.2 Let K be a regular finite dimensional noetherian ring, and let A be an
essentially finite type K-algebra. Assume A is regular, and Spec A is connected and
nonempty. Then, up to isomorphism, the only nonzero rigid complex over A relative
to K is the rigid dualizing complex (RA, ρA).

This theorem is repeated as Theorem 3.10.
Let A be some K-algebra. Using the rigid dualizing complex RA we define the

auto-duality functor DA := RHomA(−, RA) of Df(Mod A). Due to Theorem 1.1(1)
this functor is independent of the rigid dualizing complex RA chosen. Given a
K-algebra homomorphism f ∗ : A → B we define the twisted inverse image functor

f ! : D+
f (Mod A) → D+

f (Mod B)

as follows. If A = B and f ∗ = 1A (the identity automorphism) then f ! := 1D+
f (Mod A)

(the identity functor). Otherwise we define f ! := DB L f ∗ DA.
As explained in Corollary 4.8, the base ring K can sometimes be “factored out” of

the construction of the twisted inverse image functor f !.

Suppose we are given two homomorphisms A
f ∗

−→ B
g∗
−→ C in EFTAlg /K. Then

there is an obvious isomorphism

φ f,g : ( f ◦ g)! �−→ g! f !

of functors D+
f (Mod A) → D+

f (ModC), coming from the adjunction isomorphism

1
�−→ DB DB on D+

f (Mod B). For three homomorphisms A
f ∗

−→ B
g∗
−→ C

h∗−→ D in
EFTAlg /K the isomorphisms φ−,− satisfy the compatibility condition

φg,h ◦ φ f,g◦h = φ f,g ◦ φ f◦g,h : ( f ◦ g ◦ h)! �−→ h!g! f !
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(see Proposition 4.4). This means that the assignment f ∗ 	→ f ! is the 1-component
of a two-functor EFTAlg /K → Cat, whose 0-component is A 	→ D+

f (Mod A). Here
Cat denotes the two-category of all categories (the notion of two-functor is recalled
in Section 4).

The next theorem (which is a consequence of Theorem 1.1) describes the variance
properties of the twisted inverse image two-functor f ∗ 	→ f !.

Theorem 1.3 Let f ∗ : A → B be a homomorphism in EFTAlg /K.

(1) If f ∗ is finite, then there is an isomorphism

ψ
�

f : f � �−→ f !

of functors D+
f (Mod A) → D+

f (Mod B). These isomorphisms are two-functorial
for finite homomorphisms.

(2) If f ∗ is essentially smooth, then there is an isomorphism

ψ
�

f : f � �−→ f !

of functors D+
f (Mod A) → D+

f (Mod B). These isomorphisms are two-functorial
for essentially smooth homomorphisms.

For more detailed statements and proofs see Theorems 4.5 and 4.6.
In the situation of a finite homomorphism f ∗ : A → B, part (1) of the theorem

gives rise to the functorial trace map

Tr f : f∗ f ! → 1.

This is a nondegenerate morphism of functors from D+
f (Mod A) to itself. See

Proposition 5.2 for details.
If f ∗ : A → B is essentially étale, then from part (2) of the theorem we get the

functorial localization map

q f : 1 → f∗ f !,

which is a nondegenerate morphism of functors from D+
f (Mod A) to itself. See

Proposition 5.4 for details. The relation between functorial localization maps and
functorial trace maps is explained in Proposition 5.5.

Here is an application to differential forms, which is a corollary to Theorem 1.3.

Corollary 1.4 Suppose A → B → C are homomorphisms in EFTAlg /K, with A →
B and A → C essentially smooth of relative dimension n, and B → C finite. Then
there is a nondegenerate trace map

TrC/B/A : �n
C/A → �n

B/A.

The trace maps Tr−/−/A are functorial for such finite homomorphisms B → C, and
commute with the localization maps for a localization homomorphism B → B′.

This is restated (in more detail) as Theorem 6.2 and Proposition 6.8. In some cases
we can compute TrC/B/A ; see Propositions 6.9 and 6.10.
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For a finite flat homomorphism A → B let trB/A : B → A be the usual trace map,
i.e. trB/A(b) ∈ A is the trace of the operator b acting of the locally free A-module B.

Here is another result relating traces and localization. It is not a consequence of
Theorem 1.3, but instead relies on the fact that for an étale homomorphism A → B
one has a canonical ring isomorphism B ⊗A B ∼= B × B′, where B′ is the kernel of
the multiplication map B ⊗A B → B. This is interpreted in terms of rigidity.

Theorem 1.5 Suppose f ∗ : A → B is a finite étale homomorphism in EFTAlg /K, so
the localization map q f : A → f ! A induces an isomorphism 1 ⊗ q f : B

�−→ f ! A. Then
the diagram

B
1⊗q f

��

trB/A ����
��

��
f ! A

Tr f ;A����
��

��

A

is commutative.

This result is repeated (in slightly more general form) as Theorem 5.6.
To conclude the introduction let us mention how our twisted inverse image two-

functor compares with the original constructions in [15]. We shall restrict attention
to the category FTAlg /K of finite type K-algebras. (This is of course the opposite of
the category of finite type affine K-schemes.) Given a homomorphism f ∗ : A → B
in FTAlg /K let us denote by

f !(G) : D+
f (Mod A) → D+

f (Mod B)

the twisted inverse image from [15]. In particular, for an algebra A, with structural
homomorphism π∗

A : K → A, we obtain the complex R(G)

A := π
!(G)

A K ∈ D+
f (Mod A),

which is known to be dualizing. In Theorem 4.10 we show that for any A ∈ FTAlg /K

there is an isomorphism R(G)

A
∼= RA in D(Mod A). This implies that there is an

isomorphism f ! ∼= f !(G) of two-functors FTAlg /K → Cat. In general we do not know
an easy way to make the isomorphisms R(G)

A
∼= RA canonical; but see Remark 4.11.

2 Review of Rigid Complexes

In this section we recall definitions and results from the paper [28].
Throughout the paper all rings and algebras are assumed to be commutative by

default. Given two rings A and B we denote a homomorphism between them by
an expression such as f ∗ : A → B. This of course signifies that the corresponding
morphism of schemes is f : Spec B → Spec A. The benefit of this notation is that
it is compatible with the customary notation for various related functors, such as
f∗ : Mod B → Mod A (restriction of scalars, which is direct image for schemes), and
f ∗ : Mod A → Mod B (base change, i.e. f ∗M = B ⊗A M, which is inverse image for
schemes).
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Given a ring A we denote by D(Mod A) the derived category of complexes of
A-modules. If A is noetherian then we denote by Db

f (Mod A) the full subcategory
consisting of bounded complexes with finitely generated cohomology modules.

In [28, Section 2] we introduced the squaring operation. Let A be a ring, B an
A-algebra and M ∈ D(Mod B). The square of M over B relative to A is a complex
SqB/A M ∈ D(Mod B). In case B is flat over A one has the simple formula

SqB/A M = RHomB⊗A B
(
B, M ⊗L

A M
)
.

But in general it is necessary to replace B ⊗A B with B̃ ⊗A B̃ in the formula defining
SqB/A M, where B̃ is a suitable differential graded A-algebra, quasi-isomorphic to B.

Suppose C is another A-algebra, f ∗ : B → C is an A-algebra homomorphism,
N ∈ D(ModC), and φ : N → M is a morphism in D(Mod B). (Strictly speaking, φ

is a morphism f∗N → M). Then there is an induced morphism

Sq f ∗/A(φ) : SqC/A N → SqB/A M

in D(Mod B). The formation of Sq f ∗/A(φ) is functorial in f ∗ and in φ.
Specializing to the case C = B and f ∗ = 1B (the identity homomorphism), we

obtain a functor

SqB/A := Sq1B/A : D(Mod B) → D(Mod B).

This functor is quadratic, in the sense that for any φ ∈ HomD(Mod B)(M, N) and b ∈ B
one has

SqB/A(bφ) = b 2 SqB/A(φ).

The next definition is a variant of the original definition of Van den Bergh [18].

Definition 2.1 Let A be a ring and B a noetherian A-algebra. A rigid complex over
B relative to A is a pair (M, ρ), where:

(1) M is a complex in Db
f (Mod B) which has finite flat dimension over A.

(2) ρ is an isomorphism

ρ : M
�−→ SqB/A M

in D(Mod B), called a rigidifying isomorphism.

Definition 2.2 Let A be a ring, let B and C be noetherian A-algebras, let f ∗ : B → C
be an A-algebra homomorphism, let (M, ρ) be a rigid complex over B relative to A,
and let (N, σ ) be a rigid complex over C relative to A. A rigid trace morphism relative
to A

φ : (N, σ ) → (M, ρ)
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is a morphism φ : N → M in D(Mod B), such that the diagram

N
σ

��

φ

��

SqC/A N

Sq f∗/A(φ)

��

M
ρ

�� SqB/A M

is commutative.

Clearly the composition of two rigid trace morphisms is again a rigid trace
morphism.

Specializing Definition 2.2 to the case C = B and f ∗ = 1B, we call such a mor-
phism φ a rigid morphism over B relative to A. Let Db

f (Mod B)rig/A be the category
whose objects are the rigid complexes over B relative to A, and whose morphisms
are the rigid morphisms.

Recall that a ring homomorphism f ∗ : A → B is called finite if B is a finitely
generated A-module. Given a finite homomorphism f ∗ : A → B we define a functor

f � : D(Mod A) → D(Mod B)

by

f �M := RHomA(B, M).

For any M ∈ D(Mod A) there is a morphism

Tr�f ;M : f∗ f �M → M (2.3)

called the trace map, which is induced from the homomorphism φ 	→ φ(1) for
φ ∈ HomA(B, M). In this way we get a morphism Tr�f : f∗ f � → 1 of functors
from D(Mod A) to itself. Note that for any N ∈ D(Mod B) the homomorphism of
B-modules

HomD(Mod B)(N, f �M) → HomD(Mod A)(N, M), ψ 	→ Tr�f ;M ◦ ψ

is bijective (this is the adjunction isomorphism).

Definition 2.4 Let f ∗ : A → B be a ring homomorphism, M ∈ D(Mod A) and N ∈
D(Mod B). A morphism φ : N → M in D(Mod A) is called a nondegenerate trace
morphism if the corresponding morphism N → f �M inD(Mod B) is an isomorphism.

Here’s the first result about rigid complexes, which explains their name.

Theorem 2.5 Let A be a ring, let f ∗ : B → C be a homomorphism between
noetherian A-algebras, let (M, ρ) ∈ Db

f (Mod B)rig/A and let (N, σ ) ∈ Db
f (ModC)rig/A.

Assume the canonical ring homomorphism C → EndD(ModC)(N) is bijective. Then
there is at most one nondegenerate rigid trace morphism (N, σ ) → (M, ρ) over B
relative to A.
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Proof This is a slight generalization of [28, Theorem 1.2]. Suppose we are given two
nondegenerate rigid trace morphisms φ, φ′ : (N, σ ) → (M, ρ). Since φ is nondegen-
erate it follows that HomD(Mod B)(N, M) is a free C-module with basis φ. So φ′ = cφ
for some unique element c ∈ C. Because φ′ is nondegenerate too we see that c is an
invertible element. Next, since both φ and φ′ are rigid, [28, Corollary 2.7] says that
c2 = c. Thus c = 1 and φ′ = φ. �

Corollary 2.6 [28, Theorem 1.2] Taking B = C, f ∗ = 1B and (N, σ ) = (M, ρ) in
Theorem 2.5, we see that the only automorphism of (M, ρ) in Db

f (Mod B)rig/A is the
identity 1M.

Here are a few results about pullbacks of rigid complexes.

Theorem 2.7 [28, Theorem 5.3] Let A be a noetherian ring, let B, C be essentially
finite type A-algebras, let f ∗ : B → C be a finite A-algebra homomorphism, and let
(M, ρ) ∈ Db

f (Mod B)rig/A. Assume f �M has finite flat dimension over A.

(1) The complex f �M has an induced rigidifying isomorphism

f �(ρ) : f �M
�−→ SqC/A f �M.

(2) The rigid complex

f �(M, ρ) := (
f �M, f �(ρ)

) ∈ Db
f (ModC)rig/A

depends functorially on (M, ρ) and on f ∗.
(3) Assume moreover that HomD(ModC)( f �M, f �M) = C. Then Tr�f ;M is the unique

nondegenerate rigid trace morphism f �(M, ρM) → (M, ρM) over B relative
to A.

Let A be a noetherian ring. Recall that an A-algebra B is called formally smooth
(resp. formally étale) if it has the lifting property (resp. the unique lifting property)
for infinitesimal extensions. The A-algebra B is called smooth (resp. étale) if it is
finitely generated and formally smooth (resp. formally étale).

In [28, Section 4] we introduced a slightly more general kind of ring homo-
morphism than a smooth homomorphism. Again A is noetherian. Recall that an
A-algebra B is called essentially finite type if it is a localization of some finitely
generated A-algebra. We say that B is essentially smooth (resp. essentially étale)
over A if it is essentially finite type and formally smooth (resp. formally étale).
The composition of two essentially smooth homomorphisms is essentially smooth.
If A → B is essentially smooth then B is flat over A, and �1

B/A is a finitely generated
projective B-module. One can show that the homomorphism A → B is essentially
étale, if and only if it is essentially smooth and �1

B/A = 0.
Let A be a noetherian ring and f ∗ : A → B an essentially smooth homomor-

phism. Let Spec B = ∐
i Spec Bi be the decomposition into connected components,

and for every i let ni be the rank of �1
Bi/A. We define a functor

f � : D(Mod A) → D(Mod B)
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by

f �M :=
⊕

i

�
ni
Bi/A[ni] ⊗A M.

Theorem 2.8 [28, Theorem 6.3] Let A be a noetherian ring, let B, C be essentially
finite type A-algebras, let f ∗ : B → C be an essentially smooth A-algebra homomor-
phism, and let (M, ρ) ∈ Db

f (Mod B)rig/A.

(1) The complex f �M has an induced rigidifying isomorphism

f �(ρ) : f �M
�−→ SqC/A f �M.

(2) The rigid complex

f �(M, ρ) := (
f �M, f �(ρ)

) ∈ Db
f (ModC)rig/A

depends functorially on (M, ρ) and on f ∗.

Definition 2.9 Suppose f ∗ : A → B is essentially étale, so that f �M = B ⊗A M for
any M ∈ D(Mod A). Let q�

f ;M : M → f �M be the morphism m 	→ 1 ⊗ m. On the

level of functors this gives a morphism q�

f : 1 → f∗ f � of functors from D(Mod A)

to itself.

In the situation of the definition, given N ∈ D(Mod B), there is a canonical
bijection

HomD(Mod A)(M, N)
�−→ HomD(Mod B)( f �M, N), φ 	→ 1 ⊗ φ.

In particular, for N := f �M, the morphism q�

f ;M corresponds to the identity 1N .

Definition 2.10 Let A be a noetherian ring, let A → B be an essentially étale ring
homomorphism, let M ∈ D(Mod A) and N ∈ D(Mod B). A morphism φ : M → N
in D(Mod A) is called a nondegenerate localization morphism if the corresponding
morphism 1 ⊗ φ : f �M → N in D(Mod B) is an isomorphism.

Definition 2.11 Let A be a noetherian ring, let B and C be essentially finite
type A-algebras, let f ∗ : B → C be an essentially étale A-algebra homomorphism,
let (M, ρ) ∈ Db

f (Mod B)rig/A and let (N, σ ) ∈ Db
f (ModC)rig/A. A rigid localization

morphism is a morphism φ : M → N in D(Mod B), such that the corresponding
morphism 1 ⊗ φ : f �(M, ρ) → (N, σ ) is a rigid morphism over C relative to A.

Proposition 2.12 [28, Proposition 6.8] Let A be a noetherian ring, let B and C be
essentially finite type A-algebras, let f ∗ : B → C be an essentially étale A-algebra
homomorphism, and let (M, ρ) ∈ Db

f (Mod B)rig/A. Assume that RHomB(M, M) = B.
Then the morphism q�

f ;M is the unique nondegenerate rigid localization morphism
(M, ρ) → f �(M, ρ).

The next result is about tensor products of rigid complexes.
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Theorem 2.13 [28, Theorem 0.4] Let A be a noetherian ring, let B, C be essentially
finite type A-algebras, let f ∗ : B → C be an A-algebra homomorphism, and let
(M, ρ) ∈ Db

f (Mod B)rig/A and (N, σ ) ∈ Db
f (ModC)rig/B. Assume that the canonical

homomorphism B → HomD(Mod B)(M, M) is bijective. Then the complex M ⊗L
B N is

in Db
f (ModC), it has finite flat dimension over A, and it has an induced rigidifying

isomorphism

ρ ⊗ σ : M ⊗L
B N

�−→ SqC/A

(
M ⊗L

B N
)
.

The rigid complex

(M, ρ) ⊗L
B (N, σ ) := (

M ⊗L
B N, ρ ⊗ σ

) ∈ Db
f (ModC)rig/A

depends functorially of (M, ρ) and (N, σ ).

Finally, a base change result.

Theorem 2.14 [28, Theorem 6.9] Consider a commutative diagram of ring
homomorphisms

A �� B
f ∗

��

g∗

��

C

h∗

��

B′
f ′∗

�� C′

where A is a noetherian ring, and B, B′, C and C′ are essentially finite type A-algebras.
Assume moreover that g∗ : B → B′ is a localization, and the square is cartesian
(namely C′ ∼= B′ ⊗B C). Let (M, ρ) ∈ Db

f (Mod B)rig/A, let (N, σ ) ∈ Db
f (ModC)rig/A,

and let

φ : (N, σ ) → (M, ρ)

be a rigid trace morphism over B relative to A. Define M′ := g�M and N′ := h�N.
There is a morphism φ′ : N′ → M′ in D(Mod B′) obtained by composing the canoni-
cal isomorphism N′ = C′ ⊗C N ∼= B′ ⊗B N = g�N with g�(φ) : g� N → g�M = M′. So
the diagram

M

q�

g;M

��

N
φ

��

q�

h;N

��

M′ N′
φ′

��

is commutative. Then

φ′ : (
N′, h�(σ )

) → (
M′, g�(ρ)

)

is a rigid trace morphism over B′ relative to A.

Observe that there is no particular assumption on f ∗.
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Remark 2.15 The construction of the functor SqB/A, and the proof of the theorems
above in [28], required heavy use of DG algebras. For the convenience of the reader
we eliminated all reference to DG algebras in the definitions and statements in the
present paper. However, we could not avoid using DG algebras in some of the proofs.

3 Rigid Dualizing Complexes

In this section K is a fixed regular noetherian ring of finite Krull dimension. All
algebras are by default essentially finite type K-algebras, and all algebra homomor-
phisms are over K. We denote by EFTAlg /K the category of essentially finite type
K-algebras.

Let us recall the definition of dualizing complex over a K-algebra A from [15].
A complex R ∈ Db

f (Mod A) is called a dualizing complex if it has finite injective
dimension, and the canonical morphism A → RHomA(R, R) in D(Mod A) is an
isomorphism. It follows that the functor RHomA(−, R) is an auto-duality (i.e. a
contravariant equivalence) of Db

f (Mod A). Note that since the ground ring K has
finite global dimension, the complex R has finite flat dimension over it.

Following Van den Bergh [18] we make the following definition.

Definition 3.1 Let A be an essentially finite type K-algebra and let R be a dualizing
complex over A. Suppose R has a rigidifying isomorphism ρ : R

�−→ SqA/K R. Then
the pair (R, ρ) is called a rigid dualizing complex over A relative to K.

By default all rigid dualizing complexes are relative to the ground ring K.

Example 3.2 Take the K-algebra A := K. The complex R := K is a dualizing com-
plex over K, since this ring is regular and finite dimensional. Let

ρtau : K
�−→ RHomK⊗K K(K, K ⊗K K) = Sq

K/K K

be the tautological rigidifying isomorphism. Then (K, ρtau) is a rigid dualizing com-
plex over K relative to K.

In [18] it was proved that when K is a field, a rigid dualizing complex (R, ρ) is
unique up to isomorphism. And in [24] we proved that (R, ρ) is in fact unique up to
a unique rigid isomorphism (again, only when K is a field). These results are true in
our setup too:

Theorem 3.3 Let K be a regular finite dimensional noetherian ring, let A be an
essentially finite type K-algebra, and let (R, ρ) be a rigid dualizing complex over A
relative to K. Then (R, ρ) is unique up to a unique rigid isomorphism.

Proof In view of [28, Lemma 6.1] and [28, Theorem 1.6] we may assume that Spec A
is connected. Suppose (R′, ρ ′) is another rigid dualizing complex over A. Then
there is an isomorphism R′ ∼= R ⊗A L[n] for some invertible A-module L and some
integer n. Indeed L[n] ∼= RHomA(R, R′); see [15, Section V.3].
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Choose a K-flat DG algebra resolution K → Ã → A of K → A. (If K is a field
just take Ã := A). So

SqA/K R′ ∼= SqA/K(R ⊗A L[n])
= RHomÃ⊗K Ã

(
A, (R ⊗A L[n]) ⊗L

K
(R ⊗A L[n]))

∼=† RHomÃ⊗K Ã

(
A, R ⊗L

K
R

) ⊗L
A L[n] ⊗L

A L[n]
= (SqA/K R) ⊗L

A L[n] ⊗L
A L[n] ∼=♦ R ⊗A L[n] ⊗A L[n].

The isomorphism marked † exists by [28, Proposition 1.12] (with its condition (iii.b)),
and the isomorphism marked ♦ comes from ρ−1 : SqA/K R

�−→ R. On the other hand

we have ρ ′ : R′ �−→ SqA/K R′, which gives an isomorphism

R ⊗A L[n] ∼= R ⊗A L[n] ⊗A L[n].
Applying RHomA(R,−) to this isomorphism we get L[n] ∼= L[n] ⊗A L[n], and
hence L ∼= A and n = 0. Thus we get an isomorphism φ0 : R

�−→ R′.
The isomorphism φ0 might not be rigid, but there is some isomorphism φ1 making

the diagram

R
φ1

��

ρ

��

R′

ρ ′

��

SqA/K R
Sq1A/K (φ0)

�� SqA/K R′

commutative. Since HomD(Mod A)(R, R′) is a free A-module with basis φ0, it follows
that φ1 = aφ0 for some a ∈ A×. Then the isomorphism φ := a−1φ0 is the unique
rigid isomorphism R

�−→ R′. �

In view of this result we are allowed to talk about the rigid dualizing complex over
A (if it exists). It is denoted by (RA, ρA).

Suppose (M, ρ) is a rigid complex over A relative to K, and f ∗ : A → B is a finite
homomorphism of K-algebras. Assume f �M has bounded cohomology. Then f �M
has finite flat dimension over K, and according to Theorem 2.7(1) we get an induced
rigid complex f �(M, ρ) over B relative to K.

Proposition 3.4 Let f ∗ : A → B be a finite homomorphism of K-algebras. Assume
the rigid dualizing complex (RA, ρA) over A exists. Define RB := f � RA ∈ D(Mod B)

and ρB := f �(ρA). Then (RB, ρB) is a rigid dualizing complex over B.

Proof The fact that RB is a dualizing complex over B is proved in [15, Proposition
V.2.4]. In particular RB has bounded cohomology. �

Suppose (M, ρ) is a rigid complex over A relative to K, and f ∗ : A → B is an
essentially smooth homomorphism of K-algebras. Then by Theorem 2.8(1) we get
an induced rigid complex f �(M, ρ) over B relative to K.
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Proposition 3.5 Let A be a K-algebra, and assume A has a rigid dualizing complex
(RA, ρA). Let f ∗ : A → B be an essentially smooth homomorphism. Define RB :=
f � RA and ρB := f �(ρA). Then (RB, ρB) is a rigid dualizing complex over B.

Proof The complex RB is bounded. Hence to check it is dualizing is a local calcu-
lation on Spec B. By [28, Proposition 3.2(1)] we can assume that A → B is smooth.
Now [15, Theorem V.8.3] implies RB is dualizing. �

Theorem 3.6 Let K be a regular finite dimensional noetherian ring, and let A be an
essentially finite type K-algebra.

(1) The algebra A has a rigid dualizing complex (RA, ρA) relative to K, which is
unique up to a unique rigid isomorphism.

(2) Given a finite homomorphism f ∗ : A → B, there is a unique rigid isomorphism

φ
�,rig
f : f �(RA, ρA)

�−→ (RB, ρB).

(3) Given an essentially smooth homomorphism f ∗ : A → B , there is a unique rigid
isomorphism

φ
�,rig
f : f �(RA, ρA)

�−→ (RB, ρB).

Proof

(1) We can find algebras and homomorphisms K
f ∗

−→ C
g∗
−→ B

h∗−→ A, where C =
K[t1, . . . , tn] is a polynomial algebra, g∗ is surjective and h∗ is a localization.
By Example 3.2, (K, ρtau) is a rigid dualizing complex over K. By Propositions
3.4 and 3.5 the complex

RA := h�g� f �
K = A ⊗B RHomC

(
B, �n

C/K [n]
)

is a rigid dualizing complex over A, with rigidifying isomorphism ρA :=
h�g� f �(ρtau). Uniqueness was proved in Theorem 3.3.

(2/3) Use Propositions 3.4 and 3.5 and Theorem 3.3. �

Corollary 3.7 Let f ∗ : A → B be a finite homomorphism in EFTAlg /K. There exists
a unique nondegenerate rigid trace morphism

Tr f = TrB/A : (RB, ρB) → (RA, ρA).

Proof Since f � RA is a dualizing complex over B we know that
HomD(Mod B)( f � RA, f � RA) = B. So by [28, Corollary 5.11], Tr�f ;RA

: f � RA → RA is
the unique nondegenerate rigid trace morphism between these two objects.

Composing Tr�f ;RA
with the unique rigid isomorphism RB

∼= f � RA guaranteed by
Theorem 3.3, we get the unique rigid trace Tr f : RB → RA. �

Corollary 3.8 Let A and A′ be inEFTAlg /K, with rigid dualizing complexes (RA, ρA)

and (RA′ , ρA′) respectively. Suppose f ∗ : A → A′ is an essentially étale homomor-
phism. Then there is exactly one nondegenerate rigid localization morphism

q f = qA′/A : (RA, ρA) → (RA′ , ρA′).
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Proof By Proposition 3.5 we have a rigid complex f � RA over A′, and by Proposition
2.12 there is a unique rigid localization morphism q�

f ;RA
: RA → f � RA. According to

Theorem 3.3 there is a unique rigid isomorphism f � RA
∼= RA′ . By composing them

we get the unique rigid localization map q f . �

Corollary 3.9 Let A, B and A′ be in EFTAlg /K, let f ∗ : A → B be a finite ho-
momorphism, and let g∗ : A → A′ be a localization. Define B′ := A′ ⊗A B, and let
f ′∗ : A′ → B′ and h∗ : B → B′ be the induced homomorphisms. Then

qg ◦ Tr f = Tr f ′ ◦ qh

in HomD(Mod A)(RB, RA′).

A
f ∗

��

g∗

��

B

h∗

��

A′
f ′∗

�� B′

RA

qg

��

RB

Tr f

��

qh

��

RA′ RB′
Tr f ′

��

Proof The B′-module HomD(Mod A)(RB, RA′) is free of rank 1, and both qg ◦ Tr f and
Tr f ′ ◦ qh are generators. So there is a unique invertible element b ′ ∈ B′ such that
Tr f ′ ◦ qh = b ′ qg ◦ Tr f . Now by Theorem 2.13 the morphism

g�(Tr f ) : h�(RB, ρB) → g�(RA, ρA)

is a rigid trace morphism relative to K. And so are

1 ⊗ qg : g�(RA, ρA) → (RA′ , ρA′),

1 ⊗ qh : h�(RB, ρB) → (RB′ , ρB′)

and

Tr f ′ : (RB′ , ρB′) → (RA′ , ρA′).

We conclude that both (1 ⊗ qg) ◦ g�(Tr f ) and Tr f ′ ◦(1 ⊗ qh) are nondegenerate rigid
trace morphisms h�(RB, ρB) → (RA′ , ρA′) over A′ relative to K, and therefore they
must be equal (cf. Theorem 2.5). But HomD(Mod A′)(h� RB, RA′) is also a free B′-
module of rank 1, So b ′ = 1. �

Next comes a surprising result that basically says “all rigid complexes are
dualizing”. The significance of this result is yet unknown.

Theorem 3.10 Let K be a regular finite dimensional noetherian ring, and let A be
an essentially finite type K-algebra. Assume A is regular and Spec A is connected.
Let (M, ρ) be a nonzero rigid complex over A relative to K. Then M is a dualizing
complex over A. Hence there exists a unique rigid isomorphism (M, ρ) ∼= (RA, ρA).

The proof is after these two lemmas.
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Lemma 3.11 Suppose L ∈ Db
f (Mod A) satisfies ExtiA(L, A/m) = 0 for all i �= 0 and

all maximal ideals m ⊂ A. Then L is isomorphic to a finitely generated projective
module concentrated in degree 0.

Proof This can be checked locally. Over a local ring Am, a minimal free resolution
of Lm must have a single nonzero term, in degree 0. �

Lemma 3.12 If A is a field then the theorem is true, and moreover M ∼= A[d] for some
integer d.

Proof Since any dualizing complex over the field A is isomorphic to a shift of A,
we see that the rigid dualizing complex satisfies RA

∼= A[d] for some d. Therefore
SqA/K(A[d]) ∼= A[d].

Consider the rigid complex (M, ρ). We can decompose M ∼= ⊕r
i=1 A[di] in

D(Mod A). Then in the setup of Theorem [28, Theorem 2.2] we have

SqA/K M = RHomÃ⊗K Ã

(
A, M ⊗L

K
M

)

∼=
⊕

i, j
RHomÃ⊗K Ã

(
A, A[di] ⊗L

K
A[d j]

)

∼=
⊕

i, j

(
SqA/K(A[d]))[di + d j − 2d].

But M ∼= SqA/K M, from which we obtain
⊕r

i=1
A[di] ∼=

⊕r

i, j=1
A[di + d j − d].

Thus r = 1 and d1 = d. �

Proof of Theorem 3.10 Consider the object L := RHomA(M, RA) ∈ Db
f (Mod A).

Take an arbitrary maximal ideal m ⊂ A, and define B := A/m. We get a finite
homomorphism f ∗ : A → B. By Theorem 2.7(1) the complex RHomA(B, M) = f �M
is a rigid complex over B relative to K. So either f �M is zero, or, by Lemma 3.12,
f �M ∼= RB

∼= B[d] for some integer d. On the other hand by Theorem 3.6(2) we have
an isomorphism f � RA

∼= RB. Thus there are isomorphisms

RHomA(L, B) ∼= RHomA(L, B[d])[−d]
∼= RHomA

(
RHomA(M, RA), RHomA(B, RA)

)[−d]
∼= RHomA(B, M)[−d] = f �M[−d] ∼= Br (3.13)

where r = 0, 1. In particular ExtiA(L, B) = 0 for i �= 0. Since m was arbitrary, Lemma
3.11 tells us that we can assume L is a finitely generated locally free A-module,
concentrated in degree 0. Moreover, from the isomorphisms (3.13) we see that the
rank of L at any point of Spec A is at most 1. Since L is nonzero and Spec A is
connected it follows that L has constant rank 1.

At this stage we have M ∼= RA ⊗A L∨, where L∨ := HomA(L, A). We conclude
that M is a dualizing complex over A. By Theorem 3.6(1) there is a unique rigid
isomorphism RA

∼= M. �

We end this section with some remarks and examples.
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Remark 3.14 The standing assumption that the base ring K has finite global di-
mension seems superfluous. It is needed for technical reasons (bounded complexes
have finite flat dimension), yet we don’t know how to remove it. However, it seems
necessary for K to be Gorenstein—see Example 3.16. Also the finiteness of A over K

is important, as Example 3.17 shows. A similar reservation applies to the assumption
that A is regular in Theorem 3.10 (Note the mistake in [28, Theorem 0.6]: there too
A has to be regular).

Remark 3.15 A result of Van den Bergh (valid even in the noncommutative setup)
says the following: if A is a Gorenstein ring, then there is a canonical isomorphism

RA
∼= RHomA(SqA/K A, A)

in D(Mod A).

Example 3.16 Consider a field k, and let K = A := k[t1, t2]/(t2
1, t2

2, t1t2). Then A does
not have a rigid dualizing complex relative to K. The reason is that any dualizing
complex over the artinian local ring A must be R ∼= A∗[n] for some integer n, where
A∗ := Homk(A, k). Now SqA/K R ∼= R ⊗L

K
R, which has infinitely many nonzero

cohomology modules. So there can be no isomorphism R ∼= SqA/K R.

Example 3.17 Take any field K, and let A := K(t1, t2, . . .), the field of rational
functions in countably many variables. So A is a noetherian K algebra, but it is not of
essentially finite type. Clearly A has a dualizing complex (e.g. R := A), but as shown
in [24, Example 3.13], there does not exist a rigid dualizing complex over A relative
to K.

Remark 3.18 The paper [17] by de Salas uses an idea similar to Van den Bergh’s
rigidity to define residues on local rings. However the results there are pretty limited.
Lipman (unpublished notes) has an approach to duality using the fundamental class
of the diagonal, which is close in spirit to the idea of rigidity.

4 The Twisted Inverse Image Two-Functor

In this section we translate properties of rigid dualizing complexes that were estab-
lished in Section 3 into properties of certain functors. As before we assume that K

is a regular noetherian ring of finite Krull dimension. All algebras are by default
essentially finite type K-algebras, and all algebra homomorphisms are over K.

Here is a review of the notion of two-functor, following [5, Section 5.15]. Let
Cat be the two-category of all categories. The objects of Cat are the categories;
the 1-morphisms are the functors between categories; and the two-morphisms are
the natural transformations between functors. Suppose A is some category. A two-
functor (or pseudofunctor) F : A → Cat is a triple F = (F0, F1, F2) consisting of
functions of the types explained below. The function F0 is from the class of objects of
A to the class of objects of Cat; i.e. F0(A) is a category for any A ∈ A. The function
F1 assigns to any morphism α0 ∈ HomA(A0, A1) a functor F1(α0) : F0(A0) → F0(A1).
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The function F2 assigns to a composable pair of morphisms α0 ∈ HomA(A0, A1) and
α1 ∈ HomA(A1, A2) a natural isomorphism

F2(α0, α1) : F1(α1 ◦ α0)
�−→ F1(α1) ◦ F1(α0)

between functors F0(A0) → F0(A2). The data (F0, F1, F2) have to satisfy the com-
patibility condition

F2(α0, α1) ◦ F2(α1 ◦ α0, α2) = F2(α1, α2) ◦ F2(α0, α2 ◦ α1)

for any composable triple A0
α0−→ A1

α1−→ A2
α2−→ A3 of morphisms in A. Moreover for

any object A ∈ A, with identity morphism 1A, it is required that F1(1A) = 1F0(A), the
identity functor of the category F0(A); and also F2(1A, 1A) has to be the identity
automorphism of the functor of 1F0(A).

We are going to construct a two-functor F : EFTAlg /K → Cat. Its 0-component
F0 will assign the category F0(A) := D+

f (Mod A) to any algebra A. The 1-component
F1 will assign a functor F1( f ∗) = f ! : D+

f (Mod A) → D+
f (Mod B) to every algebra ho-

momorphism f ∗ : A → B. And for every composable pair of homomorphisms A
f ∗

−→
B

g∗
−→ C there will be a natural isomorphism F2( f ∗, g∗) = φ f,g. Furthermore there

will be isomorphisms of two-functors f ! ∼= f � and f ! ∼= f � on suitable subcategories.
These constructions will require a lot of notation, and we tried to make this notation
sensible. Isomorphisms between functors of the same family (i.e. belonging to the
same two-functor) will be labelled by “φ” with modifiers (e.g. φ f,g : ( f ◦ g)! �−→ g! f !).
Isomorphisms between functors belonging to different families will be labelled by
“ψ” with modifiers (e.g. ψ

�

f : f � �−→ f !). When applying an isomorphism such as ψ
�

f

to a particular object, say M, the notation will be ψ
�

f ;M : f �M
�−→ f !M.

By Theorem 3.6 any K-algebra A has a rigid dualizing complex (RA, ρA), which is
unique up to a unique rigid isomorphism. For the sake of legibility we will often keep
the rigidifying isomorphism ρA implicit, and refer to the rigid dualizing complex RA.

Definition 4.1 Given a K-algebra A, with rigid dualizing complex RA, define the
auto-duality functor of Df(Mod A) relative to K to be DA := RHomA(−, RA).

Note that the functor DA exchanges the subcategories D+
f (Mod A) and

D−
f (Mod A). Given a homomorphism of algebras f ∗ : A → B the functor L f ∗ =

B ⊗L
A − sends D−

f (Mod A) into D−
f (Mod B). This permits the next definition.

Definition 4.2 Let f ∗ : A → B be a homomorphism in EFTAlg /K. We define the
twisted inverse image functor

f ! : D+
f (Mod A) → D+

f (Mod B)

relative to K as follows.

(1) If A = B and f ∗ = 1A (the identity automorphism) then we let f ! := 1D+
f (Mod A)

(the identity functor).
(2) Otherwise we define f ! := DB L f ∗ DA.

Recall that for composable homomorphisms A
f ∗

−→ B
g∗
−→ C we sometimes write

( f ◦ g)∗ instead of g∗ ◦ f ∗.
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Definition 4.3 Given two homomorphisms A
f ∗

−→ B
g∗
−→ C in EFTAlg /K we define an

isomorphism

φ f,g : ( f ◦ g)! �−→ g! f !

of functors D+
f (Mod A) → D+

f (ModC) as follows.

(1) If either A = B and f ∗ = 1A, or B = C and g∗ = 1B, then φ f,g is just the identity
automorphism of ( f ◦ g)! = g! f !.

(2) Otherwise we use the adjunction isomorphism 1D+
f (Mod B)

�−→ DB DB, together
with the obvious isomorphism L( f ◦ g)∗ = L(g∗ ◦ f ∗) ∼= Lg∗ L f ∗, to obtain an
isomorphism

( f ◦ g)! = DC L( f ◦ g)∗ DA
∼= DC Lg∗ L f ∗ DA

∼= DC Lg∗ DB DB L f ∗ DA = g! f !.

Proposition 4.4 For three homomorphisms A
f ∗

−→ B
g∗
−→ C

h∗−→ D in EFTAlg /K the
isomorphisms φ−,− satisfy the compatibility condition

φg,h ◦ φ f,g◦h = φ f,g ◦ φ f◦g,h : ( f ◦ g ◦ h)! �−→ h!g! f !.

Thus the assignment f ∗ 	→ f ! is the 1-component of a two-functor EFTAlg /K → Cat,
whose 0-component is A 	→ D+

f (Mod A).

In stating the proposition we were a bit sloppy with notation; for instance we wrote
φ f,g, whereas the correct expression is h!(φ f,g). This was done for the sake of legibility,
and we presume the reader can fill in the omissions (also in what follows).

Proof By definition

( f ◦ g ◦ h)!M = DD L( f ◦ g ◦ h)∗ DA M

and

h!g! f !M = DD Lh∗ DC DC Lg∗ DB DB L f ∗ DA M.

The two isomorphism φg,h ◦ φ f,g◦h and φ f,g ◦ φ f◦g,h differ only by the order in which
the adjunction isomorphisms 1D+

f (Mod B)
∼= DB DB and 1D+

f (ModC)
∼= DC DC are ap-

plied, and correspondingly an isomorphism C ∼= C ⊗L
B B is replaced by D ∼= D ⊗L

B B.
Due to standard identities the net effect is that φg,h ◦ φ f,g◦h = φ f,g ◦ φ f◦g,h. �

Suppose A
f ∗

−→ B
g∗
−→ C are finite homomorphisms in EFTAlg /K. Adjunction gives

rise to an isomorphism

g� f �M = RHomB
(
C, RHomA(B, M)

) ∼= RHomA(C, M) = ( f ◦ g)�M

for any M ∈ D(Mod A), and thus there is an isomorphism of functors

φ
�

f,g : ( f ◦ g)�
�−→ g� f �.
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So f ∗ 	→ f � is a two-functor on the subcategory of EFTAlg /K consisting of all
algebras, but only finite homomorphisms.

Theorem 4.5

(1) Let f ∗ : A → B be a finite homomorphism in EFTAlg /K. The isomorphism
φ

�,rig
f : f � RA

�−→ RB of Theorem 3.6(2) induces an isomorphism

ψ
�

f : f � �−→ f !

of functors D+
f (Mod A) → D+

f (Mod B).

(2) Given two finite homomorphism A
f ∗

−→ B
g∗
−→ C, there is equality

ψ�
g ◦ ψ

�

f ◦ φ
�

f,g = φ f,g ◦ ψ
�

f◦g

as isomorphisms of functors ( f ◦ g)�
�−→ g! f !. Thus the isomorphisms ψ

�

f are two-
functorial.

Proof

(1) Take M ∈ Db
f (Mod A). We then have a series of isomorphisms

f !M = RHomB
(
B ⊗L

A RHomA(M, RA), RB
)

∼=† RHomA
(
RHomA(M, RA), RB

)

∼=♦ RHomA
(
RHomA(M, RA), RHomA(B, RA)

)

∼=� RHomA(B, M) = f �M,

where the isomorphism marked † is by the Hom-tensor adjunction; the isomor-
phism marked ♦ is induced by φ

�,rig
f ; the isomorphism � is because RA is a

dualizing complex.
(2) Given a second finite homomorphism g∗ : B → C we obtain a commutative

diagram of rigid isomorphisms

( f ◦ g)� RA

φ
�

f,g;RA
��

φ
�,rig
f◦g

�� RC

g� f � RA

φ
�,rig
g ◦φ�,rig

f

����������������

This is due to the fact that φ
�

f,g;RA
is a rigid isomorphism [28, Theorem 5.3(2)],

together with the uniqueness in Theorem 3.6(2). From this, using standard
identities, we deduce the desired equality. �

Next let A
f ∗

−→ B
g∗
−→ C be essentially smooth homomorphisms. Then according to

[28, Proposition 3.4] there is an isomorphism of functors φ
�

f,g : ( f ◦ g)�
�−→ g� f �. The



Rigid dualizing complexes over commutative rings

isomorphisms φ
�
−,− are two-functorial on the subcategory of EFTAlg /K consisting of

essentially smooth homomorphisms.

Theorem 4.6

(1) Let f ∗ : A → B be an essentially smooth homomorphism in EFTAlg /K. The
isomorphism φ

�,rig
f : f � RA

�−→ RB of Theorem 3.6(3) induces an isomorphism

ψ
�

f : f � �−→ f !

of functors D+
f (Mod A) → D+

f (Mod B).

(2) Given two essentially smooth homomorphisms A
f ∗

−→ B
g∗
−→ C, there is equality

ψ�
g ◦ ψ

�

f ◦ φ
�

f,g = φ f,g ◦ ψ
�

f◦g

as isomorphisms of functors ( f ◦ g)�
�−→ g! f !. Thus the isomorphisms ψ

�

f are
two-functorial.

Proof

(1) We can assume that f ∗ has relative dimension n (see [28, Lemma 6.1]). Take
any M ∈ D+

f (Mod A). Then

f !M = RHomB
(
B ⊗L

A RHomA(M, RA), RB
)

∼=† RHomA
(
RHomA(M, RA), RB

)

∼=♦ RHomA
(
RHomA(M, RA),�n

B/A[n] ⊗A RA
)

∼=� RHomA
(
RHomA(M, RA), RA

) ⊗A �n
B/A[n]

∼=‡ M ⊗A �n
B/A[n] = f �M,

where the isomorphism marked † is by the Hom-tensor adjunction; the iso-
morphism marked ♦ is induced by φ

�,rig
f ; the isomorphism � is due to [28,

Proposition 1.12]; and the isomorphism ‡ is by the adjunction isomorphism
M ∼= DA DA M. We let ψ

�

f ;M : f �M
�−→ f !M be the composed isomorphism.

(2) Given a second essentially smooth homomorphism g∗ : B → C we obtain a
commutative diagram of rigid isomorphisms

( f ◦ g)� RA

φ
�

f,g;RA
��

φ
�,rig
f◦g

�� RC

g� f � RA

φ
�,rig
g ◦φ�,rig

f

����������������

This is due to the fact that φ
�

f,g;RA
is a rigid isomorphism [28, Theorem 6.3(3)],

together with the uniqueness in Theorem 3.6(3). From this, using standard
identities, we deduce the desired equality. �
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The next result explains the dependence of the twisted inverse image two-functor
f 	→ f ! on the base ring K. Assume L is an essentially finite type K-algebra which
is regular (but maybe not essentially smooth over K). Just like for K, any essentially
finite type L-algebra A has a rigid dualizing complex relative to L, which we
denote by (RA/L, ρA/L). For any homomorphism f ∗ : A → B of L-algebras there
is a corresponding twisted inverse image functor f !/L : D+

f (Mod A) → D+
f (Mod B),

constructed using RA/L and RB/L. Let (RL, ρL) be the rigid dualizing complex of L

relative to K.

Proposition 4.7 Let A be an essentially finite type L-algebra. Then RL ⊗L
L

RA/L

is a dualizing complex over A, and it has an induced rigidifying isomorphism relative
to K. Hence there is a unique isomorphism RL ⊗L

L
RA/L

∼= RA in Db
f (Mod A)rig/K .

Proof We might as well assume Spec L to be connected (cf. [28, Lemma 6.1]). Since
L is regular, one has RL

∼= P[n] for some invertible L-module P and some integer n.
Therefore RL ⊗L

L
RA/L is a dualizing complex over A. According to Theorem 2.12

the complex RL ⊗L
L

RA/L has an induced rigidifying isomorphism ρL ⊗ ρA/L. Now
use Theorem 3.3. �

Corollary 4.8 There is a canonical isomorphism

( f ∗ 	→ f !) ∼= ( f ∗ 	→ f !/L)

of two-functors EFTAlg /L → Cat.

Proof The twist RL ⊗L
L

− gets canceled out in

f !M ∼= RHomA
(
RHomA(M, RL ⊗L

L
RA/L), RL ⊗L

L
RA/L

)
. �

Example 4.9 Take K := Z and L := Fp = Z/(p) for some prime number p. Then
RL = L[−1], and for any A ∈ EFTAlg /L we have RA/L

∼= RA[1].

The final result of this section connects our constructions to those of [15]. We
shall restrict attention to the category FTAlg /K of finite type K-algebras. Given a
homomorphism f ∗ : A → B let us denote by

f !(G) : D+
f (Mod A) → D+

f (Mod B)

the twisted inverse image from [15].

Theorem 4.10 Let K be a regular finite dimensional noetherian ring.

(1) Given A ∈ FTAlg /K let π∗
A : K → A be the structural homomorphism, let

R(G)

A := π
!(G)

A K, and let RA be the rigid dualizing complex of A. Then there is
an isomorphism R(G)

A
∼= RA in D(Mod A).

(2) There is an isomorphism ( f ∗ 	→ f !) ∼= ( f ∗ 	→ f !(G)) of two-functors
FTAlg /K → Cat.
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Proof

(1) Take homomorphisms K
f ∗

−→ C
g∗
−→ B

h∗−→ A as in the proof of Theorem 3.6(1).
Then RA

∼= h�g� f �
K, and also R(G)

A
∼= h�g� f �

K.

(2) For any A fix an isomorphism ψ
(G)

A : R(G)

A
�−→ RA. Let D(G)

A :=
RHomA(−, R(G)

A ), so we get an induced isomorphism ψ
(G)

A : D(G)

A
�−→ DA

between the associated auto-duality functors. It is known that the two-functor
( f ∗ 	→ f !(G)) also satisfies f !(G) ∼= D(G)

B L f ∗ D(G)

A . In this way we obtain an

isomorphism of two-functors ψ(G) : f !(G) �−→ f !. �

Remark 4.11 If A is a flat K-algebra, then flat base change for the theory in [15]
endows R(G)

A with a rigidifying isomorphism, thus making the isomorphism R(G)

A
∼=

RA canonical. (see Yekutieli, in preparation). So in case K is a field one has a
canonical isomorphism f ! ∼= f !(G) of two-functors, and one may try to ask more
precise questions, such as compatibility with the transformations in Theorems 4.5
and 4.6.

5 Functorial Traces and Localizations

In this section again we work over a fixed base ring K, which is assumed to be
regular, noetherian and of finite Krull dimension. Recall that to each homomor-
phism f ∗ : A → B in EFTAlg /K we constructed a twisted inverse image functor
f ! : D+

f (Mod A) → D+
f (Mod B).

Definition 5.1 Let f ∗ : A → B be a finite homomorphism in EFTAlg /K. Take any
M ∈ D+

f (Mod A). Then by Theorem 4.5(1) there is an isomorphism ψ
�

f ;M : f �M
�−→

f !M, and by formula (2.3) there is a morphism Tr�f ;M : f �M → M. Define

Tr f ;M := Tr�f ;M ◦ (ψ
�

f ;M)−1 : f !M → M.

On the level of functors this becomes a morphism

Tr f : f∗ f ! → 1

of functors from D+
f (Mod A) to itself, called the functorial trace map.

Proposition 5.2

(1) The trace maps Tr f are nondegenerate. Namely, given a finite homomorphism
f ∗ : A → B and an object M ∈ D+

f (Mod A), the morphism Tr f ;M : f !M → M is
a nondegenerate trace morphism, in the sense of Definition 2.3.

(2) The trace maps Tr f are two-functorial for finite homomorphisms. I.e. in the setup
of Definition 4.3, with both f ∗, g∗ finite, one has

Tr f◦g = Tr f ◦ Trg ◦φ f,g.
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Proof

(1) This is true because Tr f : RB → RA is a nondegenerate trace morphism. See
Corollary 3.7.

(2) This follows from Theorem 4.5(2). �

Definition 5.3 Let f ∗ : A → B be an essentially étale homomorphism in EFTAlg /K.
Composing the localization map q�

f : 1 → f∗ f � of Definition 2.8 with the isomor-

phism ψ
�

f : f � �−→ f ! of Theorem 4.6(1), we define the functorial localization map

q f : 1 → f∗ f !,

which is a morphism of functors from D+
f (Mod A) to itself.

Proposition 5.4

(1) The localization maps q f are nondegenerate. Namely, given an essentially étale
homomorphism f ∗ : A → B and an object M ∈ D+

f (Mod A), the morphism
q f ;M : M → f !M is a nondegenerate localization morphism, in the sense of
Definition 2.9.

(2) The localization maps q f are two-functorial for essentially étale homomor-
phisms. I.e. in the setup of Definition 4.3, with both f ∗, g∗ essentially étale,
one has

φ f,g ◦ q f◦g = qg ◦ q f .

Proof Assertion (1) is true because q�

f ;M : M → f �M is nondegenerate; see
Proposition 2.11. Assertion (2) is an immediate consequence of Theorem 4.6(2). �

Proposition 5.5 In the setup of Corollary 3.9 there is equality

qg ◦ Tr f = Tr f ′ ◦ φg, f ′ ◦ φ−1
f,h ◦ qh

of morphisms of functors f∗ f ! → g∗g! from D+
f (Mod A) to itself.

Proof The functorial trace maps Tr f are induced from the corresponding trace maps
between the rigid dualizing complexes, via double dualization (cf. Definition 5.1).
Likewise for the functorial localization maps q f . Thus the corollary is a consequence
of Corollary 3.9. �

Here is an illustration of Proposition 5.5. Take M ∈ D+
f (Mod A), and define N :=

f !M, M′ := g!M and N′ := h!N. Using the isomorphism φg, f ′ ◦ φ−1
f,h we identify N′ =

f ′!M′. Then the diagram

M

qg

��

N

qh

��

Tr f

��

M′ N′
Tr f ′

��

is commutative.
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For a finite flat homomorphism f ∗ : A → B we denote by trB/A : B → A the usual
trace map. Thus trB/A(b) is the trace of the operator b acting by multiplication on
the locally free A-module B.

Theorem 5.6 Suppose f ∗ : A → B is a finite étale homomorphism in EFTAlg /K.
Then for any M ∈ Db

f (Mod A) the diagram

B ⊗A M
ψ

�

f ;M

��

trB/A ⊗1M ����
��

��
��

�
f !M

Tr f ;M		��
��

��
�

M

is commutative.

Note that

ψ
�

f ;M(b ⊗ m) = b · q f ;M(m)

for any b ∈ B and m ∈ M.
We need a few lemmas for the proof of the theorem.

Lemma 5.7 Suppose M, N, R, S ∈ Db
f (Mod A), with R, S having finite injective

dimension. Then there is an isomorphism

M ⊗L
A RHomA

(
RHomA(N, R), S

) → RHomA
(
RHomA(M ⊗L

A N, R), S
)
,

which is functorial in these four complexes, and, when R = S, it commutes with the
adjunction morphisms

M ⊗L
A N → M ⊗L

A RHomA
(
RHomA(N, R), R

)

and

M ⊗L
A N → RHomA

(
RHomA(M ⊗L

A N, R), R
)
.

Proof First consider A-modules P, K, L. If P is a finitely generated projective
module, then the obvious homomorphisms of A-modules

P ⊗A HomA(K, L) → HomA
(
HomA(P, A) ⊗A K, L

)
(5.1)

and

HomA(P, A) ⊗A HomA(K, L) → HomA(P ⊗A K, L) (5.2)

are bijective.
Now choose a resolution P → M by a bounded above complex of finitely gener-

ated projective A-modules. Also choose resolutions R → I and S → J by bounded
complexes of injective modules. So

M ⊗L
A RHomA

(
RHomA(N, R), S

) = P ⊗A HomA
(
HomA(N, I), J

)
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and

RHomA
(
RHomA(M ⊗L

A N, R), S
) = HomA

(
HomA(P ⊗A N, I), J

)
.

Because each Pi is a finitely generated projective A-module, we have a bijection

Pi ⊗A HomA
(
HomA(N j, Ik), Jl)

∼= HomA
(
HomA(Pi, A) ⊗A HomA(N j, Ik), Jl)

for any i, j, k, l. Indeed, this is exactly Eq. 5.1 with K := HomA(N j, Ik) and L := Jl .
Since the three complexes N, I, J are bounded it follows that we have a canonical
isomorphism of DG A-modules

P ⊗A HomA
(
HomA(N, I), J

)

∼= HomA
(
HomA(P, A) ⊗A HomA(N, I), J

)
. (5.3)

Similarly, using Eq. 5.2, we have a canonical isomorphisms of DG A-modules

HomA
(
HomA(P, A) ⊗A HomA(N, I), J

)

∼= HomA
(
HomA(P ⊗A N, I), J

)
. (5.4)

Finally, is S = R then we can take J = I, and then it is easy to track where P ⊗A N
gets mapped in Eqs. 5.3 and 5.4. �

Given M ∈ Db
f (Mod A) let’s write

χM := Tr f ;M ◦ ψ
�

f ;M : f �M → M

(this is a temporary definition). Since f � A = B and f �M = B ⊗A M, there is a
functorial isomorphism M ⊗L

A f � A
�−→ f �M.

Lemma 5.8 The morphism χM : f �M → M is induced from χA : f � A → A via the
tensor operation M ⊗L

A −. Namely the diagram

M ⊗L
A f � A

∼=
��

1M⊗χA

��

f �M

χM

��

M ⊗L
A A

∼=
�� M

is commutative.
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Proof Take any perfect complex N ∈ Db
f (Mod A). Consider the sequence of

morphisms

M ⊗L
A f �N = M ⊗L

A (B ⊗A N)

�−→†
M ⊗L

A

(
B ⊗A RHomA

(
RHomA(N, RA), RA

))

�−→♦
M ⊗L

A RHomA
(
RHomA(N, RA), RB

)

→� M ⊗L
A RHomA

(
RHomA(N, RA), RA

)

�−→†
M ⊗L

A N (5.5)

in which † come from the adjunction isomorphism

N ∼= RHomA
(
RHomA(N, RA), RA

);
♦ comes from the localization map q f : RA → RB; and � comes from the trace map
Tr f : RB → RA. By comparing these morphisms to the definition of ψ

�

f ;M in Theorem
4.6(1), and the definition of Tr f ;M in Definition 5.1, we see that the composition of all
the morphisms in Eq. 5.5 is precisely

1M ⊗ χN : M ⊗L
A f �N → M ⊗L

A N.

Now M ⊗L
A N is also in Db

f (Mod A), because N is perfect. In parallel to the
sequence of morphisms (5.5) there is another sequence

f �
(
M ⊗L

A N
) = B ⊗A M ⊗L

A N

�−→†
B ⊗A RHomA

(
RHomA(M ⊗L

A N, RA), RA
)

�−→♦
RHomA

(
RHomA(M ⊗L

A N, RA), RB
)

→� RHomA
(
RHomA(M ⊗L

A N, RA), RA
)

�−→†
M ⊗L

A N. (5.6)

The composition of all these morphisms is χM⊗L
A N .

Since A → B is flat it follows that RB has finite injective dimension over A.
According to Lemma 5.7 at each step there is a canonical isomorphism from the
object in Eq. 5.5 to the corresponding object in Eq. 5.6, and together these form a big
commutative ladder. Therefore we get a commutative diagram

M ⊗L
A f �N

∼=
��

1M⊗χN

��

f �(M ⊗L
A N)

χM⊗L
A N

��

M ⊗L
A N

=
�� M ⊗L

A N

functorial in M and N. Taking N := A we get the desired assertion. �
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Lemma 5.9 The morphism

χA : f �
(

A, ρtau
A

) → (
A, ρtau

A

)

is a nondegenerate rigid trace morphism relative to A.

Proof Since f � ∼= f � and Tr�f ;A : f � A → A is a nondegenerate rigid trace morphism
relative to A, it follows that bχA is a nondegenerate rigid trace morphism relative to
A for some unique b ∈ B×. We are going to prove that b = 1.

Take the rigid dualizing complex (RA, ρA) ∈ Db
f (Mod A)rig/K . Recall the tensor

operation for rigid complexes (Theorem 2.12). Trivially the isomorphism

(RA, ρA) ⊗L
A (A, ρtau) ∼= (RA, ρA)

is rigid over A relative to K. According to [28, Theorem 6.3(2)] the isomorphism

(RA, ρA) ⊗L
A f �(A, ρtau) ∼= f �(RA, ρA)

is rigid over B relative to K. Since the tensor operation of rigid complexes is
functorial, it follows that the morphism

1RA ⊗ bχA : f �(RA, ρA) → (RA, ρA)

is a nondegenerate rigid trace morphism. Next, from Lemma 5.8 we know that

1RA ⊗ χA = χRA : f � RA → RA.

We conclude that

bχRA : f �(RA, ρA) → (RA, ρA)

nondegenerate rigid trace morphism over A relative to K.
On the other hand

χRA = Tr�f ◦
(
ψ

�,rig
f

)−1 ◦ ψ
�,rig
f : f �(RA, ρA) → (RA, ρA),

which itself is a rigid trace morphism over A relative to K. Since there is only one
nondegenerate rigid trace morphism f �(RA, ρA) → (RA, ρA), it follows that bχRA =
χRA , and hence b = 1. �

Proof of Theorem 5.6 By definition trB/A ⊗ 1M is induced from trB/A. And according
to Lemma 5.8 the morphism χM = Tr f ;M ◦ ψ

�

f ;M is also induced from χA. Therefore

it is enough to look at M = A. We must show that Tr f ;A ◦ψ
�

f ;A = trB/A.
Let Be := B ⊗A B. According to [28, Proposition 3.15] we know that there is a

canonical ring isomorphism Be ∼= B × B′, where the factor B′ is the kernel of the
multiplication map Be → B. Thus the surjective Be-module homomorphism Be →
B has a canonical splitting ν : B → Be. From the proofs of [28, Theorems 6.3(2) and
3.14(3)] we see that the rigidifying isomorphism ρ := f �(ρtau) of B = f � A is precisely

ν : B
�−→ HomBe(B, Be) = SqB/A B.

Now Lemma 5.9 says that the morphism

χA = Tr f ;A ◦ ψ
�

f ;A : (B, ρ) → (A, ρtau)
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is a nondegenerate rigid trace morphism relative to A. Since trB/A is also nondegen-
erate, it suffices to prove that trB/A is a rigid trace morphism relative to A.

We have finite flat ring homomorphisms A → B
g∗
−→ Be, where g∗ is b 	→ b ⊗ 1.

Because Be ∼= B × B′ we have

trBe/B
(
ν(b)

) = tr(B×B′)/B(b , 0) = b

for any b ∈ B. But trBe/A = trB/A ⊗ trB/A, and we know that ρ = ν. Also the traces
are transitive. So

trB/A(b) = (trB/A ◦ trBe/B)
(
ν(b)

) = trBe/A
(
ν(b)

) = (trB/A ⊗ trB/A)
(
ρ(b)

)
.

This means that indeed trB/A is a rigid trace morphism relative to A. �

6 Traces of Differential Forms

A useful feature of Grothendieck duality theory is that it gives rise to traces of
differential forms. Such traces are quite hard to construct directly (cf. [7, 11] and
[10]). The aim of this section is to construct trace maps and to study some of their
properties. The connection of our constructions to [15] is via Theorem 4.10.

As before K is a regular noetherian ring of finite Krull dimension.

Definition 6.1 Suppose A
f ∗

−→ B
g∗
−→ C are homomorphisms in EFTAlg /K, with f ∗ :

A → B and ( f ◦ g)∗ : A → C essentially smooth of relative dimension n, and
g∗ : B → C finite. According to Theorem 4.6(1) there are isomorphisms ψ

�

f ;A :
�n

B/A[n] �−→ f ! A and ψ
�

f◦g;A : �n
C/A[n] �−→ ( f ◦ g)! A. From Definition 5.1 there is a

trace map Trg : g∗g! �−→ 1, and from Definition 4.3 there is an isomorphism φ f,g :
( f ◦ g)! �−→ g! f !. Define

TrC/B/A = Tr f/A := (ψ
�

f )
−1 ◦ Trg ◦φ f,g ◦ ψ

�

f◦g[−n].
Thus

TrC/B/A : �n
C/A → �n

B/A

is a B-linear homomorphism called the trace map.

Theorem 6.2 Let A → B → C be homomorphisms in EFTAlg /K as in Definition 6.1.

(1) The trace map TrC/B/A : �n
C/A → �n

B/A is nondegenerate, i.e. it induces a bijec-
tion �n

C/A
∼= HomB(C, �n

B/A).
(2) Suppose that C → D is a finite homomorphism, such that the composed homo-

morphism A → D is also essentially smooth of relative dimension n. Then there
is equality

TrD/B/A = TrC/B/A ◦ TrD/C/A .

Proof These assertions follow directly from Proposition 5.2(1,2) respectively. �
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Remark 6.3 In the setup of Definition 6.1, the homomorphism g∗ : B → C is actually
flat. The proof will be published elsewhere; but here is the idea. It suffices to check
the flatness of g∗ after passing to the induced homomorphisms Âp → B̂q → Ĉr

between the complete local rings, where r ∈ Spec C is arbitrary, q := g(r) and p :=
f (q). We then prove that these homomorphisms can be lifted to homomorphisms
Ã → B̃ → C̃, such that all three rings are regular complete local rings, and B̃ → C̃
is finite and injective. It is now a classical result that B̃ → C̃ is flat.

Remark 6.4 R. Hübl has communicated to us that results of Kunz [10] imply that
the homomorphism g∗ : B → C above is not only flat, but in fact a locally complete
intersection. Hence according to [10, Section 16] there is a trace map σC/B : �C/A →
�B/A, which is a homomorphism of DG modules. In degree n it is a nondegenerate
A-linear map σ n

C/B : �n
C/A → �n

B/A. Presumably Kunz’s trace map σ n
C/B coincides

with our trace map TrC/B/A, although this is quite hard to verify (cf. Propositions
6.9 and 6.10 below).

Remark 6.5 One can show that

TrC/B/A[n] : ( f ◦ g)�(A, ρtau) → f �(A, ρtau)

is the unique nondegenerate rigid trace morphism over B relative to A between these
two rigid complexes. This means that the trace map TrC/B/A is actually independent
of the base ring K. cf. a similar phenomenon for the cohomological residue map in
Yekutieli (in preparation).

Definition 6.6 Let A
f ∗

−→ B
g∗
−→ C be homomorphisms in EFTAlg /K, with f ∗ : A →

B essentially smooth of relative dimension n, and g∗ : B → C essentially étale.
Define a B-linear homomorphism

qC/B/A : �n
B/A → �n

C/A

by the formula

qC/B/A

(
b 0db 1 ∧ · · · ∧ db n

) = g∗(b 0)d
(
g∗(b 1)

) ∧ · · · ∧ d
(
g∗(b n)

)

for any b 0, . . . , b n ∈ B. Here d is the de Rham differential.

It is trivial that qC/B/A is a nondegenerate localization homomorphism, namely

1 ⊗ qC/B/A : C ⊗B �n
B/A → �n

C/A

is bijective.

Lemma 6.7 Let A
f ∗

−→ B
g∗
−→ C be as in Definition 6.6. Then

qC/B/A[n] : f �(A, ρtau) → ( f ◦ g)�(A, ρtau)

is the unique nondegenerate rigid localization morphism over B relative to A between
these two rigid complexes.
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Proof By [28, Theorem 6.3(3)] the obvious isomorphism

ν : g� f �(A, ρtau)
�−→ ( f ◦ g)�(A, ρtau)

is rigid. And according to [28, Proposition 6.8] the localization map

q�
g : f �(A, ρtau) → g� f �(A, ρtau)

is the unique nondegenerate rigid localization map. But qC/B/A[n] = ν ◦ q�
g. �

The next result says that the trace maps commute with localizations.

Proposition 6.8 Consider a commutative diagram

A �� B ��

��

C

��

B′ �� C′

in EFTAlg /K, in which the homomorphisms A → B and A → C are essentially
smooth of relative dimension n; B → C is finite; B → B′ is a localization; and the
square is cartesian (i.e. C′ ∼= B′ ⊗B C). Then the diagram

�n
B/A

qB′/B/A

��

�n
C/A

TrC/B/A

��

qC′/C/A

��

�n
B′/A �n

C′/A
TrC′/B′/A

��

is commutative.

Proof Let’s write e∗ : A → B and g∗ : B → B′. By Lemma 6.7 the localization
map qB′/B/A[n] : �n

B/A[n] → �n
B′/A[n] gets sent to the localization map qg : e! A →

(e ◦ g)! A under the isomorphisms ψ
�

e;A : �n
B/A[n] �−→ e! A and ψ

�

e◦g;A : �n
B/A[n] �−→

(e ◦ g)! A of Theorem 4.6. Likewise for qC′/C/A[n]. Now we can use Proposition 5.5.
�

To finish the paper here are two nice properties of the trace map.

Proposition 6.9 In the setup of Definition 6.1, assume that the ring A is reduced. Then
for any β ∈ �n

B/A and c ∈ C one has

TrC/B/A(cβ) = trC/B(c) · β ∈ �n
B/A.

Proof Denote by A′ the total ring of fractions of A, and let B′ := A′ ⊗A B. Since
A → A′ is injective, so is �n

B/A → �n
B′/A. Now A′ is a finite product of fields, and

hence B′ is a finite product of integral domains (cf. [28, Proposition 3.2]). Let
B′′ be the total ring of fractions of B′. Then B′′ is a finite product of fields, and
�n

B′/A → �n
B′′/A is injective. Note that C′ := A′ ⊗A C is also a finite product of
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integral domains, so C′′ := B′′ ⊗B C′ is a finite product of fields. Due to Proposition
6.8 we may replace A → B → C with A → B′′ → C′′. We can also localize at one of
the factors of B′′. Thus we might as well assume that B is a field and C = ∏

Ci is a
finite product of fields.

Since each homomorphism C → Ci is both finite and a localization, Theorem
6.2(2) and Proposition 6.8 imply that for any γ ∈ �n

Ci/A the i-th component of
TrCi/C/A(γ ) ∈ �n

C/A = ⊕
j �

n
C j/A is γ , and all other components are zero. We con-

clude that we can replace C with Ci; i.e. C can be assumed to be a field.
Now there are two cases to look at. If the finite field extension B → C is separable

then TrC/B/A(cβ) = trC/B(c) · β by Theorem 5.6. On the other hand, if B → C is
inseparable then trC/B(c) = 0 and also qC/B/A(β) = 0. �

Proposition 6.10 Let A ∈ EFTAlg /K be an integral domain whose field of fractions
has characteristic 0. Let B := A[s] and C := A[t] be polynomial algebras in one
variable each. Define an A-algebra homomorphism f ∗ : B → C by f ∗(s) := tn for
some positive integer n. Then

TrC/B/A
(
tn−1dt

) = ds,

and

TrC/B/A
(
tidt

) = 0 for 0 ≤ i ≤ n − 2.

Proof Let A′ be the fraction field of A. And let’s write TrC/B/A
(
tidt

) = pi(s)ds with
pi(s) ∈ B = A[s]. So we need to prove that pn−1(s) = 1 and pi(s) = 0 for 0 ≤ i ≤
n − 2. Due to Proposition 6.8 we can localize to B′ := A′[s] and C′ := A′[t].
Denote by f ′∗ : B′ → C′ the corresponding homomorphism. Take any nonzero
λ ∈ A′. There are A′-algebra automorphisms g∗

λ : B′ → B′ and h∗
λ : C′ → C′, de-

fined by g∗
λ(s) := λns and h∗

λ(t) := λt, and these satisfy h∗
λ ◦ f ′∗ = f ′∗ ◦ g∗

λ. Since the
trace is functorial (Theorem 6.2(2)) we have Tr f ′/A ◦ Trhλ/A = Trgλ/A ◦ Tr f ′/A. But
by Proposition 6.9, Trgλ/A

(
g∗

λ(β)
) = β for any β ∈ �n

B′/A; so that Trgλ/A
(

p(s)ds
) =

p(λ−ns)d(λ−ns) for any polynomial p(s) ∈ B = A[s]. Likewise Trhλ/A
(
tidt

) =
λ−(i+1)tidt. We conclude that

λ−(i+1) pi(s)ds = (Tr f ′/A ◦ Trhλ/A)(tidt)

= (Trgλ/A ◦ Tr f ′/A)(tidt)

= pi(λ
−ns)d(λ−ns).

Therefore pi(λ
−ns) = λn−(i+1) pi(s). Since this is true for infinitely many λ we must

have pi(s) = 0 for 0 ≤ i ≤ n − 2, and pn−1(s) is a constant.
In order to compute the value of pn−1(s) ∈ A we note that f ′∗(ds

) = ntn−1dt. Since
we are in characteristic 0 we can divide by n, and by Proposition 6.9 we get

TrC′/B′/A
(
tn−1dt

) = TrC′/B′/A
(

f ′∗(n−1ds
))

= trC′/B′/A(1C′) · n−1ds

= ds. �
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Remark 6.11 The extra assumptions on the algebra A in the last two propositions
are not really necessary. In Proposition 6.10 we can actually let A be an arbitrary
algebra in EFTAlg /K. For the proof we would then use “rigid base change” [which
is developed in Yekutieli (in preparation) to prove results on the residue map]. Base
change allows us to replace both K and A with the ring of integers Z.

Similarly, in Proposition 6.9 we can let A be an arbitrary algebra in EFTAlg /K.
However the proof here requires methods that aren’t available yet, namely rigid
complexes over adically complete rings. The idea is to use rigid base change, and
the setup explained in Remark 6.3, to replace A → B → C with Ã → B̃ → C̃. It is
possible to choose the complete regular local ring Ã such that it has field of fractions
of characteristic 0.
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