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RIGID DUALIZING COMPLEXES ON SCHEMES

AMNON YEKUTIELI AND JAMES J. ZHANG

ABSTRACT. In this paper we present a new approach to Grothendieck duality on schemes.
Our approach is based on the idea of rigid dualizing complexes, which was introduced by
Van den Bergh in the context of noncommutative algebraic geometry. We obtain most
of the important features of Grothendieck duality, yet manage to avoid lengthy and dif-
ficult compatibility verifications. Our results apply to finite type schemes over a regular
noetherian finite dimensional base ring, and hence are suitable for arithmetic geometry.

0. INTRODUCTION

Grothendieck duality for schemes was introduced in the book“Residues and Duality”
[RD] by R. Hartshorne. This duality theory has applicationsin various areas of algebraic
geometry, including moduli spaces, resolution of singularities, arithmetic geometry, enu-
merative geometry and more.

In the forty years since the publication of [RD] a number of related papers appeared in
the literature. Some of these papers provided elaborationson, or more explicit versions of
Grothendieck duality (e.g. [Kl], [Li], [HK], [Ye2], [Ye3],[Sa]). Other papers contained
alternative approaches (e.g. [RD, Appendix], [Ve] and [Ne]). The recent book [Co] is a
complement to [RD] that fills gaps in the proofs, and also contains the first proof of the
Base Change Theorem. A noncommutative version of Grothendieck duality was developed
in [Ye1], which has applications in algebra (e.g. [EG]) and even in mathematical physics
(e.g. [KKO]). Other papers sought to extend the scope of Grothendieck duality to formal
schemes (e.g. [AJL] and [LNS]) or to differential graded algebras (see [FIJ]).

In this paper we present a new approach to Grothendieck duality on schemes, including
Conrad’s results on base change. The key idea in our approachis the use ofrigid dualizing
complexes. This notion was introduced by Van den Bergh [VdB] in the context of noncom-
mutative algebraic geometry, and was developed further in our papers [YZ1, YZ2, YZ3].

The background material we need is standard algebraic geometry (from [EGA]), the
theory of derived categories (from [RD] or [KS]), and its generalization to differential
graded algebras (which is discussed in Section 1). We also need a few isolated results on
dualizing complexes from [RD]. Apart from that our treatment is self-contained.

Let us explain what are rigid dualizing complexes and how they are used in our pa-
per. Fix for the rest of the introduction a finite dimensional, regular, noetherian, com-
mutative base ringK. Let A be an essentially finite type commutativeK-algebra. The
bounded derived category ofA-modules is denoted byDb(ModA). Given a complex
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M ∈ Db(ModA) we define itssquareSqA/K M ∈ Db(ModA). If A is flat overK the
squaring operation is very easy to define:

SqA/K M := RHomA⊗KA(A,M ⊗L
K M).

But in general the definition is more complicated, and requires differential graded algebras
(see Section 2). Given a morphismφ : M → N in Db(ModA) there is an induced
morphismSqA/K(φ) : SqA/K M → SqA/K N . For anya ∈ A one hasSqA/K(aφ) =

a2 SqA/K(φ); hence the name “squaring”.

A rigidifying isomorphismfor M is an isomorphismρ : M
≃
−→ SqA/K M in

Db(ModA). The pair(M,ρ) is called arigid complex overA relative toK. Suppose
(M,ρM ) and (N, ρN ) are two rigid complexes. Arigid morphismφ : (M,ρM ) →
(N, ρN ) is a morphismφ : M → N in Db(ModA) such thatρN ◦ φ = SqA/K(φ) ◦ ρM .
Observe that if(M,ρM ) is a rigid complex such thatRHomA(M,M) = A, andφ :
(M,ρM ) → (M,ρM ) is a rigid isomorphism, thenφ is multiplication by some invertible
elementa ∈ A satisfyinga = a2; and thereforea = 1. We conclude thatthe identity is the
only rigid automorphism of(M,ρM ).

Let B be another essentially finite type commutativeK-algebra, and letf∗ : A → B
be a homomorphism. First assumef∗ is finite, and letf ♭M := RHomA(B,M) ∈
D+(ModB). If f ♭M has bounded cohomology then we there is an induced rigidifying iso-
morphismf ♭(ρM ) : f ♭M

≃
−→ SqB/K f

♭M (see Theorem 3.14). We writef ♭(M,ρM ) :=

(f ♭M, f ♭(ρM )). Next assumef∗ is either smooth of relative dimensionn or a localiza-
tion, and letf ♯M := ΩnB/A[n]⊗AM ∈ Db(ModB). Then there is an induced rigidifying

isomorphismf ♯(ρM ) : f ♯M
≃
−→ SqB/K f

♯M (see Theorem 3.22), and thus a new rigid
complexf ♯(M,ρM ) := (f ♯M, f ♯(ρM )).

Now let’s consider dualizing complexes. Recall that a complex R ∈ Db
f (ModA)

is dualizing if it has finite injective dimension, and if the canonical morphismA →
RHomA(R,R) is an isomorphism. Arigid dualizing complex overA relative toK is
a rigid complex(R, ρ) such thatR is dualizing.

Here is the first main result of our paper.

Theorem 0.1. Let K be a regular finite dimensional noetherian ring, and letA be an
essentially finite typeK-algebra.

(1) The algebraA has a rigid dualizing complex(RA, ρA), which is unique up to a
unique rigid isomorphism.

(2) Given a finite homomorphismf∗ : A → B, there is a unique rigid isomorphism
f ♭(RA, ρA)

≃
−→ (RB , ρB).

(3) Given a homomorphismf∗ : A → B which is either smooth or a localization,
there is a unique rigid isomorphismf ♯(RA, ρA)

≃
−→ (RB, ρB).

This theorem is a combination of Theorems 4.3, 4.6 and 4.13 inthe body of the paper.
Theorem 0.1 pretty much covers Grothendieck duality for affine schemes. For instance, it
it gives rise to a trace morphismTrf : RB → RA for a finite homomorphismf∗ : A→ B,
which is functorial and nondegenerate (see Proposition 4.8).

Let f∗ : A → B be a smooth homomorphism ofK-algebras, and leti∗ : B → B̄ be
a finite homomorphism. Assumeg∗ := i∗ ◦ f∗ is finite and flat. SinceSqA/AA = A

we get the tautological rigid complex(A, ρtau). As explained above, there are two rigid
complexesg♭(A, ρtau) andi♭f ♯(A, ρtau) overB̄ relative toA. By Theorem 0.1 there exist
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isomorphismsRB ∼= f ♯A, RB̄ ∼= i♭RB andRB̄ ∼= g♭A. Composing them we obtain an
isomorphismζ : g♭A

≃
−→ i♭f ♯A called theresidue isomorphism.

Theorem 0.2. The residue isomorphismζ is the unique rigid isomorphismg♭(A, ρtau)
≃
−→

i♭f ♯(A, ρtau) relative toA.

This theorem is restated as Theorem 5.2. It implies, among other things, that the residue
isomorphism of independent of the base ringK.

The passage to schemes requires gluing dualizing complexes. We achieve this using
the concept ofstack of subcategories ofDb(ModOX); see Definition 6.4. On a finite type
K-schemeX there is a dimension function that is intimately related to rigid dualizing com-
plexes; we denote it bydimK (see Definition 6.10). Following [RD] we say that a complex
M ∈ Db(ModOX) is aCohen-Macaulay complexif the local cohomologiesHi

xM van-
ish wheneveri 6= − dimK(x). Let us denote byDb

qc(ModOX)CM the subcategory of
Cohen-Macaulay complexes with quasi-coherent cohomologies.

Theorem 0.3. LetK be a regular finite dimensional noetherian ring, and letX be a finite
typeK-scheme. The assignmentU 7→ Db

qc(ModOU )CM, for open setsU ⊂ X , is a stack
of subcategories ofD(ModOX).

This means that Cohen-Macaulay complexes can be glued. The theorem is repeated as
Theorem 6.5 in the body of the paper. In an earlier version of our paper, which was enti-
tled “Rigid Dualizing Complexes and Perverse Sheaves on Schemes”, a similar result was
proved using the rigid perverse t-structure onDb

c (ModOX). The perverse sheaf approach
is indispensable for noncommutative algebraic geometry (cf. [YZ4]). However, we later
realized that for commutative schemes it is possible, and easier, to prove the required result
using Cousin complexes.

A rigid structureon a complexM ∈ Db
c (ModOX) is a collectionρ = {ρU}, where

for every affine open setU ⊂ X , ρU is a rigidifying isomorphism for the complexMU :=
RΓ(U,M) over the algebraAU := Γ(U,OX) relative toK. The condition is that for an
inclusionf : V → U of affine open sets, the localization isomorphismf ♯(MU , ρU ) →
(MV , ρV ) should be rigid. Arigid dualizing complex onX is a pair(RX ,ρX), whereRX

is a dualizing complex andρX is a rigid structure on it.
Supposef : X → Y is a morphism between finite typeK-schemes. Iff is finite then

there is a functorf ♭ : D(ModOY ) → D(ModOX) defined by

f ♭N := OX ⊗f−1f∗OX
f−1RHomOY (f∗OX ,N ).

On the other hand iff is smooth we have a functorf ♯ : D(ModOY ) → D(ModOX)
defined as follows. LetX1, . . . , Xr be the connected components ofX , with inclusions
gi : Xi → X . Letni be the rank ofΩ1

Xi/Y
. Then

f ♯N :=
(

⊕

i
gi∗ Ωni

Xi/Y
[ni]

)

⊗OX f∗N .

The combination of Theorems 0.1 and 0.3 implies, without much effort, the next result
(which is repeated as Theorems 6.13 and 6.16).

Theorem 0.4. LetK be a regular finite dimensional noetherian ring.

(1) LetX be a finite typeK-scheme. The schemeX has a rigid dualizing complex
(RX ,ρX), which is unique up to a unique rigid isomorphism.

(2) Given a finite morphismf : X → Y , the complexf ♭RY is a dualizing complex
onX , and it has an induced rigid structuref ♭(ρY ). Hence there is a unique rigid
isomorphismRX

∼= f ♭RY in D(ModOX).
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(3) Given a smooth morphismf : X → Y , the complexf ♯RY is a dualizing complex
onX , and it has an induced rigid structuref ♯(ρY ). Hence there is a unique rigid
isomorphismRX

∼= f ♯RY in D(ModOX).

We can now define therigid auto-duality functorDX := RHomOX (−,RX). For a
morphismf : X → Y we define a functor

f ! : D+
c (ModOY ) → D+

c (ModOX)

as follows. IfX = Y andf = 1X (the identity automorphism) thenf ! := 1
D

+
c (ModOX)

(the identity functor). Otherwise we definef ! := DX Lf∗ DY . Let FTSch /K be the
category of finite type schemes overK, and letCat denote the category of all categories.

Corollary 0.5. The assignmentf 7→ f ! is the1-component of a contravariant2-functor
FTSch /K → Cat, whose0-component isX 7→ D+

c (ModOX).

For details on2-functors see [Ha, Section I.1.5]. Some authors use the term“pseudo-
functor”.

A rigid residue complexonX is a rigid dualizing complex(KX ,ρX), such that for ev-
eryp there is an isomorphism of sheavesKpX

∼=
⊕

dimK (x)=−pJ (x). HereJ (x) denotes
an injective hull of the residue fieldk(x), considered as a quasi-coherent sheaf, constant
on {x}. It is quite easy to prove that a rigid residue complex exists: apply the Cousin
functorE to the rigid dualizing complexRX (see Section 6). The complexKX := ERX

is isomorphic toRX in D(ModOX), and hence it inherits a rigid structureρX . This rigid
residue complex is unique up to a unique isomorphism of complexes; see Proposition 7.2.
Notice that the rigid auto-duality functor becomesDX = HomOX (−,KX).

For a pointx with dimK(x) = −p let KX(x) := Hp
xKX . Due to the structure of

the complexKX we see thatKX(x) ∼= J (x) andKpX =
⊕

dimK(x)=−pKX(x). Now
KX(x) only depends on the local ringOX,x. This fact, plus the traces for finite algebra
homomorphisms, allow us to define a trace mapTrf : f∗KX → KY for any morphism of
schemesf : X → Y . This trace is only a map of gradedOY -modules, but it is functorial,
i.e.Trg◦f = Trg ◦Trf for composable morphisms (see Definition 7.6 and Proposition 7.7).

Theorem 0.6.Letf : X → Y be a proper morphism between finite typeK-schemes. Then
Trf : f∗KX → KY is a homomorphism of complexes.

The theorem is restated as Theorem 7.14 in the body of the paper. The proof goes like
this: as in [RD], we reduce to the caseY = SpecK with K a field, andX = P

1
K . We

then use explicit calculations (involving the residue isomorphism and using Theorem 0.2)
to do this case.

Due to Theorem 0.6 we get a trace mapTrf : Rf∗f
! → 1, which is a transforma-

tion of functors fromD+
c (ModOY ) to itself. It is not hard to deduce that this trace is

nondegenerate (this is Theorem 7.17 in the body of the paper):

Theorem 0.7. Let f : X → Y be a proper morphism of finite typeK-schemes, letM ∈
Db

c (ModOX) and letN ∈ Db
c (ModOY ). Then the morphism

Rf∗RHomOX (M, f !N ) → RHomOY (Rf∗M,N )

in D(ModOY ) induced byTrf : Rf∗f
!N → N is an isomorphism.

Our last results deal with therelative dualizing sheaf. Supposef : X → Y is flat of
relative dimensionn (i.e. the fibers off are equidimensional of dimensionn). We then
defineωX/Y := H−nf !OY . This is a coherent sheaf onX with nice properties. For



RIGID DUALIZING COMPLEXES ON SCHEMES 5

instance, ifU ⊂ X is an open set such thatf |U is smooth, then, due to Theorem 0.4(3), we
haveωX/Y |U = ΩnU/Y . In casef is a Cohen-Macaulay morphism of relative dimension

n (i.e. flat with Cohen-Macaulay fibers) thenf !OY = ωX/Y [n] (see Proposition 9.5).
We can sometimes characterize the relative dualizing sheafexplicitly: if f is generically
smooth and bothX andY are integral schemes, thenωX/Y is a subsheaf of the constant
quasi-coherent sheafΩn

k(X)/k(Y ). Moreover, under some separability assumptions (e.g.
chark(Y ) = 0) we can describe the subsheafωX/Y ⊂ Ωn

k(X)/k(Y ) explicitly in terms of
traces (see Theorem 8.7).

Finally we have this main result, which is our version of Conrad’s work [Co].

Theorem 0.8. Suppose

X ′

f ′

��

h // X

f
��

Y ′
g

// Y

is a cartesian diagram inFTSch /K, with f a Cohen-Macaulay morphism of relative di-
mensionn, andg any morphism.

(1) There is a homomorphismOX -modules

θf,g : ωX/Y → h∗ωX′/Y ′ ,

such that the inducedOX′ -linear homomorphismh∗(θf,g) : h∗ωX/Y → ωX′/Y ′

is an isomorphism. The homomorphismθf,g has a local characterization in terms
of rigidity.

(2) Assume the morphismf is proper. Then

g∗ ◦ Trf = g∗(Trf ′) ◦ Rnf∗(θf,g) : Rnf∗ωX/Y → g∗OY ′ .

This theorem, with full details, appears as Theorems 9.6 and9.12 in the body of the
paper. In casef is smooth of relative dimensionn, the homomorphismθf,g is the usual
base change homomorphismΩnX/Y → h∗Ω

n
X′/Y ′ ; see Corollary 9.9.

To end the introduction let us mention a potential further implementation of our meth-
ods: Grothendieck duality for algebraic stacks (in the sense of [LMB]). Let X be a Deligne-
Mumford stack, with étale presentationP : X → X by a finite typeK-schemeX . Since
our methods are local, and rigid dualizing complexes have anextremely controlled vari-
ance with respect to étale morphisms (see Theorem 0.1(3)),it is conceivable that one could
glue the rigid dualizing complexRX to a dualizing complexRX onX.

Acknowledgments.The authors wish to thank Bernhard Keller for his generous help with
differential graded algebras. We also wish to thank Luchezar Avramov, Brian Conrad,
Joseph Lipman, Amnon Neeman, Paramathanath Sastry and Michel Van den Bergh for
useful discussions and valuable suggestions.
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1. DIFFERENTIAL GRADED ALGEBRAS

This section contains some technical material about differential graded algebras and
their derived categories. The results are needed for treating rigid dualizing complexes
when the base ringK is not a field. There is some overlap here with the papers [FIJ], [Ke]
and [Be]. We recommend skipping this section, as well as Section 2, when first reading
the paper; the reader will just have to assume thatK is a field, and replace⊗L

K with ⊗K

everywhere.
Let K be a commutative ring. A gradedK-algebraA =

⊕

i∈Z A
i is said to besuper-

commutativeif ab = (−1)ijba for all a ∈ Ai andb ∈ Aj , and if a2 = 0 wheneveri
is odd. (Some authors call such a graded algebra strictly commutative.)A is said to be
non-positiveif Ai = 0 for all i > 0. Throughout the paper all graded algebras are assumed
to be non-positive, super-commutative, associative, unital K-algebras by default, and all
algebra homomorphisms are overK.

By differential graded algebra(or DG algebra) overK we mean a gradedK-algebra
A =

⊕

i≤0 A
i, together with aK-linear derivationd : A → A of degree1 satisfying

d ◦ d = 0. Note that the graded Leibniz rule holds:

d(ab) = d(a)b + (−1)iad(b)

for a ∈ Ai andb ∈ Aj .
A DG algebra homomorphismf : A → B is a degree0 homomorphism of graded

K-algebras that commutes withd. It is a quasi-isomorphism ifH(f) is an isomorphism (of
graded algebras).

A differential graded (DG)A-module is a graded (left)A-moduleM =
⊕

i∈Z M
i,

endowed with a degree1 K-linear homomorphismd : M → M satisfyingd(am) =
d(a)m + (−1)iad(m) for a ∈ Ai andm ∈ M j. Note that we can makeM into a right
DG A-module by the rulema := (−1)ijam for a ∈ Ai andm ∈ M j. The category of
DG A-modules is denoted byDGModA. It is an abelian category whose morphisms are
degree0 A-linear homomorphisms commuting with the differentials.

There is a forgetful functor from DG algebras to graded algebras (it forgets the dif-
ferential), and we denote it byA 7→ undA. Likewise forM ∈ DGModA we have
undM ∈ GrMod(undA), the category of gradedundA -modules. A DGK-module is
just a complex ofK-modules.

Given a graded algebraA and two gradedA-modulesM andN let us write

HomK(M,N)i :=
∏

j∈Z

HomK(M j , N j+i),

the set of homogeneousK-linear homomorphisms of degreei fromM toN , and let

HomA(M,N)i :=

{φ ∈ HomK(M,N)i | φ(am) = (−1)ijaφ(m) for all a ∈ Aj andm ∈M}.



RIGID DUALIZING COMPLEXES ON SCHEMES 7

Then

(1.1) HomA(M,N) :=
⊕

i∈Z
HomA(M,N)i

is a gradedA-module, by the formula(aφ)(m) := aφ(m) = (−1)ijφ(am) for a ∈ Aj

andφ ∈ HomA(M,N)i. Cf. [ML, Chapter VI]. The setHomA(M,N) is related to the
set ofA-linear homomorphismsM → N as follows. Let’s denote byungr the functor
forgetting the grading. Then the map

Φ : HomA(M,N) → HomungrA(ungrM, ungrN),

defined byΦ(φ)(m) := (−1)ijφ(m) for φ ∈ HomA(M,N)i andm ∈ M j , is ungrA
-linear, andΦ is bijective ifM is a finitely generatedA-module.

For a DG algebraA and two DGA-modulesM,N there is a differentiald on
HomundA(undM, undN), with formulad(φ) := d ◦φ+ (−1)i+1φ ◦d for φ of degreei.
The resulting DGA-module is denoted byHomA(M,N). Note thatHomDGModA(M,N)
coincides with the set of0-cocycles ofHomA(M,N). Two homomorphismsφ0, φ1 ∈
HomDGModA(M,N) are said to behomotopic if φ0 − φ1 = d(ψ) for someψ ∈
HomA(M,N)−1. The DG modulesM andN are calledhomotopy equivalentif there
are homomorphismsφ : M → N andψ : N →M in DGModA such thatψ ◦φ andφ ◦ψ
are homotopic to the respective identity homomorphisms.

SupposeA andB are two DGK-algebras. ThenA ⊗K B is also a DGK-algebra; the
sign rule says that(a1⊗b1)·(a2⊗b2) := (−1)ija1a2⊗b1b2 for b1 ∈ Bj anda2 ∈ Ai. The
differential is of coursed(a⊗b) := d(a)⊗b+(−1)ia⊗d(b) for a ∈ Ai. If M ∈ DGModA
andN ∈ DGModB thenM ⊗K N ∈ DGModA⊗K B. If N ∈ DGModA thenM ⊗AN ,
which is a quotient ofM ⊗K N , is a DGA-module.

LetA be a DG algebra. SinceA is non-negative one hasd(A0) = 0; and therefore the
differentiald : M i → M i+1 of any DGA-moduleM is A0-linear. This easily implies
that the truncated objects

(1.2)

τ≥iM :=
(

· · · 0 → Coker(M i−1 →M i) →M i+1 → · · ·
)

and

τ≤iM :=
(

· · · →M i−1 → Ker(M i →M i+1) → 0 → · · ·
)

are DGA-modules.
There is a derived category obtained fromDGModA by inverting the quasi-isomor-

phisms, which we denote bỹD(DGModA). See [Ke] for details. Note that in caseA is a
usual algebra (i.e. it is concentrated in degree0) thenDGModA = C(ModA), the abelian
category of complexes ofA-modules, and̃D(DGModA) = D(ModA), the usual derived
category ofA-modules.

In order to derive functors one has several useful devices. ADGA-moduleP is called
K-projectiveif for any acyclic DGA-moduleN the DG moduleHomA(P,N) is acyclic.
(This name is due to Spaltenstein [Sp]. Keller [Ke] uses the term “property (P)” to indicate
K-projective DG modules, and in [AFH] the authors use “homotopically projective”. See
also [Hi].) Similarly one definesK-injectiveandK-flat DG modules:I is K-injective, and
F is K-flat, if HomA(N, I) andF ⊗AN are acyclic for all acyclicN . It is easy to see that
any K-projective DG module is also K-flat. Every two objectsM,N ∈ DGModA admit
quasi-isomorphismsP → M , N → I andF → M , with P K-projective,I K-injective
andF K-flat. Then one defines

RHomA(M,N) := HomA(P,N) ∼= HomA(M, I) ∈ D̃(DGModA)
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and
M ⊗L

A N := F ⊗A N ∈ D̃(DGModA).

WhenA is a usual algebra, any bounded above complex of projective (resp. flat) mod-
ules is K-projective (resp. K-flat). And any bounded below complex of injectiveA-modules
is K-injective. A singleA-moduleM is projective (resp. injective, resp. flat) iff it is K-
projective (resp. K-injective, resp. K-flat) as DGA-module.

The following useful result is partly contained in [Hi], [Ke] and [KM].

Proposition 1.3. LetA→ B be a quasi-isomorphism of DG algebras.

(1) GivenM ∈ D̃(DGModA) andN ∈ D̃(DGModB), the canonical morphisms
M → B⊗L

AM andB⊗L
AN → N are both isomorphisms. Hence the “restriction

of scalars” functorD̃(DGModB) → D̃(DGModA) is an equivalence.
(2) LetM,N ∈ D̃(DGModB). Then there are functorial isomorphismsM ⊗L

B N
∼=

M ⊗L
A N andRHomB(M,N) ∼= RHomA(M,N) in D̃(DGModA).

Proof. (1) Choose K-projective resolutionsP → M andQ → N overA. ThenM →
B ⊗L

A M becomesP ∼= A ⊗A P → B ⊗A P , which is evidently a quasi-isomorphism.
On the other handB ⊗L

A N → N becomesB ⊗A Q → Q; which is a quasi-isomorphism
because so isA⊗A Q→ B ⊗A Q.

(2) Choose K-projective resolutionsP → M andQ → N overA. We note thatB ⊗A P
andB ⊗A Q are K-projective overB, andB ⊗A P → M , B ⊗A Q → N are quasi-
isomorphisms. Therefore we get isomorphisms inD̃(DGModA):

M ⊗L
B N = (B ⊗A P ) ⊗B (B ⊗A Q) ∼= (B ⊗A P ) ⊗A Q ∼= P ⊗A Q = M ⊗L

A N.

The same resolutions give

RHomB(M,N) = HomB(B ⊗A P,N) ∼= HomA(P,N) = RHomA(M,N).

�

There is a structural characterization of K-projective DG modules, which we shall re-
view (since we shall elaborate on it later). This characterization works in steps. First
one definessemi-freeDG A-modules. A DGA-moduleQ is called semi-free if there is
a subsetX ⊂ Q consisting of (nonzero) homogeneous elements, and an exhaustive non-
negative increasing filtration{FiX}i∈Z ofX by subsets (i.e.F−1X = ∅ andX =

⋃

FiX),
such thatundQ is a free gradedundA -module with basisX , and for everyi one has
d(FiX) ⊂

∑

x∈Fi−1X
Ax. The setX is called asemi-basisof Q. Note thatX is parti-

tioned intoX =
∐

i∈Z Xi, whereXi := X ∩ Qi. We call such a set agraded set. Now
a DGA-moduleP is K-projective iff it is homotopy equivalent to a direct summand (in
DGModA) of some semi-free DG moduleQ. See [AFH] or [Ke] for more details and for
proofs.

A free (super-commutative, non-positive) gradedK-algebrais a graded algebra of the
following form. One starts with a graded set of variablesX =

∐

i≤0Xi; the elements of
Xi are the variables of degreei. LetXev :=

∐

i evenXi andXodd :=
∐

i oddXi. Consider
the free associativeK-algebraK〈X〉 on this set of variables. LetI be the two-sided ideal
of K〈X〉 generated by all elements of the formxy − (−1)ijyx or z2, wherex ∈ Xi,
y ∈ Xj , z ∈ Xk, andk is odd. The free super-commutative gradedK-algebra onX is the
quotientK[X ] := K〈X〉/I. It is useful to note that

K[X ] ∼= K[Xev] ⊗K K[Xodd],
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and thatK[Xev] is a commutative polynomial algebra, whereasK[Xodd] is an exterior
algebra.

Definition 1.4. SupposeA → B is a homomorphism of DGK-algebras.B is called a
semi-free(super-commutative, non-positive)DG algebra relative to Aif there is a graded
setX =

∐

i≤0Xi, and an isomorphism of gradedundA -algebras

(undA) ⊗K K[X ] ∼= undB.

Observe that the DG algebraB in the definition above, when regarded as a DGA-
module, is semi-free with semi-basis consisting of the monomials in elements ofX . Hence
B is also K-projective and K-flat as DGA-module.

Definition 1.5. SupposeA andB are DGK-algebras andf : A→ B is a homomorphism
of DG algebras. Asemi-free(resp. K-projective, resp. K-flat) DG algebra resolution of

B relative to Ais the dataA
f̃
−→ B̃

g
−→ B, whereB̃ is a DGK-algebra,f̃ andg are DG

algebra homomorphisms, and the following conditions are satisfied:

(i) g ◦ f̃ = f .
(ii) g is a quasi-isomorphism.
(iii) f̃ makesB̃ into a semi-free DG algebra relative toA (resp. a K-projective DG

A-module, resp. a K-flat DGA-module).

We also say thatA
f̃
−→ B̃

g
−→ B is asemi-free(resp. K-projective, resp. K-flat) DG algebra

resolutionof A
f
−→ B.

B̃
g

$$I
I

I

A

f̃ ::u
u

u f
// B

Proposition 1.6. LetA andB be DGK-algebras, and letf : A → B be a DG algebra
homomorphism.

(1) There exists a semi-free DG algebra resolutionA
f̃
−→ B̃

g
−→ B ofA

f
−→ B.

(2) Moreover, ifHA is a noetherian algebra andHB is a finitely generatedHA -
algebra, then we can choose the semi-free DG algebraB̃ in part (1) such that
und B̃ ∼= (undA) ⊗K K[X ], where the graded setX =

∐

i≤0Xi has finite
graded componentsXi.

(3) If HA is a noetherian algebra,B is a usual algebra, andB = H0B is a finitely
generatedH0A -module, then there exists a K-projective DG algebra resolution
A → B̃ → B of A → B, such thatund B̃ ∼=

⊕0
i=−∞ undA[−i]µi as graded

undA -modules, and the multiplicitiesµi are finite.

Proof. (1) We shall construct̃B as the union of an increasing sequence of DG algebras
F0B̃ ⊂ F1B̃ ⊂ · · · , which will be defined recursively. At the same time we shall con-
struct an increasing sequence of DG algebra homomorphismsA → FiB̃

gi
−→ B, and an

increasing sequence of graded setsFiX ⊂ FiB̃. The homomorphismg will be the union
of thegi, and the graded setX =

∐

j≤0Xj will be the union of the setsFiX . For everyi
the following conditions will hold:

(i) H(gi) : H(FiB̃) → HB is surjective in degrees≥ −i.
(ii) H(gi) : H(FiB̃) → HB is bijective in degrees≥ −i+ 1.
(iii) FiB̃ = A[FiX ], d(FiX) ⊂ Fi−1B̃ andundFiB̃ ∼= (undA) ⊗K K[FiX ].
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We start by choosing a set of elements ofB0 that generateH0B asH0A -algebra. This
gives us a setX0 of elements of degree0 with a functiong0 : X0 → B0. Consider the
DG algebraK[X0] with zero differential; and defineF0B̃ := A ⊗K K[X0]. Also define
F0X := X0. We get a DG algebra homomorphismg0 : F0B̃ → B, and conditions (i)-(iii)
hold for i = 0.

Now assumei ≥ 0, and that for everyj ≤ i we have DG algebra homomorphisms
gj : FjB̃ → B and graded setsFjX satisfying conditions (i)-(iii). We will construct
Fi+1B̃ etc.

Choose a setY ′
i+1 of elements (of degree−i− 1) and a functiongi+1 : Y ′

i+1 → B−i−1

such that{gi+1(y) | y ∈ Y ′
i+1} is a set of cocycles that generatesH−i−1B asH0A-module.

Fory ∈ Y ′
i+1 defined(y) := 0.

Next let
Ji+1 := {b ∈ (FiB̃)−i | d(b) = 0 andH−i(gi)(b) = 0}.

Choose a setY ′′
i+1 of elements (of degree−i−1) and a functiond : Y ′′

i+1 → Ji+1 such that
{d(y) | y ∈ Y ′′

i+1} is a set of elements whose images inH−iFiB̃ generateKer
(

H−i(gi) :

H−iFiB̃ → H−iB
)

asH0A-module. Lety ∈ Y ′′
i+1. By definitiongi(d(y)) = d(b) for

someb ∈ B−i; and we definegi+1(y) := b.
Let Yi+1 := Y ′

i+1 ⊔ Y
′′
i+1 andFi+1X := FiX ⊔Yi+1. Define the DG algebraFi+1B̃ to

be
Fi+1B̃ := FiB̃ ⊗K K[Yi+1]

with differentiald extending the differential ofFiB̃ and the functiond : Yi+1 → FiB̃
defined above.

(2) This is because at each step in (1) the setsYi can be chosen to be finite.

(3) Choose elementsb1, . . . , bm ∈ B that generate it asA0-algebra. Since eachbi is
integral overA0, there is some monic polynomialpi(y) ∈ A0[y] such thatpi(bi) = 0.
Let y1, . . . , ym be distinct variables of degree0. DefineY0 := {y1, . . . , ym} andB† :=
A0[Y0]/

(

p1(y1), . . . , pm(ym)
)

. This is anA0-algebra, which is a free module of finite
rank. Letg0 : B† → B be the surjectiveA0-algebra homomorphismyi 7→ bi. Define
F0B̃ := A ⊗A0 B† andF0X := ∅. Then conditions (i)-(ii) hold fori = 0, as well as
condition (iii’) below.

(iii’) FiB̃ = A[Y0 ∪ FiX ], d(FiX) ⊂ Fi−1B̃ and

undFiB̃ ∼= (undA) ⊗A0 A0[FiX ] ⊗A0 B†.

For i ≥ 1 the proof proceeds as in part (i), but always using condition(iii’) instead of
(iii). �

Proposition 1.7. Suppose we are given three DGK-algebrasÃ, B̃, B̃′; a K-algebraB;
and five DG algebra homomorphismsf, f̃ , f̃ ′, g, g′ such that the first diagram below is
commutative. Assume thatg′ is a quasi-isomorphism, and̃B is semi-free DG algebra
relative toÃ. Then there exists a DG algebra homomorphismh : B̃ → B̃′ such that the
second diagram below is commutative.

B̃
g

$$IIIIII

Ã

f̃
::vvvvvv

f̃ ′ $$HH
HH

HH

f
// B

B̃′
g′

::uuuuuu

B̃
g

$$IIIIII

h

��
�

�

�

�

Ã

f̃
::vvvvvv

f̃ ′ $$HH
HH

HH
B

B̃′
g′

::uuuuuu
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Proof. By definition there is a graded setX =
∐

i≤0Xi such thatund B̃ ∼= (und Ã) ⊗K

K[X ]. Let’s defineFiX :=
⋃

j≥−iXj andFiB̃ := Ã[FiX ] ⊂ B̃. We shall define a

compatible sequence of DG algebra homomorphismshi : FiB̃ → B̃′, whose union will
be calledh.

For i = 0 we note thatg′ : B̃′0 → B is surjective. Hence there is a functionh0 :
X0 → B̃′0 such thatg′(h0(x)) = g(x) for everyx ∈ X0. SinceF0B̃ ∼= Ã⊗K K[X0] and
d(h0(X0)) = 0 we can extend the functionh0 uniquely to a DG algebra homomorphism
h0 : F0B̃ → B̃ such thath0 ◦ f̃ = f̃ ′.

Now assume thati ≥ 0 andhi : FiB̃ → B̃′ has been defined. LetYi+1 := Fi+1X −
FiX . This is a set of degree−i− 1 elements. Take anyy ∈ Yi+1. Thend(y) ∈ (FiB̃)−i,
and we letb := hi(d(y)) ∈ B̃′−i. BecauseHB̃ ∼= HB̃′ = B there exists an element
c ∈ B̃′−i−1 such thatd(c) = b. We now definehi+1(y) := c. The functionhi+1 : Yi+1 →
B̃′−i−1 extends to a unique DG algebra homomorphismhi+1 : Fi+1B̃ → B̃′ such that
hi+1|FiB̃

= hi. �

From here to the end of this section we assumeK is noetherian.
A homomorphismA→ A′ between twoK-algebras is called alocalizationif it induces

an isomorphismS−1A
≃
−→ A′ for some multiplicatively closed subsetS ⊂ A. We then

say thatA′ is a localization ofA. A K-algebraA is calledessentially of finite typeif A is
a localization of some finitely generatedK-algebra. Such an algebraA is noetherian. IfB
is an essentially finite typeA-algebra then it is an essentially finite typeK-algebra.

Proposition 1.8. LetA be an essentially finite typeK-algebra. Then there is a DG algebra
quasi-isomorphism̃A → A such thatÃ0 is an essentially finite typeK-algebra, and each
Ãi is a finitely generated̃A0-module and a flatK-module. In particularÃ is a K-flat DG
K-module.

Proof. Pick a finitely generatedK-algebraAf such thatS−1Af
∼= A for some multiplica-

tively closed subsetS ⊂ Af . According to Proposition 1.6(2) we can find a semi-free
DG algebra resolutioñAf → Af whereÃf has finitely many algebra generators in each
degree. Let̃S ⊂ Ã0

f be the pre-image ofS under the surjectioñA0
f → Af . Now define

Ã := (S̃−1Ã0
f ) ⊗Ã0

f
Ãf . �

Corollary 1.9. LetA be an essentially finite typeK-algebra, and letÃ → A be any K-
flat DG algebra resolution relative toK. ThenH0(Ã ⊗K Ã) is an essentially finite type
K-algebra, and eachHi(Ã⊗K Ã) is a finitely generatedH0(Ã⊗K Ã)-module.

Proof. Using Proposition 1.7, and passing via a semi-free DG algebra resolution, we can
replace the given resolutioñA → A by another one satisfying the finiteness conditions in
Proposition 1.8. Now the assertion is clear. �

LetM be a graded module. TheamplitudeampM is defined as follows. Givend ∈ N

we say thatampM ≤ d if there exists somei0 ∈ Z such that{i |M i 6= 0} ⊂ {i0, . . . , i0+
d}. Then we letampM := inf{d ∈ N | ampM ≤ d} ∈ N∪{∞}. ThusM is bounded if
and only ifampM < ∞. Now letA be a DG algebra withHA bounded, and letM be a
DGA-module. For anyd ∈ N we say thatflat.dimAM ≤ d if given anyN ∈ DGModA
the inequalityamp H(M⊗L

AN) ≤ amp HN+d holds. Theflat dimensionofM is defined
to beflat.dimAM := inf{d ∈ N | flat.dimAM ≤ d}. Observe thatM has finite flat
dimension if and only if the functorM ⊗L

A − is way out on both sides, in the sense of
[RD, Section I.7]. Similarly one can define the projective dimensionproj.dimAM of a
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DGA-moduleM , by considering the amplitude ofHRHomA(M,N). For a usual algebra
A and a single moduleM the dimensions defined above coincide with the usual ones.

Proposition 1.10.LetA andB be DGK-algebras,L ∈ DGModA,M ∈DGModA⊗KB
andN ∈ DGModB. There exists a functorial morphism

ψ : RHomA(L,M) ⊗L
B N → RHomA(L,M ⊗L

B N)

in D̃(DGModA⊗K B). If conditions(i), (ii) , and(iii) below hold, then the morphismψ is
an isomorphism.

(i) H0A is noetherian,HL is bounded above, and each of theH0A -modulesHiA
andHiL are finitely generated.

(ii) HM andHN are bounded.
(iii) Either (a), (b) or (c) is satisfied:

(a) HiA = 0 for all i 6= 0, andL has finite projective dimension overA.
(b) HiB = 0 for all i 6= 0, andN has finite flat dimension overB.
(c) HiB = 0 for all i 6= 0, H0B is noetherian,HN is bounded, eachHiN

is a finitely generated module overH0B, the canonical morphismB →
RHomB(N,N) is an isomorphism, bothM andRHomA(L,M) have finite
flat dimension overB, andHRHomA(L,M ⊗L

B N) is bounded.

Proof. The proof is in five steps.

Step 1. To defineψ we may choose a K-projective resolutionP → L overA, and a K-flat
resolutionQ→ N overB. There an obvious homomorphism of DGA⊗K B -modules

ψP,Q : HomA(P,M) ⊗B Q→ HomA(P,M ⊗B Q).

In the derived category this representsψ.

Step 2. To prove thatψ is an isomorphism (or equivalently thatψP,Q is a quasi-iso-
morphism) we may forget theA ⊗K B -module structures, and considerψ as a morphism
in D(ModK). Now by Proposition 1.3(2) we can replaceA andB by quasi-isomorphic
DG K-algebras. Thus we may assume bothA andB are semi-free as DGK-modules.

Step 3. Let’s suppose that condition (iii.a) holds. SoA → H0A is a quasi-isomorphism.
SinceB is K-flat overK it follows thatA⊗KB → H0A⊗KB is also a quasi-isomorphism.
By Proposition 1.3 we can assume thatL ∈ DGMod H0A andM ∈ DGMod(H0A⊗K B),
and thatL has finite projective dimension overH0A. So we may replaceA with H0A, and
thus assume thatA is a noetherian algebra.

Now choose a resolutionP → L, whereP is a bounded complex of finitely generated
projectiveA-modules. Take any K-flat resolutionQ → N overB. Then the homomor-
phismψP,Q is actually bijective.

Step 4. Let’s assume condition (iii.b) holds. As in step 3 we can suppose thatB =
B0. Choose a bounded resolutionQ → N by flatB-modules. By replacingM with the
truncationτ≥j0τ≤j1M for somej0 ≪ 0 and j1 ≫ 0 we may assumeM is bounded.
According to [AFH, Theorem 9.2.7] we can find a semi-free resolution P → L overA
such thatundP ∼=

⊕i1
i=−∞ undA[−i]µi with all the multiplicitiesµi finite. Because the

µi are finite and bothM andQ are bounded the homomorphismψP,Q is bijective.

Step 5. Finally we consider condition (iii.c). We can assumethatB = B0 is noetherian.
SinceN ∈ Db

f (ModB) andRHomB(N,N) ∼= B we see that the support ofN is SpecB.
By Lemma 1.11 below we conclude thatN generatesDb(ModB). Let

ψ′ : RHomB

(

N,RHomA(L,M) ⊗L
B N

)

→ RHomB

(

N,RHomA(L,M ⊗L
B N)

)
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be the morphism obtained fromψ by applying the functorRHomB(N,−). Sinceψ is a
morphism inDb(ModB), in order to prove it is an isomorphism it suffices to prove that ψ′

is an isomorphism.
The complexRHomA(L,M) has finite flat dimension overB, so using the proposition

with condition (iii.b), which we already proved, we have

RHomB

(

N,RHomA(L,M) ⊗L
B N

)

∼= RHomB(N,N) ⊗L
B RHomA(L,M)

∼= RHomA(L,M).

On the other hand the complexM has finite flat dimension overB, so using the proposition
with condition (iii.b) once more (for the isomorphism marked ⋄), we have

RHomB

(

N,RHomA(L,M ⊗L
B N)

)

∼= RHomA

(

L,RHomB(N,M ⊗L
B N)

)

∼=⋄ RHomA

(

L,M ⊗L
B RHomB(N,N)

)

∼= RHomA(L,M).

Tracking the effect of these isomorphism onψ′ we see that it gets transformed into the
identity automorphism ofRHomA(L,M). �

LetB be a noetherian ring. Recall that given a complexN ∈ Db
f (ModB) its support is

defined to be
⋃

i Supp HiN ⊂ SpecB. The complexN is said to generateDb(ModB) if
for any nonzero objectM ∈ Db(ModB) one hasRHomB(N,M) 6= 0.

Lemma 1.11. SupposeB is a noetherian ring andN ∈ Db
f (ModB) is a complex whose

support isSpecB. ThenN generatesDb(ModB).

Proof. SupposeM is a nonzero object inDb(ModB). We have to prove that
RHomB(N,M) 6= 0. Let i0 := min{i ∈ Z | HiM 6= 0}, and choose a nonzero
finitely generated submoduleM ′ ⊂ Hi0M . Let p be a minimal prime ideal in the sup-
port ofM ′; so thatM ′

p := Ap ⊗B M ′ is a nonzero finite length module over the local
ringBp. NowNp is a nonzero object ofDb

f (ModBp). Let j1 := max{j ∈ Z | HjNp 6=
0}. SinceHj1Np is a nonzero finitely generatedAp-module, there exists a nonzero ho-
momorphismφ : Hj1Np → M ′

p. This φ can be interpreted as a nonzero element of

Exti0−j1Bp
(Np,Mp), which, by Proposition 1.10 with its condition (iii.b), is isomorphic to

Bp ⊗B Exti0−j1B (N,M). �

Remark 1.12. Proposition 1.10 can be extended by replacing conditions (iii.a) and (iii.b)
respectively with: (iii.a’)HA is a bounded essentially finite typeK-algebra, andL has
finite projective dimension overA; and (iii.b’) HB is a bounded essentially finite typeK-
algebra,HN is a finitely generatedHB -module, andN has finite flat dimension overA.
The trick for (iii.a’) is to localize onSpec H0A and to look at minimal semi-free resolu-
tions ofL. This trick also shows thatflat.dimA L = proj.dimA L. Details will appear
elsewhere.

2. THE SQUARING OPERATION

In this section we introduce a key technical notion used in the definition of rigidity,
namely the squaring operation. This operation is easy to define when the base ringK is
a field (see Corollary 2.7), but whenK is just a commutative ring (as we assume in this
section) there are complications. We solve the problem using DG algebras.

Recall that for a DG algebraA the derived category of DG modules is denoted by
D̃(DGModA). If A is a usual algebra theñD(DGModA) = D(ModA).
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Let M ∈ D(Mod K). As explained earlier the derived tensor productM ⊗L
K M ∈

D(ModK) is defined to beM⊗L
KM := M̃⊗K M̃ , whereM̃ →M is any K-flat resolution

ofM . If M ∈ DGModA for some DGK-algebraA, then we would like to be able to make
M ⊗L

K M into an object of̃D(DGModA ⊗K A). But this is not always possible, at least
not in any obvious way, due to torsion. (For instance takeK := Z andM = A := Z/(2)).
Fortunately there is a way to get around this problem.

Lemma 2.1. Let Ã → A be a quasi-isomorphism of DGK-algebras, and assumẽA is
K-flat as DGK-module. Then the(non-additive) functor D̃(DGModA) → D(Mod K),
M 7→M ⊗L

K M , factors canonically through̃D(DGMod Ã⊗K Ã).

Proof. Choose any quasi-isomorphism̃M →M in DGMod Ãwith M̃ K-flat overK. This
is possible since any K-flat DG̃A-module is K-flat overK. We getM⊗L

KM = M̃⊗KM̃ ∈

D̃(DGMod Ã⊗K Ã). �

Theorem 2.2. LetA be aK-algebra and letM be a DGA-module. Choose a K-flat DG
algebra resolutionK → Ã→ A of K → A. Then the object

SqA/K M := RHomÃ⊗K Ã
(A,M ⊗L

K M) ∈ D(ModA),

where theA-module structure is via the action on the first argument ofRHom, is indepen-
dent of this choice.

Proof. The idea for the proof was communicated to us by Bernhard Keller. Choose some
semi-free DG algebra resolutionK → Ã′ → A of K → A. We will show that there is a
canonical isomorphism

RHomÃ⊗K Ã
(A,M ⊗L

K M)
≃
−→ RHomÃ′⊗K Ã′(A,M ⊗L

K M)

in D(ModA).
Let us choose a K-projective resolutioñM → M overÃ, and a K-injective resolution

M̃ ⊗K M̃ → Ĩ overÃ⊗K Ã. So

RHomÃ⊗K Ã
(A,M ⊗L

K M) = HomÃ⊗K Ã
(A, Ĩ).

Likewise let’s choose resolutions̃M ′ → M andM̃ ′ ⊗K M̃ ′ → Ĩ ′ overÃ′ andÃ′ ⊗K Ã′

respectively.
By Proposition 1.7 there is a DG algebra quasi-isomorphismf0 : Ã′ → Ã that’s com-

patible with the quasi-isomorphisms toA. By the categorical properties ofK-projective
resolutions there is añA′-linear quasi-isomorphismφ0 : M̃ ′ → M̃ , that’s compatible up
to homotopy with the quasi-isomorphisms toM . We obtain anÃ′ ⊗K Ã′ -linear quasi-
isomorphismφ0 ⊗ φ0 : M̃ ′ ⊗K M̃ ′ → M̃ ⊗K M̃ . Next by the categorical properties of
K-injective resolutions there is añA′ ⊗K Ã

′ -linear quasi-isomorphismψ0 : Ĩ → Ĩ ′ that’s
compatible up to homotopy with the quasi-isomorphisms fromM̃ ′⊗K M̃

′. We thus get an
A-linear homomorphism

χ0 : HomÃ⊗K Ã
(A, Ĩ) → HomÃ′⊗K Ã′(A, Ĩ

′).

Proposition 1.3 shows thatχ0 is in fact an isomorphism inD(ModA).
Now supposef1 : Ã′ → Ã, φ1 : M̃ ′ → M̃ andψ1 : Ĩ → Ĩ ′ are other choices of quasi-

isomorphisms of the same respective types asf0, φ0 andψ0. Then we get an induced
isomorphism

χ1 : HomÃ⊗K Ã
(A, Ĩ) → HomÃ′⊗K Ã′(A, Ĩ

′)

in D(ModA). We shall prove thatχ1 = χ0.
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Here we have to introduce an auxiliary DGK-moduleC(M̃), the cylinder module.

As graded module one hasC(M̃) :=
[

M̃ M̃ [−1]

0 M̃

]

, a triangular matrix module, and the

differential isd([m0 n
0 m1

]) :=
[

d(m0) m0−m1−d(n)
0 d(m1)

]

for m0,m1, n ∈ M̃ . There are DG

module quasi-isomorphismsǫ : M̃ → C(M̃) andη0, η1 : C(M̃) → M̃ , with formulas
ǫ(m) := [m 0

0 m ] andηi([
m0 n
0 m1

]) := mi. The cylinder moduleC(M̃) is a DG module over
Ã by the formulaa · [m0 n

0 m1
] := [ am0 an

0 am1
].

There is a quasi-isomorphism of DG̃A-modulesC(M̃) →
[

M̃ M [−1]

0 M̃

]

which is the

identity on the diagonal elements, and the given quasi-isomorphismM̃ →M in the corner.
The two Ã′-linear quasi-isomorphismsφ0 andφ1 fit into an Ã′-linear quasi-morphism

M̃ ′

[

φ0 0
0 φ1

]

−−−−−→
[

M̃ M [−1]

0 M̃

]

. SinceM̃ ′ is K-projective overÃ′ we can lift
[

φ0 0
0 φ1

]

to a

quasi-isomorphismφ : M̃ ′ → C(M̃) such thatηi ◦ φ = φi up to homotopy.
Let’s choose a K-injective resolutionC(M̃) ⊗K C(M̃) → K̃ over Ã ⊗K Ã. Then for

i = 0, 1 we have a diagram

Ĩ ′ K̃
ψ

oo Ĩ
βi

oo

M̃ ′ ⊗K M̃
′

OO

φ⊗φ
// C(M̃) ⊗K C(M̃)

OO

ηi⊗ηi
// M̃ ⊗K M̃

OO

that’s commutative up to homotopy. Hereψ andβi are some DG module homomorphisms,
which exist due to the K-injectivity of̃I ′ andK̃ respectively. Becauseφi ⊗ φi = (ηi ⊗
ηi)◦ (φ⊗φ) up to homotopy, and̃I ′ is K-injective, it follows that theÃ′⊗K Ã

′ -linear DG
module quasi-isomorphismsψ ◦ βi andψi are homotopic. Therefore in order to prove that
χ0 = χ1 it suffices to prove that the two isomorphisms inD(ModA)

θ0, θ1 : HomÃ⊗K Ã
(A, Ĩ) → HomÃ⊗K Ã

(A, K̃),

that are induced byβ0, β1 respectively, are equal.
For i = 0, 1 consider the diagram

Ĩ K̃
γ

oo Ĩ
βi

oo

M̃ ⊗K M̃

OO

ǫ⊗ǫ
// C(M̃) ⊗K C(M̃)

OO

ηi⊗ηi
// M̃ ⊗K M̃

OO

whereγ is someÃ⊗K Ã -linear DG module homomorphism, chosen so as to make the left
square commute up to homotopy. As before, since(ηi⊗ ηi) ◦ (ǫ⊗ ǫ) = 1M̃⊗KM̃

it follows
thatγ ◦ βi and1Ĩ are homotopic. Hence bothθ0 andθ1 are inverses of the isomorphism

HomÃ⊗K Ã
(A, K̃)

≃
−→ HomÃ⊗K Ã

(A, Ĩ)

in D(ModA) induced byγ, soθ0 = θ1. �

Theorem 2.3. LetA andB beK-algebras, and letM ∈ D(ModA) andN ∈ D(ModB).
Supposef : A → B is an algebra homomorphism andφ : N → M is a morphism in
D(ModA). Then there is an induced morphism

Sqf/K(φ) : SqB/K N → SqA/K M
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in D(ModB). This construction is functorial; namely ifC is anotherK-algebra,P ∈
D(ModC), g : B → C is an algebra homomorphism andψ : P → N is a morphism in
D(ModB), then

Sqg◦f/K(φ ◦ ψ) = Sqf/K(φ) ◦ Sqg/K(ψ).

Also for the identity morphismsSq
1A/K(1M ) = 1SqA/K M .

Proof. Let’s choose a semi-free DG algebra resolutionK → Ã → A of K → A, and a

semi-free DG algebra resolutioñA
f̃
−→ B̃ → B of Ã → B. Note thatB̃ is also semi-

free relative toK, so it may be used to calculateSqB/K N . Next let’s choose DG module

resolutionsM̃ → M , Ñ → N , M̃ ⊗K M̃ → Ĩ and Ñ ⊗K Ñ → J̃ by K-projective
or K-injective DG modules over the appropriate DG algebras,as was done in the proof
of Theorem 2.2. SincẽN is a K-projective DGÃ-module we get an actual DG module
homomorphism̃φ : Ñ → M̃ representingφ. Therefore there is añA ⊗K Ã -linear DG
module homomorphism̃φ⊗ φ̃ : Ñ⊗K Ñ → M̃ ⊗K M̃ . BecausẽI is K-injective we obtain

a DG module homomorphismψ : J̃ → Ĩ lifting Ñ ⊗K Ñ
φ̃⊗φ̃
−−−→ M̃ ⊗K M̃ → Ĩ. Applying

Hom(A,−) we then have a homomorphism

Sqf/K(φ) : HomB̃⊗K B̃
(B, J̃) → HomÃ⊗K Ã

(A, Ĩ)

in DGModA.
Giveng : B → C andψ : P → N it is now clear how to defineSqg/K(ψ) such that

Sqg◦f/K(φ ◦ ψ) = Sqf/K(φ) ◦ Sqg/K(ψ), for these particular choices.
It remains to prove that after passing toD(ModA) the morphismSqf/K(φ) becomes

independent of choices. The independence on choices of K-projective and K-injective
resolutions, and on the DG module homomorphismsφ̃ andψ, is standard. Now suppose
we choose another semi-free DG algebra resolutionK → Ã′ → A of K → A, and a

semi-free DG algebra resolutioñA′ f̃ ′

−→ B̃′ → B of Ã′ → B. After choosing DG module
resolutionsM̃ ′ → M , Ñ ′ → N , M̃ ′ ⊗K M̃ ′ → Ĩ ′ andÑ ′ ⊗K Ñ ′ → J̃ ′ by K-projective
or K-injective DG modules over the appropriate DG algebras,we obtain a homomorphism

Sq′
f/K(φ) : HomB̃′⊗K B̃′(B, J̃

′) → HomÃ′⊗K Ã′(A, Ĩ
′)

in DGModA.
Applying Proposition 1.7 twice we can find DG algebra homomorphismsg0 andh0

such that the diagram of DG algebra homomorphisms

(2.4)
Ã′

g0
//

f̃ ′

��

Ã

f̃
��

// A

f
��

B̃′
h0

// B̃ // B.

is commutative. As in the proof of Theorem 2.2 we pick quasi-isomorphismsψM,0 :

Ĩ → Ĩ ′ andψN,0 : J̃ → J̃ ′ over Ã′ ⊗K Ã′ andB̃′ ⊗K B̃′ respectively. Then we get a
commutative up to homotopy diagram

HomÃ⊗K Ã
(A, Ĩ)

χM,0
// HomÃ′⊗K Ã′(A, Ĩ ′)

HomB̃⊗K B̃
(B, J̃)

Sqf/K(φ)

OO

χN,0
// HomB̃′⊗K B̃′(B, J̃ ′)

Sq′

f/K(φ)

OO



RIGID DUALIZING COMPLEXES ON SCHEMES 17

in DGModA, where the horizontal arrows are quasi-isomorphisms. If wewere to choose
another pair of DG algebra quasi-isomorphismsg1 : Ã′ → Ã andh1 : B̃′ → B̃ so as to
make diagram 2.4 commutative, then according to Theorem 2.2there would be equalities
χM,0 = χM,1 andχN,0 = χN,1 of isomorphisms inD(ModA). ThereforeSq′

f/K(φ) =

Sqf/K(φ) as morphisms inD(ModA). �

For the identity homomorphism1A : A→ A we writeSqA/K(φ) := Sq
1A/K(φ).

Definition 2.5. The (nonlinear) functorSqA/K : D(ModA) → D(ModA) from Theorems
2.2 and 2.3 is called thesquaring operationoverA relative toK.

The next result explains the name “squaring”.

Corollary 2.6. In the situation of Theorem2.3 let b ∈ B. Then

Sqf/K(bφ) = b2 Sqf/K(φ).

Proof. It suffices to considerf = 1B : B → B andφ = 1N : N → N . Choose any lifting
of b to b̃ ∈ B̃0. Then multiplication bỹb⊗ b̃ on J̃ has the same effect onHomB̃⊗K B̃

(B, J̃),
up to homotopy, as multiplication byb2 onB. �

Corollary 2.7. SupposeA is a flat K-algebra, andM is a bounded above complex of
A-modules that are flat asK-modules. Then there is a functorial isomorphism

SqA/K M
∼= RHomA⊗KA(A,M ⊗K M).

Proof. This is becauseA andM are K-flat DGK-modules. �

Remark 2.8. One might be tempted to use the notationRHomA⊗L
K
A(A,M⊗L

KM) instead

of SqA/K M . Indeed, we think it is possible to make sense of the “DG algebra”A⊗L
KA, as

an object of a suitable Quillen localization of the categoryof DG K-algebras. Cf. [Hi], and
also [Qu], where an analogous construction was made using simplicial algebras rather than
DG algebras. Then one should show that the triangulated category “D̃(DGModA⊗L

K A)”
is well-defined, etc. See also [Dr, Appendix V].

3. RIGID COMPLEXES

In this section all rings are are by default commutative and noetherian. We shall use
notation such asf∗ : A → B for a ring homomorphism; so thatf : SpecB → SpecA is
the corresponding morphism of schemes. This will make our notation for various functors
more uniform. For instance restriction of scalars becomesf∗ : ModB → ModA, and
extension of scalars (i.e.M 7→ B ⊗A M ) becomesf∗ : ModA → ModB. See also
Definitions 3.13 and 3.21. Given another algebra homomorphismg∗ : B → C we shall
sometimes write(f ◦ g)∗ := g∗ ◦ f∗.

Let us begin with a bit of commutative algebra. Recall that anA-algebraB is called
formally smooth (resp. formally étale) if it has the lifting property (resp. the unique lifting
property) for infinitesimal extensions. TheA-algebraB is called smooth (resp. étale) if
it is finitely generated and formally smooth (resp. formallyétale). IfB is smooth overA
then it is flat, andΩ1

B/A is a finitely generated projectiveB-module. See [EGA, Section
0IV.19.3] and [EGA, Section IV.17.3] for details.

Definition 3.1. Let A andB be noetherian rings. A ring homomorphismf∗ : A → B
is calledessentially smooth(resp.essentiallyétale) if it is of essentially finite type and
formally smooth (resp. formally étale). In this caseB is called an essentially smooth (resp.
essentially étale)A-algebra.
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Observe that smooth homomorphisms and localizations are essentially smooth.

Proposition 3.2. Letf∗ : A→ B be an essentially smooth homomorphism.

(1) There is an open coveringSpecB =
⋃

i SpecBi such that for everyi the homo-
morphismA→ Bi is the composition of a smooth homomorphismA→ Bsm

i and
a localizationBsm

i → Bi.
(2) f∗ is flat, andΩ1

B/A is a finitely generated projectiveB-module.

(3) f∗ is essentiallýetale if and only ifΩ1
B/A = 0.

(4) Let g∗ : B → C be another essentially smooth homomorphism. Theng∗ ◦ f∗ :
A→ C is also essentially smooth.

Proof. (1) Choose a finitely generatedA-subalgebraBf ⊂ B such thatB is a localization
ofBf . We can identifyU := SpecB with a subset ofU f := SpecBf . Take a pointx ∈ U ,
and lety := f(x) ∈ SpecA. Then the local ringOU f ,x = OU,x = Bx is a formally
smoothAy-algebra. According to [EGA, Chapitre IV Théorème 17.5.1] there is an open
neighborhoodW of x in U f which is smooth overSpecA. Choose an elementb ∈ Bf such
that the localizationBf

b = Bf [b−1] satisfiesx ∈ SpecBf
b ⊂ W . ThenBf

b is a smoothA-
algebra,Bb is a localization ofBf

b, SpecBb is open inSpecB, andx ∈ SpecBb. Finally
let i be an index corresponding to the pointx, and defineBsm

i := Bf
b andBi := Bb.

(2) follows from (1).

(3) See [EGA, Chapitre0IV Proposition 20.7.4].

(4) Both conditions in Definition 3.1 are transitive. �

Definition 3.3. Let f∗ : A → B be an essentially smooth homomorphism. If
rankB Ω1

B/A = n thenf∗ is called anessentially smooth homomorphism of relative di-
mensionn, andB is called anessentially smoothA-algebra of relative dimensionn.

By Proposition 3.2(3), an essentially étale homomorphismis the same as an essentially
smooth homomorphism of relative dimension0.

Proposition 3.4. Supposef∗ : A→ B andg∗ : B → C are essentially smooth homomor-
phism of relative dimensionsm andn respectively. Theng∗ ◦f∗ : A→ C is an essentially
smooth homomorphism of relative dimensionm+n, and there is a canonical isomorphism
ofC-modulesΩm+n

C/A
∼= ΩmB/A ⊗B ΩnC/B.

Proof. By [EGA, Chapitre0IV Théorème 20.5.7] the sequence

0 → C ⊗B Ω1
B/A → Ω1

C/A → Ω1
C/B → 0

is split-exact. �

Proposition 3.5. Let f∗ : A → B be an essentially smooth homomorphism of relative
dimensionm.

(1) TheB ⊗A B -moduleB has finite projective dimension.
(2) There is a canonical isomorphism

ExtiB⊗AB(B,Ω2m
(B⊗AB)/A) ∼=

{

ΩmB/A if i = m

0 otherwise.
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(3) Supposeg∗ : B → C is an essentially smooth homomorphism of relative dimen-
sionn. Let’s writeE(A,B) := ExtmB⊗AB(B,Ω2m

(B⊗AB)/A) etc. Then the diagram

ΩmB/A ⊗B ΩnC/B
∼= //

∼=
��

Ωm+n
C/A

∼=
��

E(A,B) ⊗B E(B,C)
∼= // E(A,C)

in which the vertical arrows are from part(2), and the horizontal arrows come
from Proposition3.4, is commutative.

Proof. First assume thatB⊗AB → B is a complete intersection, i.e. the idealKer(B⊗A
B → B) is generated by a regular sequenceb = (b1, . . . , bm). This implies thatB has
projective dimensionm overB ⊗A B, and that theExt’s in part (2) vanish fori 6= m.
Definedb := db1 ∧ · · · ∧ dbm ∈ Ωm(B⊗AB)/A. Then the mapΩmB/A → E(A,B), β 7→
[

db∧β
b

]

, is bijective. Here
[

db∧β
b

]

is the generalized fraction, cf. Definition 5.7. According
to [RD, Proposition III.7.2] this bijection is independentof the regular sequenceb.

Now supposef∗ : A → B is an essentially smooth homomorphism of relative dimen-
sionm. Combining Proposition 3.2(1) and [EGA, Chapitre IV Proposition 17.12.4] we
see that there is an open coveringSpecB =

⋃

i SpecBi, such that for everyi the homo-
morphismBi ⊗A Bi → Bi is a complete intersection. Using the previous paragraph we
deduce parts (1) and (2). For part (3) we utilize a similar open covering ofSpecC. �

From now on in this sectionK is a fixed noetherian base ring. As references for the
results on derived categories needed here we recommend [RD]or [KS].

Let A be aK-algebra. In Section 2 we constructed a functorSqA/K : D(ModA) →
D(ModA), the squaring operation. WhenK is a field one has the easy formula

SqA/K M = RHomA⊗KA(A,M ⊗K M)

(see Corollary 2.7). The squaring is functorial for algebrahomomorphisms too. Given
a homomorphism of algebrasf∗ : A → B, complexesM ∈ D(ModA) andN ∈
D(ModB), and a morphismφ : N → M in D(ModA), there is an induced morphism
Sqf∗/K(φ) : SqB/K N → SqA/K M in D(ModA). Again whenK is a field the formula
for Sqf∗/K is obvious; complications arise only when the base ringK is not a field.

Definition 3.6. LetA be aK-algebra and letM ∈ D(ModA). AssumeM has finite flat
dimension overK. A rigidifying isomorphismfor M relative toK is an isomorphism

ρ : M → SqA/K M

in D(ModA). The pair(M,ρ) is called arigid complex overA relative toK.

Example 3.7. TakeA = M := K. SinceSqK/K K = K it follows thatK has a tauto-

logical rigidifying isomorphismρtau : K
≃
−→ SqK/K K. We call(K, ρtau) thetautological

rigid complex overK relative toK.

Definition 3.8. Let f∗ : A → B be a homomorphism betweenK-algebras, and let
(M,ρM ) and(N, ρN ) be rigid complexes overA andB respectively, both relative toK.
A morphismφ : N → M in D(ModA) is called arigid trace-like morphism relative toK



20 AMNON YEKUTIELI AND JAMES J. ZHANG

if the diagram

N
ρN

//

φ

��

SqB/K N

Sqf∗/K(φ)
��

M
ρM

// SqA/K M

of morphisms inD(ModA) is commutative. IfA = B (andf∗ is the identity) then we say
φ : N →M is arigid morphism overA relative toK.

It is easy to see that the composition of two rigid trace-likemorphisms relative toK is
a rigid trace-like morphism relative toK. In particular, for a fixedK-algebraA the rigid
complexes overA relative toK form a category, which we denote byD(ModA)rig/K .

Theorem 3.9. Let K be a noetherian ring, letA and B be essentially finite typeK-
algebras, and letA → B be aK-algebra homomorphism. Let(L, ρL) ∈ D(ModA)rig/K

and(M,ρM ) ∈ D(ModB)rig/A. Assume either of the conditions(i), (ii) or (iii) holds.

(i) A→ B is essentially smooth.
(ii) L has finite flat dimension overA.
(iii) The A-modulesHiL are finitely generated, the canonical morphismA →

RHomA(L,L) is an isomorphism, andHSqB/K(L⊗L
AM) is bounded.

Then:

(1) The complexL ⊗L
A M ∈ D(ModB) has finite flat dimension overK, and an

induced rigidifying isomorphism

ρL ⊗ ρM : L⊗L
AM

≃
−→ SqB/K(L⊗L

AM).

(2) Let φ : (L, ρL) → (L′, ρL′) be a morphism inD(ModA)rig/K , and letψ :
(M,ρM ) → (M ′, ρM ′) be a morphism inD(ModB)rig/A. Under conditions
(ii) or (iii) assumeL′ andM ′ also have the corresponding properties. Then the
morphism

φ⊗ ψ : L⊗L
AM → L′ ⊗L

AM
′

in D(ModB) is rigid relative toK.

Proof. (1) SinceL has finite flat dimension overK andM has finite flat dimension overA
(cf. Definition 3.6), it follows thatL⊗L

AM has finite flat dimension overK.
Choose K-flat DG algebra resolutionsK → Ã → A andÃ → B̃ → B of K → A and

Ã → B respectively. (IfK is a field andA → B is flat one may just takẽA := A and
B̃ := B.) There is a sequence of isomorphisms inD(ModB):

SqB/K(L⊗L
AM) = RHomB̃⊗K B̃

(

B, (L ⊗L
AM) ⊗L

K (L⊗L
AM)

)

∼= RHomB̃⊗ÃB̃

(

B,RHomB̃⊗K B̃

(

B̃ ⊗Ã B̃, (L⊗L
AM) ⊗L

K (L⊗L
AM)

)

)

∼= RHomB̃⊗ÃB̃

(

B,RHomÃ⊗K Ã

(

Ã, (L⊗L
AM) ⊗L

K (L⊗L
AM)

)

)

.

These isomorphisms come from the Hom-tensor adjunction forthe DG algebra homomor-
phismsB̃ ⊗K B̃ → B̃ ⊗Ã B̃ → B, plus the fact that

Ã⊗Ã⊗K Ã
(B̃ ⊗K B̃) ∼= B̃ ⊗Ã B̃.

Now using tensor product identities we get an isomorphism

(L⊗L
AM) ⊗L

K (L⊗L
AM) ∼= M ⊗L

Ã
(L⊗L

K L) ⊗L
Ã
M
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in D̃(DGMod B̃ ⊗K B̃). There are functorial morphisms

(3.10)

M ⊗L
Ã

RHomÃ⊗K Ã
(A,L⊗L

K L) ⊗L
Ã
M

→ RHomÃ⊗K Ã

(

A,M ⊗L
Ã

(L⊗L
K L)

)

⊗L
Ã
M

→ RHomÃ⊗K Ã

(

A,M ⊗L
Ã

(L⊗L
K L) ⊗L

Ã
M

)

in D̃(DGMod B̃⊗K B̃), which we claim are isomorphisms. To prove this we can forgetthe
B̃ ⊗K B̃ -module structure, and consider (3.10) as morphisms inD(ModK). According
to Corollary 1.9 the algebraH0(Ã⊗K Ã) ∼= A⊗K A is noetherian, and eachHi(Ã⊗K Ã)

is a finitely generated module over it. SinceM has finite flat dimension over̃A, and both
H(L ⊗L

K L) andH(M ⊗L
Ã
L ⊗L

K L) are bounded, we can use Proposition 1.10, with its
condition (iii.b).

At this point we have a functorial isomorphism

SqB/K(L⊗L
AM) ∼= RHomB̃⊗ÃB̃

(

B, (M ⊗L
AM) ⊗L

A SqA/K L
)

in D(ModB). The DG moduleM ⊗L
AM has bounded cohomology, and so doesSqA/K L,

since the latter is isomorphic toL. If A→ B is essentially smooth theñB⊗ÃB̃ → B⊗AB
is a quasi-isomorphism, and moreoverB has finite projective dimension overB ⊗A B.
Thus under either condition (i), (ii) or (iii) of the theoremwe may apply Proposition 1.10,
with its conditions (iii.a), (iii.b) or (iii.c) respectively, to get an isomorphism

RHomB̃⊗ÃB̃

(

B, (M ⊗L
AM) ⊗L

A SqA/K L
)

∼= RHomB̃⊗ÃB̃
(B,M ⊗L

AM) ⊗L
A SqA/K L.

Thus we have obtained an isomorphism

(3.11) SqB/K(L⊗L
AM) ∼= (SqA/K L) ⊗L

A (SqB/AM)

in D(ModB). The rigidifying isomorphism we want isρL ⊗ ρM .

(2) This is because the isomorphism (3.11) is functorial inL andM . �

Henceforth in the situation of the theorem we shall write

(3.12) (L, ρL) ⊗L
A (M,ρM ) := (L ⊗L

AM,ρL ⊗ ρM ) ∈ D(ModB)rig/K .

Definition 3.13. Let f∗ : A → B be a finite homomorphism between two essentially
finite type K-algebras. Define a functorf ♭ : D(ModA) → D(ModB) by f ♭M :=

RHomA(B,M). Let Tr♭f ;M : f ♭M → M be the morphism “evaluation at1”. This

becomes a morphism of functorsTr♭f : f∗ f
♭ → 1D(ModA).

Theorem 3.14. Let K be a noetherian ring, letA andB be essentially finite typeK-
algebras, and letf∗ : A→ B be a finite algebra homomorphism. Suppose we are given a
rigid complex(M,ρ) ∈ D(ModA)rig/K , such thatf ♭M has finite flat dimension overK.

(1) The complexf ♭M ∈ D(ModB) has an induced rigidifying isomorphism

f ♭(ρ) : f ♭M
≃
−→ SqB/K f

♭M.

The rigid complexf ♭(M,ρ) :=
(

f ♭M, f ♭(ρ)
)

depends functorially on(M,ρ).

(2) The morphismTr♭f ;M : f ♭M →M is a rigid trace-like morphism relative toK.
(3) Supposeg∗ : B → C is another finite homomorphism. Assume that(f ◦ g)♭M

has finite flat dimension overK. Then under the standard isomorphismg♭f ♭M ∼=
(f ◦ g)♭M one hasg♭f ♭(ρ) = (f ◦ g)♭(ρ).
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(4) Let(A, ρtau) be the tautological rigid complex. Assume thatB has finite projective
dimension overA. Then under the standard isomorphismf ♭M ∼= M ⊗L

A f
♭A one

hasf ♭(ρ) = ρ⊗ f ♭(ρtau).

For the proof we will need a lemma. The catch in this lemma is that the complexP of
flat K-module is boundedbelow, not above.

Lemma 3.15.LetP andN be bounded below complexes ofK-modules. Assume that each
P i is a flatK-module, and thatN has finite flat dimension overK. Then the canonical
morphismP ⊗L

K N → P ⊗K N in D(ModK) is an isomorphism.

Proof. Choose a bounded flat resolutionQ→ N overK. We have to show thatP⊗KQ→
P ⊗K N is a quasi-isomorphism. LetL be the cone ofQ → N . It is enough to show that
the complexP ⊗K L is acyclic. We note thatL is a bounded below acyclic complex andP
is a bounded below complex of flat modules. To prove thatHi(P ⊗K L) = 0 for any given
i we might as well replaceP with a truncationP ′ := (· · · → P j1−1 → P j1 → 0 → · · · )
for j1 ≫ i. NowP ′ is K-flat, soP ′ ⊗K L is acyclic. �

Proof of the theorem.(1) Let’s pick a semi-free DG algebra resolutionK → Ã → A of
K → A. Next let’s pick a K-projective DG algebra resolutioñA → B̃ → B of Ã → B,
such thatund B̃ ∼=

⊕0
i=−∞ und Ã[−i]µi with finite multiplicities µi; see Proposition

1.6(3). Choose a bounded above semi-free resolutionP ′ →M overÃ. SinceM has finite
flat dimension overK it follows that for i ≪ 0 the truncated DG̃A-moduleP := τ≥iP ′

is a bounded complex of flatK-modules, and alsoP ∼= M in D̃(DGMod Ã).
We have an isomorphismHomÃ(B̃, P ) ∼= RHomA(B,M) in D̃(DGMod B̃), and an

isomorphism

HomÃ⊗K Ã
(B̃ ⊗K B̃, P ⊗K P ) ∼= RHomÃ⊗K Ã

(B̃ ⊗K B̃,M ⊗L
K M)

in D̃(DGMod B̃ ⊗K B̃). Because the multiplicitiesµi are finite andP is bounded, the
obvious DG module homomorphism

HomÃ(B̃, P ) ⊗K HomÃ(B̃, P ) → HomÃ⊗K Ã
(B̃ ⊗K B̃, P ⊗K P )

is bijective. NowHomÃ(B̃, P ) is a bounded below complex of flatK-modules, which also
has finite flat dimension overK. Therefore by Lemma 3.15 we obtain

HomÃ(B̃, P ) ⊗K HomÃ(B̃, P ) ∼= RHomA(B,M) ⊗L
K RHomA(B,M)

in D̃(DGMod B̃ ⊗K B̃). We conclude that there is a functorial isomorphism

(3.16) RHomA(B,M) ⊗L
K RHomA(B,M) ∼= RHomÃ⊗K Ã

(B̃ ⊗K B̃,M ⊗L
K M)

in D̃(DGMod B̃ ⊗K B̃). (If K is a field we may disregard the previous sentences, and just
takeÃ := A andB̃ := B.) We thus have a sequence of isomorphisms inD(ModB):

(3.17)

SqB/K f
♭M = RHomB̃⊗K B̃

(

B,RHomA(B,M) ⊗L
K RHomA(B,M)

)

∼=♦ RHomB̃⊗K B̃

(

B,RHomÃ⊗K Ã
(B̃ ⊗K B̃,M ⊗L

K M)
)

∼=‡ RHomÃ⊗K Ã
(B,M ⊗L

K M))

∼=‡ RHomA

(

B,RHomÃ⊗K Ã
(A,M ⊗L

K M)
)

= f ♭ SqA/K M,

where the isomorphism marked♦ is by (3.16), and the isomorphisms‡ come from the

Hom-tensor adjunction formula. The rigidifying isomorphism we want isf ♭M
f♭(ρ)
−−−→

f ♭ SqB/K M
∼= SqA/K f

♭M .
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(2) Going over the sequence of isomorphisms (3.17) we see that the diagram

(3.18) f ♭M
f♭(ρ)

//

Tr♭
f;M

��

SqB/K f
♭M

Sqf∗/K(Tr♭
f;M )

��

M
ρ

// SqA/K M

is commutative. This says thatTr♭f ;M is a rigid morphism.

(3) This is because the rigidifying isomorphismf ♭(ρ) in part (1) depends only on standard
identities and on the given rigidifying isomorphismρ.

(4) According to Proposition 1.10, under its condition (iii.a), we have a canonical isomor-
phismM ⊗L

A f
♭A ∼= f ♭M . Combine this with the isomorphisms (3.17). �

SupposeM ∈ D(ModA) andN ∈ D(ModB). A morphismτ : N →M in D(ModA)
is callednondegenerateif the induced morphismN → RHomA(B,M) in D(ModB) is
an isomorphism.

Corollary 3.19. Let f∗ : A → B be a finite homomorphism between two essentially
finite typeK-algebras, and let(M,ρ) ∈ D(ModA)rig/K . Assume thatHM is a finitely
generatedA-module,f ♭M has finite flat dimension overK, andHomD(ModA)(f

♭M,M)

is a freeB-module with basisTr♭f ;M . ThenTr♭f ;M is the unique nondegenerate rigid trace-
like morphismf ♭M →M relative toK.

Proof. By Theorem 3.14,Tr♭f ;M : f ♭M → M is a rigid morphism. Supposeτ : f ♭M →

M is some other nondegenerate rigid trace-like morphism. Then τ = uTr♭f ;M for some
u ∈ B×, so we get isomorphisms

uTr♭f ;M = τ = Sqf∗/K(τ) = Sqf∗/K(uTr♭f ;M ) = u2 Sqf∗/K(Tr♭f ;M ) = u2 Tr♭f ;M .

Thereforeu = 1. �

We shall need the following easy fact.

Lemma 3.20. SupposeB =
∏m
i=1 Bi, i.e. SpecB =

∐m
i=1 SpecBi. Then the functor

N 7→
∏

i(Bi ⊗B N) is an equivalenceD(ModB) →
∏

i D(ModBi).

Definition 3.21. Supposef∗ : A → B is an essentially smooth homomorphism ofK-
algebras. LetSpecB =

∐

i SpecBi be the (finite) decomposition ofSpecB into con-
nected components. For eachi theBi-moduleΩ1

Bi/A
is projective of constant rank, say

ni. GivenM ∈ D(ModA) define

f ♯M :=
∏

i
(Ωni

Bi/A
[ni] ⊗AM).

This is a functorf ♯ : D(ModA) → D(ModB).

Note that iff∗ : A→ B is essentially étale then one simply hasf ♯M = B ⊗AM .

Theorem 3.22. Let K be a noetherian ring, letA andB be essentially finite typeK-
algebras, and letf∗ : A → B be an essentially smooth algebra homomorphism. Let
(L, ρ) ∈ D(ModA)rig/K .

(1) The complexf ♯L has an induced rigidifying isomorphism

f ♯(ρ) : f ♯L
≃
−→ SqB/K f

♯L.

We get a functorf ♯ : D(ModA)rig/K → D(ModB)rig/K .
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(2) Let (A, ρtau) be the tautological rigid complex. Then under the standard isomor-
phismf ♯L ∼= L⊗L

A f
♯A one hasf ♯(ρ) = ρ⊗ f ♯(ρtau).

(3) Let g∗ : B → C be either a smooth homomorphism or a localization homomor-
phism. Then under the isomorphism(f ◦ g)♯L ∼= g♯f ♯L of Proposition3.4 one
has(f ◦ g)♯(ρ) = g♯f ♯L(ρ).

Proof. In view of Lemma 3.20 we might as well assumeΩ1
B/A has constant rankm. Using

the canonical isomorphismΩ2m
(B⊗AB)/A

∼= ΩmB/A ⊗A ΩmB/A we can interpret Proposition
3.5(2) as a canonical rigidifying isomorphism for the complex ΩmB/A[m] relative toA,
which we denote byρΩ. Thus we obtain an object

(ΩmB/A[m], ρΩ) ∈ D(ModB)rig/A.

Now using Theorem 3.9 we can define the rigidifying isomorphismf ♯(ρ) := ρ⊗ ρΩ. The
assertion in part (2) is clear.

For part (3) one may assumerankC Ω1
C/B = n. Then the claim follows from Proposi-

tion 3.5(3). �

Definition 3.23. Let f∗ : A → A′ be an essentially étale homomorphism between essen-
tially finite typeK-algebras. ForM ∈ D(ModA) let q♯f ;M : M → f ♯M be the morphism

m 7→ 1 ⊗m. This is a functorial morphismq♯f : 1D(ModA) → f∗ f
♯.

In the situation of the definition above, givenM ′ ∈ D(ModA′), there is a canonical
bijection

HomD(ModA)(M,M ′) ∼= HomD(ModA′)(f
♯M,M ′)

coming from Hom-tensor adjunction. In particular, forM ′ := f ♯M , the morphismq♯f ;M

corresponds to the identity1M ′ .

Definition 3.24. Let f∗ : A → A′ be an essentially étale homomorphism between essen-
tially finite type K-algebras, let(M,ρ) ∈ D(ModA)rig/K and let (M ′, ρ′) ∈
D(ModA′)rig/K . A rigid localization morphismis a morphismφ : M → M ′ in
D(ModA), such that the corresponding morphismφ′ : f ♯M → M ′ in D(ModA)′ is a
rigid isomorphism relative toK.

Proposition 3.25. Let f∗ : A → A′ be an essentiallýetale homomorphism, and let
(M,ρ) ∈ D(ModA)rig/K . Define(M ′, ρ′) := f ♯(M,ρ). Then:

(1) The morphismq♯f ;M : M →M ′ is a rigid localization morphism.

(2) Moreover, ifM ∈ Db
f (ModA) andRHomA(M,M) = A, thenq♯f ;M is the unique

rigid localization morphismM →M ′.

Proof. (1) Since the corresponding morphismM ′ → M ′ is the identity automorphism of
M ′, it is certainly rigid.

(2) Here we haveHomD(ModA′)(M
′,M ′) = A′. The uniqueness ofq♯f ;M is proved like in

Corollary 3.19. �

Theorem 3.26. Let K be a noetherian ring, letA be an essentially finite typeK-algebra,
let g∗ : A → A′ be an essentially smooth homomorphism, and letf∗ : A → B be a
finite homomorphism. DefineB′ := A′ ⊗A B; so we get a cartesian diagram of algebra
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homomorphisms

A
f∗

//

g∗

��

B

h∗

��

A′
f ′∗

// B′

in which f ′∗ is finite and h∗ is essentially smooth. Let(M,ρ) ∈
D(ModA)rig/K . Assumef ♭M has finite flat dimension overK, andH(A⊗L

KA) is bounded.
Then there is a functorial isomorphism

h♯f ♭(M,ρ) ∼= f ′♭g♯(M,ρ)

in D(ModB′)rig/K .

Proof. SupposerankB Ω1
A′/A = n. Using the base change isomorphism for differential

forms, namelyΩnB′/B
∼= B ⊗A ΩnA′/A, we obtain isomorphisms

h♯f ♭M = ΩnB′/B[n] ⊗B RHomA(B,M)

∼= ΩnA′/A[n] ⊗A RHomA(B,M) ∼= RHomA(B,ΩnA′/A[n] ⊗AM)

∼= RHomA′(B′,ΩnA′/A[n] ⊗AM) = f ′♭g♯M.

Now regarding the rigidifying isomorphisms, use Proposition 1.10, with condition (iii.b),
to insertΩnA′/A[n] into the sequence of isomorphisms (3.17) at various positions. �

Corollary 3.27. In the situation of Theorem3.26assumeg∗ is essentiallýetale. Define
N := f ♭M , M ′ := g♯M andN ′ := h♯f ♭M ∼= f ′♭g♯M , with their induced rigidifying
isomorphisms. Then

q♯g;M ◦ Tr♭f ;M = Tr♭f ′;M ′ ◦ q♯h;N ∈ HomD(ModA)(N,M
′).

Proof. This is becauseTr♭f ′;M ′ : N ′ → M ′ is gotten fromTr♭f ;M : N → M by applying
A′ ⊗A −. �

Supposef∗ : K → A is a flat ring homomorphism, andg∗ : K → K′ is another
ring homomorphism. We do not impose any finiteness conditions onf∗ or g∗. Define
A′ := K′ ⊗K A. Let M ∈ D(ModA) andM ′ ∈ D(ModA′). ThenSqA/K M =

RHomA⊗KA(A,M ⊗L
K M), and

SqA′/K′ M ′ = RHomA′⊗K′A′(A′,M ′ ⊗L
K′ M ′) ∼= RHomA⊗KA(A,M ′ ⊗L

K′ M ′).

If φ : M →M ′ is a morphism inD(ModA), we obtain an induced morphismSqA/K M →
SqA′/K′ M ′ in D(ModA), which we denote bySqf,g(φ).

Definition 3.28. WithA,K′ andA′ as above, let(M,ρ) ∈ D(ModA)rig/K and(M ′, ρ′) ∈
D(ModA′)rig/K′ . A morphismφ : M → M ′ in D(ModA) is called arigid base change
morphism relative toK if

ρ′ ◦ φ = Sqf,g(φ) ◦ ρ.

Proposition 3.29. In the situation of Definition3.28, assume that the canonical morphism
A′ → RHomA′(M ′,M ′) is an isomorphism, and alsoM ′ ∼= A′ ⊗L

A M . Then there is a
unique rigid base change morphismφ : (M,ρ) → (M ′, ρ′).

Proof. Take any morphism̃φ : M →M ′ which induces an isomorphismA′⊗L
AM →M ′.

Thenρ′◦φ̃ = u Sqf,g(φ̃)◦ρ for a unique invertible elementu ∈ A′. Defineφ := u−1φ̃. �
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4. RIGID DUALIZING COMPLEXES OVERK-ALGEBRAS

In this section we assume thatK is a regular noetherian ring of finite Krull dimension.
All algebras are by default essentially finite typeK-algebras, and all algebra homomor-
phisms are overK.

Let us recall the definition of dualizing complex over aK-algebraA from [RD]. The
derived category of bounded complexes with finitely generated cohomology modules is
denoted byDb

f (ModA). A complexR ∈ Db
f (ModA) is called adualizing complexif

it has finite injective dimension, and the canonical morphism A → RHomA(R,R) in
D(ModA) is an isomorphism. It follows that the functorRHomA(−, R) is an auto-duality
of Db

f (ModA). Note since the ground ringK has finite global dimension, the complexR
has finite flat dimension over it.

Following Van den Bergh [VdB] we make the following definition.

Definition 4.1. LetA be aK-algebra and letR be a dualizing complex overA. Suppose
R has a rigidifying isomorphismρ : R

≃
−→ SqA/K R. Then the pair(R, ρ) is called arigid

dualizing complex overA relative toK.

By default all rigid dualizing complexes are relative to theground ringK.

Example 4.2. Take theK-algebraA := K. The complexR := K is a dualizing complex
overK, since this ring is regular. Letρtau : K

≃
−→ SqK/K K be the tautological rigidifying

isomorphism. Then(K, ρtau) is a rigid dualizing complex overK relative toK.

In [VdB] it was proved that whenK is a field, a rigid dualizing complexR is unique
up to isomorphism. And in [YZ1] we proved that the pair(R, ρ) is in fact unique up to
a unique rigid isomorphism (again, only whenK is a field). These results are true in our
setup too:

Theorem 4.3.LetK be a regular finite dimensional noetherian ring, letA be an essentially
finite typeK-algebra, and let(R, ρ) be a rigid dualizing complex overA relative toK.
Then(R, ρ) is unique up to a unique rigid isomorphism.

Proof. In view of Lemma 3.20 and Theorem 3.22 we may assume thatSpecA is con-
nected. Suppose(R′, ρ′) is another rigid dualizing complex overA. Then there is an iso-
morphismR′ ∼= R ⊗A L[n] for some invertibleA-moduleL and some integern. Indeed
L[n] ∼= RHomA(R,R′). See [RD, Section V.3] or [VdB].

Choose a K-flat DG algebra resolutionK → Ã → A of K → A. (If K is a field just
takeÃ := A.) So

SqA/K R
′ ∼= SqA/K(RA ⊗A L[n])

= RHomÃ⊗K Ã

(

A, (RA ⊗A L[n]) ⊗L
K (RA ⊗A L[n])

)

∼=† RHomÃ⊗K Ã
(A,RA ⊗L

K RA) ⊗L
A L[n] ⊗L

A L[n]

= (SqA/K RA) ⊗L
A L[n] ⊗L

A L[n] ∼=♦ RA ⊗A L[n] ⊗A L[n].

The isomorphism marked† exists by Proposition 1.10 (with its condition (iii.b)), and the
isomorphism marked♦ comes fromρ : SqA/K RA

≃
−→ RA. On the other and we have

ρ′ : R′ ≃
−→ SqA/K R

′, which gives an isomorphism

RA ⊗A L[n] ∼= RA ⊗A L[n] ⊗A L[n].

SinceRA is a dualizing complex it follows thatL ∼= A andn = 0. Thus we get an
isomorphismφ0 : RA

≃
−→ R′.



RIGID DUALIZING COMPLEXES ON SCHEMES 27

The isomorphismφ0 might not be rigid, but there is some isomorphismφ1 making the
diagram

RA
φ1

//

ρA

��

R′

ρ′

��

SqA/K RA
Sq

1A/K(φ0)
// SqA/K R

′

commutative. SinceHomD(ModA)(RA, R
′) is a freeA-module with basisφ0, it follows

thatφ1 = uφ0 for someu ∈ A×. Then the isomorphismφ := u−1φ0 is the unique rigid
isomorphismRA

≃
−→ R′. �

In view of this result we are allowed to talk aboutthe rigid dualizing complex overA
(if it exists).

The functorsf ♭ andf ♯ associated to an algebra homomorphismf∗ : A → B were
introduced in Definitions 3.13 and 3.21 respectively.

Proposition 4.4. Let f∗ : A → B be a finite homomorphism ofK-algebras. Assume a
rigid dualizing complex(RA, ρA) overA exists. DefineRB := f ♭RA ∈ D(ModB) and
ρB := f ♭(ρA). Then(RB, ρB) is a rigid dualizing complex overB.

Proof. The fact thatRB is a dualizing complex overB is an easy calculation; see [RD,
Proposition V.2.4]. SinceRB has bounded cohomology andK has finite global dimension
it follows thatRB has finite flat dimension overK. So Theorem 3.14(1) can be applied.�

Proposition 4.5. Let A be a K-algebra, and assumeA has a rigid dualizing complex
(RA, ρA). Letf∗ : A→ B be an essentially smooth homomorphism. DefineRB := f ♯RA
andρB := f ♯(ρA). Then(RB , ρB) is a rigid dualizing complex overB.

Proof. A calculation, using Proposition 3.2(1), shows thatRB is a dualizing complex over
B. The only tricky part is to show thatRB has finite injective dimension; see [RD, The-
orem V.8.3]. Theorem 3.22(1) tells us(RB , ρB) is a rigid complex overB relative to
K. �

Theorem 4.6. Let K be a regular finite dimensional noetherian ring, and letA be an
essentially finite typeK-algebra. ThenA has a rigid dualizing complex(RA, ρA) relative
to K.

Proof. We can find algebras and homomorphismsK
f∗

−→ C
g∗

−→ B
h∗

−→ A, whereC =
K[t1, . . . , tn] is a polynomial algebra,g∗ is surjective andh∗ is a localization. By Example
4.2,(K, ρtau) is a rigid dualizing complex overK. By Propositions 4.5 and 4.4 the com-
plexh♯g♭f ♯K = A ⊗B RHomC(B,ΩnC/K

[n]) is a rigid dualizing complex overA, with

rigidifying isomorphismh♯g♭f ♯(ρtau). �

Definition 4.7. LetA andB beK-algebras, with rigid dualizing complexes(RA, ρA) and
(RB, ρB) respectively. Letf∗ : A → B be a finite homomorphism and letφ : RB → RA
be a morphism inD(ModA). We sayφ is a rigid trace if it satisfies the following two
conditions:

(i) φ is nondegenerate, i.e. the morphismRB → RHomA(B,RA) in D(ModB)
induced byφ is an isomorphism.

(ii) φ is a rigid trace-like morphism, in the sense of Definition 3.8.

Proposition 4.8. Let f∗ : A → B be a finite homomorphism betweenK-algebras. There
is a unique rigid traceTrf = TrB/A : RB → RA.
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Proof. By Corollary 3.19 the morphismTr♭f ;RA
: f ♭RA → RA, namely “evaluation at1”,

is the unique nondegenerate rigid trace-like morphism between these two objects. And by
Proposition 4.4 and Theorem 4.3 there exist a unique rigid isomorphismRB ∼= f ♭RA. �

Here is an immediate consequence of the uniqueness:

Corollary 4.9 (Transitivity). LetA → B → C be finite homomorphisms ofK-algebras.
ThenTrC/A = TrB/A ◦TrC/B .

The notion of rigid localization morphism was introduced inDefinition 3.24.

Proposition 4.10. LetA andA′ beK-algebras, with rigid dualizing complexes(RA, ρA)
and(RA′ , ρA′) respectively. Supposef∗ : A→ A′ is an essentiallýetale homomorphism.
Then there is exactly one rigid localization morphismqf = qA′/A : RA → RA′ .

Proof. By Proposition 4.5 we have a rigid dualizing complexf ♯RA overA′, and by Propo-
sition 3.24 there is a unique rigid localization morphismq♯f ;RA

: RA → f ♯RA. According
to Theorem 4.3 there is a unique rigid isomorphismf ♯RA ∼= RA′ . �

Definition 4.11. Given aK-algebraA, with rigid dualizing complexRA, define therigid
auto-duality functorto beDA := RHomA(−, RA).

Note thatDA is a duality ofDf(ModA), and it exchanges the subcategoriesD+
f (ModA)

andD−
f (ModA). Given a homomorphismf∗ : A→ B the functorLf∗ = B ⊗L

A − sends
D−

f (ModA) into D−
f (ModB). This permits the next definition.

Definition 4.12. Let f∗ : A → B be a homomorphism between twoK-algebras. We
define thetwisted inverse imagefunctorf ! : D+

f (ModA) → D+
f (ModB) as follows. If

A = B andf = 1A (the identity automorphism) then we letf ! := 1
D

+
f (ModA) (the identity

functor). Otherwise we definef ! := DB Lf∗ DA.

Let ψtau
f : f !RA = DB Lf∗ DARA

≃
−→ RB be the isomorphism inD(ModB) deter-

mined by the standard isomorphismsA ∼= DARA, B ∼= B ⊗L
A A andRB ∼= DBB.

Theorem 4.13.LetK be a finite dimensional regular noetherian ring.

(1) Given two homomorphismsA
f∗

−→ B
g∗

−→ C between essentially finite typeK-
algebras, there is an isomorphism

φf,g : (f ◦ g)!
≃
−→ g! f !

of functorsD+
f (ModA) → D+

f (ModC).

(2) For three homomorphismsA
f∗

−→ B
g∗

−→ C
h∗

−→ D, the isomorphismsφ−,− satisfy
the compatibility condition

φg,h ◦ φf,g◦h = φf,g ◦ φf◦g,h : (f ◦ g ◦ h)!
≃
−→ h!g!f !.

(3) For a finite homomorphismf∗ : A → B there is an isomorphismψ♭f : f ♭
≃
−→ f !

of functorsD+
f (ModA) → D+

f (ModB).
(4) For an essentially smooth homomorphismf∗ : A → B there is an isomorphism

ψ♯f : f ♯
≃
−→ f ! of functorsD+

f (ModA) → D+
f (ModB).

(5) In the situation of(1) there is equality

ψtau
f◦g = ψtau

g ◦ ψtau
f ◦ φf,g;RA : (f ◦ g)!RA → RC .

In the situations of(3) and (4) the isomorphismsψtau
f ◦ ψ♭f ;RA

: f ♭RA
≃
−→ RB

andψtau
f ◦ ψ♯f ;RA

: f ♯RA
≃
−→ RB respectively are rigid relative toK.
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In stating the theorem we were a bit sloppy with notation; forinstance in part (5) we
wrote “ψtau

g ◦ ψtau
f ”, whereas the correct expression is “ψtau

g ◦ g!(ψtau
f )”. This was done

for the sake of legibility, and we presume the reader can fill in the omissions.

Proof. (1) The adjunction isomorphism1
D

+
f (ModB)

≃
−→ DBDB, together with the obvious

isomorphismC
≃
−→ C ⊗L

B B, give rise to functorial isomorphisms

(f ◦ g)!M = DC(C ⊗L
A DAM) ∼= DC(C ⊗L

B B ⊗L
A DAM)

∼= DC

(

C ⊗L
B DBDB(B ⊗L

A DAM)
)

= g!f !M

forM ∈ D+
f (ModA). The composed isomorphism(f ◦g)!M

≃
−→ g!f !M is calledφf,g;M .

(2) By definition
(f ◦ g ◦ h)!M = DD(D ⊗L

A DAM)

and

h!g!f !M = DD

(

D ⊗L
C DCDC

(

C ⊗L
B DBDB(B ⊗L

A DAM)
)

)

.

The two isomorphismφg,h ◦ φf,g◦h andφf,g ◦ φf◦g,h differ only by the order in which
the adjunction isomorphisms1

D
+
f (ModB)

∼= DBDB and1
D

+
f (ModC)

∼= DCDC are applied,

and correspondingly an isomorphismC ∼= C ⊗L
B B is replaced byD ∼= D ⊗L

B B. Due to
standard identities the net effect is thatφg,h ◦ φf,g◦h = φf,g ◦ φf◦g,h.

(3) Letχ : f ♭RA
≃
−→ RB be the unique rigid isomorphism (see Proposition 4.4 and The-

orem 4.3). Sincef ♭RA = RHomA(B,RA) = DAB, we may viewχ as an isomorphism
χ : DAB

≃
−→ RB in D+

f (ModB). Applying DA to it we obtainDA(χ) : DARB
≃
−→

DADAB ∼= B. Now for anyM ∈ D+
f (ModA) we have

f !M = DB(B ⊗L
A DAM) = RHomB(B ⊗L

A DAM,RB) ∼= RHomA(DAM,RB).

Next, usingDA(χ) andDADAM ∼= M , we arrive at isomorphisms

RHomA(DAM,RB) ∼= RHomA(DARB,DADAM) ∼= RHomA(B,M) = f ♭M.

The composed isomorphismf ♭M
≃
−→ f !M isψ♭f ;M .

(4) By Proposition 4.5 and Theorem 4.3 there is a unique rigidisomorphismχ : f ♯RA
≃
−→

RB. We may assume thatΩ1
B/A has constant rankn, so thatf ♯M = ΩnB/A[n] ⊗AM for

anyM ∈ D+
f (ModA). In particular we have an isomorphismχ : ΩnB/A[n]⊗ARA

≃
−→ RB .

Usingχ, Proposition 1.10 and the adjunction isomorphismM ∼= DADAM , we obtain

f !M ∼= RHomA(DAM,RB) ∼= ΩnB/A[n] ⊗A RHomA(DAM,RA) ∼= f ♯M.

The composed isomorphismf ♯M
≃
−→ f !M is calledψ♯f ;M .

(5) These assertions are immediate consequences of the construction ofφf,g, ψ♭f andψ♯g.
�

The notion of2-functor between categories is explained in [Ha, Section 5.15]. Let
EFTAlg /K be the category of essentially finite typeK-algebras, and letCat be the cate-
gory of all categories. Due to part (2) of the theorem we have:

Corollary 4.14. The isomorphismsφ−,− in part (1) of the theorem makef∗ 7→ f ! the
1-component of a2-functorEFTAlg /K → Cat, whose0-component isA 7→ D+

f (ModA).
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The last result in this section explains the dependence of the twisted inverse image2-
functor f 7→ f ! on the base ringK. AssumeK′ is an essentially finite typeK-algebra
that’s regular (but maybe not smooth overK). Just like forK, any essentially finite type
K′-algebraA has a rigid dualizing complex relative toK′, which we denote by(R′

A, ρ
′
A).

For any homomorphismf∗ : A→ B there is a corresponding functorf !′ : D+
f (ModA) →

D+
f (ModB), constructed usingR′

A andR′
B. Let(RK′ , ρK′) be the rigid dualizing complex

of K′ relative toK.

Proposition 4.15. LetA be an essentially finite typeK′-algebra. ThenRK′ ⊗L
K′ R′

A is a
dualizing complex overA, and it has an induced is a rigidifying isomorphism relativeto
K. Hence there is a unique isomorphismRK′ ⊗L

K′ R′
A
∼= RA in D(ModA)rig/K .

Proof. We might as well assumeSpec K′ is connected. SinceK′ is regular, one hasRK′
∼=

L[n] for some invertibleK′-moduleL and some integern. ThereforeRK′ ⊗L
K′ R′

A is a
dualizing complex overA. According to Theorem 3.9 the complexRK′ ⊗L

K′ R′
A has an

induced rigidifying isomorphismρK′ ⊗ ρ′A. Now use Theorem 4.3. �

Example 4.16. TakeK := Z andK′ := Fp = Z/(p) for some prime numberp. Then
RK′ = K′[−1], and for anyA ∈ EFTAlg /K′ we haveR′

A
∼= RA[1].

Remark 4.17. The assumption that the base ringK has finite global dimension seems
superfluous. It is needed for technical reasons (bounded complexes have finite flat dimen-
sion), yet we don’t know how to remove it. However, it seems necessary forK to be
Gorenstein – see next example. Also finiteness is important,as Example 4.19 shows.

Example 4.18. Consider a fieldk, and letK = A := k[t1, t2]/(t
2
1, t

2
2, t1t2). ThenA

does not have a rigid dualizing complex relative toK. The reason is that any dualizing
complex over the artinian local ringA must beR ∼= A∗[n] for some integern, where
A∗ := Homk(A, k). Now SqA/K R

∼= R ⊗L
K R, which has infinitely many nonzero

cohomology modules. So there can be no isomorphismR ∼= SqA/K R.

Example 4.19.Take any fieldK, and letA := K(t1, t2, . . .), the field of rational functions
in countably many variables. SoA is a noetherianK algebra, but it is not of essentially
finite type. ClearlyA has a dualizing complex (e.g.R := A), but as shown in [YZ1,
Example 3.13], there does not exist a rigid dualizing complex overA relative toK.

Remark 4.20. The paper [SdS] by de Salas uses an idea similar to Van den Bergh’s rigidity
to define residues on local rings. However the results there are pretty limited. Lipman
(unpublished notes) has an approach to duality using the fundamental class of the diagonal,
which is close in spirit to the idea of rigidity; cf. Remark 6.20.

5. THE RESIDUE SYMBOL

In this section we apply our methods to the residue symbol of [RD, Section III.9].
ThroughoutK is a finite dimensional regular noetherian ring. All rings are commutative
essentially finite typeK-algebras, and all homomorphisms are overK.

Definition 5.1. Supposef∗ : A → B is an essentially smooth homomorphism of relative
dimensionn, i∗ : B → B̄ is a finite homomorphism, and the compositiong∗ := i∗ ◦ f∗ :
A → B̄ is finite and flat. LetM ∈ Db

f (ModA). According to Theorem 4.13 there are

isomorphismsψ♭i ◦ ψ
♯
f : i♭f ♯M

≃
−→ i!f !M , ψ♭g : g♭M

≃
−→ g!M andφf,i : g!M

≃
−→ i!f !M

in D(Mod B̄). The isomorphism

ζM := (ψ♭i ◦ ψ
♯
f )

−1 ◦ φf,i ◦ ψ
♭
g : g♭M

≃
−→ i♭f ♯M
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in D(Mod B̄) is called theresidue isomorphism.

If M is a singleA-module then we haveg♭M ∼= H0g♭M , and there arēB-linear iso-
morphisms

H0(ζM ) : HomA(B̄,M) = H0g♭M
≃
−→ H0i♭f ♯M = ExtnB(B̄,ΩnB/A ⊗AM).

Recall thatA has the tautological rigidifying isomorphismρtau, so we have an ob-
ject (A, ρtau) ∈ D(ModA)rig/A. By Theorems 3.14 and 3.22 we get rigid complexes
g♭(A, ρtau) andi♭f ♯(A, ρtau) in D(Mod B̄)rig/A.

Theorem 5.2. In the situation of Definition5.1, the residue isomorphismζA is the unique
rigid isomorphismg♭(A, ρtau)

≃
−→ i♭f ♯(A, ρtau) overB̄ relative toA.

The proof is after this lemma.

Lemma 5.3. In the setup of the theorem, for anyM ∈ Db
f (ModA) the diagram

(5.4) g♭M
∼= //

ζM

��

M ⊗L
A g

♭A

1M⊗ζA
��

i♭f ♯M
∼= // M ⊗L

A i
♭f ♯A

with horizontal arrows coming from Theorems3.14(4)and3.22(2), is commutative.

Proof. Going over the proof of Theorem 4.13 we see that there are similar commuta-
tive diagrams with pairs of vertical arrows(ψ♭g;M ,1M ⊗ ψ♭g;A), (ψ♯f ;M ,1M ⊗ ψ♯f ;A),

(ψ♭i;f♯M ,1f♯M ⊗ ψ♭i;f♯A) and(φf,i;M ,1M ⊗ φf,i;A). �

Proof of Theorem5.2. SinceHomD(Mod B̄)(g
♭A, i♭f ♯A) is a freeB̄-module with basisζA,

it follows thatuζA : g♭A → i♭f ♯A is a rigid isomorphism for a uniqueu ∈ B̄×. We will
show thatu = 1.

Sinceg♭ ∼= HomA(B̄,−) there are isomorphismsRA⊗L
A g

♭A ∼= g♭RA ∼= RB̄. We also
know thati♭f ♯A ∼= i!f !A ∼= g!A ∼= g♭A, implying thatRA ⊗L

A i
♭f ♯A ∼= RB̄. Because

RB̄
∼= SqB̄/K RB̄ we see that Theorem 3.9(2) applies, with its condition (iii). Thus we

obtain a rigid isomorphism

1RA ⊗ uζA : RA ⊗L
A g

♭A
≃
−→ RA ⊗L

A i
♭f ♯A

overB̄ relative toK. Now the commutativity of the diagram (5.4), withM := RA, says
thatζRA = 1RA ⊗ ζA. ThereforeuζRA = 1RA ⊗ uζA, implying thatuζRA : g♭RA

≃
−→

i♭f ♯RA is a rigid isomorphism relative toK. However, by Theorem 4.13, the isomorphism
ζRA is itself rigid relative toK. The uniqueness in Theorem 4.3 implies thatu = 1. �

Definition 5.5. Theresidue map

ResB/A : ExtnB(B̄,ΩnB/A) → A

is defined to beResB/A := Tr♭g;A ◦ ζ−1
A , whereζA : g♭A

≃
−→ i♭f ♯A is the residue isomor-

phism, andTr♭g;A : g♭A→ A is “evaluation at1”.

Consider the object

ExtnB(B̄,ΩnB/A) = i♭f ♯A ∈ D(Mod B̄)rig/A.
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The rigidifying isomorphism isi♭f ♯(ρtau). In this notation, Theorem 5.2 says thatζA :

g♭A
≃
−→ ExtnB(B̄,ΩnB/A) is a rigid isomorphism relative toA. Using Corollary 3.19 we

obtain:

Corollary 5.6. The residue mapResB/A is the unique nondegenerate rigid trace-like mor-
phismExtnB(B̄,ΩnB/A) → A relative toA.

The corollary shows that (as would be expected) the residue map is independent of the
base ringK and of the twisted inverse image functorf 7→ f ! associated to it. Indeed, the
only data needed to characterizeResB/A is the two ring homomorphismsA→ B → B̄.

We shall now look at a special case:f∗ : A→ B is a smooth homomorphism of relative
dimensionn, andb = (b1, . . . , bn) is a sequence of elements inB such that the algebra
B̄ := B/(b) is finite overA. It follows thatb is a regular sequence, and̄B is flat overA;
cf. [EGA, Chapitre IV, Section 11]. Leti∗ : B → B̄ andg∗ : A→ B̄ be the corresponding
homomorphisms.

Let K(B, b) be the Koszul complex associated to the sequenceb. Recall that for anyi
the Koszul complexK(B, bi) is the free gradedB-moduleBei ⊕B, with deg(ei) := −1
and differentiald(ei) := bi. The total Koszul complex isK(B, b) := K(B, b1)⊗B · · ·⊗B
K(B, bn). Sinceb is a regular sequence we get a quasi-isomorphismK(B, b) → B̄, which
is a free resolution overB, and

ExtnB(B̄,ΩnB/A) = H0 HomB

(

K(B, b),ΩnB/A[n]
)

.

Definition 5.7. Given a differential formβ ∈ ΩnB/A, thegeneralized fraction
[

β

b

]

∈ ExtnB(B̄,ΩnB/A)

is the cohomology class of the homomorphismK(B, b)−n → ΩnB/A, e1 ∧ · · · ∧ en 7→ β.

Combining the Definitions 5.7 and 5.5 we obtain theresidue symbolResB/A
[

β
b

]

∈ A.
In view of Proposition 6.19 (see also Remark 6.20) this definition of the residue symbol
coincides (perhaps up to sign) with the one in [RD, Section III.9].

For the remainder of this section we will writeρA for the tautological rigidifying iso-
morphismρtau of A relative to itself, and likewise for other rings.

Let’s defineE := ExtnB(B̄,ΩnB/A). This B̄-module has a rigidifying isomorphism

ρE := i♭f ♯(ρA) : E
≃
−→ SqB̄/A E relative toA. SinceA→ B̄ is flat we have

SqB̄/A E = HomB̄⊗AB̄(B̄, E ⊗A E),

which is aB̄ ⊗A B̄ -submodule ofE ⊗A E. We are going to find an explicit formula for
the homomorphismρE : E → E ⊗A E in a special case (see Proposition 5.12).

In Lemma 5.8 and Proposition 5.9 below we will look at the following setup. The
K-algebrasA,B, B̄ are as before;K′ is another regular noetherian ring of finite Krull
dimension;K → K′ is a ring homomorphism (without any finiteness assumptions);A′, B′

andB̄′ are essentially finite typeK′-algebras; and there is a commutative diagram of ring
homomorphisms

K //

��

A
f∗

//

h∗

��

B
i∗ //

��

B̄

��

K′ // A′
f ′∗

// B′ i′∗ // B̄′.
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We assume thatB′ ∼= B⊗A A′ andB̄′ ∼= B̄ ⊗A A′. LetE′ := ExtnB′(B̄′,ΩnB′/A′). There
is an induced isomorphismE′ ∼= E⊗AA′ (cf. Proposition 1.10 with condition (iii.a)), and
we denote byη : E → E′ the correspondinḡB-linear homomorphism. LetρA′ be the
tautological rigidifying isomorphism ofA′ relative to itself, and letρE′ := i′♭f ′♯(ρA′) be
the rigidifying isomorphism ofE′ overB̄′ relative toA′.

Lemma 5.8.
(η ⊗ η) ◦ ρE = ρE′ ◦ η : E → E′ ⊗A′ E′,

i.e.η is a rigid base change morphism relative toA.

Proof. From the proof of Theorem 3.22 we see that the canonical morphism

η0 : f ♯A = ΩnB/A[n] → ΩnB′/A′ [n] = f ′♯A′

satisfies

(η0 ⊗ η0) ◦ f
♯(ρA) = f ♯(ρA′) ◦ η0.

Soη0 is rigid base change morphism relative toA. Similarly, the proof of Theorem 3.14
shows that the canonical morphism

η1 : i♭B = ExtnB(B̄, B)[−n] → ExtnB′(B̄′, B′)[−n] = i′
♭
B′

satisfies

(η1 ⊗ η1) ◦ i
♭(ρB) = i′

♭
(ρB′) ◦ η1.

This says thatη1 is a rigid base change morphism relative toB. Combine this with Theo-
rem 3.14(4). �

Proposition 5.9. In the situation described above one has

h∗ ◦ ResB/A = ResB′/A′ ◦ η : E → A′.

Proof. SinceHomA(E,A′) is a freeB̄′-module of rank1, we see thatRes′ ◦ η = uh∗◦Res
for a unique invertible elementu ∈ B̄′. HereRes := ResB/A andRes′ := ResB′/A′ . So
the rear square in the diagram below commutes up to a factor ofu. BecauseRes andRes′

are rigid morphisms, the two horizontal rectangles are commutative. By Lemma 5.8 the
left-facing vertical rectangle is commutative, and trivially the right-facing vertical rectangle
is commutative. Finally the front square commutes up to a factor of u2. We conclude that
u = 1.

E
Res //

η

��

ρE

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU A

h∗

��

=

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

E′ Res′ //

ρE′

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU A′

VVVVVVVVVVVVVVVVVVVVVVV

=

**VVVVVVVVVVVVV

SqB̄/A E
Res⊗Res

//

η⊗η

��

A

h∗

��
SqB̄′/A′ E′

Res′ ⊗Res′
// A′

�



34 AMNON YEKUTIELI AND JAMES J. ZHANG

Lemma 5.10. AssumeK = A = Z; B = Z[t], the polynomial algebra in one variable;
andb = tm+1 for somem ≥ 0. Then

ρE(

[

dt

tm+1

]

) = ǫ

m
∑

j=0

(

[

tj dt

tm+1

]

⊗

[

tm−j dt

tm+1

]

)

for someǫ ∈ {1,−1}.

Proof. TheA-moduleE is free of rankm+ 1 with basis
[

dt
tm+1

]

, . . . ,
[

tm dt
tm+1

]

. Therefore

(5.11) ρE(

[

dt

tm+1

]

) =

m
∑

j,k=0

aj,k
(

[

tj dt

tm+1

]

⊗

[

tk dt

tm+1

]

)

∈ E ⊗A E

for someaj,k ∈ A.
DefineAQ := Q, BQ := Q[t], B̄Q := Q[t]/(tm+1) andEQ := Ext1BQ

(B̄Q,Ω
1
BQ/AQ

).
SoEQ

∼= E ⊗A AQ, and by Lemma 5.8 the rigidifying isomorphismρEQ
also satisfies

equation (5.11). Take anyλ ∈ Q−{0, 1,−1}, and consider the automorphismh∗ : BQ →
BQ, t 7→ λt. Let η : E → E be the corresponding homomorphism. Again by Lemma 5.8
we see that

(ρE ◦ η)(

[

dt

tm+1

]

) =
m

∑

j,k=0

aj,k
(

η(

[

tj dt

tm+1

]

) ⊗ η(

[

tk dt

tm+1

]

)
)

.

Sinceη(
[

tj dt
tm+1

]

) = λj−m
[

tj dt
tm+1

]

, we conclude thataj,k = 0 unlessj + k = m.
Let t̄ denote the class oft in B̄. So1 ⊗ t̄− t̄⊗ 1 ∈ Ker(B̄ ⊗A B̄ → B̄), and therefore

(1 ⊗ t̄− t̄⊗ 1) · ρE(

[

dt

tm+1

]

) = 0.

Now t̄
[

tj dt
tm+1

]

=
[

tj+1 dt
tm+1

]

. We conclude thata0,m = a1,m−1 = · · · = am,0, which we
denote byǫ. Since

m
∑

j=0

(

[

tj dt

tm+1

]

⊗

[

tm−j dt

tm+1

]

)

∈ HomB̄⊗AB̄(B̄, E ⊗A E) = SqB̄/AE,

yet ρE(
[

dt
tm+1

]

) is part of a basis of theA-moduleSqB̄/AE, it follows that ǫ must be
invertible. Thusǫ ∈ {1,−1}. �

Proposition 5.12. LetA be any essentially finite typeK-algebra,B := A[t] and B̄ :=
B/(tm+1). Then

ResB/A

[

tj dt

tm+1

]

=

{

ǫ if j = m

0 otherwise.

Hereǫ ∈ {1,−1} is some universal constant.

Proof. According to Proposition 5.9 we can assume thatK = A = Z. Let ǫ be the
number occurring in Lemma 5.10. Define anA-linear homomorphismφ : E → A by
φ(

[

tj dt
tm+1

]

) := ǫ if j = m, and0 otherwise. We have to prove thatφ = ResB/A. In view of
Corollary 5.6 it suffices to show thatφ is a rigid morphism relative toA.

Thus we have to verify that

(φ⊗ φ) ◦ ρE = ρA ◦ φ : E → A.
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By Lemma 5.10, for anyj ∈ {0, . . . ,m} we have

ρE(

[

tj dt

tm+1

]

) = tjρE(

[

dt

tm+1

]

) = ǫ
m

∑

k=0

(

[

tj+k dt

tm+1

]

⊗

[

tm−k dt

tm+1

]

)

.

Thus

((φ ⊗ φ) ◦ ρE)(

[

tj dt

tm+1

]

) = ǫ · φ(

[

tj dt

tm+1

]

) · φ(

[

tm dt

tm+1

]

) =

{

ǫ3 if j = m

0 otherwise.

On the other handρA is the identity, and

φ(

[

tj dt

tm+1

]

) =

{

ǫ if j = m

0 otherwise.

But ǫ3 = ǫ. �

Remark 5.13. The actual value ofǫ is not so easy to determine. Since we will not need it,
we did not do the calculation.

6. GLUING RIGID DUALIZING COMPLEXES ONSCHEMES

In the beginning of this sectionX is some finite dimensional noetherian scheme. A
dimension functiononX is a functiondim : X → Z such thatdim(y) = dim(x) − 1
whenevery is an immediate specialization ofx. Thus− dim is a codimension function,
in the sense of [RD, Section V.7]. Note that any closed subsetZ ⊂ X has a dimension,
namelydimZ := sup{dim(x) | x ∈ Z}.

Let dim be a dimension function onX . This determines a Cousin functorE :
D+(ModOX) → C(ModOX), the latter being the category of complexes ofOX -modules.
Let us recall the construction of the Cousin functor from [RD, Chapter IV]. Given anOX -
moduleM, denote byFiM the subsheaf of sections whose support has dimension≤ i.
Now letM ∈ D+(ModOX), and choose a bounded below injective resolutionM → J .
Let {Ep,qr } be the spectral sequence associated to the filtered complex{FiJ }. The Cousin
complexEM is the rowq = 0 in the pager = 1 of this spectral sequence. According
to [RD, Section IV.2], for anyp one has(EM)p ∼=

⊕

dim(x)=−pHp
xM, where we view

Hp
xM as a constant sheaf supported on the closed set{x}. If M ∈ Db

qc(ModOX) then
eachHp

xM is quasi-coherent, soEM ∈ C+(QCohOX)

Definition 6.1. A complexM ∈ Db(ModOX) is called aCohen-Macaulay complex
(relative to the dimension functiondim) if Hi

xM = 0 for all x andi 6= dim(x).

According to [RD, Proposition IV.2.6] or [YZ2, Theorem 2.11], M is a Cohen-Macau-
lay complex if and only ifM ∼= EM in D(ModOX). Let us denote byDb

qc(ModOX)CM

the full subcategory ofDb
qc(ModOX) consisting of Cohen-Macaulay complexes.

Recall that a quasi-coherentOX -moduleJ is injective as object of the category
QCohOX iff it is injective in the bigger categoryModOX . Moreover, for such an injec-
tive quasi-coherent module there is an isomorphismJ ∼=

⊕

x∈X J (x)(µx), whereJ (x)
denotes an injective hull of the residue fieldk(x), considered as a quasi-coherent sheaf;
µx is a cardinal number; andJ (x)(µx) denotes the direct sum ofµx copies ofJ (x). See
[RD, Section II.7].

A bounded below complexJ of injective quasi-coherentOX -modules is called amin-
imal injective quasi-coherent complexif for any q the module of cocyclesKer(J q →
J q+1) is an essential submodule ofJ q in the categoryQCohOX . Given a complexN ∈
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D+
qc(ModOX), aminimal injective quasi-coherent resolutionof N is a quasi-isomorphism

N → J , with J a minimal injective quasi-coherent complex.

Lemma 6.2. LetN ∈ D+
qc(ModOX).

(1) There exists a minimal injective quasi-coherent resolution N → J . MoreoverJ
is unique up to isomorphism.

(2) For anyq ∈ Z and anyx ∈ X let µx,q be the multiplicity ofJ (x) in J q. Then

µx,q = rankk(x) ExtqOX,x
(k(x),Nx),

whereNx is the stalk atx.
(3) If N is a Cohen-Macaulay complex thenµx,q = 0 wheneverq < − dim(x).

Proof. (1) By [RD, Corollary II.7.19] we may assume thatN ∈ D+(QCohOX). Now we
may apply [Ye1, Lemma 4.2].

(2) The complexJx is a minimal injective resolution ofNx over the local ringOX,x. Now
use [YZ2, Lemma 4.12(2)].

(3) Note that
ExtqOX,x

(k(x),Nx) ∼= ExtqOX,x
(k(x),RΓxN ).

The Cohen-Macaulay assumption says that the cohomology ofRΓxN is concentrated in
degree− dim(x). �

Lemma 6.3. SupposeM,N ∈ Db
qc(ModOX)CM. Then the assignment

U 7→ HomD(ModOU )(M|U ,N|U )

is a sheaf onX .

Proof. As explained above there is an isomorphismφ : M
≃
−→ EM in D(ModOX).

Choose a minimal injective quasi-coherent resolutionψ : N → J . By Lemma 6.2(3) the
multiplicities of the complexJ satisfyµx,q = 0 for all q < − dim(x).

For an open setU ⊂ X consider the canonical homomorphism

λU : HomC(ModOU )(EM|U ,J |U ) → HomD(ModOU )(EM|U ,J |U ).

SinceJ |U is a bounded below complex of injectiveOU -modules it follows thatλU is
surjective. On the other hand, any local section of(EM)q has support in dimension≤ −q,
but there are no nonzero local sections ofJ q−1 with support in dimension≤ −q. It follows
thatHomC(ModOU )(EM|U ,J |U )−1 = 0, and soλU is also injective.

Now the isomorphismsφ|U : M|U
≃
−→ EM|U andψ|U : N|U

≃
−→ J |U in D(ModOU )

give rise to a bijection

HomD(ModOU )(M|U ,N|U ) → HomD(ModOU )(EM|U ,J |U ).

We conclude that the presheavesU 7→ HomD(ModOU )(M|U ,N|U ) and U 7→
HomC(ModOU )(EM|U ,J |U ) are isomorphic. But the latter is a sheaf. �

A stack onX is a “sheaf of categories.” The general definition (cf. [LMB]) is quite
forbidding; but we shall only need the following special instance (cf. [KS, Section X.10]).

Definition 6.4. Suppose that for every open setU ⊂ X we are given a full subcategory
C(U) ⊂ D(ModOU ). The collection of categoriesC = {C(U)} is called astack of
subcategories ofD(ModOX) if the following axioms hold.

(a) LetV ⊂ U be open sets inX andM ∈ C(U). ThenM|V ∈ C(V ).
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(b) Descent for objects: given an open coveringU =
⋃

Vi, objectsMi ∈ C(Vi) and
isomorphismsφi,j : Mi|Vi∩Vj

≃
−→ Mj|Vi∩Vj satisfying the cocycle condition

φi,k = φj,k ◦ φi,j on triple intersections, there exists an objectM ∈ C(U) and

isomorphismsφi : M|Vi

≃
−→ Mi such thatφi,j ◦ φi = φj .

(c) Descent for morphisms: given two objectsM,N ∈ C(U), an open covering
U =

⋃

Vi and morphismsψi : M|Vi → N|Vi such thatψi|Vi∩Vj = ψj |Vi∩Vj ,
there is a unique morphismψ : M → N such thatψ|Vi = ψi.

Theorem 6.5. LetX be a finite dimensional noetherian scheme with dimension function
dim. The assignmentU 7→ Db

qc(ModOU )CM is a stack of subcategories ofD(ModOX).

Proof. Axiom (a) is clear, since the Cohen-Macaulay property is local. Axiom (c) is
Lemma 6.3. Let us prove axiom (b). SinceX is noetherian, and in view of axiom (c),
we may assumeI = {1, . . . , n}. Let us defineWi :=

⋃i
j=1 Vj . By induction oni we will

construct a complexNi ∈ Db
qc(ModOWi)CM with isomorphismsψi,j : Ni|Vj

≃
−→ Mj

for all j ≤ i that are compatible with theφj,k. ThenM := Nn will be the desired global
object onV = Wn.

So assumei < n andNi has already been defined. For anyj ≤ i we have an isomor-
phism

φj,i+1 ◦ ψi,j : Ni|Vj∩Vi+1

≃
−→ Mj |Vj∩Vi+1

≃
−→ Mi+1|Vj∩Vi+1 ,

and these satisfy the cocycle condition. According to axiom(c) there is an isomorphism

ψi,i+1 : Ni|Wi∩Vi+1

≃
−→ Mi+1|Wi∩Vi+1

in D(ModOWi∩Vi+1). Denote byfi+1 : Wi → Wi+1, gi+1 : Vi+1 → Wi+1 andhi+1 :

Wi ∩ Vi+1 →Wi+1 the inclusions. DefineNi+1 ∈ Db(ModOWi+1) to be the cone of the
morphism

h(i+1)!(Ni|Wi∩Vi+1)
(γ,ψi,i+1)
−−−−−−→ f(i+1)!Ni ⊕ g(i+1)!Mi+1

whereh(i+1)! etc. are extension by zero, andγ is the canonical morphism. We obtain a
distinguished triangle

h(i+1)!(Ni|Wi∩Vi+1) → f(i+1)!Ni ⊕ g(i+1)!Mi+1 → Ni+1 → h(i+1)!(Ni|Wi∩Vi+1)[1]

in D(ModOWi+1). Upon restriction toWi we get an isomorphismNi
∼= Ni+1|Wi ; and

upon restriction toVi+1 we get an isomorphismNi+1|Vi+1

≃
−→ Mi+1 which we call

ψi+1,i+1. From these isomorphisms it follows thatNi+1 ∈ Db
qc(ModOWi+1)CM. �

Remark 6.6. AssumeX is a finite type scheme over a fieldK, and consider the dimen-
sion functiondimK (see Definition 6.10 below). LetDb

c (ModOX)CM be the category of
Cohen-Macaulay complexes with coherent cohomology sheaves. In [YZ4] we show that
Db

c (ModOX)CM is the heart of the rigid perverse t-structure onDb
c (ModOX). More-

over,Db
c (ModOX)CM is the image ofCohOX under the rigid auto-duality functorDX .

ThereforeDb
c (ModOX)CM is an artinian abelian category. We do not know of a similar

statement for the bigger categoryDb
qc(ModOX)CM.

From here on in this sectionK is a finite dimensional noetherian regular ring. All rings
are by default essentially finite typeK-algebras, all schemes are by default finite typeK-
schemes, and all morphisms are overK.

For a schemeX we writeAff X for the set of affine open sets in it.
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Definition 6.7. Let X be a scheme andM ∈ Db
c (ModOX). ForU ∈ Aff X we write

AU := Γ(U,OX) andMU := RΓ(U,M). Assume that for everyU ∈ AffX we are given
a rigidifying isomorphismρU : MU

≃
−→ SqAU/K MU in D(ModAU ). Moreover, assume

that for every pair of affine open setsV ⊂ U the localization morphismqV/U : MU →
MV in D(ModAU ) is a rigid localization morphism (cf. Definition 3.24). Thenwe call
ρ = {ρU}U∈AffX a rigid structure onM relative toK, and the pair(M,ρ) is called a
rigid complex ofOX -modules relative toK.

Definition 6.8. Suppose(M,ρM) and(N ,ρN ) are rigid complexes ofOX -modules rel-
ative toK. A rigid morphismfrom (M,ρM) to (N ,ρN ) is a morphismφ : M → N in
D(ModOX), such that for every affine open setU ⊂ X the morphismRΓ(U, φ) : MU →
NU in D(ModAU ) is a rigid morphism relative toK, in the sense of Definition 3.8.

We denote the category of rigid complexes byDb
c (ModOX)rig/K .

Definition 6.9. A rigid dualizing complex onX relative toK is a rigid complex(R,ρ)
such thatR is a dualizing complex.

For a fieldK any dualizing complex is of the formK[n] for some integern.

Definition 6.10. (1) SupposeK is an essentially finite typeK-algebra that’s a field,
and letRK be its rigid dualizing complex. Letn be the integer such thatRK ∼=
K[n], and definedimK(K) := n.

(2) LetX be a finite typeK-scheme,x ∈ X a point andk(x) the residue field ofx.
We definedimK(x) := dimK(k(x)).

Lemma 6.11. The functiondimK : X → Z is a dimension function.

Proof. Choose an affine open neighborhoodU = SpecA of x in X . Denote byR the
sheafification of the rigid dualizing complexRA toU , and letRx be its stalk atx. Accord-
ing to [RD, Proposition V.3.4] there is an integern such that

ExtiOX,x
(k(x),Rx) ∼=

{

k(x) if i = −n

0 otherwise.

SinceRHomOX,x(k(x),Rx) is a rigid dualizing complex overk(x) we see thatn =
dimK(x). By [RD, Proposition V.7.1] we see thatdimK(y) = dimK(x) − 1 for an imme-
diate specialization. �

Example 6.12.If K is equidimensional of dimensiond (i.e. every maximal ideal has height
d) thendimK(x) = dim {x} − d. Thus in the case of a fieldK one hasdimK(x) =

dim {x}. On the other hand, forK = Z andX = Spec Z, a closed pointx = (p) has
dimK(x) = −1.

Theorem 6.13.LetK be a finite dimensional regular noetherian ring, and letX be a finite
typeK-scheme. ThenX has a rigid dualizing complex(RX ,ρX), which is unique up to a
unique rigid isomorphism.

Proof. LetU = SpecA be an affine open set inX . By Theorem 4.3 theK-algebraA has a
rigid dualizing complex(RA, ρA). If U ′ = SpecA′ ⊂ U is a smaller affine open set, then
by Proposition 4.10 there is a unique rigid localization morphismqA′/A : (RA, ρA) →

(RA′ , ρA′). In this way we get an isomorphismφA′/A : A′⊗ARA
≃
−→ RA′ in D(ModA′).

Given another affine open setU ′′ = SpecA′′ ⊂ U ′ the localization morphisms satisfy
qA′′/A = qA′′/A′ ◦ qA′/A, and henceφA′′/A = φA′′/A′ ◦ φA′/A.



RIGID DUALIZING COMPLEXES ON SCHEMES 39

Now let’s pass to sheaves. For an affine open setU = SpecA ⊂ X let RU be the
sheafification ofRA to U , which is a dualizing complex onU . Given an affine open set
U ′ ⊂ U there is an isomorphismφU ′/U : RU |U ′

≃
−→ RU ′ in D(ModOU ′). For a third

affine open setU ′′ ⊂ U ′ these isomorphisms satisfy the conditionφU ′′/U = φU ′′/U ′ ◦
φU ′/U .

By [RD, Proposition V.7.3] each of the complexesRU is Cohen-Macaulay with re-
spect todimK . Given two affine open setsU1, U2 ⊂ X , and any affine open setW ⊂

U1 ∩ U2, we get isomorphismsφW/Ui
: RUi |W

≃
−→ RW . According to Theorem 6.5

the Cohen-Macaulay complexes form a stack onX . By axiom (c) of Definition 6.4 the
isomorphismsφ−1

W/U2
◦ φW/U1

: RU1 |W
≃
−→ RU2 |W can be patched to an isomorphism

φU1,U2 : RU1 |U1∩U2

≃
−→ RU2 |U1∩U2 ; and these isomorphisms satisfy the cocycle condi-

tion on triple intersections. By axiom (b) there is a complexRX ∈ Db
c (ModOX)CM with

isomorphismsRX |U ∼= RU for any affine open setU . The complexRX is dualizing, and
by construction it comes equipped with a rigid structureρX .

Regarding uniqueness: this is immediate from the uniqueness of the rigid dualizing
complexesRA over theK-algebrasA, and by the uniqueness of the rigid localization
morphismsqA′/A. �

Therigid auto-duality functorofX is

DX := RHomOX (−,RX).

Let FTSch /K be the category of finite type schemes overK.

Definition 6.14. For a morphismf : X → Y in FTSch /K we define a functor

f ! : D+
c (ModOY ) → D+

c (ModOX)

as follows. IfX = Y andf = 1X (the identity automorphism) thenf ! := 1
D

+
c (ModOX)

(the identity functor). Otherwise we definef ! := DX Lf∗ DY .

Note that sinceDYOY = RY , Lf∗OY = OX andDXOY = RX , one hasf !RY =
RX . In Section 4 we were more pedantic, so we introduced the tautological isomorphism
ψtau
f : f !RY

≃
−→ RX , using standard identities; see Definition 4.12.

Corollary 6.15. Let f : X → Y and g : Y → Z be morphisms inFTSch /K. Then
there is an isomorphism of functorsφg,f : (g ◦ f)!

≃
−→ f !g!. Given another morphism

h : Z →W in FTSch /K the compatibility relation

φh,g ◦ φh◦g,f = φg,f ◦ φh,g◦f : (h ◦ g ◦ f)!
≃
−→ f !g!h!

holds. Thusf 7→ f ! is the1-component of a contravariant2-functorFTSch /K → Cat,
whose0-component isX 7→ D+

c (ModOX).

Proof. Use the adjunction isomorphism1Y
≃
−→ DY DY . Cf. Theorem 4.13(1,2). �

Recall that for a finite morphism of schemesf : X → Y there is a functorf ♭ :
D(ModOY ) → D(ModOX) defined by

f ♭N := OX ⊗f−1f∗OX
f−1RHomOY (f∗OX ,N ).

For a smooth morphismf we have a functorf ♯ : D(ModOY ) → D(ModOX) defined as
follows. LetX =

∐

Xi be the decomposition ofX into connected components, and for
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eachi let ni be the rank of the locally freeOXi -moduleΩ1
Xi/Y

. Denote bygi : Xi → X

the inclusion. Then

f ♯N :=
(

⊕

i
gi∗ Ωni

Xi/Y
[ni]

)

⊗OX f∗N .

Cf. [RD, Sections III.2 and III.6].

Theorem 6.16. Let K be a regular finite dimensional noetherian ring, letf : X → Y
be a finite(resp. smooth) morphism between finite typeK-schemes, and let(RX ,ρX) and
(RY ,ρY ) be the rigid dualizing complexes. Then the complexf ♭RY (resp.f ♯RY ) is a
dualizing complex overX , and it has an induced rigid structuref ♭(ρY ) (resp.f ♯(ρY )).
Therefore there is a unique rigid isomorphismf ♭RY

∼= RX (resp.f ♯RY
∼= RX ).

Proof. The fact thatf ♭RY (resp.f ♯RY ) is a dualizing complex onX is quite easy to
verify; see [RD, Proposition V.2.4] (resp. [RD, Theorem V.8.3]). We need to provide it with
a rigid structuref ♭(ρY ) (resp.f ♯(ρY )). We will do only the case of a finite morphism.
The smooth case is similar (but easier).

Let V ⊂ Y be an affine open set. DefineA := Γ(V,OY ) andB := Γ(f−1(V ),OX).
Sof∗ : A → B is a finite homomorphism ofK-algebras. LetRV := RΓ(V,RY ), and
let ρV be its rigidifying isomorphism. By Theorem 3.14 the complexf ♭RV is a dualizing
complex overB, with rigidifying isomorphismf ♭(ρV ). If V ′ ⊂ V is a smaller affine open
set, and we letA′ := Γ(V ′,OY ), B′ := Γ(f−1(V ′),OX) andRV ′ := RΓ(V ′,RY ), then
under the isomorphismf ♭RV ′

∼= B′ ⊗B f ♭RV one hasf ♭(ρV ′) = 1B′ ⊗B f ♭(ρV ). This
is due to Theorem 3.26.

We want to show that for every affine open setU ⊂ X the complexRU :=
RΓ(U, f ♭RY ) has a rigidifying isomorphismρU . If U ⊂ f−1(V ) for some affine open
setV ⊂ Y then this follows from the previous paragraph. Indeed, withA, B andRV as
defined above, andB′ := Γ(U,OX), we have an isomorphismRU ∼= B′ ⊗B f ♭RV ; so
we can use the rigidifying isomorphismf ♭(ρV ). And this rigidifying isomorphism ofRU
does not depend on the choice ofV .

Now for an arbitrary affine open setU ⊂ X , let us cover it by affine open setsU1, . . . ,
Un such that eachUi ⊂ f−1(Vi) for some affine open setVi ⊂ Y . We have to find a
rigidifying isomorphismρU : RU

≃
−→ SqB/K RU in D(ModB). Let us denote byS ∈

D(ModOU ) the sheafification ofSqB/K RU . Since both(f ♭RY )|U andS are Cohen-
Macaulay complexes onU , and on each of the open setsUi we have an isomorphism
f ♭(ρVi) : (f ♭RY )|Ui

≃
−→ S|Ui , that agree on double intersections, we can glue them to

obtain the desired rigidifying isomorphismρU .
By construction the various rigidifying isomorphismsρU respect localizations, so we

have a rigid structure onf ♭RY , which we denote byf ♭(ρY ). By the uniqueness in Theo-
rem 6.13 we get a rigid isomorphism(f ♭RY , f

♭(ρY ))
≃
−→ (RX ,ρX). �

Corollary 6.17. In the situation of Theorem6.16there is a functorial isomorphismf !N ∼=
f ♭N (resp.f !N ∼= f ♯N ) for N ∈ D+

c (ModOX).

Proof. Use Theorem 6.16 and standard adjunction formulas. �

For more details on the isomorphismsf ! ∼= f ♭ andf ! ∼= f ♯ see Theorem 4.13.
In the next two results we shall consider onlyembeddablemorphisms, in order to avoid

complications. Most likely they are true without this assumption. Recall that a morphism
f : X → Y is called embeddable if it can be factored intof = h ◦ g, whereg is finite and
h is smooth.
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Proposition 6.18(Flat Base Change). Let f : X → Y be an embeddable morphism, and
let g : Y ′ → Y be a flat morphism. Define a schemeX ′ := Y ′ ×Y X , with projections
f ′ : X ′ → Y ′ andh : X ′ → X . Then there is an isomorphismf ′!g∗ ∼= h∗f ! of functors
D+

c (ModOY ) → D+
c (ModOX′).

Proof. This is immediate whenf is either finite or smooth, by Corollary 6.17. Cf. proof
of Theorem 3.26. �

For a morphism of schemesf : X → Y let’s denote by

f !(G) : D+
c (ModOY ) → D+

c (ModOX)

Grothendieck’s twisted inverse image functor from [RD].

Proposition 6.19(Comparison to [RD]). If f : X → Y is an embeddable morphism then
there is an isomorphism of functorsf !(G) ∼= f !. In particular, if the structural morphism
π : X → Spec K is embeddable, then there is an isomorphismπ!(G)K ∼= π! K = RX in
D(ModOX).

Proof. Choose a factorizationf = h ◦ g, with g finite andh smooth. Then, according
to [RD, Theorem III.8.7], there are isomorphismsg!(G) ∼= g♭, h!(G) ∼= h♯ andf !(G) ∼=
g!(G)h!(G) . On the other hand, by Corollaries 6.17 and 6.15 we haveg! ∼= g♭, h! ∼= h♯ and
f ! ∼= g!h!. �

Remark 6.20. In caseX is a separated flat embeddableK-scheme, Proposition 6.19 can be
strengthened significantly. Indeed, one can prove that the dualizing complexR′ := π!(G)K

has a rigid structure, which determined by the variance properties of the twisted inverse
image2-functorf 7→ f !(G) , as stated in [RD, Theorem III.8.7]. Here is an outline. Letting
X2 := X ×K X , there are the diagonal embedding∆ : X → X2, which is a finite
morphism; and the two projectionspi : X2 → X , which are flat. See diagram below.
Using flat base change one can obtain a canonical isomorphism

(6.21) R′ ∼= ∆−1RHomOX2

(

∆∗OX , (p
∗
1 R

′) ⊗L
OX2

(p∗
2 R

′)
)

.

Now take any affine open setU ⊂ X , and letAU := Γ(U,OX) andR′
U := RΓ(U,R′).

Applying the functorRΓ(U,−) to the isomorphism (6.21) we obtain a rigidifying isomor-
phismρ′U : R′

U
≃
−→ SqAU/K R

′
U in D(ModAU ). The collection of isomorphisms{ρ′U} is

compatible with localizations, so it’s a rigid structure onR′.

X
∆ // X2

p1

��

p2
// X

π
��

X
π // Spec K

To conclude this section we address the question of dependence of the twisted inverse
image2-functorf 7→ f ! on the base ringK. AssumeK′ is an essentially finite typeK-
algebra that’s regular (but maybe not smooth overK). Consider the categoryFTSch /K′,
with the faithful functorFTSch /K′ → FTSch /K. Just like forK, any finite typeK′-
schemeX has a rigid dualizing complex relative toK′, which we denote byR′

X . Also
there is a2-functorFTSch /K′ → Cat, constructed using the complexesR′

X ; we denote
it by f 7→ f !′. LetRK′ be the rigid dualizing complex ofK′ relative toK. Note that since
K′ is regular, one hasRK′

∼= L[n] for some invertibleK′-moduleL and some integern.
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Proposition 6.22. GivenX ∈ FTSch /K′, the complexRK′ ⊗L
K′ R′

X ∈ Db
c (ModOX)

has an induced rigid structure relative toK. Therefore there is a unique rigid isomorphism
RK′ ⊗L

K′ R′
X

∼= RX .

Proof. This is immediate from Proposition 4.15. �

Because the twistingRK′⊗L
K′− is an auto-equivalence ofD+

c (ModOX) for any scheme
X ∈ FTSch /K′, we obtain:

Corollary 6.23. There is an isomorphism of2-functors

(f 7→ f !′) ∼= (f 7→ f !) : FTSch /K′ → Cat .

7. THE RESIDUE THEOREM AND DUALITY

In this sectionK denotes a regular finite dimensional noetherian ring. All schemes
are by default finite typeK-schemes, all algebras are by default essentially finite type K-
algebras, and all morphisms are overK.

LetX be a scheme. The dimension functiondimK was introduced in Definition 6.10.
For a pointx ∈ X we denote byJ (x) an injective hull of the residue fieldk(x), considered
as anOX -module. SoJ (x) is a quasi-coherentOX -module supported on{x}; see [RD,
Section II.7].

Definition 7.1. A rigid residue complex onX (relative toK) is a rigid dualizing complex
(KX ,ρX), such that for every integerp there is an isomorphism ofOX -modulesKpX ∼=
⊕

dimK(x)=−p J (x).

Proposition 7.2. The schemeX has a rigid residue complex(KX ,ρX), which is unique
up to a unique isomorphism inC(ModOX).

Proof. DefineKX := ERX , the Cousin complex with respect todimK . According to
[RD, Proposition VI.1.1], for any p there is an isomorphismKpX

∼=
⊕

dimK(x)=−p J (x).
By [RD, Proposition IV.3.1] or [YZ2, Theorem 2.11] there is an isomorphismKX ∼= RX

in D(ModOX). Using this isomorphism we obtain a rigid structureρX onKX .
Now suppose(K′,ρ′) is another residue complex onX . According to Theorem 6.13

there is a unique rigid isomorphismφ : KX
≃
−→ K′ in D(ModOX). Like in the proof of

Lemma 6.3 we see thatφ is a uniquely determined isomorphism inC(ModOX). �

SinceKX is a bounded complex of injectiveOX -modules the rigid duality functor is
DX = HomOX (−,KX). Furthermore, for any complexM ∈ Db(ModOX) the complex
HomOX (M,KX) is a bounded complex of flasque sheaves, and henceRf∗ DXM =
f∗HomOX (M,KX).

Let x ∈ X be a point withdimK(x) = −p. DefineKX(x) := Hp
xRX ; soKX(x) ∼=

J (x), andKpX =
⊕

dimK(x)=−pKX(x).

Definition 7.3. Let A be a local essentially finite typeK-algebra, with maximal ideal
m, residue fieldK and rigid dualizing complexRA. Let d := dimK(K), and define
K(A) := H−d

m RA.

In the setup of the definition above, theA-moduleK(A) is an injective hull of the
field K. If A is artinian thenHiRA = 0 for all i 6= −d, and hence there is a canonical
isomorphismRA ∼= K(A)[d] in D(ModA).

Lemma 7.4. Let X be aK-scheme,x ∈ X a point andA := OX,x. Then there is a
canonical isomorphismKX(x) ∼= K(A).
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Proof. Let U = SpecC be an affine open neighborhood ofx in X , and letp ⊂ C be the
prime ideal ofx. By definitionKX(x) = H−d

p RC , whered := dimK(x). Now accord-
ing to Proposition 4.10 we get a canonical isomorphismRA ∼= A ⊗C RC in D(ModA),
inducing an isomorphismH−d

m RA ∼= H−d
p RC . �

Let A be as in Definition 7.3. Fori ≥ 0 let Ai := A/mi+1. Corresponding to the
finite homomorphismsA → Ai there are rigid trace morphismsTrAi/A : RAi → RA
in D(ModA); see Proposition 4.8. From these we can extractA-linear homomorphisms
H−d

m (TrAi/A) : K(Ai) → K(A).

Lemma 7.5. In the setup of Definition7.3, the homomorphismsH−d
m (TrAi/A) give rise to

a bijectionlimi→ K(Ai)
≃
−→ K(A).

Proof. Because TrAi/A is nondegenerate it induces an isomorphismK(Ai) ∼=
HomA(Ai,K(A)). �

Definition 7.6. Let f : X → Y be a morphism of schemes. Define a homomorphism of
gradedOY -modulesTrf : f∗KX → KY as follows. There is a decompositionf∗KX =
⊕

x∈X f∗KX(x). Consider a pointx ∈ X , and lety := f(x). There are two cases:

(i) If x is closed in its fiber, defineAi := OY,y/m
i+1
y andBi := OX,x/m

i+1
x . Then

Ai is an essentially finite typeK-algebra, andAi → Bi is a finite homomorphism.
Using the isomorphisms from Lemmas 7.4 and 7.5 we defineTrf |f∗KX(x) :=
limi→ TrBi/Ai

.
(ii) If x is not closed in the fiberf−1(y) then we letTrf |f∗KX(x) := 0.

Proposition 7.7. Given two morphisms of schemesX
f
−→ Y

g
−→ Z there is equality

Trg◦f = Trg ◦ g∗(Trf ) : (g ◦ f)∗KX → KZ .

Proof. This is an immediate consequence of Corollary 4.9. �

The next thing we want to do is to study residues on curves, andto prove Theorem 7.13.
This will lead us to the general residue theorem for proper morphisms 7.14. The strategy
we shall use is taken from [RD, Chapter VII], but the considerations are much easier in our
context.

Let A be an artinian, local, essentially finite typeK-algebra, and letX be a smooth
irreducible curve overA. Let x0 be the generic point ofX , and letx1 be some closed
point. The corresponding local rings are denoted byL := OX,x0 andB := OX,x1 , and we
denote byn the maximal ideal ofB. The Cousin complex of the sheafΩ1

X/A onX gives
rise to aB-linear homomorphism

δ(x0,x1) : Ω1
L/A

∼= H0
x0

Ω1
X/A → H1

x1
Ω1
X/A

∼= H1
nΩ1

B/A.

For anyk ≥ 0 let Bk := B/nk+1. SinceA → B is essentially smooth of rela-
tive dimension1, andA → Bk is finite and flat, there is a residue mapResBk/A :

Ext1B(Bk,Ω
1
B/A) → A. See Definition 5.5. There is a canonical isomorphism

H1
nΩ1

B/A
∼= lim

k→
Ext1B(Bk,Ω

1
B/A),

and we define

(7.8) ResB/A := lim
k→

ResBk/A : H1
nΩ1

B/A → A.
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Definition 7.9. Let A be an artinian, local, essentially finite typeK-algebra, letX be
a smooth irreducible curve overA, and letx be a closed point ofX . Denote byk(X)
the total ring of fractions ofX . The residue map atx is theA-linear homomorphism
Resx : Ω1

k(X)/A → A which is the composition of the homomorphisms

Ω1
k(X)/A

δ(x0,x1)

−−−−−→ H1
xΩ

1
OX,x/A

ResOX,x/A

−−−−−−−→ A

described above.

Note that the kernel ofResx is Ω1
X/A,x. More generally we make the next definition.

Definition 7.10. With the data of the previous definition, letM be anA-module. Define

Resx;M : Ω1
k(X)/A ⊗AM →M

by the formula
Resx;M (α⊗m) := Resx(α) ·m

for α ∈ Ω1
k(X)/A andm ∈M .

Lemma 7.11. In the situation of Definition7.9, supposeX = SpecB is an affine curve
overA. Let b ∈ B be some element,̄B := B/(b), andβ ∈ Ω1

B/A. Assume thatA → B̄

is finite, and letResB/A : Ext1B(B̄,Ω1
B/A) → A be the residue map from Definition5.5.

Then
ResB/A

[

β
b

]

=
∑

x∈X closed

Resx(
β
b ).

Proof. First we note thatb is a regular element ofB, so it is invertible in the fraction ring
L := k(X). Another thing to note is thatResx(

β
b ) = 0 if b(x) 6= 0, i.e. if x /∈ Spec B̄.

Let us denote the generic point ofX byx0. The homomorphismδ(x0,x1) : H0
x0

Ω1
X/A →

H1
x1

Ω1
X/A sends the fractionβb to the generalized fraction

[

β
b

]

. The artinian ringB̄ is semi-

local: B̄ =
∏

x∈Spec B̄ B̄x, and the projectionB → B̄x factors viaBx. Looking at the

definitions we see that the residue mapResB/A : Ext1B(B̄,Ω1
B/A) → A factors via

∑

ResBx/A :
⊕

x∈Spec B̄
H1
x Ω1

Bx/A
→ A.

�

Lemma 7.12. In the situation of Definition7.9, supposeX = P
1
A. LetA′ be another

artinian local K-algebra, and letf∗ : A → A′ be a finite homomorphism. DefineX ′ :=
P

1
A′ . We get an induced finite morphism of schemesg : X ′ → X . Then for any differential

formα ∈ Ω1
k(X)/A one has

∑

x∈X closed

f∗(Resx(α)) =
∑

x′∈X′ closed

Resx′(g∗(α)).

Proof. Let us writeX = U ∪ {∞} with U := A
1
A = SpecB andB := A[t]. Soα = β

b

for some differential formβ ∈ Ω1
B/A and some regular elementb ∈ B. DefineB′ := A′[t]

andU ′ := A
1
A′ = SpecB′. SoX ′ decomposes intoU ′ ∪ {∞′}. By Lemma 7.11 and

Proposition 5.9 we have
∑

x∈U closed

f∗(Resx(α)) = f∗(ResB/A
[

β
b

]

) =

ResB′/A′

[g∗(β)
g∗(b)

]

=
∑

x′∈U ′ closed

Resx′(g∗(α)).
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At ∞ we will use the coordinates := 1
t . Thenα = γ

se for somee ≥ 0 andγ ∈
Ω1
X/A,∞. Choose a sufficiently small affine open neighborhoodV = SpecC of ∞ in X ,

so thatγ ∈ Γ(V,Ω1
X/A), but the originO is not in V ; so thats ∈ Γ(V,OX). Define

C′ := A′ ⊗A C. Again using Lemma 7.11 and Proposition 5.9 we obtain

f∗(Res∞( γse )) = f∗(ResC/A
[

γ
se

]

) =

ResC′/A′

[ g∗(γ)
g∗(se)

]

= Res∞′(g∗( γse )).

�

Theorem 7.13(Residue Theorem forP1). SupposeA is an artinian, local, essentially
finite typeK-algebra, andX = P

1
A. LetM be anA-module and letα ∈ Ω1

k(X)/A ⊗AM .
Then

∑

x∈X closed

Resx;M (α) = 0.

Proof. The homomorphism
∑

x∈X closed

Resx;M : Ω1
k(X)/A ⊗AM →M

is functorial inM . Thus we can assume thatM is finitely generated; and by induction
on length, we can also assumeM is simple. Thus we may assumeM ∼= K, whereK
is the residue field ofA. Consider the ring homomorphismf∗ : A → K. Because
A⊗AM ∼= K ⊗K M , and by Lemma 7.12, we can replaceA with K.

So let us assume thatA = K is a field, andM = K. Let t be the coordinate on
the finite part ofX , i.e.X = A

1
K ∪ {∞} andA

1
K = SpecK[t]. We can writeα as a

fractionα = f(t)
g(t) dt wheref(t), g(t) are polynomials. Choose some finite field extension

K → K ′ which splits the polynomialsf(t) andg(t). By Lemma 7.12 we can replaceK
with K ′. So we can assumef(t) andg(t) are products of linear terms. Now we may apply
partial fraction decomposition to the rational functionf(t)

g(t) . So we can assume that either

α = (t− a)−edt for somea ∈ K ande ≥ 1; or thatα = tedt for e ≥ 0.
Consider the caseα = (t−a)−edt. Applying the linear change of coordinatest 7→ t−a

(which is permitted by Lemma 7.11 and Proposition 5.9) we canassume thata = 0. Let
O ∈ X be the origin. At any closed pointx ∈ X exceptO and∞ one hasResx(α) = 0.
According to Lemma 7.11 and Proposition 5.12 we haveResO(α) = ǫ if e = 1, and
ResO(α) = 0 otherwise. By change of coordinatest 7→ s := t−1 we getα = −se−2ds,
and the same calculation givesRes∞(α) = −ǫ if e = 1, andRes∞(α) = 0 otherwise.

Finally consider the caseα = tedt. Then by Lemma 7.11 and Proposition 5.12 we get
Resx(α) = 0 at all points. �

Theorem 7.14(Residue Theorem for Proper Morphisms). Let f : X → Y be a proper
morphism between finite typeK-schemes. ThenTrf : f∗KX → KY is a homomorphism
of complexes.

Proof. The proof is in several steps.

Step 1. First consider the case of a finite morphismf . According to Theorem 6.16 we have
an isomorphismKX

≃
−→ f ♭KY , which is the same as an isomorphism

ψ : f∗KX
≃
−→ f∗f

♭KY = HomOY (f∗OX ,KY ).
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By definition 7.6, the traceTrf : f∗KX → KY is transformed byψ into the homomor-
phismTr♭f ;KY

: f∗f
♭KY → KY , namely evaluation at1. And the latter is a homomor-

phism of complexes.

Step 2. Now letf be any proper morphism. For any pointx ∈ X let y := f(x) ∈ Y , and
denote byTrf,x : KX(x) → KY (y) the corresponding component ofTrf (see Definition
7.6). Also, for any pointx′ ∈ X which is an immediate specialization ofx, let us denote
by δX,(x,x′) : KX(x) → KX(x′) the corresponding component of the coboundary operator
δX : KX → KX .

There are two kinds of identities we must check. The first is whendimK(x) = dimK(y),
andy′ ∈ Y is any point which is an immediate specialization ofy. We must then show
that given any elementα ∈ KX(x) the equality

∑

x′

(Trf,x′ ◦ δX,(x,x′))(α) = (δY,(y,y′) ◦ Trf,x)(α)

holds inKY (y′). The sum is over all pointsx′ ∈ f−1(y′) which are immediate special-
izations ofx. This case will be treated now; the other case will be taken care of in the
subsequent steps.

It is possible to choose a nilpotent closed subschemeX0 of X which is supported on
the closed set{x}, and such thatα ∈ KX0(x). The transitivity of traces (Proposition 7.7)
implies that we may replaceX withX0. Nowf : X → Y is proper and quasi-finite, hence
finite; and we can apply step 1.

Step 3. In this step we assume thatdimK(x) = dimK(y) + 1, and we must show that

(7.15)
∑

x′

(Trf,x′ ◦ δX,(x,x′))(α) = 0.

Here the sum is over the pointsx′ ∈ X which are immediate specializations ofx; these
points necessarily lie inf−1(y). As done in step 2, we can find nilpotent closed sub-
schemesX0 andY0, supported on{x} and{y} respectively, such thatα ∈ KX0 (x) and
f : X0 → Y factors viaY0. Observe that the identity (7.15) depends only on the homo-
morphismsOY0,y → OX0,x′ → OX0,x, when these rings are considered as essentially
finite typeK-algebras.

DefineA := OY0,y. Let us choose a ringK′ which is a localization of a polynomial
algebraK[t1, . . . , tn], and which admits a finite homomorphismK′ → A. ThenK′ is also
a regular noetherian ring of finite Krull dimension, and the rigid dualizing complex ofK′

relative toK is Ωn
K′/K

[n]. In view of Proposition 4.15 and Corollary 6.23, we can replace
K with K′ – it amounts to twisting by the inverse ofΩn

K′/K
[n], which does not effect (7.15).

We conclude that we may replaceY with SpecA andX with X0 ×Y0 SpecA.

Step 4. In this step we assume thatA is a local artinian finiteK-algebra, andX is a proper
curve overA, with generic pointx. Givenα ∈ KX(x), we have to verify (7.15); and
the sum is over all closed pointsx′ ∈ X . As explained in [RD, p. 373], the morphism
f : X → Y = SpecA factors via a finite morphismX → P

1
A. Because of step 1 we can

replaceX with P
1
A.

Let x′ be any closed point inX = P
1
A. It is immediate from Definitions 7.9 and 7.10

that under the isomorphisms

KX(x) ∼= H0
x(Ω

1
X/A ⊗A K(A)) ∼= (H0

xΩ
1
X/A) ⊗A K(A) ∼= Ω1

k(X)/A ⊗A K(A)

the homomorphism
Trf,x′ ◦ δX,(x,x′) : KX(x) → K(A)
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goes to the residue map

Resx′;K(A) : Ω1
k(X)/A ⊗A K(A) → K(A).

So Theorem 7.13 applies withM := K(A). �

Corollary 7.16. (1) Let f : X → Y be a proper morphism between finite typeK-
schemes. Then there is a morphism of functorsTrf : Rf∗f

! → 1 of functors from
D+

c (ModOY ) to itself.
(2) The assignmentf 7→ Trf above is2-functorial for proper morphisms. Namely,

given another proper morphismg : Y → Z, the diagram

R(g ◦ f)∗ (g ◦ f)!
φg,f

//

Trg◦f

��

R(g ◦ f)∗ f
! g!

∼=

!!

1
D

+
c (ModOZ) Rg∗ g

!
Trg

oo Rg∗ Rf∗ f
! g!

Trf
oo

is commutative, where the isomorphism marked “∼=” is the standard isomorphism
of functorsR(g ◦ f)∗ ∼= Rg∗ Rf∗, andφg,f is from Corollary6.15. If X = Y and
f = 1X , thenTrf is the identity automorphism off ! = 1

D
+
c (ModOX).

In the diagram there is a little bit of sloppiness; for instance, instead of “φg,f ” we should
have really written “R(g ◦ f)∗(φg,f )”.

Proof. (1) Take anyN ∈ D+
c (ModOY ). By definition off ! we have

f !N = HomOX

(

Lf∗HomOY (M,KY ),KX
)

,

and hence

Rf∗f
!N = RHomOY

(

HomOY (M,KY ), f∗KX
)

.

According to Theorem 7.14 the trace mapTrf : f∗KX → KY is a homomorphism of
complexes, and so we obtain a morphism

τ : Rf∗f
!N → HomOY

(

HomOY (M,KY ),KY
)

= DY DYN

in D+
c (ModOY ). Using the adjunction isomorphismφY : N

≃
−→ DY DYN we define

Trf ;N := φ−1
Y ◦ τ : Rf∗f

!N → N .

AsN varies this becomes a morphism of functorsTrf : Rf∗f
! → 1.

(2) Recall that the isomorphismφg,f was defined solely using adjunction formulas. By
Proposition 7.7 the traces are transitive:Trg ◦Trf = Trg◦f . This implies the commu-
tativity of the diagram. Finally, for the identity automorphism1X : X → X , the trace
Tr1X

: KX → KX is the identity automorphism of this complex. �

Theorem 7.17(Duality for Proper Morphisms). Let f : X → Y be a proper morphism
of finite typeK-schemes, letM ∈ Db

c (ModOX) and letN ∈ Db
c (ModOY ). Then the

morphism

Rf∗RHomOX (M, f !N ) → RHomOY (Rf∗M,N )

in D(ModOY ) induced byTrf : Rf∗f
!N → N is an isomorphism.
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Proof. Using the same reduction as in the proof of [RD, Theorem VII.3.3] we can assume
Y is affine,X = P

n
Y andf is the projection.

For fixedN ∈ Db
c (ModOY ) the contravariant functorsRf∗RHomOX (−, f !N ) and

RHomOY (Rf∗−,N ) are way-out left, in the sense of [RD, Section I.7]. Letω := ΩnX/Y ,
and for any integeri letω(i) be the Serre twist. As explained in the proof of [RD, Theorem
III.5.1], any coherentOX -module is a quotient of a finite direct sum

⊕m
j=1 ω(−ij) for

somei1, . . . , im > 0. Therefore, using [RD, Proposition I.7.1], reversed so as to handle
contravariant functors, we can assume thatM = ω(−i)[n] with i > 0.

Now the coherent sheavesω(−i) andRnf∗ω(−i) are locally free, andRjf∗ω(−i) = 0
for j 6= n. Also we know thatf !− ∼= ω[n] ⊗OX f∗− (see Corollary 6.17). Therefore
the functorsRf∗RHomOX

(

ω(−i)[n], f !−
)

andRHomOY

(

Rf∗ω(−i)[n],−
)

are way-
out in both directions. Once again using [RD, Proposition I.7.1] we can reduce to the case
N = OY .

At this stage we have to prove that the morphism

θ : Rf∗RHomOX

(

ω(−i)[n],ω[n]
)

→ RHomOY

(

Rf∗ω(−i)[n],OY

)

is an isomorphism. By definitionθ = γ ◦ β, where

β : Rf∗RHomOX

(

ω(−i)[n],ω[n]
)

→ RHomOY

(

Rf∗ω(−i)[n],Rf∗ω[n]
)

is the canonical morphism, and

γ : RHomOY

(

Rf∗ω(−i)[n],Rf∗ω[n]
)

→ RHomOY

(

Rf∗ω(−i)[n],OY

)

is induced by

Trf : Rf∗ω[n] ∼= Rf∗f
!OY → OY .

Consider the canonical isomorphism

α : Rf∗OX(i)
≃
−→ RHomOY

(

Rf∗ω(−i)[n],Rf∗ω[n]
)

The compositeβ ◦ α is an isomorphism, because the cup product pairing

f∗OX(i) × Rnf∗ω(−i) → Rnf∗ω

is perfect (see [RD, Theorem III.3.4]). Henceβ is an isomorphism. It remains to prove
thatγ is also an isomorphism.

To accomplish this we will prove that the traceTrf : Rf∗f
!OY → OY is an isomor-

phism. We know thatf ! OY
∼= ω[n], Rjf∗ f

! OY
∼= Rj+nf∗ ω = 0 for j 6= 0, and

that R0f∗ f
! OY

∼= Rnf∗ ω ∼= OY . SinceR0f∗ f
! OY is a freeOY -module of rank1,

it suffices to show thatH0(Trf ) : R0f∗ f
! OY → OY is surjective. Choose any section

g : Y → X of f . Then according to Corollary 7.16(2) we haveH0(Trf ) ◦ H0(Trg) =
H0(Tr1Y

), implying that indeedH0(Trf ) is surjective. �

8. THE RELATIVE DUALIZING SHEAF

In this sectionK denotes a regular noetherian commutative ring of finite Krull dimen-
sion. All schemes are by default finite typeK-schemes, all algebras are by default essen-
tially finite typeK-algebras, and all morphisms are overK. The base ringK will have no
visible role here; it will only be in the background, making rigid residue complexes and
the2-functorf 7→ f ! available.

Let us begin with a few facts aboutf ! for flat morphisms.
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Lemma 8.1. Supposef : X → Y is a flat morphism. Then

f !M = Homf−1OY

(

f−1HomOY (M,KY ),KX
)

for M ∈ Db
c (ModOY ).

Proof. Due to flatness the rigid residue complexKX is a bounded complex of injective
f−1OY -modules. �

Given an algebraA we define the rigid residue complex ofA to beKA := Γ(U,KU )
whereU := SpecA.

Proposition 8.2. Letf∗ : A→ B be a flat homomorphism ofK-algebras.

(1) The complexf !A has finite flat dimension overA.
(2) There is a functorial isomorphismf !M ∼= M ⊗L

A f
!A for M ∈ Db

f (ModA).

Proof. SinceA → B is flat it follows that eachKpB is an injectiveA-module. Letd1, d2

be the amplitudes of the complexesKA andKB respectively.
GivenM ∈ Db

f (ModA), letM ′ be the complex obtained fromM by truncating above
and below the degrees where the cohomology is nonzero. According to Lemma 8.1 one
hasf !M ∼= HomA

(

HomA(M ′,KA),KB
)

. Therefore

amp Hf !M ≤ amp HM + d1 + d2.

Next choose a resolutionP → M by a bounded above complex of finitely generated
freeA-modules. Then

f !M ∼= HomA

(

HomA(P,KA),KB
)

∼= P ⊗A HomA(KA,KB) ∼= M ⊗L
A f

!A.

This proves part (2), and also shows thatflat.dimA f
!A ≤ d1 + d2. �

Proposition 8.3. Letf∗ : A → B be a flat homomorphism ofK-algebras. The canonical
morphism

(f !A) ⊗L
A RA

∼= RHomA(RA, RB) ⊗L
A RA → RB

is an isomorphism.

Proof. Let us denote this morphism byψ, and letN be the cone onψ. Soψ is an iso-
morphism if and onlyN = 0. By Proposition 8.2 the complex(f !A)⊗L

A RA has bounded
cohomology, and henceN ∈ Db(ModA). According to Lemma 1.11 the complexRA
generatesDb(ModA), and we conclude thatN = 0 if and only if the morphism

ψ′ : RHomA

(

RA,RHomA(RA, RB) ⊗L
A RA

)

→ RHomA(RA, RB)

induced byψ is an isomorphism. We know thatRHomA(RA, RB) has finite flat dimension
overA – again, this is by Proposition 8.2. Using Proposition 1.10,under its assumption
(iii.b), we can pass fromψ′ to the morphism

RHomA(RA, RB) ⊗L
A RHomA(RA, RA) → RHomA(RA, RB),

which is evidently an isomorphism. �

A flat morphism of schemesf : X → Y is said to haverelative dimensionn if all its
fibers are equidimensional of dimensionn.

Definition 8.4. Let f : X → Y be a flat morphism of relative dimensionn. Therelative
dualizing sheafis

ωX/Y := H−nf !OY .
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Some authors refer toωX/Y as therelative canonical sheaf. TheOX -moduleωX/Y is
coherent. We now study some more of its properties.

Proposition 8.5. Let f : X → Y be flat of relative dimensionn, and letU be an open
subset ofX such thatf |U : U → Y is smooth. Then there is a canonical isomorphism
ωX/Y |U ∼= ΩnX/Y |U .

Proof. Definef ′ := f |U . By Corollary 6.17 there is an isomorphismf ′!OY
∼= f ′♯OY =

ΩnU/Y [n]. �

Proposition 8.6. Let f : X → Y be a flat morphism of relative dimensionn. Then
Hif !OY = 0 for all i < −n. Consequently, truncation gives rise to a canonical morphism

γf : ωX/Y [n] → f !OY

in D(ModOX).

Proof. In view of Lemma 8.1, it suffices to show that the complex
Homf−1OY

(f−1KY ,KX) is concentrated in degrees≥ −n. Suppose we are given a
local sectionφ ∈ Homf−1OY

(f−1KY ,KX)i which has a nonzero component going from
J (y) to J (x), for some pointsy ∈ Y andx ∈ X ; see Section 7 for notation. Then
we must havex ∈ f−1(y). But the dimension of the fiberf−1(y) is n, and hence
dimK(x) ≤ dimK(y) + n, soi ≥ −n. �

Recall that our notation for the residue field of a pointx ∈ X is k(x). In caseX is an
integral scheme with generic pointx, we also writek(X) for this field, which is of course
the function field ofX .

SupposeK is a field, andL is a finitely generated extension field ofK (i.e. L is an
essentially finite typeK-algebra). LetM be a finite separable field extension ofL, and
denote bytrM/L : M → L the trace map. Since the homomorphismM ⊗L ΩL/K →
ΩM/K is bijective, we obtain an inducedΩL/K-linear homomorphismtrM/L : ΩM/K →
ΩL/K .

Theorem 8.7. LetX andY be integral schemes, and letf : X → Y be a flat morphism
of relative dimensionn. Assumef is generically smooth.

(1) The coherent sheafωX/Y is a subsheaf of the constant quasi-coherent sheaf
Ωn

k(X)/k(Y ).
(2) SupposeU ⊂ X is a nonempty affine open set, and there is a commutative diagram

U
⊂

//

g
��

X

f
��

Z
h // Y

withZ an integral affine scheme;h a smooth morphism; andg a finite, dominant,
separable morphism. Then

Γ(U,ωX/Y ) =
{

α ∈ Ωn
k(X)/k(Y ) | trk(X)/k(Z)(aα) ∈ Γ(Z,ΩnZ/Y )

for all a ∈ Γ(U,OX)
}

.

The proof of the theorem is after this lemma.

Lemma 8.8. LetK,L,M be fields. AssumeL is a finitely generated separable extension
ofK, andM is a finite separable extension ofL. Letn := tr.degK L.
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(1) The rigid dualizing complexes ofL and M relative to K are ΩnL/K [n] and
ΩnM/K [n] respectively.

(2) The trace maptrM/L : ΩnM/K [n] → ΩnL/K [n] is a rigid trace morphism relative
toK.

Proof. (1) The homomorphismsK → L andK →M are essentially smooth, so Proposi-
tion 4.5 applies.

(2) Let’s denote the finite étale homomorphismL → M by f∗. The trace maptrM/L :
M → L is nondegenerate (see Definition 4.7). So by Proposition 4.8, Proposition 4.15
and Corollary 6.23, it suffices to prove thattrM/L is a rigid trace-like morphism relative
to L (see Definition 3.28). HereL has the tautological rigidifying isomorphismρtau, and
M ∼= f ♯L = Ω0

M/L has the rigidifying isomorphismf ♯(ρtau).
This is an exercise in Galois theory. Using the transitivityof both the field tracestr−/−

and the rigid tracesTr−/−, we may assume thatM is a Galois extension ofL. Denote the
Galois group byG. ThenM ⊗L M ∼=

∏

g∈GM
g, where the mapM ⊗L M → Mg is

a⊗ b 7→ a · g(b). The rigidifying isomorphism

f ♯(ρtau) : M
≃
−→ HomM⊗LM (M,M ⊗LM)

identifiesM with Mg0 , whereg0 is the identity automorphism. By the properties of the
trace for a Galois extension one hastrM/L(a) =

∑

g∈G g(a). A convolution-type calcula-
tion shows that under the isomorphismM ⊗L M ∼=

∏

g∈GM
g, the maptrM/L⊗ trM/L

is sent to
∑

g∈G trMg/L. Hence the diagram

M
f♯(ρtau)

//

trM/L

��

HomM⊗LM

(

M,M ⊗LM
)

trM/L ⊗ trM/L

��

L
ρtau

// HomL⊗LL

(

L,L⊗L L
)

in D(ModL) is commutative, and thus indeedtrM/L is a rigid trace-like morphism. �

Proof of Theorem8.7. (1) By Proposition 8.6 there is a canonical morphism
γf : ωX/Y [n] → f !OY . Sincef is generically smooth, there is a nonempty open set
U0 ⊂ X such thatf : U0 → Y is smooth. According to Proposition 8.5 there is a canon-
ical isomorphismf !OY |U0

∼= ΩnU0/Y
[n]. Combining these morphisms and passage to the

generic stalk, we obtain a sheaf homomorphismλ : ωX/Y → Ωn
k(X)/k(Y ). It remains to

prove thatλ is injective.
Pick a pointx ∈ X . Using quasi-normalization and Zariski’s Main Theorem [EGA,

Chapter IV, Sections 8.12.3. and 13.3.1] we know that there exists an affine open neigh-
borhoodU = SpecD of x in X , and a commutative diagram

W

g
��

U
⊃

oo
⊂

//

��

X

f
��

Z
h // V

⊂
// Y

whereV = SpecA is an affine open set inY ; Z = SpecB andW = SpecC are affine
integral schemes;U → W is an open immersion;g : W → Z is finite dominant; and
h : Z → V is smooth. Then

ωC/A = H0(h ◦ g)!A ∼= H0g!h!A ∼= H0g♭h♯A ∼= HomB(C,ΩnB/A).



52 AMNON YEKUTIELI AND JAMES J. ZHANG

This is a torsion-freeC-module, i.e. it embeds in

M ⊗C HomB(C,ΩnB/A) ∼= HomL(M,ΩnL/A) ∼= ΩnM/K ,

whereK := FracA, L := FracB andM := FracC. But on the other hand

Γ(U,ωX/Y ) = ωD/A
∼= D ⊗C ωC/A.

(2) Here, in the notation of the proof of part (1), we haveU = W , and in additionL→M
is separable. The rigid traceTrg gives rise to an isomorphism

Γ(U,ωX/Y ) = ωD/A
∼= HomB(D,ΩnB/A).

NowD →M is essentially étale,D → B is finite, andL ∼= B⊗DM . Hence by Corollary
3.27 and Lemma 8.8 the diagram

ωD/A
⊂

//

Trg

��

ΩnM/K

trM/L

��

ΩnB/A
⊂

// ΩnL/K

is commutative. �

Remark 8.9. There are notions of differential forms and traces for inseparable field exten-
sions due to Kunz. Presumably these can be used to remove the separability assumption
from part (2) of Theorem 8.7. Cf. [HK].

9. BASE CHANGE AND TRACES

As before we work in the categoryFTSch /K of finite typeK-schemes, whereK is a
regular finite dimensional noetherian ring. The main results in this section are Theorems
9.6 and 9.12, which were first obtained by Conrad [Co, Theorems 3.6.1 and 3.6.5]. Indeed,
Conrad proved somewhat more general results, since he only assumed his schemes are
noetherian and admit dualizing complexes. On the other hand, our proofs, which rely on
rigidity, are significantly easier (and shorter) than Conrad’s.

Proposition 9.1. Let f∗ : A → B be a flat finite type homomorphism ofK-algebras.
The complexf !A ∈ Db(ModB) has a unique rigidifying isomorphismρB/A : f !A

≃
−→

SqB/A f
!A, such that under the canonical isomorphism(f !A)⊗L

A RA
∼= RB from Propo-

sition8.3one hasρB/A ⊗ ρA = ρB.

Proof. Let us begin by choosing a factorizationA
g∗

−→ A[t]
h∗

−→ B of f∗, whereA[t]
is a polynomial algebra inm variables, andh∗ is a surjection. According to Theorem
3.22(1) the complexg♯A = ΩmA[t]/A[m] has a rigidifying isomorphismg♯(ρtau) relative to

A, whereρtau is the tautological rigidifying isomorphism ofA. Next, sinceh♭g♯A ∼= f !A
has finite flat dimension overA (see Proposition 8.2), Theorem 3.14(1) says thath♭g♯A
has an induced rigidifying isomorphismh♭(g♯(ρtau)) relative toA, which we shall denote
by ρ′.

There exists a unique elementu ∈ B× such that under the isomorphism(f !A)⊗L
ARA

∼=
RB, the rigidifying isomorphismsuρ′ ⊗ ρA coincides withρB. ThenρB/A := uρ′ is the
desired rigidifying isomorphism off !A. �

Definition 9.2. A morphism of schemesf : X → Y is called aCohen-Macaulaymor-
phism of relative dimensionn if it is flat, and all the fibers are equidimensional Cohen-
Macaulay schemes of dimensionn.
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Proposition 9.3. Let f : X → Y be a Cohen-Macaulay morphism of relative dimension
n, and letg : Y ′ → Y be an arbitrary morphism. DefineX ′ := X ×Y Y ′, and let
f ′ : X ′ → Y ′ be the projection. Thenf ′ is a Cohen-Macaulay morphism of relative
dimensionn.

Proof. The fact thatf ′ is flat is trivial. We have to prove that the fibers off ′ are Cohen-
Macaulay schemes. This reduces to the following question about rings: letB be an equidi-
mensionaln-dimensional Cohen-Macaulay algebra over the fieldK, let K → K ′ be a
field extension, and letB′ := K ′ ⊗K B. We must show thatB′ is an equidimensional
n-dimensional Cohen-Macaulay algebra.

Let us introduce the notationf∗ : K → B, g∗ : K → K ′, f ′∗ : K ′ → B′ and
h∗ : B → B′. SinceB is an equidimensional Cohen-Macaulay ring of dimensionn, and
f ♯K is a dualizing complex over it (cf. Proposition 4.15), we seethatHif ♯K = 0 for all
i 6= −n; i.e.ωB/K [n] ∼= f ♯K. By flat base change (Proposition 6.18) we get

f ′!K ′ ∼= f ′!g∗K ∼= h∗f !K ∼= B′ ⊗B ωB/K [n].

But f ′!K ′ is a dualizing complex overB′, and therefore this ring is equidimensionaln-
dimensional and Cohen-Macaulay. �

Proposition 9.4. Let f∗ : A → B be a flat homomorphism, and leta ⊂ A be an ideal.
DefineĀ := A/a andB̄ := B/aB. Let f̄∗ : Ā→ B̄ be the induced homomorphism. Then
there is a functorial isomorphismf !M̄ ∼= f̄ !M̄ for M̄ ∈ Db

f (Mod Ā).

Proof. Let KA, KB, KĀ andKB̄ be the respective residue complexes of these algebras.
ThenKĀ ∼= HomA(Ā,KA) andKB̄ ∼= HomB(B̄,KB) ∼= HomA(Ā,KB). According to
Lemma 8.1 we have

f !M ∼= HomA

(

HomA(M̄,KA),KB
)

∼= HomĀ

(

HomĀ(M̄,KĀ),KB̄
)

∼= f̄ !M̄.

�

Proposition 9.5. Letf : X → Y be a flat morphism of relative dimensionn. The following
two conditions are equivalent:

(i) f is a Cohen-Macaulay morphism.
(ii) γf : ωX/Y [n] → f !OY is an isomorphism, and the sheafωX/Y is flat overOY .

Proof. We might as well assume thatX = SpecB andY = SpecA.

(i) ⇒ (ii): First we will prove thatγf is an isomorphism. This amounts to proving that
Hif !A = 0 for all i > −n. The proof is by contradiction. Definei1 := max{i | Hif !A 6=
0}, and assumei1 > −n. Then there is a maximal idealq ⊂ B such that(B/q) ⊗B
Hif !A 6= 0. Let p := f(q), which is a prime ideal ofA. DefineĀ := Frac(A/p) and
B̄ := B ⊗A Ā, and letf̄∗ : Ā → B̄ be the induced homomorphism. SōA is a field, and
B̄ is a Cohen-Macaulay ring, equidimensional of dimensionn. According to Propositions
8.2 and 9.4,

ωB̄/Ā[n] ∼= f̄ !Ā ∼= f !Ā ∼= (f !A) ⊗L
A Ā.

Hence
(Hi1f !A) ⊗B B̄ ∼= (Hi1f !A) ⊗A Ā ∼= Hi1

(

(f !A) ⊗L
A Ā

)

= 0.

ButB/q is a quotient ofB̄, so we have a contradiction.
Next we are going to prove thatωB/A is a flatA-module. It suffices to show that

Hi(M ⊗L
A ωB/A) = 0 for all i < 0 and all cyclicA-modulesM . Thus we can assume
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M = Ā := A/a for some ideala. Let B̄ := B ⊗A Ā and letf̄∗ : Ā → B̄ be the induced
homomorphism. According to Proposition 9.3,f̄∗ is a Cohen-Macaulay homomorphism
of relative dimensionn. Again using Propositions 8.2 and 9.4, we obtain

Ā⊗L
A ωB/A[n] ∼= Ā⊗L

A f
!A ∼= f !Ā ∼= f̄ !Ā ∼= ωB̄/Ā[n].

(ii) ⇒ (i): Take any prime idealp ⊂ A, and letĀ := A/p, B̄ := B ⊗A Ā, K := Frac Ā
andBK := B ⊗A K ∼= B̄ ⊗Ā K. We have to prove thatBK is a Cohen-Macaulay ring,
equidimensional of dimensionn. Let’s use the notation̄f∗ : Ā → B̄ andf∗

K : K → BK .
Now

f̄ !Ā ∼= f !Ā ∼= (f !A) ⊗L
A Ā

∼= ωB/A[n] ⊗A Ā,

due to the flatness ofωB/A. And by flat base change,

f !
KK

∼= K ⊗Ā f̄
!Ā ∼= K ⊗A ωB/A[n].

Becausef !
KK is a dualizing complex overBK we are done. �

SupposeA andB are essentially finite typeK-algebras, andf∗ : A → B is a Cohen-
Macaulay homomorphism of relative dimensionn (see Definition 9.2). According to
Proposition 9.1 the complexωB/A[n] = f !A comes equipped with a rigidifying isomor-
phismρB/A relative toA. The notion of rigid base change morphism was introduced in
Definition 3.28.

Theorem 9.6. Suppose

X ′

f ′

��

h // X

f
��

Y ′
g

// Y

is a cartesian diagram inFTSch /K, with f a Cohen-Macaulay morphism of relative di-
mensionn, andg any morphism. Then:

(1) There is a homomorphismOX -modules

θf,g : ωX/Y → h∗ωX′/Y ′ ,

such that the inducedOX′ -linear homomorphismh∗(θf,g) : h∗ωX/Y → ωX′/Y ′

is an isomorphism.
(2) The homomorphismθf,g satisfies, and is determined by the following local con-

dition. LetV = SpecA ⊂ Y , U = SpecB ⊂ f−1(V ) andV ′ = SpecA′ ⊂

g−1(V ) be affine open sets, and letU ′ = SpecB′ := h−1(U) ∩ f ′−1
(V ′) ⊂ X ′.

Then

Γ(U, θf,g) : (ωB/A[n], ρB/A) → (ωB′/A′ [n], ρB′/A′)

is a rigid base change morphism relative toA.

First a lemma.

Lemma 9.7. Letf∗ : A→ B be a Cohen-Macaulay homomorphism of relative dimension
n. Then, forM ∈ Db

f (ModA), the functorial morphism

(9.8)
RHomB⊗AB

(

B,ωB/A[n] ⊗A ωB/A[n]
)

⊗L
AM

→ RHomB⊗AB

(

B,ωB/A[n] ⊗A ωB/A[n] ⊗L
AM

)

is an isomorphism.
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Observe the similarity to Proposition 1.10. However, the hypotheses of Proposition 1.10
might not be true here.

Proof. Let’s introduce the notationA
d∗
−→ B ⊗A B

e∗
−→ B; sof∗ = e∗ ◦ d∗. The homo-

morphismd∗ is a Cohen-Macaulay homomorphism of relative dimension2n, and by flat
base change (Proposition 6.18) we have

d!A ∼= ω(B⊗AB)/A[2n] ∼= ωB/A[n] ⊗A ωB/A[n].

Now there are isomorphisms

RHomB⊗AB

(

B,ωB/A[n] ⊗A ωB/A[n]
)

⊗L
AM

∼= (f !A) ⊗L
AM

∼= f !M

and
RHomB⊗AB

(

B,ωB/A[n] ⊗A ωB/A[n] ⊗L
AM

)

∼= e!d!M ∼= f !M,

implying (see Proposition 8.2) that both these functors areway-out on both sides. Ac-
cording to [RD, Proposition I.7.1] it suffices to verify that(9.8) is an isomorphism when
M = A; which is of course true. �

Proof of Theorem9.6. The proof is in two steps.

Step 1. We will prove existence and uniqueness ofθf,g on affine pieces, i.e. in the setup
of part (2). Choose a factorizationA → A[t] → A′ of g∗ : A → A′, with A[t] a
polynomial algebra inm variables, andA[t] → A′ surjective. By flat base change we
know thatωB[t]/A[t]

∼= B[t] ⊗B ωB/A. This implies thatHomB(ωB/A,ωB[t]/A[t]) is a
freeB[t]-module of rank1, generated by some homomorphismθ0 : ωB/A → ωB[t]/A[t].
By Proposition 1.10, under its condition (iii.b), we know that the morphism

RHomB⊗AB

(

B,ωB/A[n] ⊗A ωB/A[n]
)

⊗L
A A[t]

→ RHomB[t]⊗A[t]B[t]

(

B[t],ωB[t]/A[t][n] ⊗A[t] ωB[t]/A[t][n]
)

induced byθ0 ⊗ θ0 is an isomorphism. Hence there is an elementu0 ∈ B[t]× such that
u0θ0 is a rigid base change morphism relative toA.

Let’s denote the ring homomorphisms byf ′∗ : A′ → B′ andf∗
t

: A[t] → B[t]. These
are Cohen-Macaulay homomorphisms of relative dimensionn. Using Proposition 9.4, with
A′ viewed as a quotient ofA[t], we get

ωB′/A′ [n] ∼= f ′!A′ ∼= f !
t
A′ ∼= ωB[t]/A[t][n] ⊗A[t] A

′.

SoHomB[t](ωB[t]/A[t],ωB′/A′) is a freeB′-module, generated by someθ1. By Lemma
9.7, applied to theA[t]-moduleA′, the morphism

RHomB[t]⊗A[t]B[t]

(

B[t],ωB[t]/A[t][n] ⊗A[t] ωB[t]/A[t][n]
)

⊗L
A[t] A

′

→ RHomB′⊗A′B′

(

B′,ωB′/A′ [n] ⊗A′ ωB′/A′ [n]
)

induced byθ1 ⊗ θ1 is an isomorphism. Therefore there is an elementu1 ∈ B′× such that
u1θ1 is a rigid base change morphism relative toA[t]. Then

θf,g := u1θ1 ◦ u0θ0 : ωB/A[n] → ωB′/A′ [n]

is the rigid base change morphism we want. By Proposition 3.29 it is unique.

Step 2. Gluing: in the setup of part (2), supposeV1 = SpecA1 is an affine open set
contained inV , U1 = SpecB1 is an affine open set contained inf−1(V1) ∩ U , andV ′

1 =
SpecA′

1 is an affine open set contained ing−1(V1) ∩ V ′. Let B′
1 := B1 ⊗A1 A

′
1. By
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step 1 we get homomorphismsθf,g : ωB/A → ωB′/A′ andθf1,g1 : ωB1/A1
→ ωB′

1/A
′

1
.

Consider the diagram

ωB/A[n]
θf,g

//

��

ωB′/A′ [n]

��

ωB1/A1
[n]

θf1,g1 // ωB′

1/A
′

1
[n]

where the vertical arrows are the rigid localization homomorphisms corresponding to the
localizationsB → B1 andB′ → B′

1 (see Proposition 3.25). Due to the uniqueness in step
1, this diagram is commutative.

We conclude that as the affine open setsV ⊂ Y , U ⊂ f−1(V ) andV ′ ⊂ g−1(V ) vary,
the homomorphismsθf,g glue to a sheaf homomorphismθf,g : ωX/Y → h∗ωX′/Y ′ . �

Corollary 9.9. In the situation of Theorem9.6, assumef is smooth. Then under the
isomorphismωX/Y

∼= ΩnX/Y of Proposition 8.5,θf,g is the usual base change homomor-
phism for differential formsΩnX/Y → h∗ ΩnX′/Y ′ .

Proof. This is because on any affine piece the homomorphismΩnB/A[n] → ΩnB′/A′ [n] is a
rigid base change morphism relative toA. �

Corollary 9.10. In the situation of Theorem9.6, suppose thatg′ : Y ′′ → Y ′ is another
morphism. DefineX ′′ := Y ′′ ×Y ′ X ′, and letf ′′ : X ′′ → Y ′′ andh′ : X ′′ → X ′ be the
projections. Thenθf,g◦g′ = g∗(θf ′,g′) ◦ θf,g.

Proof. This is because of the uniqueness in part (2) of the theorem. �

Our final result, Theorem 9.12, is about the interaction of base change and traces. In
order to state it we first need:

Lemma 9.11. In the situation of Theorem9.6, assume the morphismf is proper. Then
Rif ′

∗ ωX′/Y ′ = 0 for all i < n. Therefore there are isomorphisms

g∗ Rnf ′
∗ ωX′/Y ′

∼= HnRg∗ Rf ′
∗ ωX′/Y ′

∼= HnRf∗ Rh∗ ωX′/Y ′
∼= Rnf∗ h∗ ωX′/Y ′ .

Proof. By Theorem 7.17 we know that

Rf ′
∗ ωX′/Y ′ [n] ∼= Rf ′

∗ f
′!OY

∼= RHomOY (Rf ′
∗ OX ,OY ).

�

Theorem 9.12. In the situation of Theorem9.6, assume the morphismf is proper. Then
the diagram ofOY -linear homomorphisms

(9.13) Rnf∗ ωX/YRnf∗(θf,g)

{{

Trf
// OY

g∗

��

Rnf∗ h∗ ωX′/Y ′

∼= // g∗ Rnf ′
∗ ωX′/Y ′

g∗(Trf′ )
// g∗OY ′

in which the arrow marked “∼=” is the one from Lemma9.11, is commutative.

For the proof we shall need three lemmas.

Lemma 9.14. Suppose thatY = SpecK andY ′ = SpecK ′ with K andK ′ fields; and
that e : Z → X is a finite morphism such thatf ◦ e : Z → Y is a Cohen-Macaulay
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morphism of relative dimensionm. DefineZ ′ := Z×XX ′, with projectionse′ : Z ′ → X ′

andd : Z ′ → Z. Then the diagram

(9.15) e∗ωZ/Y [m]
θf◦e,g

//

Tre
��

d∗ωZ′/Y ′ [m]

h∗(Tre′ )
��

ωX/Y [n]
θf,g

// h∗ωX′/Y ′ [n]

in D(ModOX) is commutative.

Proof. SinceZ is finite overK it has finitely many points. By restricting to one of the
points ofZ we can actually assume thatZ andX are affine, sayZ = SpecC andX =
SpecB. Hence we can also suppose thatZ ′ = SpecC′ andX ′ = SpecB′. We now have
to prove that

θf,g ◦ Tre = Tre′ ◦ θf◦e,g : ωC/K [m] → ωB′/K′ [n].

Due to rigidity and the fact thatHomD(ModB)(ωC/K [m],ωB′/K′ [n]) ∼= C′ it follows that
these two morphisms are equal. �

Lemma 9.16. SupposeY = SpecK whereK is a field. There exists a closed embedding
e : Z → X such thatf ◦e : Z → Y is finite(hence Cohen-Macaulay of relative dimension
0); and

f∗(Tre) : (f ◦ e)∗ωZ/Y → Rnf∗ ωX/Y

is surjective.

Proof. According to Corollary 6.23 we can assume thatK = K. ThenωX/Y = H−nKX ,
whereKX is the rigid residue complex ofX . TheK-moduleRnf∗ ωX/Y = H0f∗KX is
finitely generated, and is a quotient off∗K0

X . Butf∗K0
X

∼= lim→(f ◦e)∗K0
Z asZ runs over

the finite length closed subschemes ofX . And for any suchZ one hasK0
Z = ωZ/Y . �

Lemma 9.17. In the setup of Proposition9.4, assume thatf∗ is a Cohen-Macaulay ho-
momorphism of relative dimensionn. By Propositions8.2and9.4 there are isomorphisms

ωB̄/Ā[n] = f̄ !Ā ∼= f !Ā ∼= Ā⊗L
A f

!A = Ā⊗A ωB/A[n]

in D(ModB). Let θ : ωB/A → ωB̄/Ā be the resultingB-linear homomorphism. Then
θ : ωB/A[n] → ωB̄/Ā[n] is a rigid base change morphism relative toA, and consequently
θ = θf,g.

Proof. Consider the diagram

RB

ρB

++

∼=
// ωB/A ⊗A RA

ρB/A⊗ρA
// (SqB/A ωB/A) ⊗L

A (SqA/K RA) SqB/K RB∼=
oo

ωB/A ⊗A RĀ

?

1⊗Trg

OO

ρB/A⊗ρĀ
//

θ⊗1

��

(SqB/A ωB/A) ⊗L
A (SqĀ/K RĀ)

1⊗Sqg/K (Trg)

OO

Sqf,g(θ)⊗1

��

RB̄
∼= //

Trh

OO

ρB̄

33
ωB̄/Ā ⊗Ā RĀ

ρB̄/Ā⊗ρĀ
// (SqB̄/Ā ωB̄/Ā) ⊗L

Ā
(SqĀ/K RĀ) SqB̄/K RB̄

∼=oo

Sqh/K (Trh)

OO
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of morphisms inD(ModB). The subdiagrams on the top and on the bottom (involvingρB
andρB̄) are commutative by definition of the rigidifying isomorphismsρB/A andρB̄/Ā.
The left rectangle is commutative by definition ofθ. This implies that the right rectan-
gle, which is basically obtained from the left rectangle by squaring, is commutative. The
middle-upper square commutes becauseTrg is a rigid morphism. The conclusion is that the
square marked “?” is commutative, and henceSqf,g(θ) ◦ ρB/A = ρB̄/Ā ◦ θ; i.e.θ is a rigid
base change morphism. Due to uniqueness of such morphisms wesee thatθ = θf,g. �

Proof of Theorem9.12. We proceed in several steps.

Step 1. Supposeg : Y ′ → Y is a closed embedding. By Proposition 9.4 we can re-
placeg∗ Rnf ′

∗ ωX′/Y ′ = g∗ R0f ′
∗ f

′!OY ′ with R0f∗ f
! g∗OY ′ , and then, by Lemma 9.17,

instead ofRnf∗(θf,g) we have the homomorphism

R0f∗ f
!(g∗) : R0f∗ f

!OY → R0f∗ f
! g∗ OY ′ ,

corresponding to the sheaf homomorphismg∗ : OY → g∗ OY ′ . Since the trace map
Trf : Rf∗ f

! → 1 is functorial, it follows that diagram (9.13) commutes in this case.

Step 2. Now supposeY = SpecK andY ′ = SpecK ′, whereK andK ′ are fields and
the homomorphismK → K ′ is finite. Also suppose thatf is finite. ThusX = SpecB
andX ′ = SpecB′, whereB is a finiteK-algebra, andB′ ∼= B ⊗K K ′. In this situation
ωB/K = HomK(B,K), and the rigid traceTrB/K : ωB/K → K is evaluation at1.
Likewise forK ′ andB′. The rigid base change morphismθf,g : ωB/K → ωB′/K′ relative
to K arises from the canonical isomorphismHomK′(B′,K ′) ∼= K ′ ⊗K HomK(B,K).
Therefore diagram (9.13) commutes in this case.

Step 3. In this step we assume thatY = SpecK andY ′ = SpecK ′, whereK andK ′ are
fields, and the homomorphismK → K ′ is finite. Choose a closed embeddinge : Z → X
as in Lemma 9.16, and letZ ′ and e′ be as in Lemma 9.14. LetB := Γ(Z,OZ) and
B′ := Γ(Z ′,OZ′). Consider the diagram

ωB/K
Tre //

θf◦e,g

��

Rnf∗ ωX/K
Trf

//

θf,g

��

K

g∗

��
ωB′/K′

Tre′ // Rnf ′
∗ ωX′/K′

Trf′

// K ′.

By Lemma 9.14 the left square is commutative. And by step 2 above the big rectangle is
commutative. SinceTre is surjective it follows that the right square also commutes.

Step 4. AssumeY ′ = {y′} = SpecK ′ whereK ′ is a field. Lety := g(y′) ∈ Y . The point
y might fail to be closed. However, since we are interested inOY -linear homomorphisms,
we can replaceY with SpecOY,y. The only difficulty that may arise is that theK-scheme
SpecOY,y might not be of finite type. This can be repaired as follows: choose aK-algebra
K̃, which is a localization of a polynomialK-algebra, such that̃K → OY,y is finite. Since
K̃ is an essentially finite typeK-algebra which is also regular, we can replaceK with K̃,
as explained in Corollary 6.23.

So we now havey = g(y′) a closed point ofY . The morphismg : Y ′ → Y factors
through the finite morphismY ′ → Spec k(y) and the closed embeddingSpec k(y) → Y .
Combining steps 1 and 2 we conclude that diagram (9.13) commutes.

Step 5. This is the general case. We must show that twoOY ′ -linear homomorphisms
g∗ Rnf∗ ωX/Y → OY ′ are equal. It suffices to check that they become equal in the residue
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field k(y′) for any closed pointy′ ∈ Y ′. Using step 1 we can replaceY ′ with Spec k(y′).
Now using step 4 we are done. �
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[Hi] V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra25 (1997), no. 10, 3291-3323.
[HK] R. Hübl and E. Kunz, Regular differential forms and duality for projective morphisms, J. reine angew.

Math.410(1990), 84-108.
[FIJ] A. Frankild, S. Iyengar and P. Jørgensen, Dualizing Differential Graded modules and Gorenstein Differ-

ential Graded Algebras, J. London Math. Soc. (2) 68 (2003), 288-306.
[Ke] B. Keller, Deriving DG categories, Ann. Sci.École Norm. Sup. (4)27 (1994), no. 1, 63-102.
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Sastry), Astérisque208(1992).
[Ye3] A. Yekutieli, Residues and differential operators onschemes, Duke Math. J.95 (1998), 305-341.
[YZ1] A. Yekutieli and J.J. Zhang, Rings with Auslander dualizing complexes, J. Algebra213 (1999), no. 1,

1-51.
[YZ2] A. Yekutieli and J.J. Zhang, Residue complexes over noncommutative rings, J. Algebra259 (2003) no.

2, 451-493.
[YZ3] A. Yekutieli and J.J. Zhang, Dualizing complexes and perverse modules over differential algebras, to

appear in Compositio Math.; eprint math.RA/0301323 at http://arxiv.org.



60 AMNON YEKUTIELI AND JAMES J. ZHANG

[YZ4] A. Yekutieli and J.J. Zhang, Dualizing complexes and perverse sheaves on noncommutative ringed
schemes, eprint math.AG/0211309 at http://arxiv.org.

A. Y EKUTIELI : DEPARTMENT OF MATHEMATICS BEN GURION UNIVERSITY, BE’ ER SHEVA 84105,
ISRAEL

E-mail address: amyekut@math.bgu.ac.il

J.J. ZHANG: DEPARTMENT OFMATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEATTLE,
WASHINGTON 98195, USA

E-mail address: zhang@math.washington.edu


