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RIGID DUALIZING COMPLEXES ON SCHEMES

AMNON YEKUTIELI AND JAMES J. ZHANG

ABSTRACT. In this paper we present a new approach to Grothendieckyoalschemes.
Our approach is based on the idea of rigid dualizing complewich was introduced by
Van den Bergh in the context of noncommutative algebraiarge. We obtain most
of the important features of Grothendieck duality, yet nggngo avoid lengthy and dif-
ficult compatibility verifications. Our results apply to fi@itype schemes over a regular
noetherian finite dimensional base ring, and hence arebteiitar arithmetic geometry.

0. INTRODUCTION

Grothendieck duality for schemes was introduced in the B&masidues and Duality”
[RD] by R. Hartshorne. This duality theory has applicationsarious areas of algebraic
geometry, including moduli spaces, resolution of singtiks, arithmetic geometry, enu-
merative geometry and more.

In the forty years since the publication of [RD] a number dated papers appeared in
the literature. Some of these papers provided elaborationsr more explicit versions of
Grothendieck duality (e.g. [KI], [Li], [HK], [YeZ2], [Ye3],[Sa]). Other papers contained
alternative approaches (e.g. [RD, Appendix], [Ve] and [Nélhe recent book [Co] is a
complement to [RD] that fills gaps in the proofs, and also amst the first proof of the
Base Change Theorem. A noncommutative version of Grotieekdiuality was developed
in [Yel], which has applications in algebra (e.g. [EG]) andrein mathematical physics
(e.g. [KKO]). Other papers sought to extend the scope ofli@mdieck duality to formal
schemes (e.g. [AJL] and [LNS]) or to differential gradededdeps (see [F1J]).

In this paper we present a new approach to Grothendiecktgoalischemes, including
Conrad’s results on base change. The key idea in our appi®#thuse ofigid dualizing
complexesThis notion was introduced by Van den Bergh [VdB] in the extibf noncom-
mutative algebraic geometry, and was developed furthenimpapers [YZ1, YZ2, YZ3].

The background material we need is standard algebraic gepifitom [EGA]), the
theory of derived categories (from [RD] or [KS]), and its gealization to differential
graded algebras (which is discussed in Section 1). We alsd adew isolated results on
dualizing complexes from [RD]. Apart from that our treatrhisrself-contained.

Let us explain what are rigid dualizing complexes and howy thee used in our pa-
per. Fix for the rest of the introduction a finite dimensigrmalgular, noetherian, com-
mutative base rindk. Let A be an essentially finite type commutatifealgebra. The
bounded derived category of-modules is denoted bp®(Mod A). Given a complex
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M € DP(Mod A) we define itssquareSq, x M € DP(Mod A). If A is flat overK the
squaring operation is very easy to define:

Sk M = RHomag, (A, M @ M).

But in general the definition is more complicated, and rezpidifferential graded algebras
(see Section 2). Given a morphispn: M — N in D*(Mod A) there is an induced
morphismSaq, k (¢) : Saaxk M — Squx N. Foranya € A one hasSqy i (ap) =
a*Sd 4k (¢); hence the name “squaring”.

A rigidifying isomorphismfor A is an isomorphisnp : M = Sqax M in
DP(Mod A). The pair(M, p) is called arigid complex overA relative toK. Suppose
(M, pp) and (N, pn) are two rigid complexes. Aigid morphism¢ : (M, pp) —
(N, pn) is @ morphismp : M — N in D*(Mod A) such thaipy o ¢ = Sq 4k (¢) © pas-
Observe that if(M, py) is a rigid complex such tha@Hom (M, M) = A, and¢ :
(M, prp) — (M, par) is arigid isomorphism, thea is multiplication by some invertible
element € A satisfyinga = a?; and therefore = 1. We conclude thahe identity is the
only rigid automorphism of M, pxs).

Let B be another essentially finite type commutatiealgebra, and lef* : A — B
be a homomorphism. First assunfé is finite, and letf’A/ := RHomy (B, M) €
D*(Mod B). If f*M has bounded cohomology then we there is an induced rigidjfigo-
morphismf”(par) : f*M = Sqpx f*M (see Theorem 3.14). We writ€ (M, pys) :=
(f°M, f*(par)). Next assume™ is either smooth of relative dimensienor a localiza-

tion, and letf* M := Qpjaln]®@a M € DP(Mod B). Then there is an induced rigidifying

isomorphismf?(pas) : fEM = Sap/k fiM (see Theorem 3.22), and thus a new rigid
complexf*(M, par) := (f*M, f*(pnr))-

Now let's consider dualizing complexes. Recall that a c@xgk € DF(Mod A)
is dualizing if it has finite injective dimension, and if tharonical morphismd —
RHomy (R, R) is an isomorphism. Aigid dualizing complex over relative toK is
a rigid complex R, p) such thatR is dualizing.

Here is the first main result of our paper.

Theorem 0.1. Let K be a regular finite dimensional noetherian ring, and letbe an
essentially finite typ&-algebra.

(1) The algebraA has a rigid dualizing compleR 4, p4), which is unique up to a
unique rigid isomorphism.

(2) Given a finite homomorphisifit : A — B, there is a unique rigid isomorphism
f*(Ra,pa) = (Rp,pB).

(3) Given a homomorphisnfi* : A — B which is either smooth or a localization,
there is a unique rigid isomorphisitt (R4, p4) — (R, pB)-

This theorem is a combination of Theorems 4.3, 4.6 and 4.13aody of the paper.
Theorem 0.1 pretty much covers Grothendieck duality fonafichemes. For instance, it
it gives rise to a trace morphisifry : Rg — R4 for a finite homomorphisni* : A — B,
which is functorial and nondegenerate (see Proposition 4.8

Let f* : A — B be a smooth homomorphism Kf-algebras, and let' : B — B be
a finite homomorphism. Assumg' := * o f* is finite and flat. Sinc&q,,4 A = A
we get the tautological rigid compleéX, p..,). As explained above, there are two rigid
complexe@b(A, Ptau) andz‘bfﬁ(A, prau) OVEr B relative toA. By Theorem 0.1 there exist
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isomorphismsRp = ffA, Rz = i’Rp andRz = ¢° A. Composing them we obtain an
isomorphisny : ¢’ A = i° f* A called theresidue isomorphism

Theorem 0.2. The residue isomorphisiis the unique rigid isomorphisgt (A4, pian) —
i’ f(A, piau) relative to A.

This theorem is restated as Theorem 5.2. Itimplies, amdmey things, that the residue
isomorphism of independent of the base rikg

The passage to schemes requires gluing dualizing compléiesachieve this using
the concept ostack of subcategories & (Mod O ); see Definition 6.4. On a finite type
K-schemeX there is a dimension function that is intimately relatedgadrdualizing com-
plexes; we denote it byimg (see Definition 6.10). Following [RD] we say that a complex
M € D?(Mod Ox) is aCohen-Macaulay complekthe local cohomologiesl: M van-
ish whenever # — dimg(x). Let us denote b)DgC(l\/Iod Ox)cm the subcategory of
Cohen-Macaulay complexes with quasi-coherent cohomesogi

Theorem 0.3. LetK be a regular finite dimensional noetherian ring, and}te a finite
typeK-scheme. The assignmédnt— DgC(Mod Ouv)cm, for open setd/ C X, is a stack
of subcategories dd(Mod Ox).

This means that Cohen-Macaulay complexes can be glued.h€beaim is repeated as
Theorem 6.5 in the body of the paper. In an earlier versioruofpaper, which was enti-
tled “Rigid Dualizing Complexes and Perverse Sheaves ori8ek”, a similar result was
proved using the rigid perverse t-structure@(Mod Ox ). The perverse sheaf approach
is indispensable for noncommutative algebraic geomefty|Y24]). However, we later
realized that for commutative schemes it is possible, arigedo prove the required result
using Cousin complexes.

A rigid structureon a complexM € D?(Mod Ox) is a collectionp = {py}, where
for every affine open séf C X, py is a rigidifying isomorphism for the comple}; :=
RI'(U, M) over the algebraly := I'(U, Ox) relative toK. The condition is that for an
inclusionf : V' — U of affine open sets, the localization isomorphighiMy, prr) —
(My, pv) should be rigid. Arigid dualizing complex oX is a pair(R x, px ), whereR x
is a dualizing complex andy is a rigid structure on it.

Supposef : X — Y is a morphism between finite tyfi€-schemes. Iff is finite then
there is a functoy® : D(Mod Oy ) — D(Mod Ox ) defined by

fb./\/ =0x ®@f-11.0x fﬁlRHomoy(f*Ox,N).

On the other hand iff is smooth we have a functg# : D(Mod Oy) — D(Mod Ox)
defined as follows. LeK,..., X, be the connected componentsXf with inclusions
gi : X; — X. Letn; be the rank oﬂ}xi/y. Then

The combination of Theorems 0.1 and 0.3 implies, withoutimeftort, the next result
(which is repeated as Theorems 6.13 and 6.16).

Theorem 0.4. LetK be a regular finite dimensional noetherian ring.
(1) Let X be a finite typek-scheme. The scheni has a rigid dualizing complex
(Rx, px), which is unique up to a unique rigid isomorphism.
(2) Given a finite morphisnf : X — Y, the complexf’Ry is a dualizing complex
on X, and it has an induced rigid structurg (p,-). Hence there is a unique rigid
isomorphisnR x = f°Ry in D(Mod Ox).
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(3) Given a smooth morphisth: X — Y, the complex®Ry is a dualizing complex
on X, and it has an induced rigid structurg (p,-). Hence there is a unique rigid
isomorphisniR x = f#Ry in D(Mod Ox).

We can now define thegid auto-duality functorDx := RHomoe,(—,Rx). For a
morphismf : X — Y we define a functor

f': D (Mod Oy) — D} (Mod Ox)
as follows. IfX = Y andf = 1x (the identity automorphism) theft := Lo+ (Mod Ox)

(the identity functor). Otherwise we defing := Dx Lf* Dy. Let FTSch /K be the
category of finite type schemes o€y and letCat denote the category of all categories.

Corollary 0.5. The assignmenf — f' is thel-component of a contravariagtfunctor
FTSch /K — Cat, whose)-componentisX — DI (Mod Ox).

For details or2-functors see [Ha, Section 1.1.5]. Some authors use the ‘esgudo-
functor”.

A rigid residue complewn X is a rigid dualizing complexKx, p ), such that for ev-
ery p there is an isomorphism of sheav€§ = ;... ()=, J (). HereJ(z) denotes
an injective hull of the residue fiell(x), considered as a quasi-coherent sheaf, constant
on {z}. Itis quite easy to prove that a rigid residue complex exiggsply the Cousin
functorE to the rigid dualizing compleR x (see Section 6). The compléxy := ER x
is isomorphic toR x in D(Mod Ox ), and hence it inherits a rigid structupe;. This rigid
residue complex is unique up to a unique isomorphism of cergs; see Proposition 7.2.
Notice that the rigid auto-duality functor beconeg = Home, (—, Kx).

For a pointz with dimg (z) = —p let Lx(x) := HEKx. Due to the structure of
the complexCx we see thallx (z) = J(z) andK% = iy (2)=—p Kx (). Now
Kx (z) only depends on the local rin@x .. This fact, plus the traces for finite algebra
homomorphisms, allow us to define a trace rfiap : f.Xx — Ky for any morphism of
schemey : X — Y. This trace is only a map of gradé?, -modules, but it is functorial,
i.e.Tryor = Try o Tty for composable morphisms (see Definition 7.6 and Propositic).

Theorem 0.6.Let f : X — Y be a proper morphism between finite tyfleschemes. Then
Try : fu.Kx — Ky is a homomorphism of complexes.

The theorem is restated as Theorem 7.14 in the body of the.pBipe proof goes like
this: as in [RD], we reduce to the ca¥e= Spec K with K a field, andX = Pi.. We
then use explicit calculations (involving the residue isophism and using Theorem 0.2)
to do this case.

Due to Theorem 0.6 we get a trace niigy : Rf.f' — 1, which is a transforma-
tion of functors fromDJ (Mod Oy) to itself. It is not hard to deduce that this trace is
nondegenerate (this is Theorem 7.17 in the body of the paper)

Theorem 0.7. Let f : X — Y be a proper morphism of finite tyfi&-schemes, leM &
D2(Mod Ox) and let\ € D?(Mod Oy-). Then the morphism

Rf.RHomo, (M, f'N) = RHomo, (Rf. M, N)
in D(Mod Oy) induced byTr; : Rf. f'N — N is an isomorphism.

Our last results deal with thelative dualizing sheafSupposef : X — Y is flat of
relative dimensiom (i.e. the fibers off are equidimensional of dimensior). We then
definewy,y = H—"f'Oy. This is a coherent sheaf ok with nice properties. For
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instance, iU C X is an open set such thl; is smooth, then, due to Theorem 0.4(3), we
havewx,y|v = Qg/y. In casef is a Cohen-Macaulay morphism of relative dimension
n (i.e. flat with Cohen-Macaulay fibers) thefiOy = wx,y[n] (see Proposition 9.5).
We can sometimes characterize the relative dualizing sigdicitly: if f is generically
smooth and botlX andY are integral schemes, thany /- is a subsheaf of the constant
guasi-coherent sheﬂz(x)/k(y). Moreover, under some separability assumptions (e.g.
char k(Y’) = 0) we can describe the subsheat - C Q) ) explicitly in terms of

traces (see Theorem 8.7).
Finally we have this main result, which is our version of Cais work [Co].

Theorem 0.8. Suppose
X' x
L
Yy =Y
is a cartesian diagram iff TSch /K, with f a Cohen-Macaulay morphism of relative di-
mensiom, andg any morphism.
(1) There is a homomorphisfx-modules
Ofg:wxyy — hawxr )y,
such that the induce@ x--linear homomorphism*(6; ,) : h*wx/y — wxr /vy
is an isomorphism. The homomorphiép, has a local characterization in terms
of rigidity.
(2) Assume the morphisyhis proper. Then
g* [¢) TI‘f = g*(’I‘I‘f/) o Rnf*(eﬂq) : R"f*wx/y — g*Oy/.

This theorem, with full details, appears as Theorems 9.6%1b# in the body of the
paper. In cas¢ is smooth of relative dimensiom, the homomorphismy , is the usual
base change homomorphiﬂ@/y — h*Q’;{,/Y/; see Corollary 9.9.

To end the introduction let us mention a potential furtheplementation of our meth-
ods: Grothendieck duality for algebraic stacks (in the safi§LMB]). Let X be a Deligne-
Mumford stack, with étale presentatiéh: X — X by a finite typeK-schemeX. Since
our methods are local, and rigid dualizing complexes havexaremely controlled vari-
ance with respect to étale morphisms (see Theorem O.it(3)yonceivable that one could
glue the rigid dualizing compleR x to a dualizing compleR » on X.
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Joseph Lipman, Amnon Neeman, Paramathanath Sastry aneiMiah den Bergh for
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1. DIFFERENTIAL GRADED ALGEBRAS

This section contains some technical material about difféal graded algebras and
their derived categories. The results are needed for mggatfyid dualizing complexes
when the base rinkf is not a field. There is some overlap here with the papers,[[Ké]
and [Be]. We recommend skipping this section, as well asi@e&, when first reading
the paper; the reader will just have to assume Kas a field, and replacel with @k
everywhere.

Let K be a commutative ring. A gradéd-algebrad = @, ., A’ is said to besuper-
commutativef ab = (—1)¥ba for all @ € A* andb € A7, and ifa® = 0 wheneveri
is odd. (Some authors call such a graded algebra strictlynogative.) A is said to be
non-positivef A* = 0 for all i > 0. Throughout the paper all graded algebras are assumed
to be non-positive, super-commutative, associative alifiitalgebras by default, and all
algebra homomorphisms are o€r

By differential graded algebrdor DG algebra) oveK we mean a gradeH.-algebra
A = @, A", together with aK-linear derivationd : A — A of degreel satisfying
d od = 0. Note that the graded Leibniz rule holds:

d(ab) = d(a)b + (—1)‘ad(b)

fora € A®andb € AJ.

A DG algebra homomorphisrfi : A — B is a degred) homomorphism of graded
K-algebras that commutes widh It is a quasi-isomorphism H( f) is an isomorphism (of
graded algebras).

A differential graded (DG)A-module is a graded (lefth-module M = @,_, MY,
endowed with a degree K-linear homomorphisnd : M — M satisfyingd(am) =
d(a)m + (=1)%ad(m) for a € A andm € M. Note that we can mak®/ into a right
DG A-module by the rulena := (—1)Yam for a € A* andm € M7. The category of
DG A-modules is denoted bpGMod A. It is an abelian category whose morphisms are
degred) A-linear homomorphisms commuting with the differentials.

There is a forgetful functor from DG algebras to graded algelfit forgets the dif-
ferential), and we denote it byl — und A. Likewise forM € DGMod A we have
und M € GrMod(und A), the category of gradeand A -modules. A DGK-module is
just a complex ofK-modules.

Given a graded algebré and two gradedi-modulesM andN let us write

Homg (M, N)* := | | Homg (M7, N7F7),
JEZ
the set of homogeneol& linear homomorphisms of degré&rom M to N, and let
Hom4 (M, N)" :=
{¢ € Homg (M, N)" | ¢(am) = (—1)?ap(m) foralla € A7 andm € M}.
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Then
(1.1) Hom (M, N) := @iez Hom (M, N)

is a graded4d-module, by the formuldag)(m) = ap(m) = (=1)“¢(am) for a € A
and¢ € Homu (M, N)i. Cf. [ML, Chapter VI]. The setlom (M, N) is related to the
set of A-linear homomorphisma8/ — N as follows. Let's denote byngr the functor
forgetting the grading. Then the map

® : Homa (M, N) — Homypg 4(ungr M, ungr N),

defined by®(¢)(m) := (—1)"¢(m) for ¢ € Homu (M, N)* andm € M/, is ungr A
-linear, and® is bijective if M is a finitely generated-module.

For a DG algebrad and two DG A-modules M, N there is a differentiald on
Homypg 4 (und M, und N), with formulad(¢) := do ¢+ (—1)**t1¢ od for ¢ of degree.
The resulting DGA-module is denoted bilom 4 (M, N). Note thatHompgmod 4 (M, N)
coincides with the set of-cocycles ofHom 4 (M, N). Two homomorphismsgy, ¢; €
Hompgmoed a(M, N) are said to behomotopicif ¢9 — ¢1 = d(¢) for somey €
Hom (M, N)~'. The DG modules\/ and N are calledhomotopy equivalerif there
are homomorphismg: M — N andy : N — M in DGMod A such that) o ¢ andg o 1)
are homotopic to the respective identity homomorphisms.

Supposed and B are two DGK-algebras. Thenl @k B is also a DGK-algebra; the
sign rule says thdtz; ®b1)- (a2 ®@b2) := (—1)Yajaa®b1by for by € B anday € A*. The
differential is of cours@(a®b) := d(a)®b+(—1)"a®d(b) fora € A*. If M € DGMod A
andN € DGMod B thenM @k N € DGMod A®k B. If N € DGMod A thenM ®4 N,
which is a quotient of\f ®x N, is a DGA-module.

Let A be a DG algebra. Sincé is non-negative one hag A°) = 0; and therefore the
differentiald : M? — M*+! of any DG A-module}M is A%-linear. This easily implies
that the truncated objects

7'M = (-+-0 — Coker(M*~' — M) — M — ...)
(1.2) and
TSIM = (o> M7 = Ker(M' — M) - 0— )

are DGA-modules.

There is a derived category obtained fri&Mod A by inverting the quasi-isomor-
phisms, which we denote @(DGMod A). See [Ke] for details. Note that in cageis a
usual algebra (i.e. it is concentrated in dediethenDGMod A = C(Mod A), the abelian
category of complexes of-modules, andf)(DGMod A) = D(Mod A), the usual derived
category ofA-modules.

In order to derive functors one has several useful devicd8GAA-moduleP is called
K-projectiveif for any acyclic DGA-moduleN the DG moduldlom 4 (P, N) is acyclic.
(This name is due to Spaltenstein [Sp]. Keller [Ke] uses¢hmt‘property (P)” to indicate
K-projective DG modules, and in [AFH] the authors use “hoopitally projective”. See
also [Hi].) Similarly one define&-injectiveandK-flat DG modules:! is K-injective, and
Fis K-flat, if Hom4 (N, I) andF ® 4 N are acyclic for all acycliaV. Itis easy to see that
any K-projective DG module is also K-flat. Every two objedts N € DGMod A admit
quasi-isomorphism® — M, N — [ andF — M, with P K-projective,l K-injective
andF K-flat. Then one defines

RHom (M, N) := Homy (P, N) = Hom4 (M, I) € D(DGMod A)
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and
M®%N:=F®, N e D(DGMod A).

When A is a usual algebra, any bounded above complex of projectagp (flat) mod-
ules is K-projective (resp. K-flat). And any bounded belowngdex of injectiveAd-modules
is K-injective. A singleA-moduleM is projective (resp. injective, resp. flat) iff it is K-
projective (resp. K-injective, resp. K-flat) as DGmodule.

The following useful result is partly contained in [Hi], [Kand [KM].

Proposition 1.3. Let A — B be a quasi-isomorphism of DG algebras.

(1) GivenM e D(DGMod 4) and N € D(DGMod B), the canonical morphisms
M — B®% M andB®Y N — N are both isomorphisms. Hence the “restriction
of scalars” functorD(DGMod B) — D(DGMod A) is an equivalence.

(2) Let M, N € D(DGMod B). Then there are functorial isomorphisms @5 N =
M ®@% N andRHomp (M, N) = RHom4 (M, N) in D(DGMod A).

Proof. (1) Choose K-projective resolutior’® — M and@ — N overA. ThenM —

B ®% M becomes” = A®4 P — B ®4 P, which is evidently a quasi-isomorphism.
On the other han® ®@% N — N becomesB ® 4 Q — Q; which is a quasi-isomorphism
becausesoid ®4 Q — B®4 Q.

(2) Choose K-projective resolutioid — M and@ — N over A. We note thatB ® 4 P
and B ®4 Q are K-projective ove3, andB ®4 P — M, B ®4 Q — N are quasi-
isomorphisms. Therefore we get isomorphismB{DGMod A):

MY N=(BosP)25(B2aQ)=(BR4P)®AQ=2P®sQ=Mae4N.
The same resolutions give
RHomp (M, N) = Homp(B ®4 P, N) = Hom (P, N) = RHom4 (M, N).
O

There is a structural characterization of K-projective DGdules, which we shall re-
view (since we shall elaborate on it later). This charaz&tion works in steps. First
one definesemi-freeDG A-modules. A DGA-moduleQ is called semi-free if there is
a subsetX c @ consisting of (nonzero) homogeneous elements, and an stfe®non-
negative increasing filtratiof?; X };cz of X by subsets (i.ef_; X = fandX = | F; X),
such thatund @) is a free gradedind A -module with basisX, and for everyi one has
d(FiX) C X cr, ,x Az. The setX is called asemi-basi®f Q. Note thatX is parti-

tioned intoX = [[,., X;, whereX; := X N Q*. We call such a set graded set Now
a DG A-moduleP is K-projective iff it is homotopy equivalent to a direct sarand (in
DGMod A) of some semi-free DG modulg. See [AFH] or [Ke] for more details and for
proofs.

A free (super-commutative, non-positjygradedK -algebrais a graded algebra of the
following form. One starts with a graded set of variablés= [[,_, X;; the elements of
X, are the variables of degréeLet Xe, := [ [; ayenXi @NdXodaa = [[; 49 Xi- Consider
the free associativE-algebraK (X') on this set of variables. Ldtbe the two-sided ideal
of K(X) generated by all elements of the formy — (—1)“yx or 22, wherex € X,

y € Xj, z € X, andk is odd. The free super-commutative gradedlgebra onX is the
quotientK[X] := K(X)/I. Itis useful to note that

K[X] 2 K([Xe] @x K[Xodad]
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and thatK[X,,] is a commutative polynomial algebra, wherdagX,4q] is an exterior
algebra.

Definition 1.4. Supposed — B is a homomorphism of D& -algebras.B is called a
semi-freg(super-commutative, non-positivB)G algebra relative to Af there is a graded
setX = Higo X;, and an isomorphism of gradedd A -algebras

(und A) ®x K[X] = und B.

Observe that the DG algebia in the definition above, when regarded as a A6
module, is semi-free with semi-basis consisting of the nmoiats in elements ok . Hence
B is also K-projective and K-flat as D@-module.

Definition 1.5. Supposed andB are DGK-algebras ang : A — B is a homomorphism
of DG algebras. Asemi-free(resp. K-projective, resp. K-flaDG algebra resolution of

B relative to Ais the datad £» B % B, whereB is a DGK-algebra,f andg are DG
algebra homomorphisms, and the following conditions atiefsed:
() gof=1.
(i) ¢is a quasi-isomorphism.
(i) f makesB into a semi-free DG algebra relative b (resp. a K-projective DG
A-module, resp. a K-flat DGl-module).

We also say thatt L. B Bis asemi-fregresp. K-projective, resp. K-flaDG algebra
resolutionof A > B.

- f > B
Proposition 1.6. Let A and B be DGK-algebras, and leff : A — B be a DG algebra
homomorphism.

(1) There exists a semi-free DG algebra resolutior> B % Bof A L» B.

(2) Moreover, ifHA is a noetherian algebra an#iB is a finitely generatedi A -
algebra, then we can choose the semi-free DG algébriam part (1) such that
und B = (und A) ®x K[X], where the graded seX = [[,., X; has finite
graded component;. -

(3) If HA is a noetherian algebraB is a usual algebra, and = H°B is a finitely
generatedd® A -module, then there exists a K-projective DG algebra retsotu
A — B — Bof A — B, suchthatind B = @"___ und A[—i]* as graded

1=—0Q

und A -modules, and the multiplicitigs; are finite.

Proof. (1) We shall construcB as the union of an increasing sequence of DG algebras

FyB c F,B C ---, which will be defined recursively. At the same time we shalhc
struct an increasing sequence of DG algebra homomorphisms F;B 25 B, and an
increasing sequence of graded sBf& c F;B. The homomorphism will be the union
of theg;, and the graded séf = HJSO X will be the union of the set$; X. For every;
the following conditions will hold:
() H(g:) : H(F;B) — HB is surjective in degrees —i.
(i) H(g;) : H(F;B) — HB is bijective in degrees —i + 1.
(i) F;B = A[F;X],d(F;X) C F;_; B andund F; B = (und A) @k K[F; X].
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We start by choosing a set of elements¥fthat generat&l® B asH" A -algebra. This
gives us a sei, of elements of degree with a functiong, : X, — B°. Consider the
DG algebraK [X,] with zero differential; and defing, B := A @k K[X,]. Also define
FyX := X,. We get a DG algebra homomorphigm: Fy, B — B, and conditions (i)-(iii)
hold fori = 0.

Now assume > 0, and that for everyy < i we have DG algebra homomorphisms
gj : FjB — B and graded set8}; X satisfying conditions (i)-(iii). We will construct
Fi+1B etc.

Choose a sett;, , of elements (of degreei — 1) and a functiory 1 : Y/, — B~""*
suchthaf{g;+1(y) | y € Y/, } isasetof cocycles that generates’ ! B asH’ A-module.
Fory € Y/, defined(y) := 0.

Next let

Jig1 = {be (F;B)~" | d(b) = 0 andH%(g;)(b) = 0}.
Choose a sét/| | of elements (of degreei — 1) and a functionl : Y, ;| — J; 41 such that
{d(y) | y € Y/{,} is a set of elements whose imagediin' F; B generatéer (H™(g;) :
H™F,B — H'B) asH’A-module. Lety € Y//,. By definitiong;(d(y)) = d(b) for
someb € B~*; and we defing;11(y) := b.

LetY 1 == Y/, UY/,, andF;41 X := F;X UY;4,. Define the DG algebr#; 1 B to

be

Fi11B = F;B ®g K[Yiy1]
with differential d extending the differential of; B and the functionl : Y;., — E;B
defined above.

(2) This is because at each step in (1) the 3gtsan be chosen to be finite.

(3) Choose elements,....b,, € B that generate it agl®-algebra. Since each is
integral overA®, there is some monic polynomigj(y) € A°[y] such thatp;(b;) = 0.
Letys,...,yn be distinct variables of degrée DefineYy := {y1,...,ym} and BT :=
A°Yo]/(p1(y1), - - - s pm(ym)). This is anA®-algebra, which is a free module of finite
rank. Letgy : Bf — B be the surjective4®-algebra homomorphism; — b;. Define
FyB := A®40 Bt andF, X := (). Then conditions (i)-(ii) hold foi = 0, as well as
condition (iii") below.

(iy F;B = A[Yy U F;X],d(F;X) C F;_Band

und F, B = (und A) ® 40 A’ [F; X] ® 40 Bt.

Fori > 1 the proof proceeds as in part (i), but always using condfiighinstead of
(iii). O
Proposition 1.7. Suppose we are given three DGalgebrasA, B, B’; a K-algebraB;
and five DG algebra homomorphisnfisf, f', g, ¢’ such that the first diagram below is
commutative. Assume that is a quasi-isomorphism, an® is semi-free DG algebra

relative to A. Then there exists a DG algebra homomorphismB — B’ such that the
second diagram below is commutative.

[eof}

h
sy
E N
@

S
/
7\
N/

=
we - - -
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Proof. By definition there is a graded s&t = [ [, , X; such thatind B = (und /1) RK
K[X]. Lets defineF;X := |;._; X; andF,B := A[F,X] C B. We shall define a
compatible sequence of DG algebra homomorphismsE; B — B’, whose union will
be calledh.

Fori = 0 we note thaty’ : B® — B is surjective. Hence there is a functiap :
Xo — B such thay’(ho(z)) = g(x) for everyz € X,. SinceFy B = A @k K[X,] and
d(ho(Xo)) = 0 we can extend the functid, uniquely to a DG algebra homomorphism
ho : FoB — B such thatyo f = f'.

Now assume that > 0 andh; : F;B — B’ has been defined. Léf,, = Fi 1 X —
F;X. Thisis a set of degreei — 1 elements. Take any € Y; ;. Thend(y) € (FlB)*i,
and we leth := h;(d(y)) € B'~'. BecausélB =~ HB' = B there exists an element
¢ € B'~""! such thatl(c) = b. We now defineu; 1 (y) := c. The functionh, ;1 : Vi1 —
B'~i~1 extends to a unique DG algebra homomorphism, : F, 1B — B’ such that
hisilp 5 = hi. O

From here to the end of this section we assuifnis noetherian.

A homomorphismd — A’ between twdK-algebras is called lacalizationif it induces
an isomorphisns—'4 = A’ for some multiplicatively closed subsétc A. We then
say thatd’ is a localization ofd. A K-algebraA is calledessentially of finite typé A is
a localization of some finitely generat&dalgebra. Such an algebrhis noetherian. IfB
is an essentially finite typd-algebra then it is an essentially finite tyealgebra.

Proposition 1.8. Let A be an essentially finite tyd&-algebra. Then there is a DG algebra
quasi-isomorphisml — A such thatA° is an essentially finite typ&-algebra, and each
A’ is a finitely generatedi®-module and a flaK-module. In particulard is a K-flat DG
K-module.

Proof. Pick a finitely generatel-algebrad; such thatS—! A; = A for some multiplica-
tively closed subse§ C A;. According to Proposition 1.6(2) we can find a semi-free
DG algebra resolutionl; — A; where A; has finitely many algebra generators in each
degree. LetS  A? be the pre-image of under the surjectiodl? — A;. Now define
A= (57149 @ 4 Ar. 0

Corollary 1.9. Let A be an essentially finite typ&-algebra, and letA — A be any K-
flat DG algebra resolution relative t&. ThenH®(A @k A)Nis an essentially finite type
K-algebra, and eachi’(A @k A) is a finitely generatedil®(A ®x A)-module.

Proof. Using Proposition 1.7, and passing via a semi-free DG afyedsolution, we can
replace the given resolutioh — A by another one satisfying the finiteness conditions in
Proposition 1.8. Now the assertion is clear. O

Let M be a graded module. Tteemplitudeamp M is defined as follows. Giveid € N
we say thahmp M < d if there exists somg € Z suchthafi | M*¢ # 0} C {io,...,i0+
d}. Then we lebmp M := inf{d € N | amp M < d} € NU{oo}. ThusM is bounded if
and only ifamp M < oo. Now let A be a DG algebra witfil A bounded, and le¥/ be a
DG A-module. For anyl € N we say thatlat.dims M < d if given anyN € DGMod A
the inequalityamp H(M ®% N) < amp HN +d holds. Theflat dimensiorof M is defined
to beflat.dimy M := inf{d € N | flat.dimy M < d}. Observe thal/ has finite flat
dimension if and only if the functoM ®% — is way out on both sides, in the sense of
[RD, Section 1.7]. Similarly one can define the projectivendnsionproj.dim 4 M of a
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DG A-module)M, by considering the amplitude 8fRHom 4 (M, N). For a usual algebra
A and a single modul&/ the dimensions defined above coincide with the usual ones.

Proposition 1.10.Let A and B be DGK-algebras, € DGMod A, M € DGMod A®k B
and N € DGMod B. There exists a functorial morphism

¢ : RHoma (L, M) ®% N — RHom (L, M @% N)

in D(DGMod A ®g B). If conditions(i), (ii), and(iii) below hold, then the morphisthis
an isomorphism.
(i) H°A is noetherianHL is bounded above, and each of tH&A -modulesd’ A
andH'L are finitely generated.
(i) HM andHN are bounded.
(i) Either(a), (b) or (c) is satisfied:
(@) H'A = 0 for all i # 0, and L has finite projective dimension over
(b) H'B = 0 for all i # 0, andN has finite flat dimension ovés.
(c) H'B = 0 for all i # 0, H°B is noetherian, HN is bounded, eachl’ N
is a finitely generated module ov&l°B, the canonical morphisnB —
RHomp (N, N) is an isomorphism, bothf andRHom 4 (L, M) have finite
flat dimension oveB, andH RHom 4 (L, M ®% N) is bounded.

Proof. The proof is in five steps.

Step 1. To defin@> we may choose a K-projective resolutiéh— L over A, and a K-flat
resolution) — N over B. There an obvious homomorphism of DGRk B -modules

Ypq : Homa (P, M) ®p Q — Homa (P, M ®@p Q).
In the derived category this represetits

Step 2. To prove thai is an isomorphism (or equivalently thatp o is a quasi-iso-
morphism) we may forget thd @k B -module structures, and considelas a morphism
in D(ModK). Now by Proposition 1.3(2) we can repladeand B by quasi-isomorphic
DG K-algebras. Thus we may assume bdthnd B are semi-free as D&-modules.

Step 3. Let’s suppose that condition (iii.a) holds. So6— H°A is a quasi-isomorphism.
SinceB is K-flat overK it follows thatA®x B — H° A®k B is also a quasi-isomorphism.
By Proposition 1.3 we can assume tfiat DGMod H° A andM € DGMod(H A ®x B),
and thatL has finite projective dimension ovEF A. So we may replacd with H° A, and
thus assume that is a noetherian algebra.

Now choose a resolutioR — L, whereP is a bounded complex of finitely generated
projective A-modules. Take any K-flat resolutiap — N over B. Then the homomor-
phismyp ¢ is actually bijective.

Step 4. Let's assume condition (iii.b) holds. As in step 3 we suppose thaB =
BY. Choose a bounded resolutich— N by flat B-modules. By replacing/ with the
truncationr=J r<i1 M for somej, < 0 andj; > 0 we may assumé/ is bounded.
According to [AFH, Theorem 9.2.7] we can find a semi-free hathon P — L over A
such thatind P = @@ __und A[—i]* with all the multiplicitiesy; finite. Because the
; are finite and bottd/ and@ are bounded the homomorphisip ¢ is bijective.

Step 5. Finally we consider condition (iii.c). We can assuh@a B = B° is noetherian.
SinceN € D?(Mod B) andRHompg (N, N) = B we see that the support 8f is Spec B.
By Lemma 1.11 below we conclude th&tgenerate®®(Mod B). Let

' : RHomp (N, RHom 4 (L, M) ®% N) — RHompg (N, RHom 4 (L, M ®% N))
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be the morphism obtained frog by applying the functoRHompg (N, —). Sincey is a
morphism inD”(Mod B), in order to prove it is an isomorphism it suffices to prove thia
is an isomorphism.

The compleX@Hom 4 (L, M) has finite flat dimension oveB, so using the proposition
with condition (iii.b), which we already proved, we have

RHomp (N, RHomy(L, M) ®% N) = RHomp(N, N) ®% RHoma (L, M)
>~ RHoma (L, M).

On the other hand the compl@X has finite flat dimension ove?, so using the proposition
with condition (iii.b) once more (for the isomorphism madkg, we have

RHomp (N, RHom (L, M @5 N)) = RHom (L, RHomp (N, M ®@}p N))
~° RHomy (L, M ® RHomp(N, N)) = RHom (L, M).

Tracking the effect of these isomorphism ghwe see that it gets transformed into the
identity automorphism odRHom 4 (L, M). O

Let B be a noetherian ring. Recall that given a compiex DP(Mod B) its support is
defined to be J, Supp H' N C Spec B. The complexV is said to generatd”(Mod B) if
for any nonzero object/ € D®(Mod B) one hafRHompg (N, M) # 0.

Lemma 1.11. SupposeB is a noetherian ring andV € DP(Mod B) is a complex whose
support isSpec B. ThenN generateD”(Mod B).

Proof. SupposeM is a nonzero object inD”(Mod B). We have to prove that
RHompg(N,M) # 0. Letip := min{i € Z | H'M # 0}, and choose a nonzero
finitely generated submodul®’ c H M. Letp be a minimal prime ideal in the sup-
port of M’; so thatM; := A, ®p M’ is a nonzero finite length module over the local
ring B,. Now N,, is a nonzero object d?(Mod B,). Letj; := max{j € Z | H/N, #

0}. SinceH’' N, is a nonzero finitely generatedl,-module, there exists a nonzero ho-
momorphism¢ : H*N, — M. This ¢ can be interpreted as a nonzero element of

Exty 7" (N,, M,), which, by Proposition 1.10 with its condition (ii.b), isdmorphic to
By, ®p Ext'S ™ (N, M). 0

Remark 1.12. Proposition 1.10 can be extended by replacing conditioins)(and (iii.b)
respectively with: (iii.a’)HA is a bounded essentially finite tyfie-algebra, and. has
finite projective dimension oved; and (iii.b’) HB is a bounded essentially finite tyfe
algebraHN is a finitely generate#l B -module, andV has finite flat dimension ovet.
The trick for (iii.a") is to localize orSpec HY A and to look at minimal semi-free resolu-
tions of L. This trick also shows thdtat.dims L = proj.dim 4 L. Details will appear
elsewhere.

2. THE SQUARING OPERATION

In this section we introduce a key technical notion used adkfinition of rigidity,
namely the squaring operation. This operation is easy toel@fhen the base ring is
a field (see Corollary 2.7), but wheR is just a commutative ring (as we assume in this
section) there are complications. We solve the problemgudi@ algebras.

Recall that for a DG algebra the derived category of DG modules is denoted by
D(DGMod A). If Ais a usual algebra thdb(DGMod A) = D(Mod A).
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Let M € D(ModK). As explained earlier the derived tensor prodbftol M €
D(ModK) is defined to bé/f @ M := M @x M, whereM — M is any K-flat resolution
of M. If M € DGMod A for some DGK-algebraA, then we would like to be able to make
M ®F M into an object oﬂS(DGI\/Iod A ®g A). But this is not always possible, at least
notin any obvious way, due to torsion. (For instance fke= Z andM = A :=7Z/(2)).
Fortunately there is a way to get around this problem.

Lemma 2.1. Let A — A be a quasi-isomorphism of D&-algebras, and assumé is
K-flat as DGK-module. Then thénon-additivg functor D(DGMod A) — D(ModK),
M — M ®L M, factors canonically througD(DGMod A ®k A).

Proof. Choose any quasi-isomorphisi — 1/ in DGMod A with M K-flat overK. This
is possible since any K-flat D@-module is K-flat oveK. We getM @k M = Mex M €
D(DGMod A @k A). O

Theorem 2.2. Let A be aK-algebra and letV be a DGA-module. Choose a K-flat DG
algebra resolutiorkK — A — A of K — A. Then the object

Sqa/x M :=RHom 3,_;(A, M ®y M) € D(Mod A),

where theA-module structure is via the action on the first argumeRR 8om, is indepen-
dent of this choice.

Proof. The idea for the proof was communicated to us by BernharceKeGhoose some
semi-free DG algebra resolutidd — A’ — A of K — A. We will show that there is a
canonical isomorphism

RHom ;o (A, M ®g M) = RHom . 4 (A, M &g M)

in D(Mod A). ) )
_ Let us choose a K-projective resolutidd — M over A, and a K-injective resolution
M @x M — I overA @k A. So

RHomA(@KA(A?M ®HI§ M) = HOmA®KA(A,I~).

Likewise let's choose resolutions’ — M andM’ @x M’ — I’ over A’ and A’ @x A’
respectively.

By Proposition 1.7 there is a DG algebra quasi-isomorphismA’ — A that's com-
patible with the quasi-isomorphisms tb By the categorical properties & -projective
resolutions there is ad’-linear quasi-isomorphism, : M’ — M, that's compatible up
to homotopy with the quasi-isomorphismsié. We obtain and’ @x A’ -linear quasi-
isomorphismpy ® ¢o : M’ @x M’ — M ®k M. Next by the categorical properties of
K-injective resolutions there is aff @ A’ -linear quasi-isomorphismy : I — I’ that's
compatible up to homotopy with the quasi-isomorphisms fidwy A’. We thus get an
A-linear homomorphism

Xo : Homgg, (A, 1) — Homy,g 4 (A, 1').
Proposition 1.3 shows thay, is in fact an isomorphism i (Mod A).

Now suppose : A’ — A, ¢1 : M/ — M andy, : I — I’ are other choices of quasi-
isomorphisms of the same respective types@asp, and,. Then we get an induced
isomorphism

x1: Homgg (4, I)— Hom 4, 4 (4, I’
in D(Mod A). We shall prove thag; = xo.
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Here we have to introduce an auxiliary D&&-module C(M), the cylinder module.

As graded module one ha¥(M) := {]‘04 M};”}, a triangular matrix module, and the

differential isd([ "¢’ .., ]) = {d(g“)) m‘)g&;d(")} for mg, m1,n € M. There are DG

module quasi-isomorphisms: M — C(M) andno,n; : C(M) — M, with formulas

mo m

e(m) := [ O] andn;(["¢° o, 1) := mi. The cylinder modul€ (M) is a DG module over

mo mn amgo an ]

A by the formulaa - ["6° 7 ] := [T e,
There is a quasi-isomorphism of D@&modulesC(M) — {]‘04 M][\;”} which is the

identity on the diagonal elements, and the given quasi-isphismM — M in the corner.
The two A'-linear quasi-isomorphismg, and ¢, fit into an A’-linear quasi-morphism
0
Wi W)_U) [M M[-1]
0 7l
quasi-isomorphism : M’ — C(M) such thaty; o ¢ = ¢; up to homotopy.
Let's choose a K-injective resolutidfi(M) @k C(M) — K over A @k A. Then for
¢ = 0,1 we have a diagram

}. Since M’ is K-projective overA’ we can lift [%" 4?1} to a

I~/ P K Bi

I [

~ -~ PR ~ ~ i@~ ~
M’ @ M~ C(M) @x C(M) 225 3 @ M

—

that’'s commutative up to homotopy. Hapeand3; are some DG module homomorphisms,
which exist due to the K-injectivity of’ and K respectively. Becausg; ® ¢; = (1; ®

ni) o (¢ ® ¢) up to homotopy, and’ is K-injective, it follows that thed’ @x A’ -linear DG
module quasi-isomorphismso 3; andi; are homotopic. Therefore in order to prove that
Xo = x1 it suffices to prove that the two isomorphismZifiMod A)

6‘0,91 : HOIHA®KA(A,f) — HomA®KA(A7K)7

that are induced by, 5, respectively, are equal.
Fori = 0, 1 consider the diagram

v ~ Bi
K

f i f

N @x M —=55 C(M) @k C(M) =5 NI @y 31

wherey is somed @k A -linear DG module homomorphism, chosen so as to make the left
square commute up to homotopy. As before, siige ;) o (e®¢€) = 136, 7 itfollows
thaty o 8; and1; are homotopic. Hence botly andé; are inverses of the isomorphism

HomA®KA(A7 K) i HomA®KA(A’ f)
in D(Mod A) induced byy, sof, = 6;. O

Theorem 2.3. Let A and B beK-algebras, and lefif € D(Mod A) andN € D(Mod B).
Supposef : A — B is an algebra homomorphism ard: N — M is a morphism in
D(Mod A). Then there is an induced morphism

Sayk (#) : Sagx N — Saax M
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in D(Mod B). This construction is functorial; namely @ is anotherK-algebra, P €
D(Mod (), g : B — C'is an algebra homomorphism ang: P — N is a morphism in
D(Mod B), then

ngof/K((b 01h) = SQf/K(¢) o ng/K (V).
Also for the identity morphism&y; , jx (1a) = 1sq, , M-

Proof. Let's choose a semi-free DG algebra resolufion— A — A of K — A, and a

semi-free DG algebra resolutioh ©> B — B of A — B. Note thatB is also semi-
free relative tdk, so it may be used to calculafﬂqB/K N. Next let's choose DG module
resolutionsM — M, N — N, M ®x M — I andN @x N — J by K-projective
or K-injective DG modules over the appropriate DG algebesswas done in the proof
of Theorem 2.2. Sincd/ is a K-projective DGA-module we get an actual DG module
homomorphismp : N — M representing). Therefore there is ad @k A -linear DG
module homomorphlsrzyi1®¢ N &g N — M @x M. Becausd is K- -injective we obtain

PR

a DG module homomorphisin: J — I lifting N ®x N 2= M ®@g M — I. Applying

Hom(A, —) we then have a homomorphism

Sas/k(¢) : Hompg 5(B,J) — Hom g4 1(A, 1)
in DGMod A.

Giveng : B — C andy : P — N itis now clear how to defin8q, x (1) such that
ngof/K(¢ o)) =Sqy k(@) o Say/x (v), for these particular choices.

It remains to prove that after passing¢Mod A) the morphisntq, x (¢) becomes
independent of choices. The independence on choices objéqiive and K-injective
resolutions, and on the DG module homomorphignand, is standard. Now suppose
we choose another semi-free DG algebra resolutior» A’ — A of K — A, and a

semi-free DG algebrafesolutioi[f—/> BC—» B of A — B. After choosing DG module

resolutionsM’ — M, N' — N, M' @x M’ — I’ andN’ ®x N’ — J' by K-projective

or K-injective DG modules over the appropriate DG algebnaspbtain a homomorphism
Sd}/k (¢) : Homp, o 5 (B, J) - Hom g, o 1/ (4, I

in DGMod A.
Applying Proposition 1.7 twice we can find DG algebra homaophmismsg, and hg
such that the diagram of DG algebra homomorphisms

A" i—A
(2.4) al il fl
B/—>B—>B

is commutative. As in the proof of Theorem 2.2 we pick quasiiorphismsps o :
I - I'andypngo : J — J overA’ @k A’ and B’ @k B’ respectively. Then we get a
commutative up to homotopy diagram

XM,0

Hom[l(@K[l(A? j) e HomA’®KA’(A’ i/)

S‘If/K(@T qu/fﬂx(‘i’)

= XN,0 =~
HomB®KB(B, J) —— HomB,®KB,(B, J)
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in DGMod A, where the horizontal arrows are quasi-isomorphisms. Ifweee to choose
another pair of DG algebra quasi-isomorphisgns A’ — A andh; : B’ — B so as to
make diagram 2.4 commutative, then according to Theorerth2r2 would be equalities
Xm0 = Xm,1 andxn,o = xn,1 of isomorphisms irD(Mod A). ThereforeSq}/K(@ =
Sdy,k (¢) as morphisms i (Mod A).

For the identity homomorphisihy : A — A we writeSq 4 /k (¢) == Say, jx (¢)-

Definition 2.5. The (nonlinear) functdsq , /x : D(Mod A) — D(Mod A) from Theorems
2.2 and 2.3 is called thequaring operatiorover A relative toK.

The next result explains the name “squaring”.
Corollary 2.6. In the situation of Theore.3letb € B. Then
SQf/K (bp) = b Sq.f/K(d))'

Proof. It suffices to considef = 15 : B — Band¢ = 1y : N — N. Choose any lifting
of btob € B°. Then multiplication by® b on.J has the same effect dfom 5, (B, J),
up to homotopy, as multiplication iy on B. O

Corollary 2.7. Supposed is a flat K-algebra, andM is a bounded above complex of
A-modules that are flat aK-modules. Then there is a functorial isomorphism

SqA/K M = RHOIDA@KA(A, M QK M)
Proof. This is becausél andM are K-flat DGK-modules. O

Remark 2.8. One might be tempted to use the notafiiiom ;1. 4 (4, M ®E M) instead

of Squ,x M. Indeed, we thinkiitis possible to make sense of the “DG atgel ®L A, as
an object of a suitable Quillen localization of the categufripG K-algebras. Cf. [Hi], and
also [Qu], where an analogous construction was made usimglisial algebras rather than
DG algebras. Then one should show that the triangulategana/féf)(DGl\/lod ALk A)

is well-defined, etc. See also [Dr, Appendix V].

3. RIGID COMPLEXES

In this section all rings are are by default commutative aoetinerian. We shall use
notation such ag* : A — B for a ring homomorphism; so thgt: Spec B — Spec A is
the corresponding morphism of schemes. This will make otatiom for various functors
more uniform. For instance restriction of scalars becoifies Mod B — Mod A, and
extension of scalars (i.ed — B ®4 M) becomesf* : Mod A — Mod B. See also
Definitions 3.13 and 3.21. Given another algebra homomemhi : B — C we shall
sometimes writéf o g)* := g* o f*.

Let us begin with a bit of commutative algebra. Recall that4aalgebraB is called
formally smooth (resp. formally étale) if it has the lifrproperty (resp. the unique lifting
property) for infinitesimal extensions. Thi-algebraB is called smooth (resp. étale) if
it is finitely generated and formally smooth (resp. formdtgle). If B is smooth overd
then it is flat, and)}B/A is a finitely generated projectivB-module. See [EGA, Section
Orv.19.3] and [EGA, Section 1V.17.3] for detalils.

Definition 3.1. Let A and B be noetherian rings. A ring homomorphisth: A — B

is calledessentially smootfresp.essentiallyétale if it is of essentially finite type and
formally smooth (resp. formally étale). In this caBes called an essentially smooth (resp.
essentially étaleji-algebra.
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Observe that smooth homomorphisms and localizations aem#ally smooth.

Proposition 3.2. Let f* : A — B be an essentially smooth homomorphism.

(1) There is an open coverin§pec B = | J, Spec B; such that for every the homo-
morphismA — B; is the composition of a smooth homomorphiém- B;™ and
a localizationB;™ — B;.

(2) f*isflat, andQ}B/A is a finitely generated projectivB-module.

(3) f* is essentiallyétale if and only iIQ}B/A =0.

(4) Letg* : B — C be another essentially smooth homomorphism. Tgien f* :
A — C'is also essentially smooth.

Proof. (1) Choose a finitely generatetisubalgebra3® ¢ B such thatB is a localization
of Bf. We can identifylU := Spec B with a subset ot/f := Spec Bf. Take a point: € U,
and lety := f(x) € Spec A. Then the local ringy: , = Ou, = B, is a formally
smoothA,-algebra. According to [EGA, Chapitre IV Théoréme 17]5tkre is an open
neighborhoodV of z in U which is smooth ove$pec A. Choose an elemehtc Bf such
that the localizationB! = Bf[b~!] satisfiest € Spec B ¢ W. ThenBf is a smoothA-
algebra,By is a localization ofBf, Spec B, is open inSpec B, andz € Spec By,. Finally
leti be an index corresponding to the paintand defineBs™ := Bf andB; := B,

(2) follows from (1).
(3) See [EGA, Chapitrery Proposition 20.7.4].

(4) Both conditions in Definition 3.1 are transitive. O

Definition 3.3. Let f/* : A — B be an essentially smooth homomorphism. If
rankpg Q}B/A = n then f* is called anessentially smooth homomorphism of relative di-
mensiom, andB is called aressentially smootH-algebra of relative dimension.

By Proposition 3.2(3), an essentially étale homomorplissthe same as an essentially
smooth homomorphism of relative dimensian

Proposition 3.4. Supposg™ : A — Bandg* : B — C are essentially smooth homomor-
phism of relative dimensions andn respectively. Thep* o f* : A — C'is an essentially
smooth homomorphism of relative dimensior-n, and there is a canonical isomorphism
of C-modulesR?f™ = Qm

C/A — °"B/A @B Q75/3-
Proof. By [EGA, Chapitre0ry Théoréme 20.5.7] the sequence
O—>C®BQIB/A —»Qlc/A—>Qlc/B —0
is split-exact. O

Proposition 3.5. Let f* : A — B be an essentially smooth homomorphism of relative
dimensionm.

(1) TheB ®4 B -moduleB has finite projective dimension.
(2) There is a canonical isomorphism

Q’E’}/A ifi=m

EXti Ba QQm =
Beas( (BoaB)/a) {0 otherwise
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(3) Supposg* : B — C'is an essentially smooth homomorphism of relative dimen-
sionn. Let's writeE(A, B) := Extgg , (B, Q%?@,qB)/A) etc. Then the diagram

Qg4 ©8 Q) p ——— Qrg/txn

i [

E(A,B) ®p E(B,C) — E(4,C)

in which the vertical arrows are from pafR), and the horizontal arrows come
from Proposition3.4, is commutative.

Proof. First assume tha® ® 4 B — B is a complete intersection, i.e. the id&alr(B ® 4
B — B) is generated by a regular sequeice: (by,...,b,,). This implies thatB has
projective dimensiomn over B ® 4 B, and that theéExt's in part (2) vanish for # m.

Definedb := dby A --- A db,, € Q?}E@AB)/A' Then the ma;ﬂg/A — E(A,B), 8 —

[427], is bijective. Here*%\"] is the generalized fraction, cf. Definition 5.7. According
to [RD, Proposition 111.7.2] this bijection is independearitthe regular sequende

Now supposef* : A — B is an essentially smooth homomorphism of relative dimen-
sionm. Combining Proposition 3.2(1) and [EGA, Chapitre IV Progos 17.12.4] we
see that there is an open coverligec B = |, Spec B;, such that for every the homo-
morphismB; ® 4 B; — B, is a complete intersection. Using the previous paragraph we
deduce parts (1) and (2). For part (3) we utilize a similamopavering ofSpec C. O

From now on in this sectioiK is a fixed noetherian base ring. As references for the
results on derived categories needed here we recommenciRRE].

Let A be aK-algebra. In Section 2 we constructed a fundiqr, x : D(Mod A) —
D(Mod A), the squaring operation. Whé&is a field one has the easy formula

SqA/]K M = RHOIDA@KA(A,M XK M)

(see Corollary 2.7). The squaring is functorial for algebeanomorphisms too. Given
a homomorphism of algebrgé® : A — B, complexesM € D(Mod A) and N €
D(Mod B), and a morphisn® : N — M in D(Mod A), there is an induced morphism
Say-/x(¢) : Sapxk N — Sqax M in D(Mod A). Again whenK is a field the formula
for Sq;. /x is obvious; complications arise only when the base Knig not a field.

Definition 3.6. Let A be aK-algebra and lei/ € D(Mod A). AssumeM has finite flat
dimension ovek. A rigidifying isomorphisnfor M relative toK is an isomorphism

p:M— SqxM
in D(Mod A). The pair(}M, p) is called arigid complex ovet relative toK.

Example 3.7. Take A = M := K. SinceSqg x K = K it follows thatK has a tauto-
logical rigidifying isomorphisnp., : K — Sag /x K. We call(K, ptau) thetautological
rigid complex oveiK relative toK.

Definition 3.8. Let f* : A — B be a homomorphism betwedf-algebras, and let
(M, pp) and(N, pn) be rigid complexes oved and B respectively, both relative t&.
A morphism¢ : N — M in D(Mod A) is called arigid trace-like morphism relative t&
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if the diagram

N SqB/]K N

¢J ls‘lf* /K (¢)

M 25 Sqax M

of morphisms irD(Mod A) is commutative. IfA = B (andf* is the identity) then we say
¢ : N — M is arigid morphism overA relative toK.

It is easy to see that the composition of two rigid trace-fikerphisms relative t& is
a rigid trace-like morphism relative 8. In particular, for a fixedk-algebraA the rigid
complexes oved relative toK form a category, which we denote ByfMod A), ;g /k -

Theorem 3.9. Let K be a noetherian ring, letd and B be essentially finite typ&-
algebras, and led — B be aK-algebra homomorphism. LeL, pr) € D(Mod A),ig/x
and(M, par) € D(Mod B),i5/4. Assume either of the conditio(i, (ii) or (iii) holds.

(i) A — B is essentially smooth.

(i) L has finite flat dimension ovet.

(i) The A-modulesH!L are finitely generated, the canonical morphisth —
RHom (L, L) is an isomorphism, anH Sq i (L ©% M) is bounded.

Then:

(1) The complex. ® M € D(Mod B) has finite flat dimension ovéf, and an

induced rigidifying isomorphism
pL ® P L®I;‘ M= SqB/K(L@)i M).

(2) Let¢ : (L,prL) — (L', prs) be a morphism irD(Mod A),iz/x, and lety :
(M, prr) — (M’, ppr) be a morphism irD(Mod B),i5/4. Under conditions
(ii) or (iii) assumel’ and M’ also have the corresponding properties. Then the
morphism
oY LY M — L' ®% M’
in D(Mod B) is rigid relative toK.
Proof. (1) SinceL has finite flat dimension ové€ andM has finite flat dimension ovet
(cf. Definition 3.6), it follows thatZ @4 M has finite flat dimension ovék.
Choose K-flat DG algebra resolutioks— A — A andA — B — B of K — A and
A — B respectively. (IfK is a field and4A — B is flat one may just takel := A4 and
B := B.) There is a sequence of isomorphism®ifMod B):

Sap/k (L ®% M) = RHomp,, 5(B, (L% M) (L% M))
~ RHom g, , (B, RHomp, (B @4 B, (L% M) ok (La} M)
= RHom g, (B, RHom i, 4 (4, (L &% M) o (L&} M))).
These isomorphisms come from the Hom-tensor adjunctiothtoDG algebra homomor-
phismsB ®g B — B ® ; B — B, plus the fact that
A®A®KA (B®K3)§B®AB.
Now using tensor product identities we get an isomorphism
(L% M) (Lo M)=Me% (Leg L)% M
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in D(DGMod B @k B). There are functorial morphisms

M ®@% RHomy, 4(A,L®g L) ®% M
(3.10) — RHom i, ;(A, M &% (L®g L)) @% M

— RHom ;o (A, M ®% (L ®g L) ®% M)
in D(D@Mod B®x B), which we claim are isomorphisms. To prove this we can fatiget
B ®x B -module structure, anNd con§ider (3.10) as morphisniz(Mod K). Agcordigg
to Corollary 1.9 the algebrd’(A ®x A) = A ®k A is noetherian, and ead{f(A Rk A)
is a finitely generated module over it. Sinké has finite flat dimension ovet, and both
H(L ®% L) andH(M ®I;i L ®% L) are bounded, we can use Proposition 1.10, with its
condition (iii.b).
At this point we have a functorial isomorphism
Sapx (L @4 M) = RHompg (B, (M @} M) ©} Saax L)

in D(Mod B). The DG modulé/ ®; M has bounded cohomology, and so dses x L,
since the latter isisomorphicfo. If A — B is essentially smooth theﬁ@AB — B®aB
is a quasi-isomorphism, and moreov@rhas finite projective dimension ovét ® 4 B.
Thus under either condition (i), (ii) or (iii) of the theoreme may apply Proposition 1.10,
with its conditions (iii.a), (iii.b) or (iii.c) respectilg, to get an isomorphism

RHom g, 5(B, (M ®3 M) ®% Sk L)

= RHomp, (B, M @4 M) @} Sqax L.

Thus we have obtained an isomorphism
(3.11) Sap k(L @5 M) = (Squx L) @% (Sap/a M)
in D(Mod B). The rigidifying isomorphism we want is;, ® pas.
(2) This is because the isomorphism (3.11) is functoridl mnd M . O

Henceforth in the situation of the theorem we shall write
(3.12) (L,pr) ®% (M, par) == (L @4 M, pr ® prr) € D(Mod B),ig .

Definition 3.13. Let f* : A — B be a finite homomorphism between two essentially
finite type K-algebras. Define a functgf® : D(Mod A) — D(Mod B) by f*M :=
RHomyu (B, M). Let Tr"f;M . f’M — M be the morphism “evaluation at. This

becomes a morphism of functdﬁbf Cfe fP— 1p(Mod A)-
Theorem 3.14. Let K be a noetherian ring, letd and B be essentially finite typ&-

algebras, and lef* : A — B be a finite algebra homomorphism. Suppose we are given a
rigid complex(}, p) € D(Mod A),;, /%, such thatf” M has finite flat dimension ovét.

(1) The complex”M < D(Mod B) has an induced rigidifying isomorphism
P () : "M = Sap i M.
The rigid complex® (M, p) := (f*M, f*(p)) depends functorially oM, p).
(2) The morphisn‘ﬁ?;M : f°M — M is arigid trace-like morphism relative t&.

(3) Suppose* : B — C is another finite homomorphism. Assume that g)’ M
has finite flat dimension ové. Then under the standard isomorphighyf® M =

(f ©9)’M one hasy’ f*(p) = (f © 9)" (p)-
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(4) Let(A, ptaun) be the tautological rigid complex. Assume tiahas finite projective
dimension overl. Then under the standard isomorphigm\/ = M @' f”A one

hanb(p) =pR fb (ptau)-

For the proof we will need a lemma. The catch in this lemmaas the complexP of
flat K-module is boundebelow not above.

Lemma 3.15.Let P and N be bounded below complexedimodules. Assume that each
Pt is a flatK-module, and thatV has finite flat dimension ové€. Then the canonical
morphismP ®% N — P @k N in D(Mod K) is an isomorphism.

Proof. Choose a bounded flat resoluti@n— N overKK. We have to show tha? @k Q@ —
P ®k N is a quasi-isomorphism. Lét be the cone of) — N. Itis enough to show that
the complexP ®x L is acyclic. We note thak is a bounded below acyclic complex afd
is a bounded below complex of flat modules. To prove tigi @y L) = 0 for any given
i we might as well replac® with a truncation?’ := (--- — P11 — Pit — (0 — ...)
for j; > i. Now P’ is K-flat, soP’ @k L is acyclic. O

Proof of the theorem(1) Let's pick a semi-free DG algebra resolutitn— A — A of
K — A. Next let's pick a K-projective DG algebra resolutigh— B — B of A — B,
such thatind B = @)____ und A[—4]* with finite multiplicities 11;; see Proposition
1.6(3). Choose a bounded above semi-free resolution- M over A. SinceM has finite
flat dimension oveK it follows that fori < 0 the truncated DGi-moduleP := 72?P’
is a bounded complex of fla&-modules, and als® = M in D(DGMod A).

We have an isomorphisiiiom 4 (B, P) = RHom4 (B, M) in D(DGMod B), and an
isomorphism

Hom ;. 4(B ®k B, P ®x P) = RHomj, ;(B®x B, M @f M)

in D(DGMod B ®x B). Because the multiplicities; are finite andP is bounded, the
obvious DG module homomorphism

Hom 4(B, P) ®x Hom (B, P) — Hom g, (B ®x B, P @ P)

is bijective. NowHom ; (B, P) is a bounded below complex of flét-modules, which also
has finite flat dimension ové€. Therefore by Lemma 3.15 we obtain

Hom ;(B, P) ®x Hom (B, P) = RHom 4 (B, M) ®% RHoma (B, M)
in D(DGMod B @k B). We conclude that there is a functorial isomorphism
(3.16) RHomu(B, M) ®f RHomu (B, M) = RHom 4., ;(B @k B, M @ M)

in D(I?GMod B Ok B). (If K is a field we may disregard the previous sentences, and just
takeA := A andB := B.) We thus have a sequence of isomorphisni3(iklod B):

Sap/x f'M = RHomp, 5(B, RHoma(B, M) @ RHoma (B, M))

~% RHomp, z(B,RHomy, 4(B®x B,M &g M))

~' RHom, _4(B, M ®g M))

>~ RHom (B, RHom 1, 4(A, M ®f M)) = f*Sqx M,
where the isomorphism marke} is by (3.16), and the isomorphismiscome from the

(3.17)

b
Hom-tensor adjunction formula. The rigidifying isomorpii we want isf” M EAGQN
f Sap/x M = Sd4/x M.
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(2) Going over the sequence of isomorphisms (3.17) we se¢hthaiagram

fb
(3.18) Py Sapx f*M

Tr'};Ml lSqf*/K (Tr'}:M)
M —2—Sqax M
is commutative. This says thﬁt"?c;M is a rigid morphism.
(3) This is because the rigidifying isomorphisfit(p) in part (1) depends only on standard
identities and on the given rigidifying isomorphigm
(4) According to Proposition 1.10, under its condition.é)i we have a canonical isomor-
phismM ®% f*A = M. Combine this with the isomorphisms (3.17). O

Supposel! € D(Mod A) andN € D(Mod B). Amorphismr : N — M in D(Mod A)
is callednondegenerat# the induced morphisnV — RHom 4 (B, M) in D(Mod B) is
an isomorphism.

Corollary 3.19. Let f* : A — B be a finite homomorphism between two essentially
finite typeK-algebras, and le{), p) € D(Mod A),;z/x. Assume thatlM is a finitely
generatedd-module,f* M has finite flat dimension ovét, and Hompwoq 4 (f°M, M)

is a freeB-module with basigir?;M. ThenTr"f;M is the unique nondegenerate rigid trace-
like morphismf® M — M relative toKK.

Proof. By Theorem 3.14Tt",,, : f*M — M is a rigid morphism. Suppose: f*M —

M is some other nondegenerate rigid trace-like morphismnThe: uTrbf;M for some

u € B*, so we get isomorphisms

u Tr?‘;M =T7= Sqf*/K(T) = Sqy-/k (u Tr?‘;M) = u? SQf*/K(Tf?;M) = u? Tl"i};M :
Thereforeu = 1. O
We shall need the following easy fact.

Lemma 3.20. SupposeB = [[:~, B;, i.e.Spec B = [[", Spec B;. Then the functor
N — 1[,(B; ®p N) is an equivalenc®(Mod B) — [, D(Mod B;).

Definition 3.21. Supposef* : A — B is an essentially smooth homomorphismiof
algebras. LeBpec B = [[; Spec B; be the (finite) decomposition &fpec B into con-
nected components. For eacthe Bi-moduIeQ}Bi/A is projective of constant rank, say

n;. GivenM € D(Mod A) define
fEM = HZ_(QE/A[M] ®a M).
This is a functorf? : D(Mod A) — D(Mod B).
Note that if f* : A — B is essentially étale then one simply 48/ = B ® 4 M.

Theorem 3.22. Let K be a noetherian ring, letd and B be essentially finite typ&-
algebras, and letf* : A — B be an essentially smooth algebra homomorphism. Let
(L,p) (S D(MOd A)rig/K'
(1) The complex®L has an induced rigidifying isomorphism
F(p) : fL = Sqpk f*L.
We get a functof? : D(Mod A),;g/x — D(Mod B),ig x -
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(2) Let(A, ptan) be the tautological rigid complex. Then under the standaadrior-
phismf¢L = L @Y% f#A one hasf(p) = p @ f*(pran)-

(3) Letg* : B — C be either a smooth homomorphism or a localization homomor-
phism. Then under the isomorphigifio g)*L = ¢* f* L of Proposition3.4 one

has(f 0 9)*(p) = ¢* f*L(p).
Proof. In view of Lemma 3.20 we might as well assufdg  , has constant rank. Using
the canonical isomorphis®?, 5/, = O, , ®4 QF,, We can interpret Proposition
3.5(2) as a canonical rigidifying isomorphism for the come’E’}/A [m] relative to A,
which we denote byg. Thus we obtain an object

(2% /4lm], pa) € D(Mod B),ig/a-

Now using Theorem 3.9 we can define the rigidifying isomasphi* (p) := p ® pq. The
assertion in part (2) is clear.

For part (3) one may assumenk¢ Qlc/B = n. Then the claim follows from Proposi-
tion 3.5(3). O

Definition 3.23. Let f* : A — A’ be an essentially étale homomorphism between essen-
tially finite type K-algebras. Foi/ € D(Mod A) Ietq“f;M : M — f*M be the morphism

m — 1 ® m. This is a functorial morphisrqgc : Ip(Mod 4) — [« ft

In the situation of the definition above, givéd’ € D(Mod A’), there is a canonical
bijection
Homp (voq 4) (M, M") = Homp vod ary (f*M, M')

coming from Hom-tensor adjunction. In particular, fof’ := fM, the morphismqglﬂ
corresponds to the identitly,.

Definition 3.24. Let f* : A — A’ be an essentially étale homomorphism between essen-
tially finite type K-algebras, let(M,p) € D(ModA),x and let (M',p") €
D(Mod A’),ig/k. A rigid localization morphismis a morphism¢ : M — M’ in
D(Mod A), such that the corresponding morphigm: f*M — M’ in D(Mod A)' is a

rigid isomorphism relative t&.

Proposition 3.25. Let f* : A — A’ be an essentiallytale homomorphism, and let
(M, p) € D(Mod A),is /1. Define(M’, p') := f#(M, p). Then:
(1) The morphisml%c;M : M — M’ is arigid localization morphism.
(2) Moreover, ifM € D?(Mod A) andRHom 4 (M, M) = A, thenq’if;M is the unique
rigid localization morphism\/ — M.

Proof. (1) Since the corresponding morphisiY — M’ is the identity automorphism of
M, itis certainly rigid.

(2) Here we havélompvoq a1y (M', M') = A’. The uniqueness @f}M is proved like in
Corollary 3.19. O

Theorem 3.26. Let K be a noetherian ring, lefl be an essentially finite tygd€-algebra,
let g* : A — A’ be an essentially smooth homomorphism, andffet A — B be a
finite homomorphism. Defing’ := A’ ® 4 B; so we get a cartesian diagram of algebra
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homomorphisms

A-1.p

- o

l f/* l

Al >B/
in which f’* is finite and h* is essentially smooth. Let(M,p) €
D(Mod A),i, /1. Assume® M has finite flat dimension ovét, andH(A®k A) is bounded.
Then there is a functorial isomorphism

~ gtb
WEf (M, p) = 7 g% (M, p)
in D(MOd B/)rig/K'
Proof. Supposeankp 9}4,/14 = n. Using the base change isomorphism for differential
forms, namel2y,  ; = B ®4 7, 4, we obtain isomorphisms
W "M = Q' p[n] @ RHoma (B, M)
= 0% aln] @4 RHoma (B, M) = RHoma (B, Q% /4[n] ®a M)
= RHom (B, 2%,/ 4[n] @4 M) = f”g* M.
Now regarding the rigidifying isomorphisms, use Propositl.10, with condition (iii.b),
to insertﬂg//A [n] into the sequence of isomorphisms (3.17) at various positio O

Corollary 3.27. In the situation of TheorerB.26 assume;* is essentiallyétale. Define
N = f°M, M’ := ¢!M and N’ := hff*M = f"¢*M, with their induced rigidifying
isomorphisms. Then

qi;]w o Tr?c;M = Tr?u;M/ o qu;N S HomD(Mod A) (N, M/).

Proof. This is becaus@t’,.,, : N’ — M’ is gotten fromiIt}.,, : N — M by applying
A @4 —. O

Supposef* : K — A is a flat ring homomorphism, angt : K — K’ is another
ring homomorphism. We do not impose any finiteness conditmmf* or ¢g*. Define
A" = K @k A. Let M € D(Mod A) and M" € D(Mod A’). ThenSq,x M =
RHom g, a(A, M ®HI§ M), and

SqA’/]K’ M/ = RHOIDA/®K/A/ (A/, M/ ®HI§/ M/) = RHOIHA@KA(A, M/ ®HI§/ M/)

If ¢ : M — M’isamorphismiD(Mod A), we obtain aninduced morphistn 4 /i M —
Sqas/x M"in D(Mod A), which we denote bq (o).

Definition 3.28. With A, K" and A’ as above, letM, p) € D(Mod A),;, /x and(M’, p’) €
D(Mod A"),ig/x - A morphism¢ : M — M’ in D(Mod A) is called arigid base change
morphism relative td if

p'o¢=Sq;,(¢)op.
Proposition 3.29. In the situation of Definitior3.28 assume that the canonical morphism
A’ — RHom 4/ (M', M’) is an isomorphism, and alsb/” = A’ @ M. Then there is a
unique rigid base change morphistm (M, p) — (M’, p’).

Proof. Take any morphism : M — M’ which induces an isomorphisaf @ M — M.
Thenp'o¢p = uSqy ,(¢)op foraunique invertible elemente A’. Defineg := ule. O



26 AMNON YEKUTIELI AND JAMES J. ZHANG

4. RIGID DUALIZING COMPLEXES OVERK-ALGEBRAS

In this section we assume thHtis a regular noetherian ring of finite Krull dimension.
All algebras are by default essentially finite tygealgebras, and all algebra homomor-
phisms are ovekK.

Let us recall the definition of dualizing complex oveKaalgebraA from [RD]. The
derived category of bounded complexes with finitely geretatohomology modules is
denoted byDf (Mod A). A complexR € DP(Mod A) is called adualizing complexif
it has finite injective dimension, and the canonical monphi$ — RHoma (R, R) in
D(Mod A) is an isomorphism. It follows that the functBiHom 4 (—, R) is an auto-duality
of D?(Mod A). Note since the ground rin§ has finite global dimension, the compléx
has finite flat dimension over it.

Following Van den Bergh [VdB] we make the following definitio

Definition 4.1. Let A be aK-algebra and leR? be a dualizing complex ovet. Suppose
R has a rigidifying isomorphism : R = Saa,k R. Then the paifR, p) is called arigid
dualizing complex oveA relative toK.

By default all rigid dualizing complexes are relative to treund ringK.

Example 4.2. Take theK-algebrad := K. The complexR := K is a dualizing complex
overK, since this ring is regular. Lek,, : K — Sak /x K be the tautological rigidifying
isomorphism. ThefK, pt.,) is a rigid dualizing complex oveK relative toK.

In [VdB] it was proved that wheiK is a field, a rigid dualizing compleR is unique
up to isomorphism. And in [YZ1] we proved that the paR, p) is in fact unique up to

a unique rigid isomorphism (again, only whinis a field). These results are true in our
setup too:

Theorem 4.3. LetK be a regular finite dimensional noetherian ring, lebe an essentially
finite typeK-algebra, and let( R, p) be a rigid dualizing complex oved relative toKK.
Then(R, p) is unique up to a unique rigid isomorphism.

Proof. In view of Lemma 3.20 and Theorem 3.22 we may assumeShpat A is con-
nected. SupposE?’, p’) is another rigid dualizing complex over. Then there is an iso-
morphismR’ = R ® 4 L[n] for some invertibled-moduleL and some integei. Indeed
Lln] = RHomu (R, I'). See [RD, Section V.3] or [VdB].
Choose a K-flat DG algebra resolutih — A — A of K — A. (If K is a field just
takeA := A.) So
Saa/k R 2 S,k (Ra ®a Lin])

= RHom 5, 5(A, (Ra ®a L[n)) ®% (Ra @4 L[n]))

=" RHom ;, 4(A, Ra ®% Ra) ®Y L[n] ©% Lin]

= (Sa/x Ra) @% L[n] @5 L[n] =% Ra®4 Ln] ®4 Ln).
The isomorphism marketlexists by Proposition 1.10 (with its condition (iii.b)), dithe
isomorphism marked)> comes fromp : SqA/]K R4 = R4. On the other and we have
o R = Saa,x R, which gives an isomorphism

RA®a L[n] 2 RAR®4 L[n XA L[n]

Since R4 is a dualizing complex it follows that = A andn = 0. Thus we get an
isomorphismpg : Ry — R'.
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The isomorphisng, might not be rigid, but there is some isomorphigimmaking the
diagram
é1

Ry R
PAl lp/
S (¢0)

Saayk Ra —2"" S R

commutative. Sinc&lompvod 4)(Ra, R') is a freeA-module with basispy, it follows
thatg; = u¢, for someu € AX. Then the isomorphism := u~1¢, is the unique rigid
isomorphismR4 — R'. O

In view of this result we are allowed to talk ababe rigid dualizing complex oveA
(if it exists).

The functorsf® and f* associated to an algebra homomorphigim: A — B were
introduced in Definitions 3.13 and 3.21 respectively.

Proposition 4.4. Let f* : A — B be a finite homomorphism @ -algebras. Assume a
rigid dualizing compleX R4, p4) over A exists. DefindRp := f°R4 € D(Mod B) and
pB = f*(pa). Then(Rp, pp) is a rigid dualizing complex oveB.

Proof. The fact thatRp is a dualizing complex oveB is an easy calculation; see [RD,
Proposition V.2.4]. Sinc& g has bounded cohomology afkdhas finite global dimension
it follows that Rz has finite flat dimension ové&. So Theorem 3.14(1) can be applied.]

Proposition 4.5. Let A be aK-algebra, and assumd has a rigid dualizing complex
(Ra,pa). Letf* : A — Bbe an essentially smooth homomorphism. Defige= f*R,
andpp := f*(pa). Then(Rg, pp) is a rigid dualizing complex oveB.

Proof. A calculation, using Proposition 3.2(1), shows tléat is a dualizing complex over
B. The only tricky part is to show tha® g has finite injective dimension; see [RD, The-
orem V.8.3]. Theorem 3.22(1) tells &z, pp) is a rigid complex oveB relative to
K. O

Theorem 4.6. Let K be a regular finite dimensional noetherian ring, and letbe an
essentially finite typ&-algebra. Therd has a rigid dualizing compleiR 4, p4) relative
to K.

Proof. We can find algebras and homomorphismsﬁ C LA SN A, whereC' =
Klt,...,t,] is a polynomial algebra;* is surjective and.* is a localization. By Example
4.2,(K, ptau) is a rigid dualizing complex oveK. By Propositions 4.5 and 4.4 the com-
plexhig’ ffK = A ® g RHom¢ (B, Q% i [n]) is arigid dualizing complex oved, with
rigidifying isomorphismif ¢° f#( peau ). O

Definition 4.7. Let A andB beK-algebras, with rigid dualizing complexéB 4, p4) and
(R, pp) respectively. Letf* : A — B be a finite homomorphism and lgt: Rp — R4
be a morphism iD(Mod A). We say¢ is arigid trace if it satisfies the following two
conditions:
(i) ¢ is nondegenerate, i.e. the morphifdgz — RHoma (B, R4) in D(Mod B)
induced by is an isomorphism.
(ii)y ¢ is arigid trace-like morphism, in the sense of Definition.3.8

Proposition 4.8. Let f* : A — B be a finite homomorphism betweEnalgebras. There
is a unique rigid tracelr; = Trp,4 : Rp — Ra.
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Proof. By Corollary 3.19 the morphisr‘ﬂTr?c;RA : f’R4 — R4, namely “evaluation at”,
is the unigue nondegenerate rigid trace-like morphism beiwthese two objects. And by
Proposition 4.4 and Theorem 4.3 there exist a unique rigi@phismR = f°R,. [
Here is an immediate consequence of the uniqueness:
Corollary 4.9 (Transitivity). Let A — B — C be finite homomorphisms &f-algebras.
ThenTrC/A = TrB/A oTrC/B .
The notion of rigid localization morphism was introducediefinition 3.24.

Proposition 4.10. Let A and A’ beK-algebras, with rigid dualizing complexé® 4, p4)
and (R4, pas) respectively. Suppogé : A — A’ is an essentiallgtale homomorphism.
Then there is exactly one rigid localization morphigm= q//4 : Ra — Ra:.

Proof. By Proposition 4.5 we have a rigid dualizing comp}é 4 over A’, and by Propo-
sition 3.24 there is a unique rigid localization morphiq?pRA : Ry — f'R4. According
to Theorem 4.3 there is a unique rigid isomorphigh® 4 = R 4. O
Definition 4.11. Given aK-algebraA, with rigid dualizing complexR 4, define therigid
auto-duality functoto beD 4 := RHoma(—, Ra).

Note thafD 4 is a duality ofD¢(Mod A), and it exchanges the subcategoBgg Mod A)
andD; (Mod A). Given a homomorphisni* : A — B the functorL f* = B ®%; — sends
D; (Mod A) into D; (Mod B). This permits the next definition.

Definition 4.12. Let f* : A — B be a homomorphism between tii&-algebras. We
define thetwisted inverse imaginctor f' : Df (Mod A) — D; (Mod B) as follows. If
A = Bandf = 14 (the identity automorphism) then we Igt:= 1D?(Mod A) (the identity
functor). Otherwise we defing := Dp Lf* D 4.

Let w}a“ : f'Ry = DgLf*D4 R4 — Rp be the isomorphism iD(Mod B) deter-
mined by the standard isomorphistdis D, R4, B~ B ®I;, AandRg = DgB.
Theorem 4.13. LetK be a finite dimensional regular noetherian ring.

(1) Given two homomorphism4 . C between essentially finite tyfié-
algebras, there is an isomorphism
¢rg:(fog) =g f
of functorsD;f (Mod A) — D; (Mod C).
(2) For three homomorphismé EANY: NG RN D, the isomorphismé_ _ satisfy
the compatibility condition
Bgh © Df.goh = b, © bfogn : (fogoh) = higf.
(3) For a finite homomorphisnfi* : A — B there is an isomorphisnt’, : f* = f*

of functorsD;" (Mod A) — D; (Mod B).
(4) For an essentially smooth homomorphigi: A — B there is an isomorphism

wfc : f# = f' of functorsD;" (Mod A) — D, (Mod B).
(5) Inthe situation of(1) there is equality
Ui = Vg o 0 br g, (fog)' Ra — Re.
In the situations of(3) and (4) the isomorphismﬁ;au o @;RA : f’Ra = Rp
andq/)}a” o w?;m : fR4 = Rp respectively are rigid relative ti&.
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In stating the theorem we were a bit sloppy with notation;if@tance in part (5) we
wrote ‘™" o 1", whereas the correct expression ig/"" o g’(ﬁ;}a“)”. This was done
for the sake of legibility, and we presume the reader camfilhe omissions.

Proof. (1) The adjunction isomorphistty, i 4 ) = DpDp, together with the obvious
isomorphismC = C ®% B, give rise to functorial isomorphisms
(fog)'M =Dc(C®%DaM) = De(C 2% B%DAM)
~ Dc (C ®% DpDp(B®5 DAM)) = g'f'M
for M € D{ (Mod A). The composed isomorphisfyiog)' M = ¢ f*M is calledg g ar.
(2) By definition
(fogoh)'M =Dp(D @4 DaM)
and
h'g'f'M =Dp (D ®% DeDe (C @% DpDp(B @4 DAM))).
The two isomorphismp, 1, o ¢ gor @ANA Py 4 © G0y, 1, differ only by the order in which
the adjunction isomorphismg, (o4 5) = DpDp andlp: yeq oy = DoDe are applied,
and correspondingly an isomorphigine C ®@% B is replaced byD =~ D ®% B. Due to
standard identities the net effect is thigty, © ¢ ¢ gon = ¢f.g © Drog,h-
(3) Lety : f°R4 = Rp be the unique rigid isomorphism (see Proposition 4.4 and The
orem 4.3). Sincg’R4 = RHom (B, R4) = DB, we may viewy as an isomorphism
X : DaB = Rp in Df (Mod B). Applying D4 to it we obtainD(x) : DaRp —
DaD4B = B. Now for anyM € D; (Mod A) we have

f'M =Dp(B®Y% DaM) =RHomp(B @4 DaM, Rg) = RHom (DA M, Rp).
Next, usingD 4(x) andD D4 M = M, we arrive at isomorphisms

RHOInA(DAM, RB) = RHOmA(DARB,DADAM) = RHOInA(B,M) = fbM.

The composed isomorphisfiM = f'M is %, ;.

(4) By Proposition 4.5 and Theorem 4.3 there is a unique iggichorphismy : ffR4 —

Rp. We may assume théllB/A has constant rank, so thatf) = Q%/A[n] ®4 M for
anyM € Df (Mod A). In particular we have an isomorphism Q% aln]®aRa = Rp.
Usingy, Proposition 1.10 and the adjunction isomorphife D 4D 4 M, we obtain

f'M = RHoma(DaM, Rp) = Qp4[n] ® 4 RHoma(DaM, Ra) = f*M.
The composed isomorphisfilM = f'M is caIIedq/)?;M.

(5) These assertions are immediate consequences of thieumiosn of ¢ g, 1/)?' andwg.

The notion of2-functor between categories is explained in [Ha, Sectid®bpb. Let
EFTAIg /K be the category of essentially finite tyfiealgebras, and lefat be the cate-
gory of all categories. Due to part (2) of the theorem we have:

Corollary 4.14. The isomorphismg_ _ in part (1) of the theorem makg* — f' the
1-component of &-functorEFTAlg /K — Cat, whose)-componentisi — D (Mod A).
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The last result in this section explains the dependenceeoftisted inverse image-
functor f — f' on the base ring. AssumeK’ is an essentially finite typ&-algebra
that’s regular (but maybe not smooth o¥€). Just like forK, any essentially finite type
K’-algebrad has a rigid dualizing complex relative K/, which we denote byR/,, o/, ).
For any homomorphisrfi* : A — B thereis acorrespondingfunctf)!r' : Dff (Mod 4) —
D;f (Mod B), constructed using’, andR’;. Let (R, px) be the rigid dualizing complex
of K’ relative toK.

Proposition 4.15. Let A be an essentially finite tygé€’-algebra. ThenRgx, @k, R/, is a
dualizing complex over, and it has an induced is a rigidifying isomorphism relattee
K. Hence there is a unique isomorphigtr: ®%, R, = R4 in D(Mod A)sig /K -

Proof. We might as well assunépec K’ is connected. SindE’ is regular, one haBy: =
L[n] for some invertibléK’-module L and some integes. ThereforeRk, ®%, R/, is a
dualizing complex over. According to Theorem 3.9 the compléi, @k, R/, has an
induced rigidifying isomorphismpk: ® p/,. Now use Theorem 4.3. O

Example 4.16. TakeK := Z andK’ := F, = Z/(p) for some prime numbes. Then
Rk = K’[-1], and for any4 € EFTAIlg /K’ we haveR’, = R4[1].

Remark 4.17. The assumption that the base riKghas finite global dimension seems
superfluous. It is needed for technical reasons (boundeg@lexas have finite flat dimen-
sion), yet we don’t know how to remove it. However, it seemsassary forfkK to be
Gorenstein — see next example. Also finiteness is imporarExample 4.19 shows.

Example 4.18. Consider a fieldk, and letK = A := k[t,t2]/(t3,13,t1t2). ThenA
does not have a rigid dualizing complex relativeko The reason is that any dualizing
complex over the artinian local ring must beR = A*[n] for some integen, where
A* := Homg(A,k). Now Sq,x R = R ®% R, which has infinitely many nonzero
cohomology modules. So there can be no isomorptitst Sq 4 x .

Example 4.19.Take any fieldK, and letA := K(¢1, t2, . . .), the field of rational functions
in countably many variables. Sé is a noetheriafK algebra, but it is not of essentially
finite type. ClearlyA has a dualizing complex (e.dg := A), but as shown in [YZ1,
Example 3.13], there does not exist a rigid dualizing compieer A relative toK.

Remark 4.20. The paper [SdS] by de Salas uses an idea similar to Van dehBeigjdity

to define residues on local rings. However the results thexgeetty limited. Lipman
(unpublished notes) has an approach to duality using theafmental class of the diagonal,
which is close in spirit to the idea of rigidity; cf. Remark26.

5. THE RESIDUE SYMBOL

In this section we apply our methods to the residue symboR®&d,[Section I11.9].
ThroughoutK is a finite dimensional regular noetherian ring. All ringe aommutative
essentially finite typ&-algebras, and all homomorphisms are dier

Definition 5.1. Supposef* : A — B is an essentially smooth homomorphism of relative
dimensiomn, i* : B — B is a finite homomorphism, and the compositign:= i* o f* :

A — Bis finite and flat. LetM € DP(Mod A). According to Theorem 4.13 there are
isomorphisms)? o ch L fEM S A ML g M= g M andéy 1 gt M = M

in D(Mod B). The isomorphism

Cu = (W) o) L ogpion) i g M i fIM
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in D(Mod B) is called thaesidue isomorphism

If M is a singleA-module then we have’ M = H°¢” M, and there aré3-linear iso-
morphisms

HO(Cy) : Homa(B, M) = H°g"M = H&" f*M = Extjy(B, Q4 ®4 M).

Recall thatA has the tautological rigidifying isomorphism,,, so we have an ob-
ject (A, ptau) € D(Mod A),i5/4. By Theorems 3.14 and 3.22 we get rigid complexes
gb(Aa ptau) andibfﬁ(Aa ptau) in D(MOd B)rig/A-

Theorem 5.2. In the situation of Definitiord.1, the residue isomorphisgy is the unique
rigid isomorphismy® (A, pean) — i f1(A, prau) OVer B relative to A.
The proof is after this lemma.

Lemma 5.3. In the setup of the theorem, for afy € DF(Mod A) the diagram

(5.4) ¢M——Mak ¢ A

ng J/]-Z\/I®<A

PP — M @Y P fiA
with horizontal arrows coming from Theorerdd 4(4)and 3.22(2) is commutative.

Proof. Going over the proof of Theorem 4.13 we see that there ardasimdommuta-
tive diagrams with pairs of vertical amows’, ,,, 1x @ ¥, ), (W5, 1 ® U5, ),
(U’iana lrpr ® @;fm) and(érin, 1y @ dpia)- U

Proof of Theoren$.2 SinceHomp yoq 5)(9° A, " f* A) is a freeB-module with basis 4,
it follows thatu¢, : ¢’ A — i fA is a rigid isomorphism for a unique € B*. We will
show thatu = 1.

Sinceg’ = Hom 4 (B, —) there are isomorphisni3, @' ¢”A =~ ¢’ R4 = Ry. We also
know thati’ ffA = i' f'A = ¢g'A = ¢" A, implying thatR4 ®Y% i° f*A =~ R;. Because
Rp = Sqp/x Rz we see that Theorem 3.9(2) applies, with its condition. (ithus we
obtain a rigid isomorphism

1g, @uCa: Ra®% ¢’ A= Ry 0% " f5A

over B relative toK. Now the commutativity of the diagram (5.4), wifif := R4, says
that(r, = 1gr, ® Ca. ThereforeuCr, = 1z, ® ula, implying thatuCg, : ¢’ R4 —
i’ f'R 4 is a rigid isomorphism relative t&. However, by Theorem 4.13, the isomorphism
Cr, Is itself rigid relative taK. The uniqueness in Theorem 4.3 implies that 1. O

Definition 5.5. Theresidue map
Respya : Ext%(B,Q%/A) — A
is defined to b&esp, 4 := T, 4 0 (4", whereCs : g’ A = i® f* A is the residue isomor-
phism, andIt’ , : ¢’A — A s “evaluation at.”.
Consider the object

Ext(B, Q%) =i’ f*A € D(Mod B),i5 /4.
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The rigidifying isomorphism i8” f#(p¢.). In this notation, Theorem 5.2 says that
@A = Exty(B, Qg/A) is a rigid isomorphism relative td. Using Corollary 3.19 we
obtain:

Corollary 5.6. The residue maResp 4 is the unique nondegenerate rigid trace-like mor-

phismExty (B, Q) — A relative toA.

The corollary shows that (as would be expected) the resicagimindependent of the
base ringk and of the twisted inverse image functbr— f' associated to it. Indeed, the
only data needed to characterizesg 4 is the two ring homomorphism$ — B — B.

We shall now look at a special casg: : A — B is a smooth homomorphism of relative
dimensionn, andb = (by,...,b,) is a sequence of elements #hsuch that the algebra
B := B/(b) is finite overA. It follows thatb is a regular sequence, aitlis flat overA;
cf. [EGA, Chapitre IV, Section 11]. Let : B — B andg* : A — B be the corresponding
homomorphisms.

Let K(B, b) be the Koszul complex associated to the sequénéecall that for any
the Koszul compleX (B, b;) is the free graded-moduleBe; ® B, with deg(e;) := —1
and differentiati(e;) := b;. The total Koszul complex K (B, b) := K(B,b1)®p---®p
K(B,b,). Sincebis a regular sequence we get a quasi-isomorplgi, b) — B, which
is a free resolution oveB, and

Ext(B, 0, ,4) = H” Homp (K(B, b), 0%, 4 [n]).

Definition 5.7. Given a differential forms € Q%/A’ thegeneralized fraction

5 n (N n
[b € Extp(B,Qp/4)
is the cohomology class of the homomorphKrtB, b) ™" — Qg aer N New — B

Combining the Definitions 5.7 and 5.5 we obtain tasidue symbdResp, 4 [5] € A.
In view of Proposition 6.19 (see also Remark 6.20) this d&édimiof the residue symbol
coincides (perhaps up to sign) with the one in [RD, Sectiaa]ll

For the remainder of this section we will writgy for the tautological rigidifying iso-
morphismpy,, Of A relative to itself, and likewise for other rings.

Let's defineE := Ext%(B,Q%/A). This B-module has a rigidifying isomorphism

pe =1 f*(pa) : E = Sqp,4 E relative toA. SinceA — B is flat we have
SQB/A E = HomB®AB(BaE XA E),

which is aB ® 4 B -submodule ofZ ® 4 E. We are going to find an explicit formula for
the homomorphispg : E — E ®4 E in a special case (see Proposition 5.12).

In Lemma 5.8 and Proposition 5.9 below we will look at the doling setup. The
K-algebrasA, B, B are as beforeK’ is another regular noetherian ring of finite Krull
dimensionK — K’ is a ring homomorphism (without any finiteness assumptiof's)B’
and B’ are essentially finite typK’-algebras; and there is a commutative diagram of ring
homomorphisms
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We assume tha®’ =~ By A’ andB’' = B®4 A'. Let B’ := Extl, (B, Q%,/A,). There
is an induced isomorphisfi’ = £ ® 4 A’ (cf. Proposition 1.10 with condition (iii.a)), and
we denote byy : £ — E’ the corresponding-linear homomorphism. Lets, be the
tautological rigidifying isomorphism oft’ relative to itself, and lep: := i'bf'ﬁ(pA/) be
the rigidifying isomorphism of’ over B’ relative toA’.
Lemma 5.8.
(m@n)ope=prpon:E—E @ E,
i.e.n is arigid base change morphism relative Ao
Proof. From the proof of Theorem 3.22 we see that the canonical nemph
o fPA = Qp aln] — Qb an] = A
satisfies
(0 @ mo) © f*(pa) = f*(par) o mo-
Sor1) is rigid base change morphism relative4o Similarly, the proof of Theorem 3.14
shows that the canonical morphism
m + i’ B = Exty(B, B)|-n] — Ext, (B, B')[-n] = "B’
satisfies
. b
(m@m)oi’(ps) =" (ppr) o m.
This says thaty, is a rigid base change morphism relative2o Combine this with Theo-
rem 3.14(4). O

Proposition 5.9. In the situation described above one has
h*oResp/a = Respjaron: E— A’

Proof. SinceHom 4 (E, A’) is a freeB’-module of rankl, we see thaRes’ o ) = uh*oRes
for a unique invertible element € B’. HereRes := Resp/a andRes’ := Respr/a/. SO
the rear square in the diagram below commutes up to a factarBécauses andRes’
are rigid morphisms, the two horizontal rectangles are catative. By Lemma 5.8 the
left-facing vertical rectangle is commutative, and trilyighe right-facing vertical rectangle
is commutative. Finally the front square commutes up to tofaaf u2. We conclude that
u=1.
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Lemma 5.10. AssumeK = A = Z; B = Z][t], the polynomial algebra in one variable;
andb = t™*! for somem > 0. Then

"t dt tm=I dt
PE |:tm+1] Z [tm+1:| |: tm+1 :|)
7=0

for somee € {1, —1}.

Proof. The A-moduleE is free of rankm + 1 with basis[,.%.],. .., [imnfﬂ Therefore
dt - t7 dt th dt
(5.11) pi( |:tm+1:|) = Z aj’k([tm+1:| ® |:tm+1:|) cbE®al
7,k=0

for somea; ,, € A. B B
Define Ag := Q, Bg := Q[t], By := Q[t]/(tfnfl_) and Fg = Ex_tlBQ(BQ,QlBC/AC)
SoEqg = E ®4 Ag, and by Lemma 5.8 the rigidifying isomorphispg;, also satisfies
equation (5.11). Take anye Q — {0, 1, —1}, and consider the automorphigrh: Bg —
Bg,t — M. Letn : E— E be the corresponding homomorphism. Again by Lemma 5.8

we see that

e (i) = X i) o1

7,k=0

Sincen([fiﬂﬂ) = \—m [ffniﬂ we conclude that; , = 0 unlessj + k = m.
Let ¢ denote the class dfin B. Sol ®f —t® 1 € Ker(B ®4 B — B), and therefore

(1®E—E®1)-pE(LSL])=0.

Nowt[tt;iﬂ = [tifnl‘ft] We conclude thatg ,, = a1m-1 = --- = Gm.0, Which we
denote by. Since

2 [ dt "I dt _

Z([tm+1:| ® |: tm+1 :|) = HOInB@AB(B’E ®a E) = SqB/A E,

7=0

yet pE([th]) is part of a basis of thel-moduleSqz,4 E, it follows thate must be

invertible. Thus € {1, —1}. O

Proposition 5.12. Let A be any essentially finite tydé-algebra, B := Aft] and B :=
B/(t™*+1). Then

R tdt e ifj=m
€S =

BIA | gm+1 0 otherwise
Heree € {1, —1} is some universal constant.

Proof. According to Proposition 5.9 we can assume that= A = Z. Let ¢ be the
number occurring in Lemma 5.10. Define dnlinear homomorphisng : £ — A by
o([1.1]) := eif j = m, and0 otherwise. We have to prove that= Resp, 4. In view of
Corollary 5.6 it suffices to show thatis a rigid morphism relative tal.

Thus we have to verify that

(p@@)opr =pacg: E— A
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By Lemma 5.10, for any € {0,...,m} we have
P et R et | i Y e
Thus -
(o oo = e o[t o] - { 4 =m

0 otherwise

On the other hand 4 is the identity, and

) dt e ifj=m
a [tm“]) B {O otherwise
Bute® =e. O

Remark 5.13. The actual value of is not so easy to determine. Since we will not need it,
we did not do the calculation.

6. GLUING RIGID DUALIZING COMPLEXES ONSCHEMES

In the beginning of this sectioX is some finite dimensional noetherian scheme. A
dimension function X is a functiondim : X — Z such thatdim(y) = dim(z) — 1
whenevery is an immediate specialization ef Thus— dim is a codimension function,
in the sense of [RD, Section V.7]. Note that any closed suBset X has a dimension,
namelydim Z := sup{dim(z) | z € Z}.

Let dim be a dimension function oX. This determines a Cousin funct@r :
D*(Mod Ox) — C(Mod Ox), the latter being the category of complexegxf-modules.
Let us recall the construction of the Cousin functor from [RIhapter 1V]. Given arQ x -
module M, denote byF; M the subsheaf of sections whose support has dimension
Now let M € D*(Mod Oy ), and choose a bounded below injective resolufidn— 7.
Let { EP-?} be the spectral sequence associated to the filtered coplek}. The Cousin
complexEM is the rowg = 0 in the pager = 1 of this spectral sequence. According
to [RD, Section 1V.2], for any one hagEM)? = P, ()=, HEM, where we view

H?M as a constant sheaf supported on the closediset If M e DP.(Mod Ox) then
eachH? M is quasi-coherent, SBM € Ct(QCoh Ox)

Definition 6.1. A complex M € D"(Mod Ox) is called aCohen-Macaulay complex
(relative to the dimension functiatim) if H,. M = 0 for all z andi # dim(x).

According to [RD, Proposition IV.2.6] or [YZ2, Theorem 2]1IM is a Cohen-Macau-
lay complex if and only itM = EM in D(Mod Ox). Let us denote bjbgc(l\/lod Ox)em
the full subcategory oID};C(I\/Iod Ox) consisting of Cohen-Macaulay complexes.

Recall that a quasi-cohere@y-module 7 is injective as object of the category
QCoh Ox iff it is injective in the bigger categorilod Ox. Moreover, for such an injec-
tive quasi-coherent module there is an isomorphigre: P, . J(x)=) whereJ (z)
denotes an injective hull of the residue fidtdz), considered as a quasi-coherent sheaf;
1 is a cardinal number; and (z)(#=) denotes the direct sum pf, copies of7 (z). See
[RD, Section I1.7].

A bounded below comple® of injective quasi-coherer®x-modules is called ain-
imal injective quasi-coherent compléxfor any ¢ the module of cocycle¥er(7? —
J4t1) is an essential submodule g% in the categorf@Coh Ox. Given a complexV’ €
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Dg.(Mod O ), aminimal injective quasi-coherent resolutiof\" is a quasi-isomorphism
N — J,with 7 a minimal injective quasi-coherent complex.

Lemma 6.2. LetV € D¢ (Mod Ox).

(1) There exists a minimal injective quasi-coherent resofuti6 — 7. Moreover.J
is unique up to isomorphism.
(2) Foranyq € Z and anyx € X let i, , be the multiplicity of7 (z) in 72. Then

Pz,q = ranky (g, Eth(]QX,w (k(x),Ng),

whereN,, is the stalk atc.
(3) If NVis a Cohen-Macaulay complex then , = 0 whenevey < — dim(x).

Proof. (1) By [RD, Corollary 11.7.19] we may assume tht € D™ (QCoh Ox). Now we
may apply [Yel, Lemma 4.2].

(2) The complex7,, is a minimal injective resolution o¥/,, over the local ring@)x ,. Now
use [YZ2, Lemma 4.12(2)].

(3) Note that
Extéx’x (k(z),N;) = Extéx’x (k(z),RT,N).

The Cohen-Macaulay assumption says that the cohomoloB'ef\ is concentrated in
degree- dim(z). O

Lemma 6.3. SupposeM, N € D2 (Mod Ox )cum. Then the assignment

U +— Hompmod 0, ) (M|v, Nv)
is a sheaf onX.

Proof. As explained above there is an isomorphigm M = EM in D(Mod Oy).
Choose a minimal injective quasi-coherent resolution\' — 7. By Lemma 6.2(3) the
multiplicities of the complex7 satisfyu, , = 0 for all ¢ < — dim(z).

For an open sdf C X consider the canonical homomorphism

v : Homemod 0 ) (EM|u, Ju) — Hompmed 0y ) (EM|u, Tv).

Since 7|y is a bounded below complex of injectiv@;;,-modules it follows that\y is
surjective. On the other hand, any local sectioifaM )? has supportin dimension —g¢,
but there are no nonzero local sectiong/df-! with supportin dimensior. —g. It follows
thatHomc (mod 0,,) (EM|y, T|u)~! = 0, and so\y is also injective.

Now the isomorphismé|;; : M|y = EM|y andy|y : Ny = J|v in D(Mod Op)
give rise to a bijection

Homp mod 0) (M|, Nu) — Hompmod 0 ) (EM|u, T|v).
We conclude that the presheavés — Hompwedo,)(M|v,N|y) and U —
Homc(mod 0 ) (EM|u, J|v) are isomorphic. But the latter is a sheaf. O

A stack onX is a “sheaf of categories.” The general definition (cf. [LMB] quite
forbidding; but we shall only need the following specialtargce (cf. [KS, Section X.10]).

Definition 6.4. Suppose that for every open €étC X we are given a full subcategory
C(U) c D(ModOy). The collection of categorie€ = {C(U)} is called astack of
subcategories dD(Mod Ox) if the following axioms hold.

(a) LetV C U be opensetsiX andM € C(U). ThenM|y € C(V).
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(b) Descent for objects: given an open coverihg= | V;, objectsM; € C(V;) and
isomorphismsp; ; : M;|v,av; = M;lv,nv, satisfying the cocycle condition
®ik = ¢j.k © ¢; ; on triple intersections, there exists an objadt ¢ C(U) and
isomorphisms; : M|y, — M, such that; ; o ¢; = ¢;.

(c) Descent for morphisms: given two objectd, A € C(U), an open covering
U = UV; and morphisms); : M|y, — Ny, such that);|v,nv, = ¥jlv,av;,
there is a unique morphisgh: M — N such that|y, = 1;.

Theorem 6.5. Let X be a finite dimensional noetherian scheme with dimensioctifum
dim. The assignmerif — D?.(Mod Oy )cw is a stack of subcategories B{Mod Ox ).

Proof. Axiom (@) is clear, since the Cohen-Macaulay property isalocAxiom (c) is
Lemma 6.3. Let us prove axiom (b). Sinégis noetherian, and in view of axiom (c),
we may assumé = {1,...,n}. Let us definéV; := U;‘:l V;. By induction oni we will
construct a complep; € Dgc(l\/lod Ow, )cm with isomorphisms); ; = Ni|v, = M;
for all j < i that are compatible with the; .. ThenM := A/, will be the desired global
objectonV = W,,.

So assume < n andN; has already been defined. For ah¥ ¢ we have an isomor-
phism

Gjit1 0 Vi Nilviaviy, — Milviaviy, — Mitilvinvigs

and these satisfy the cocycle condition. According to axfonthere is an isomorphism

Viit1 : Nilwiaviy, — Mivilwiaviy,

in D(MOd OWiﬂVi+1)' Denote byfl’Jrl : Wl — WfL’Jrl, git1 - ‘/i+1 — WiJrl andhl-H :
W; N Viy1 — Wipy the inclusions. Defind/;,; € D®(Mod Ow,,, ) to be the cone of the
morphism

(Vs%i,i41)
BN wanvie,) ——"% FarnNi @ gy Mit
whereh ;1) etc. are extension by zero, ands the canonical morphism. We obtain a
distinguished triangle

hiip1y Nilw,nvies) = fasNi @ garpMirt = Nigr = b Nilwiavig,)[1]

in D(Mod Ow,.,, ). Upon restriction to¥; we get an isomorphismV; = N 1|w,; and
upon restriction toV;; we get an isomorphismV; 1 ]v,. = M,;1 which we call
¥it1,i41. From these isomorphisms it follows thif; € Dgc(Mod Ow,,,)eMm- O

Remark 6.6. AssumeX is a finite type scheme over a field, and consider the dimen-
sion functiondimy (see Definition 6.10 below). Lé>(Mod Ox)cm be the category of
Cohen-Macaulay complexes with coherent cohomology slsedweYZ4] we show that
D2 (Mod Ox)cwm is the heart of the rigid perverse t-structure Dp(Mod Ox). More-
over,D?(Mod Ox)cw is the image ofCoh Ox under the rigid auto-duality functddx .
ThereforeD?(Mod Ox )cwm is an artinian abelian category. We do not know of a similar
statement for the bigger categd})gC(Mod Ox)oMm-

From here on in this sectidR is a finite dimensional noetherian regular ring. All rings
are by default essentially finite tyfie-algebras, all schemes are by default finite tipe
schemes, and all morphisms are oiter

For a schem& we write Aff X for the set of affine open sets in it.
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Definition 6.7. Let X be a scheme an# € D?(Mod Ox). ForU € Aff X we write
Ay :=T(U,Ox) andMy := RI'(U, M). Assume that for ever§y € Aff X we are given
a rigidifying isomorphisnpy : My — Sda,, ;xk My in D(Mod Arr). Moreover, assume
that for every pair of affine open sets C U the localization morphismy,; : My —
My in D(Mod Ay ) is a rigid localization morphism (cf. Definition 3.24). There call
p = {puvlveas x arigid structure onM relative tokK, and the paii M, p) is called a
rigid complex ofO x -modules relative td.

Definition 6.8. SupposéM, p,,) and(N, p,) are rigid complexes o x-modules rel-
ative toK. A rigid morphismfrom (M, p ,,) to (N, p,/) is @a morphismp : M — N in
D(Mod Ox), such that for every affine open gétC X the morphisnRI'(U, ¢) : My —
Ny in D(Mod Ay) is a rigid morphism relative t&, in the sense of Definition 3.8.

We denote the category of rigid complexesb(Mod Ox ).ig /x -

Definition 6.9. A rigid dualizing complex orX relative toK is a rigid complex(R, p)
such thafR is a dualizing complex.

For a fieldK any dualizing complex is of the forit [n] for some integen.

Definition 6.10. (1) SupposeX is an essentially finite typK-algebra that's a field,
and letRx be its rigid dualizing complex. Let be the integer such thdty =
Kn], and definelimg (K) := n.
(2) LetX be a finite typeK-schemegz € X a point andk(z) the residue field of.
We definedimg (x) := dimg (k(x)).

Lemma 6.11. The functiordimyk : X — Z is a dimension function.

Proof. Choose an affine open neighborhddd= Spec A of z in X. Denote byR the
sheafification of the rigid dualizing complé¥, to U, and letR, be its stalk at:. Accord-
ing to [RD, Proposition V.3.4] there is an integesuch that

k(z) ifi=-n

Extoy, (k(z), Re) = {0 otherwise

SinceRHomo, , (k(x),R.) is a rigid dualizing complex ovek(z) we see thatr =
dimg (z). By [RD, Proposition V.7.1] we see thdimg (y) = dimg () — 1 for an imme-
diate specialization. O

Example 6.12.1f K is equidimensional of dimensiat(i.e. every maximal ideal has height
d) thendimg (z) = dim{z} — d. Thus in the case of a fielil one hasdimy (z) =
dim {z}. On the other hand, fdk = Z andX = SpecZ, a closed point: = (p) has
dimg (z) = —1.

Theorem 6.13.LetK be a finite dimensional regular noetherian ring, and}&be a finite
typeK-scheme. TheX has a rigid dualizing complefR x, p ), which is unique up to a
unique rigid isomorphism.

Proof. LetU = Spec A be an affine open set iK. By Theorem 4.3 th&-algebraA has a
rigid dualizing compleXR 4, pa). If U' = Spec A’ C U is a smaller affine open set, then
by Proposition 4.10 there is a unique rigid localization plosmq 4.4 : (Ra,pa) —
(Ras, par). Inthis way we get anisomorphisy, /4 : A'®4 Ra = Ry in D(Mod A”).
Given another affine open s&t’ = Spec A” C U’ the localization morphisms satisfy
dArjA =dqar/ar ©darya, and hencearja = ¢arjar o garja.
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Now let's pass to sheaves. For an affine openlset Spec A C X let Ry be the
sheafification ofR 4 to U, which is a dualizing complex ofi. Given an affine open set
U’ c U there is an isomorphismy /7 : Rylu = Ry in D(Mod Oy). For a third
affine open set/” C U’ these isomorphisms satisfy the condition. ;i = ¢y ©

(bU/ U-

B/y [RD, Proposition V.7.3] each of the complex®s; is Cohen-Macaulay with re-
spect todimg. Given two affine open sefs;, U C X, and any affine open sét C
U1 N Uz, we get isomorphismeéy, ., : Ru,|w = Ryw. According to Theorem 6.5
the Cohen-Macaulay complexes form a stack’n By axiom (c) of Definition 6.4 the
isomorphismsb;vl/Uz o dwyu, + Ru,lw =5 Ru,|w can be patched to an isomorphism
ou, U - Ruy|luinus =, Ru,|u.nu,; and these isomorphisms satisfy the cocycle condi-
tion on triple intersections. By axiom (b) there is a comgiex € D2 (Mod Ox )cm With
isomorphismR x |y = Ry for any affine open sdf. The complexR x is dualizing, and
by construction it comes equipped with a rigid structpre

Regarding uniqueness: this is immediate from the uniguenéshe rigid dualizing
complexesRk 4 over theK-algebrasA4, and by the uniqueness of the rigid localization
morphismsy 4/ /4. O

Therigid auto-duality functorof X is
Dx := RHomo, (—,Rx).
Let FTSch /K be the category of finite type schemes oifer
Definition 6.14. For a morphisny : X — Y in FTSch /K we define a functor
f': D (Mod Oy) — D} (Mod Ox)

as follows. IfX = Y andf = 1x (the identity automorphism) theft := Lo+ (Mod Ox)
(the identity functor). Otherwise we defirfé := Dy Lf* Dy-.

Note that sincdy Oy = Ry, Lf*Oy = Ox andDxOy = Rx, one hasf'Ry =
Rx. In Section 4 we were more pedantic, so we introduced theltzgital isomorphism
wtfau 'Ry = Ry, using standard identities; see Definition 4.12.

Corollary 6.15. Letf : X — Y andg : Y — Z be morphisms ifTSch /K. Then

there is an isomorphism of functogg ; : (g o f)' = f'¢". Given another morphism
h:Z — W in FTSch /K the compatibility relation

Ph,g © Phog,f = Pg.f © Ph,gor : (RO go f)| — f!glh!

holds. Thusf — f'is thel-component of a contravarialtfunctor FTSch /K — Cat,
whose)-component is¥ — D} (Mod Ox).

Proof. Use the adjunction isomorphisty- — Dy Dy. Cf. Theorem 4.13(1,2). O

Recall that for a finite morphism of schemgs: X — Y there is a functorf® :
D(Mod Oy ) — D(Mod Ox) defined by

PN = Ox @170y f RHomo, (f.0x,N).

For a smooth morphisni we have a functof* : D(Mod Oy) — D(Mod Ox) defined as
follows. Let X = [] X; be the decomposition of into connected components, and for
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eachi let n; be the rank of the locally fre@Xi-moduIeQ})wY. Denote byy; : X; — X
the inclusion. Then

AN = (691 Gix Q%/Y[”i]) ®oy F*N.
Cf. [RD, Sections III.2 and 111.6].

Theorem 6.16. Let K be a regular finite dimensional noetherian ring, [ft: X — Y
be a finite(resp. smoothmorphism between finite tyfie-schemes, and I€R x, p) and
(Ry, py) be the rigid dualizing complexes. Then the comgieRy (resp. f*Ry) is a
dualizing complex oveK, and it has an induced rigid structurg (py-) (resp. ff(py-)).
Therefore there is a unique rigid isomorphigitiRy = Rx (resp.ffRy = Rx).

Proof. The fact thatf*Ry (resp.f!Ry) is a dualizing complex otX is quite easy to
verify; see [RD, Proposition V.2.4] (resp. [RD, Theorem.8]3. We need to provide it with
a rigid structuref®(py-) (resp.f*(py)). We will do only the case of a finite morphism.
The smooth case is similar (but easier).

LetV C Y be an affine open set. Defink:= I'(V, Oy ) andB := T'(f " }(V), Ox).
So f* : A — B is a finite homomorphism dK-algebras. LefRy := RI'(V,Ry), and
let py be its rigidifying isomorphism. By Theorem 3.14 the compféRy is a dualizing
complex over, with rigidifying isomorphismf® (py/). If V/ C V is a smaller affine open
set,and we letl’ := T'(V’, Oy), B :=T(f~1(V'),Ox) andRy := RI'(V’, Ry), then
under the isomorphisnf’ Ry = B’ ® g f’ Ry one hasf’(py:) = 13 ®5 f°(pv). This
is due to Theorem 3.26.

We want to show that for every affine open d4ét ¢ X the complexRy :=
RI(U, f"Ry) has a rigidifying isomorphismy. If U ¢ f~1(V) for some affine open
setV C Y then this follows from the previous paragraph. Indeed, withB and Ry as
defined above, an®’ := T'(U, Ox), we have an isomorphisily = B’ ®p f’Ry; so
we can use the rigidifying isomorphisfii(py-). And this rigidifying isomorphism of?;;
does not depend on the choicelof

Now for an arbitrary affine open sét C X, let us cover it by affine open sdij, . . .,
U, such that eacly; c f~1(V;) for some affine open sét; ¢ Y. We have to find a
rigidifying isomorphismpy : Ry — Sdag/x Ru in D(Mod B). Let us denote bys €
D(Mod Oy) the sheafification 08qp x Ry. Since both(f°*Ry )| andS are Cohen-
Macaulay complexes ofY, and on each of the open séfs we have an isomorphism
P(pv)) : (fPRy)|lv, = S|u,, that agree on double intersections, we can glue them to
obtain the desired rigidifying isomorphispg;.

By construction the various rigidifying isomorphisims respect localizations, so we
have a rigid structure of" Ry, which we denote by’ (py-). By the uniqueness in Theo-

rem 6.13 we get a rigid isomorphisfi® Ry, f*(py)) — (Rx, px). O

Corollary 6.17. In the situation of Theorem.16there is a functorial isomorphisti N =
PPN (resp.f'N = fIN) for N € DF (Mod Ox).

Proof. Use Theorem 6.16 and standard adjunction formulas. O

For more details on the isomorphisifis= f” and f' = f* see Theorem 4.13.

In the next two results we shall consider osipbeddablenorphisms, in order to avoid
complications. Most likely they are true without this asgiion. Recall that a morphism
f: X — Y is called embeddable if it can be factored irfte= h o g, whereg is finite and
h is smooth.
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Proposition 6.18(Flat Base Change)Let f : X — Y be an embeddable morphism, and
letg : Y’ — Y be a flat morphism. Define a schedié := Y’ xy X, with projections
f': X" =Y’ andh : X’ — X. Then there is an isomorphisfit ¢* = h* f' of functors
Dj(l\/lod Oy) — Dg_(MOd OX/).

Proof. This is immediate wheif is either finite or smooth, by Corollary 6.17. Cf. proof
of Theorem 3.26. d

For a morphism of schemgs: X — Y let's denote by
f'@ : D} (Mod Oy) — DF (Mod Ox)
Grothendieck’s twisted inverse image functor from [RD].

Proposition 6.19(Comparison to [RD]) If f : X — Y is an embeddable morphism then
there is an isomorphism of functof&< = f'. In particular, if the structural morphism
7 : X — SpecK is embeddable, then there is an isomorphismK = 7' K = Ry in
D(Mod Ox).

Proof. Choose a factorizatioi = h o g, with ¢ finite andh smooth. Then, according
to [RD, Theorem I11.8.7], there are isomorphisgis = ¢°, h'@ = p! and f'© =~
g' @ h'© . On the other hand, by Corollaries 6.17 and 6.15 we have ¢°, h' = At and
gt ([

Remark 6.20. In caseX is a separated flat embeddaklescheme, Proposition 6.19 can be
strengthened significantly. Indeed, one can prove thatuhézing complexR’ := '@ K
has a rigid structure, which determined by the variance gntggs of the twisted inverse
image2-functor f — f'«, as stated in [RD, Theorem 111.8.7]. Here is an outline. ingft
X? := X xg X, there are the diagonal embedding: X — X2, which is a finite
morphism; and the two projections : X2 — X, which are flat. See diagram below.
Using flat base change one can obtain a canonical isomorphism

(6.21) R' = A™'RHomo,, (A.Ox,(pi R') @5, (p3 R')).

Now take any affine open sét C X, and let4d;; := I'(U, Ox) andRy; := RT'(U, R’).
Applying the functoRT'(U, —) to the isomorphism (6.21) we obtain a rigidifying isomor-
phismp,; : R}, = Sda, /x Ry in D(Mod Ay). The collection of isomorphismigy; } is
compatible with localizations, so it's a rigid structure ®h

X2 x2 2 x

m| |

X — SpecK

To conclude this section we address the question of deperd#rihe twisted inverse
image2-functor f — f' on the base rindK. AssumeK’ is an essentially finite typk-
algebra that's regular (but maybe not smooth dgr Consider the categofiyTSch /K’,
with the faithful functorFTSch /K’ — FTSch /K. Just like forK, any finite typeK’-
schemeX has a rigid dualizing complex relative ', which we denote byR’;. Also
there is &-functorFTSch /K’ — Cat, constructed using the complexg4; ; we denote
it by f — f!/. Let Rk be the rigid dualizing complex d&’ relative toK. Note that since
K’ is regular, one haBx, = L[n] for some invertibleék’-moduleL and some integer.
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Proposition 6.22. Given X € FTSch /K’, the complex?x: ®k, Ry € D?(Mod Ox)
has an induced rigid structure relative ¥. Therefore there is a unique rigid isomorphism
Ry ®HL§‘/ RIX ~Rx.

Proof. This is immediate from Proposition 4.15. O

Because the twistingx @k, — is an auto-equivalence 8" (Mod Ox ) for any scheme
X € FTSch /K’, we obtain:

Corollary 6.23. There is an isomorphism @ffunctors
(f = Y2 (f — f') : FTSch /K’ — Cat.
7. THE RESIDUE THEOREM AND DUALITY

In this sectionkK denotes a regular finite dimensional noetherian ring. Atlesoes
are by default finite typ&-schemes, all algebras are by default essentially finite &/
algebras, and all morphisms are oler

Let X be a scheme. The dimension functidimy was introduced in Definition 6.10.
Forapoint € X we denote by7 (x) an injective hull of the residue fiekd(x), considered
as anOx-module. Sa7 (z) is a quasi-cohererf® x-module supported 0@; see [RD,
Section 11.7].

Definition 7.1. A rigid residue complex oX (relative toK) is a rigid dualizing complex
(Kx, px), such that for every integerthere is an isomorphism @y -modulest’k, =

®dimu< (x)=—p j(I) '

Proposition 7.2. The scheme has a rigid residue comple{Cx, p ), which is unique
up to a unique isomorphism i@(Mod Ox ).

Proof. Define Cx := ERy, the Cousin complex with respect tdmg. According to
[RD, Proposition VI.1.1], for any p there is an isomorphisi} = @dimK(m):_p J(z).
By [RD, Proposition 1V.3.1] or [YZ2, Theorem 2.11] there is somorphismiCx = Rx
in D(Mod Ox ). Using this isomorphism we obtain a rigid structyre on .

Now supposéX’, p’) is another residue complex g¥i. According to Theorem 6.13
there is a unique rigid isomorphism: Kx — K’ in D(Mod Ox). Like in the proof of
Lemma 6.3 we see thatis a uniquely determined isomorphism@iMod Ox). O

SinceKx is a bounded complex of injectiv@x -modules the rigid duality functor is
Dx = Homo, (—,Kx). Furthermore, for any complext € D*(Mod Ox ) the complex
Homeo, (M, Kx) is a bounded complex of flasque sheaves, and hByfedx M =
fiHomo (M, Kx).

Letz € X be a point withdimg (z) = —p. DefineKx(z) := HYRx; soKx (x) =
J(z), andk = Beaimy (2)=—p Kx (@)

Definition 7.3. Let A be a local essentially finite typ&-algebra, with maximal ideal
m, residue fieldK and rigid dualizing complex®4. Letd := dimg(K), and define
/C(A) = H;dRA.

In the setup of the definition above, themoduleC(A) is an injective hull of the
field K. If A is artinian thentI’R4 = 0 for all i # —d, and hence there is a canonical
isomorphismR 4 = K(A)[d] in D(Mod A).

Lemma 7.4. Let X be aK-schemegz € X a point andA := Ox,. Then there is a
canonical isomorphisnCx (z) = IC(A).
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Proof. Let U = Spec C be an affine open neighborhoodmfn X, and letp C C be the
prime ideal ofz. By definitionKx (z) = H;dRc, whered := dimg (z). Now accord-
ing to Proposition 4.10 we get a canonical isomorphBm= A ®¢c R¢ in D(Mod A),
inducing an isomorphis R4 = H;dRc. O

Let A be as in Definition 7.3. Foi > 0 let A; := A/m‘*!. Corresponding to the
finite homomorphismst — A; there are rigid trace morphismi& 4, 4 : Ra, — Ra
in D(Mod A); see Proposition 4.8. From these we can extratihear homomorphisms

Lemma 7.5. In the setup of Definitio.3, the homomorphisnis; #(Tr 4, 4 ) give rise to
a bijectionlim, . K(4;) = K(A).

Proof. Because Try4,,4 is nondegenerate it induces an isomorphidiid;) =
Hom 4 (A;, C(A)). O

Definition 7.6. Let f : X — Y be a morphism of schemes. Define a homomorphism of
gradedOy-modulesTr; : f,Kx — Ky as follows. There is a decompositighlCx =
P, cx [+Kx(x). Consider a point € X, and lety := f(x). There are two cases:
(i) If = is closed in its fiber, defind; := Oy,,/mit! andB; := Ox . /mi'. Then
A; is an essentially finite typE -algebra, andl; — B; is a finite homomorphism.
Using the isomorphisms from Lemmas 7.4 and 7.5 we define|;, k) =
limi‘} TrBi/Ai-
(i) If zis not closed in the fibef ~!(y) then we lefIr

fKx(@) =0

Proposition 7.7. Given two morphisms of schemis’ v % 7 there is equality
Trgos = Trg0 gu(Try) : (g0 f)uKx — Kz

Proof. This is an immediate consequence of Corollary 4.9. O

The next thing we want to do is to study residues on curvest@prbve Theorem 7.13.
This will lead us to the general residue theorem for propemisms 7.14. The strategy
we shall use is taken from [RD, Chapter VII], but the considiens are much easier in our
context.

Let A be an artinian, local, essentially finite tyffe-algebra, and leX be a smooth
irreducible curve over. Let x( be the generic point ok, and letz; be some closed
point. The corresponding local rings are denotedby- Ox ., andB := Ox ,,, and we
denote byn the maximal ideal ofB. The Cousin complex of the sheﬁg(/A on X gives
rise to aB-linear homomorphism

S(aourr) * pya = HY Qx/a — Hy Oy a = HiOQp 4.

For anyk > 0 let By := B/n**!. SinceA — B is essentially smooth of rela-
tive dimensionl, and A — By is finite and flat, there is a residue m&esp, /4 :

Exty(By, Qj,,4) — A. See Definition 5.5. There is a canonical isomorphism
H\Op ), = lkimExtjlg(Bk,leg/A),
and we define

(7.8) Resp/a := %QRGSB,C/A : Hzlqgle/A — A



44 AMNON YEKUTIELI AND JAMES J. ZHANG

Definition 7.9. Let A be an artinian, local, essentially finite tyffe-algebra, letX be
a smooth irreducible curve ovet, and letz be a closed point oX. Denote byk(X)
the total ring of fractions ofX. Theresidue map at: is the A-linear homomorphism
Res; : Q xy/4 — A which is the composition of the homomorphisms

ReSo A
1 (zg,z1) 1 1 X,a:/
Qxyya —— Hollp jg— A

described above.
Note that the kernel dRes; is QY , ,. More generally we make the next definition.

Definition 7.10. With the data of the previous definition, 1&f be anA-module. Define
ReSI;M : Ql];:(X)/A XA M — M

by the formula
Resz. v (a ®m) := Resz(a) - m
for o € Q)4 @ndm € M.

Lemma 7.11. In the situation of DefinitiorY.9, supposeX = Spec B is an affine curve
overA. Letb € B be some elemeni := B/(b), andj € Q. Assume thatl — B
is finite, and leResp /4 : Ext}B(B,Q}B/A) — A be the residue map from Definitidn5.
Then

Resp/a m = Z Resm(%).

z€X closed

Proof. First we note thab is a regular element @B, so it is invertible in the fraction ring
L := k(X). Another thing to note is th&tesw(%) =0if b(x) # 0, i.e. if v ¢ Spec B.

Let us denote the generic point &fby zo. The homomorphisrdy,, ., : Hgoﬂﬁg/A —

H;, QY , sendsthe fractioff to the generalized fractiofy|. The artinian ringB is semi-

local: B = [, cspec 5 Be» @nd the projectiolB — B, factors viaB,. Looking at the

definitions we see that the residue mMag s /4 : Ext}g(B, Q}B/A) — A factors via

Z ResBm/A : ®m€SpccB Hglc Q}BI/A — A.
O

Lemma 7.12. In the situation of Definitiory.9, supposeX = P. Let A’ be another
artinian local K-algebra, and letf* : A — A’ be a finite homomorphism. Defid€ :=
P1,. We get an induced finite morphism of scheme&’ — X. Then for any differential
forma € Q4 one has

Y. [Resp(a)) = Y Resu(g'(a)).

z€X closed x’€ X'’ closed

Proof. Let us writeX = U U {co} with U := A}, = Spec B andB := A[t]. Soa = £
for some differential formg € Qj;, , and some regular element B. DefineB’ := A'[t]
andU’ := A, = Spec B’. So X’ decomposes int&/’ U {cc’}. By Lemma 7.11 and
Proposition 5.9 we have
> f(Resa(@) = f*(Respa [3]) =
xz€U closed
ResB//A, [((]]*((g)} = Z Reswz(g*(a)).

z’eU’ closed
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At oo we will use the coordinate := % Thena = L for somee > 0 andy €

Qk/A,OO. Choose a sulfficiently small affine open neighborhdod Spec C of co in X,

so thaty € T'(V, QﬁqA), but the originO is not in V; so thats € T'(V,Ox). Define

C':= A’ ®4 C. Again using Lemma 7.11 and Proposition 5.9 we obtain

F (Resoo(3£)) = f*(Rescya [1L]) =
Rescrjar [g*(w} = Resoor (97(£))-

g*(s°)

O

Theorem 7.13(Residue Theorem faP'). Supposed is an artinian, local, essentially
finite typeK -algebra, andX = P. LetM be anA-module and let € Q)4 ®4 M.
Then

Z Resg.p(a) = 0.

z€X closed

Proof. The homomorphism

Z Resz;M:Q,lc(X)/A®AM—>M
z€X closed
is functorial in M. Thus we can assume thaf is finitely generated; and by induction
on length, we can also assumé is simple. Thus we may assumé =~ K, where K
is the residue field ofA. Consider the ring homomorphisifi : A — K. Because
A4 M = K ®g M, and by Lemma 7.12, we can repladevith K.

So let us assume that = K is a field, andM = K. Lett be the coordinate on
the finite part ofX, i.e. X = A}, U {oo} andA}. = Spec K[t]. We can writea as a
fractiona = %dt wheref(t), g(t) are polynomials. Choose some finite field extension
K — K’ which splits the polynomialg(¢) andg(¢). By Lemma 7.12 we can repladé
with K’. So we can assumg&t) andg(t) are products of linear terms. Now we may apply

partial fraction decomposition to the rational functi%. So we can assume that either

a = (t —a)~¢dt for somea € K ande > 1; or thata = t¢dt fore > 0.
Consider the case = (t—a)~°dt. Applying the linear change of coordinates> t —a
(which is permitted by Lemma 7.11 and Proposition 5.9) weassume thait = 0. Let
O € X be the origin. At any closed point € X exceptO andoo one hafRes, («) = 0.
According to Lemma 7.11 and Proposition 5.12 we hResp (o) = e if e = 1, and
Reso () = 0 otherwise. By change of coordinates~ s := ¢! we geta = —s~2ds,
and the same calculation givBgs., («) = —e if e = 1, andRes. () = 0 otherwise.
Finally consider the case = ¢t¢d¢t. Then by Lemma 7.11 and Proposition 5.12 we get
Res,(«) = 0 at all points. O

Theorem 7.14(Residue Theorem for Proper Morphisméket f : X — Y be a proper
morphism between finite tyfie-schemes. Thellry : f.Kx — Ky is a homomorphism
of complexes.

Proof. The proof is in several steps.

Step 1. First consider the case of a finite morphfsmccording to Theorem 6.16 we have
an isomorphisniCx — f’Ky-, which is the same as an isomorphism

Y fKx = fo.f Ky = Homo, (f.O0x,Ky).
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By definition 7.6, the trac8r; : f.KXx — Ky is transformed by into the homomor-
ph?smTrzt;,CY . f+f’Ky — Ky, namely evaluation at. And the latter is a homomor-
phism of complexes.

Step 2. Now letf be any proper morphism. For any poine X lety := f(z) € Y, and
denote byItr; , : Kx(x) — Ky (y) the corresponding component'df; (see Definition
7.6). Also, for any point’ € X which is an immediate specialization ®f let us denote
by dx (2,2 : Kx(z) — Kx(2') the corresponding component of the coboundary operator
§X : ICX — ICx.

There are two kinds of identities we must check. The firstiemdimg (z) = dimg (y),
andy’ € Y is any point which is an immediate specializationyofWe must then show
that given any element € Kx (z) the equality

D (Trfa 00 (@wn)(@) = By, © Trra)(a)

x/

holds inKy (y’). The sum is over all points’ € f~1(y’) which are immediate special-
izations ofz. This case will be treated now; the other case will be taken o&in the
subsequent steps.

It is possible to choose a nilpotent closed subschéamef X which is supported on
the closed sefz}, and such that € K, (). The transitivity of traces (Proposition 7.7)
implies that we may replac® with X,. Now f : X — Y is proper and quasi-finite, hence
finite; and we can apply step 1.

Step 3. In this step we assume thahg () = dimxk (y) + 1, and we must show that

(7.15) > (Trf a0 0x,(@,0n) (@) = 0.

x/

Here the sum is over the point$ € X which are immediate specializations:afthese
points necessarily lie irf ~(y). As done in step 2, we can find nilpotent closed sub-
schemesY, andY;, supported of{z} and{y} respectively, such that € Kx,(z) and
f: Xo — Y factors viaY,. Observe that the identity (7.15) depends only on the homo-
morphismsOy, , — Ox,.. — Ox,,z When these rings are considered as essentially
finite typeK-algebras.

Define A := Oy, 4. Let us choose a rinfl’ which is a localization of a polynomial
algebraK[ty, . .., t,], and which admits a finite homomorphidgt — A. ThenK' is also
a regular noetherian ring of finite Krull dimension, and thggd dualizing complex ofK’
relative toK is Q%,/K [n]. In view of Proposition 4.15 and Corollary 6.23, we can repla
K with K’ — it amounts to twisting by the inverse@f, [n], which does not effect (7.15).
We conclude that we may replatewith Spec A and X with X, xy, Spec A.

Step 4. In this step we assume thais a local artinian finiték -algebra, and is a proper
curve overA, with generic pointe. Givena € Kx(z), we have to verify (7.15); and
the sum is over all closed poinis € X. As explained in [RD, p. 373], the morphism
/X — Y = Spec A factors via a finite morphisiX — P,. Because of step 1 we can
replaceX with PY.

Let 2’ be any closed point i = P1. It is immediate from Definitions 7.9 and 7.10
that under the isomorphisms

Kx(z) 2 Hy (/4 @4 K(A)) = (HyQx ) 4) @4 K(A) = Qp 3y /4 @4 K(A)

the homomorphism
Trj',z’ OéX,(w,w’) : ’CX(ZZ?) — IC(A)
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goes to the residue map
ReSI/;K(A) : Qllc(X)/A ®A IC(A) — IC(A)
So Theorem 7.13 applies withl := K(A). O

Corollary 7.16. (1) Letf : X — Y be a proper morphism between finite tyfe
schemes. Then there is a morphism of funciars: Rf. f' — 1 of functors from
D} (Mod Oy ) to itself.
(2) The assignment — Tr; above is2-functorial for proper morphisms. Namely,
given another proper morphism: Y — Z, the diagram

R(go f)e (g0 ) L Rigo f). f'g'

J/Trgof \
Tr T

Lot (Mod02) : Rg. g ¢+ Rg. Rf. f ¢

is commutative, where the isomorphism marked is the standard isomorphism
of functorsR(g o f). = Rg. Rf., andg, ¢ is from Corollary6.15 If X =Y and
f = 1x, thenTr; is the identity automorphism gf = 1p+ (Mod 0x)-

In the diagram there is a little bit of sloppiness; for inst@yinstead of$,, ;” we should
have really written R(g o f).(¢g,r)"

Proof. (1) Take any\ € D (Mod Oy). By definition of f' we have
f'N =Homo, (Lf* Homo, (M,le),ICX),
and hence
Rf. f'N = RHomo, (Homo, (M, Ky), f.Kx).

According to Theorem 7.14 the trace mdp; : f.KXx — Ky is a homomorphism of
complexes, and so we obtain a morphism

7 REF'N — Homo, (Homo, (M, Ky),Ky) = DyDyN
in DI (Mod Oy-). Using the adjunction isomorphisty : ' = Dy Dy N we define
Tryy = ¢y o7 REFN — N.
As N varies this becomes a morphism of functdrs : Rf. f' — 1.

(2) Recall that the isomorphism, ; was defined solely using adjunction formulas. By
Proposition 7.7 the traces are transitivB:, o Tr; = Trg.r. This implies the commu-
tativity of the diagram. Finally, for the identity automdiipm1y : X — X, the trace
Tri, : Kx — Kx is the identity automorphism of this complex. [l

Theorem 7.17(Duality for Proper Morphisms)Let f : X — Y be a proper morphism
of finite typeK-schemes, letM € D(Mod Ox) and letA € D2 (Mod Oy). Then the
morphism

Rf.RHomo, (M, f'N) = RHomo, (Rf. M, N)

in D(Mod Oy) induced byTr; : Rf. f'N — N is an isomorphism.
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Proof. Using the same reduction as in the proof of [RD, Theorem \3l.&e can assume
Y is affine,X = P} andf is the projection.

For fixed NV € D?(Mod Oy) the contravariant functoR f.RHomo (—, f'N') and
RHome, (Rf.—,N) are way-out left, in the sense of [RD, Section I.7]. Let= Q}/Y,
and for any integerletw (i) be the Serre twist. As explained in the proof of [RD, Theorem
[11.5.1], any coherentDx-module is a quotient of a finite direct su@}”:l w(—i;) for
someiy, ..., i, > 0. Therefore, using [RD, Proposition 1.7.1], reversed sooalsandle
contravariant functors, we can assume thét= w(—i)[n] with i > 0.

Now the coherent sheaveg—i) andR" f.w(—i) are locally free, an®’ f.w(—i) = 0
for j # n. Also we know thatf'— = w[n] ®0, f*— (see Corollary 6.17). Therefore
the functorsR f.RHomo (w(—i)[n], f'=) andRHomo, (Rfiw(—i)[n],—) are way-
out in both directions. Once again using [RD, Propositi@rlll we can reduce to the case
N = Oy.

At this stage we have to prove that the morphism

0 : Rf.RHomo, (w(~i)[n], wln]) — RHomoy (Rf.w(—i)[n], Oy)
is an isomorphism. By definitioi = v o 3, where
8 : Rf-RHomo, (w(=i)[n], w[n]) — RHomo, (Rfiw(—i)[n], Rf.wln])
is the canonical morphism, and
v : RHomoy, (Rf.w(—i)[n], Rf.wln]) — RHomo, (Rf.w(=i)[n], Oy)
is induced by
Try : Rf.w(n] 2 R f'Oy — Oy.
Consider the canonical isomorphism
a: Rf.Ox(i) = RHomo, (Rfiw(—i)[n], Rf.w[n])
The composite’ o « is an isomorphism, because the cup product pairing
F0x (i) x R fuw(—i) — R" fuw

is perfect (see [RD, Theorem 111.3.4]). Hen@eis an isomorphism. It remains to prove
that+ is also an isomorphism.

To accomplish this we will prove that the trade; : Rf.f'Oy — Oy is an isomor-
phism. We know thaf' Oy = w[n], Rif. f' Oy = RI*"f,w = 0forj # 0, and
thatR°f, f' Oy = R"f,w = Oy. SinceR’f, f' Oy is a freeOy-module of rankl,
it suffices to show thatl®(Tr;) : Rf, f' Oy — Oy is surjective. Choose any section
g : Y — X of f. Then according to Corollary 7.16(2) we hadé(Tr¢) o HO(Tr,) =
HO(Try, ), implying that indeedi®(Tr ) is surjective. O

8. THE RELATIVE DUALIZING SHEAF

In this sectionkK denotes a regular noetherian commutative ring of finite Ikdimhen-
sion. All schemes are by default finite tyffeschemes, all algebras are by default essen-
tially finite type K-algebras, and all morphisms are oler The base ring will have no
visible role here; it will only be in the background, makirigid residue complexes and
the2-functor f — f' available.

Let us begin with a few facts aboyit for flat morphisms.
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Lemma 8.1. Supposeg : X — Y is a flat morphism. Then
M= Homys-10, (f_lHomoy (M,Ky),Kx)
for M € D?(Mod Oy).

Proof. Due to flatness the rigid residue compl€x is a bounded complex of injective
f~1Oy-modules. O

Given an algebral we define the rigid residue complex dfto beX 4 := T'(U, Ky)
whereU := Spec A.

Proposition 8.2. Let f* : A — B be a flat homomorphism &f-algebras.
(1) The complex' A has finite flat dimension ovet.
(2) There is a functorial isomorphisifi M = M ®Y% f'Afor M € DP(Mod A).

Proof. SinceA — B is flat it follows that eactk’; is an injectiveA-module. Letd;, d;
be the amplitudes of the complex€s andK g respectively.

Given M € DP(Mod A), let M’ be the complex obtained from/ by truncating above
and below the degrees where the cohomology is nonzero. dicgpto Lemma 8.1 one
hasf'M = Hom 4 (Homa(M',K4), Kg). Therefore

ampHf'M < ampHM + dy + do.
Next choose a resolutioR — M by a bounded above complex of finitely generated
free A-modules. Then
f'M = Homy (Homa (P,K4),K5) 2 P ®4 Homa (K4, K5) = M 4 f'A.
This proves part (2), and also shows that.dim4 f'A < d; + do. O
Proposition 8.3. Let f* : A — B be a flat homomorphism &f-algebras. The canonical
morphism
(f'A) ®% Ra = RHoma (R4, Rp) @4 Ra — Rp
is an isomorphism.
Proof. Let us denote this morphism hy, and letN be the cone on). So is an iso-
morphism if and onlyV = 0. By Proposition 8.2 the complé¥' A) ® R4 has bounded
cohomology, and henc& € DP(Mod A). According to Lemma 1.11 the complé,
generate®®(Mod A), and we conclude that = 0 if and only if the morphism
¢’ : RHom4 (Ra, RHoma (R4, Rp) ®' Ra) — RHoma(Ra, Rp)

induced byy is an isomorphism. We know thBftlom 4 (R 4, R) has finite flat dimension
over A — again, this is by Proposition 8.2. Using Proposition 1urjer its assumption
(iii.b), we can pass fromp’ to the morphism

RHom (R, Rp) ®4% RHoma (R4, Ra) — RHom (R4, Rp),
which is evidently an isomorphism. O

A flat morphism of schemeg : X — Y is said to haveelative dimensiom if all its
fibers are equidimensional of dimension

Definition 8.4. Let f : X — Y be a flat morphism of relative dimensian Therelative
dualizing sheafs
wX/Y = Hinf!OY.
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Some authors refer w x/y as therelative canonical sheafThe O x-modulew x /v is
coherent. We now study some more of its properties.

Proposition 8.5. Let f : X — Y be flat of relative dimension, and letU be an open
subset ofX such thatf|; : U — Y is smooth. Then there is a canonical isomorphism

wx/vlu = Qv lu.

Proof. Definef’ := f|y. By Corollary 6.17 there is an isomorphisfiOy = f*Oy =
QE/Y[”]- O

Proposition 8.6. Let f : X — Y be a flat morphism of relative dimensien Then
H! 'Oy = 0forall i < —n. Consequently, truncation gives rise to a canonical masphi

v wx)y[n] — oy
in D(Mod Ox).

Proof. In view of Lemma 8.1, it suffices to show that the complex
Homs-10, (f~*Ky,Kx) is concentrated in degrees —n. Suppose we are given a
local sectiony € Hom -10, (f 'Ky, Kx )" which has a nonzero component going from
J(y) to J(x), for some pointyy € Y andz € X; see Section 7 for notation. Then
we must haver € f~!(y). But the dimension of the fibef~1(y) is n, and hence
dimg (z) < dimg (y) + n, S0i > —n. O

Recall that our notation for the residue field of a paire X is k(). In caseX is an
integral scheme with generic pointwe also writek(X) for this field, which is of course
the function field ofX.

SupposeK is a field, andL is a finitely generated extension field &f (i.e. L is an
essentially finite typd{-algebra). LetM be a finite separable field extensionof and
denote bytr,;,;, : M — L the trace map. Since the homomorphidhm®, Q,/x —
Q)i is bijective, we obtain an induced;, , -linear homomorphismr/r, : Qpr/ x —
QL/K-

Theorem 8.7. Let X andY be integral schemes, and I¢t: X — Y be a flat morphism
of relative dimensiom. Assumef is generically smooth.
(1) The coherent sheabx,y is a subsheaf of the constant quasi-coherent sheaf
Q) /(v . i . Lo
(2) Supposé/ C X is anonempty affine open set, and there is a commutativeatiagr
U——X
g f
|,
Z—Y
with Z an integral affine schemé; a smooth morphism; angla finite, dominant,
separable morphism. Then

D(Uwxyy) = {a € Qx| () /k(z) (a) € T(Z,Q%y)
foralla € I'(U,0x)}.

The proof of the theorem is after this lemma.

Lemma 8.8. Let K, L., M be fields. Assumg is a finitely generated separable extension
of K, and M is a finite separable extension bf Letn := tr.degy L.
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(1) The rigid dualizing complexes of and M relative to K are Q’LL/K[n] and
Ok [n] respectively.

(2) The trace mapr,; . : Q%/K[n] — Qz/K[n] is a rigid trace morphism relative

to K.

Proof. (1) The homomorphism&™ — L and K — M are essentially smooth, so Proposi-
tion 4.5 applies.

(2) Let’s denote the finite étale homomorphigm— M by f*. The trace mapr,,/y, :
M — L is nondegenerate (see Definition 4.7). So by PropositionRr@&position 4.15
and Corollary 6.23, it suffices to prove that,,, is a rigid trace-like morphism relative
to L (see Definition 3.28). Heré has the tautological rigidifying isomorphispg,.., and
M = f'L = Qf,,, has the rigidifying isomorphisnfi* (piau)-

This is an exercise in Galois theory. Using the transitieitypoth the field tracesr_ ,_
and the rigid traceSr_,_, we may assume that is a Galois extension df. Denote the
Galois group byG. ThenM ®; M = ngG M9, where the mapl @, M — MY is
a® b a-g(b). The rigidifying isomorphism

FH(pran) : M = Hompre, v (M, M @1, M)

identifies M with M9, whereg is the identity automorphism. By the properties of the
trace for a Galois extension one hag;/r.(a) = _ . g(a). A convolution-type calcula-
tion shows that under the isomorphism @ M = ngc M9, the maptry 1, @ traz/r,

is sent todeG traze /- HEnce the diagram

fﬁ tau
Y ALY S R (M, M @, M)

tTM/Ll ltrlw/L & trar/p

L s Hompe, (L, Lo L)
in D(Mod L) is commutative, and thus indeex,, ;. is a rigid trace-like morphism. [

Proof of Theoren8.7. (1) By Proposition 8.6 there is a canonical morphism
v wxyyn] — f'Oy. Sincef is generically smooth, there is a nonempty open set
Uy C X such thatf : Uy — Y is smooth. According to Proposition 8.5 there is a canon-
ical isomorphismf! Oy |y, = Q’g]o/y[n]. Combining these morphisms and passage to the
generic stalk, we obtain a sheaf homomorphismw x 3 — QZ(X)/k(Y). It remains to
prove that) is injective.

Pick a pointz € X. Using quasi-normalization and Zariski’s Main Theorem G
Chapter 1V, Sections 8.12.3. and 13.3.1] we know that theigtean affine open neigh-
borhoodU = Spec D of z in X, and a commutative diagram

We—U—5X
of | b
7Ly sy

whereV = Spec A is an affine open set ili; Z = Spec B andW = Spec C' are affine
integral schemed;y/ — W is an open immersiory : W — Z is finite dominant; and
h: Z — V is smooth. Then

weya =HO(hog)'A= HOg'n' A= Hg’h* A = Homp(C, Q).
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This is a torsion-fre€'-module, i.e. it embeds in
M ®@c Homp(C, Qg 4) = Homp (M, Q7 4) = Q)
whereK := Frac A, L := Frac B andM := Frac C. But on the other hand
F'U,wx/y) =wp/a =D ®cwcya-

(2) Here, in the notation of the proof of part (1), we héVve= W, and in addition, — M
is separable. The rigid trac@, gives rise to an isomorphism

F(U,(-L)X/y) :wD/A =~ HOIHB(D,Q%/A).

Now D — M is essentially étald) — B is finite, andL =~ B®p M. Hence by Corollary
3.27 and Lemma 8.8 the diagram

c
wp/a — Qe

gl ltTM/L

Tr
C
Q%/A — QrLL/K
is commutative. O

Remark 8.9. There are notions of differential forms and traces for imsaple field exten-
sions due to Kunz. Presumably these can be used to removephgability assumption
from part (2) of Theorem 8.7. Cf. [HK].

9. BASE CHANGE AND TRACES

As before we work in the categofyTSch /K of finite typeK-schemes, wher¥ is a
regular finite dimensional noetherian ring. The main resinltthis section are Theorems
9.6 and 9.12, which were first obtained by Conrad [Co, Theerg®.1 and 3.6.5]. Indeed,
Conrad proved somewhat more general results, since he eslyreed his schemes are
noetherian and admit dualizing complexes. On the other haumdproofs, which rely on
rigidity, are significantly easier (and shorter) than Carsa

Proposition 9.1. Let f* : A — B be a flat finite type homomorphism Kfalgebras.
The complex' A € D(Mod B) has a unique rigidifying isomorphispi /4 : f'A =
Sdp/a f'A, such that under the canonical isomorphi§fhd) @4 R4 = Rp from Propo-
sition8.3one hasp/a ® pa = pB.

Proof. Let us begin by choosing a factorizatioh g, Alt] %, B of f*, where A[t]
is a polynomial algebra im» variables, anch* is a surjection. According to Theorem
3.22(1) the complex* A = Q%4 [m] has a rigidifying isomorphism* (p;..) relative to
A, wherepy,, is the tautological rigidifying isomorphism of. Next, sinceh’¢fA = f'A
has finite flat dimension ovet (see Proposition 8.2), Theorem 3.14(1) says gt A
has an induced rigidifying isomorphishi(g* (p...)) relative toA, which we shall denote
by p'.

There exists a unique element B> such that under the isomorphigifi A) % R 4 =
Rp, the rigidifying isomorphisms.p’ ® pa coincides withpp. Thenpp, 4 := up’ is the
desired rigidifying isomorphism of ' A. O
Definition 9.2. A morphism of schemeg : X — Y is called aCohen-Macaulaynor-

phism of relative dimension if it is flat, and all the fibers are equidimensional Cohen-
Macaulay schemes of dimensian
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Proposition 9.3. Let f : X — Y be a Cohen-Macaulay morphism of relative dimension
n, and letg : Y/ — Y be an arbitrary morphism. Defin&’ := X xy Y’, and let
f'+ X’ — Y’ be the projection. Thert’ is a Cohen-Macaulay morphism of relative
dimensiom.

Proof. The fact thatf’ is flat is trivial. We have to prove that the fibers ffare Cohen-
Macaulay schemes. This reduces to the following questioniatings: letB be an equidi-
mensionaln-dimensional Cohen-Macaulay algebra over the figldlet K — K’ be a

field extension, and leB’ := K’ ® x B. We must show thaB’ is an equidimensional
n-dimensional Cohen-Macaulay algebra.

Let us introduce the notatiofi* : K — B, ¢* : K — K', " : K' — B’ and
h* : B — B’. SinceB is an equidimensional Cohen-Macaulay ring of dimensipand
fiK is a dualizing complex over it (cf. Proposition 4.15), we test H' f* K = 0 for all
i# —n;i.e.wp/gn| = ftK. By flat base change (Proposition 6.18) we get

J'K 2 g K 2 0 'K 2 B @p wp k.

But "' K’ is a dualizing complex oveB’, and therefore this ring is equidimensional
dimensional and Cohen-Macaulay. O

Proposition 9.4. Let f* : A — B be a flat homomorphism, and letC A be an ideal.
DefineAd := A/aandB := B/aB. Letf* : A — B be the induced homomorphism. Then
there is a functorial isomorphistff M = f'M for M € DP(Mod A).

Proof. Let 4, K5, Ka andKz be the respec_:tive residue com_plexes of these algebras.
ThenK ; = Homu(A,K4) andK 5 = Homp(B,Kp) = Homa (A4, Kp). According to
Lemma 8.1 we have
f!M =~ Homy (HomA(M,ICA),ICB)
= Hom 4 (HOmA(M,/CA),’CB) = f‘M
O

Proposition9.5. Let f : X — Y be aflat morphism of relative dimensianThe following
two conditions are equivalent:

(i) fis aCohen-Macaulay morphism.

(i) vf: wx/y[n] — f'Oy is anisomorphism, and the sheaf is flat overOy .

Proof. We might as well assume that = Spec B andY = Spec A.

(i) = (ii): First we will prove thaty; is an isomorphism. This amounts to proving that
H'f'A = 0foralli > —n. The proof is by contradiction. Defing := max{i | H' f'A #
0}, and assumeé; > —n. Then there is a maximal idegl C B such that(B/q) ®p
Hf'A # 0. Letp := f(q), which is a prime ideal ofd. DefineA := Frac(A/p) and
B:= B®4 A, and letf* : A — B be the induced homomorphism. Sois a field, and
B is a Cohen-Macaulay ring, equidimensional of dimensiosccording to Propositions
8.2and 9.4,
wpyaln) = A= fA= (fA) @) A.
Hence
H"f'A)op B= (H" f'A) @4 A= H" ((f'A) @4 A) =0.

But B/q is a quotient of3, so we have a contradiction.

Next we are going to prove thatp,, is a flat A-module. It suffices to show that
H' (M &% wpya) = 0foralli < 0and all cyclicA-modules)M. Thus we can assume
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M = A := A/afor some ideah. Let B := B ®, A and letf* : A — B be the induced
homomorphism. According to Proposition 93, is a Cohen-Macaulay homomorphism
of relative dimensiom. Again using Propositions 8.2 and 9.4, we obtain

Acliwpaln) =2 A ffA= A= FA=wg 4(n].

(i) = (i): Take any prime idea} C A, and letd := A/p, B := B®4 A, K := Frac A
andBk = B®a K = B®j K. We have to prove thaBy is a Cohen-Macaulay ring,
equidimensional of dimensian Let's use the notatiofi* : A — B andf}, : K — Bxg.
Now

flA= f'A= (f'A) @ A2 wp/aln] @4 4,
due to the flatness @bz, 4. And by flat base change,
kK2 K®4 A2 K @4 wp/aln).
Becausefy K is a dualizing complex oveB we are done. O
Supposed and B are essentially finite typK-algebras, ang* : A — B is a Cohen-
Macaulay homomorphism of relative dimensian(see Definition 9.2). According to
Proposition 9.1 the complex g, 4[n] = f'A comes equipped with a rigidifying isomor-

phismpg, 4 relative toA. The notion of rigid base change morphism was introduced in
Definition 3.28.

Theorem 9.6. Suppose
X' x
f,l ji
Y =Y
is a cartesian diagram iff TSch /K, with f a Cohen-Macaulay morphism of relative di-
mensiom, andg any morphism. Then:
(1) There is a homomorphisfx-modules

nyg . wX/Y — I’L*QJX//Y/,

such that the induce@ - -linear homomorphism*(0y ;) : h*wx/y — wx/ /v
is an isomorphism.

(2) The homomorphisiti; , satisfies, and is determined by the following local con-
dition. LetV = SpecA C Y, U = SpecB C f~}(V)andV’ = Spec A’ C
g~ 1(V) be affine open sets, and It = Spec B’ := b= (U)n f/~ ' (V') c X'.
Then

L(U,0p4) : (wpyaln], ppja) — (wprjar[nl, ppryar)
is a rigid base change morphism relativeAo
First a lemma.

Lemma9.7. Let f* : A — B be a Cohen-Macaulay homomorphism of relative dimension
n. Then, forM € D?(Mod A), the functorial morphism

©5) RHomB®AB(B,wB/A [n] ®awp/a [”]) @4 M
) —>RHOIIIB®AB(B7WB/A[”] XA U-’B/A[n] ®E4 M)

is an isomorphism.
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Observe the similarity to Proposition 1.10. However, thpdtheses of Proposition 1.10
might not be true here.

Proof. Let's introduce the notatiod - B ®a B N B; so f* = e* o d*. The homo-
morphismd* is a Cohen-Macaulay homomorphism of relative dimengiopand by flat
base change (Proposition 6.18) we have
d!A = w(B®AB)/A[2n] = wB/A[n] XA (AJB/A[’II].
Now there are isomorphisms
RHompg, 5 (B, wp/an] @4 wp/aln]) @5 M 2= (f'A) o4 M = f'M
and
RHompg , 5 (B, wp/a[n] ®a wpaln] @4 M) = e'd M = f'M,

implying (see Proposition 8.2) that both these functorsveaig-out on both sides. Ac-
cording to [RD, Proposition 1.7.1] it suffices to verify th@.8) is an isomorphism when
M = A; which is of course true. O

Proof of Theoren®.6. The proofis in two steps.

Step 1. We will prove existence and uniquenes8qf on affine pieces, i.e. in the setup
of part (2). Choose a factorizatioh — A[t] — A’ of g* : A — A’, with Aft] a
polynomial algebra inn variables, andd[t] — A’ surjective. By flat base change we
know thath[t]/A[t] >~ B[t ®p WB/A- This implies thalHomB(wB/A,wB[t]/A[t]) is a
free B[t]-module of rankl, generated by some homomorphigm: wg 4 — wWp /A
By Proposition 1.10, under its condition (iii.b), we knovattthe morphism

RHomB®AB(B, wp/aln] ®a wB/A[n]) oL At]
— RHomp(yje ,, 51t (B[], w (e [0] @ ap) wBley/ag [])
induced bydy ® 6, is an isomorphism. Hence there is an element B[t]* such that
ugby is a rigid base change morphism relative4o
Let's denote the ring homomorphisms By : A’ — B’ andf; : A[t] — B[t]. These
are Cohen-Macaulay homomorphisms of relative dimensidising Proposition 9.4, with
A’ viewed as a quotient od[t], we get
VAV
wpryan] = fUA 2 A" = wpp apn] @apg A
SoHompp)(wp /), wp/4) is @ freeB’-module, generated by some. By Lemma
9.7, applied to thed[t]-moduleA’, the morphism
RHom gy, B1¢ (BIE], w Bl /4 (7] ©ap wbp/ag [n]) @5 A
— RHOHIB/®A,B/ (BI, wB//A, [’]’L] XA wB’/A’ [TL])
induced by9; ® 6, is an isomorphism. Therefore there is an eleman& B’* such that
u16; is arigid base change morphism relativeAft]. Then
Hf,g = u16‘1 o UQ90 : OJB/A[TL] — wB//A,[n]
is the rigid base change morphism we want. By Propositiofi 8.2 unique.

Step 2. Gluing: in the setup of part (2), suppdsde= Spec A; is an affine open set
contained inV, U; = Spec B; is an affine open set containedfr! (V1) N U, andV, =
Spec A} is an affine open set contained §n'(V;) N V'. Let B} := B; ®4, A}. By
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step 1 we get homomorphisriis, : wp 4 — wpiyar aNdly, 4, : wp, /4, — Wp; A,
Consider the diagram

Of.9
wWB/A [n] —— wpr/ar(n]
l ‘9f1 191 l
wp, /A, [n] —— wp; /a0

where the vertical arrows are the rigid localization homagphisms corresponding to the
localizationsB — B; andB’ — Bj (see Proposition 3.25). Due to the uniqueness in step
1, this diagram is commutative.

We conclude that as the affine open séts" Y, U C f~1(V) andV’ c g~1(V) vary,
the homomorphismé; , glue to a sheaf homomorphisia, : wx/y — hwx/ /)y, 0O

Corollary 9.9. In the situation of TheorerB.6, assumef is smooth. Then under the
isomorphismw x/y = Q}/Y of Proposition 8.5¢; 4 is the usual base change homomor-
phism for differential form&)%, ;. — h. Q% ..

Proof. This is because on any affine piece the homomorpkigm, [n] — Q7,4 [n] is a
rigid base change morphism relative4o

Corollary 9.10. In the situation of Theorer.6, suppose thay’ : Y — Y’ is another
morphism. Definé&(” :=Y" xy» X', and letf” : X" — Y” andh’' : X" — X' be the
projections. Thely goqr = g« (057.g) 0 0¢,4.

Proof. This is because of the uniqueness in part (2) of the theorem. O

Our final result, Theorem 9.12, is about the interaction agebehange and traces. In
order to state it we first need:

Lemma 9.11. In the situation of Theorerd.6, assume the morphisthis proper. Then
Rif! wxyr = 0 forall i <n. Therefore there are isomorphisms

g« R"flwxrjys TH"RG Rf  wxr )y TH'Rfu Rhawxrjyr 2R fu hu wxoyyr.
Proof. By Theorem 7.17 we know that
Rflwx: v/ [n] 2 RS f' Oy 2 RHomo, (Rf. Ox, Oy).
([l

Theorem 9.12. In the situation of Theorerf.6, assume the morphisyhis proper. Then
the diagram ofDy--linear homomorphisms
n Try
R"fiwx/y ———— Oy

R™ fx(0f,9)
/ Lv*
Q*(Trf’)

Rnf* B wxr /vy i) G 1%".]‘:{< wxr /vy —)g*Oy/

(9.13)

in which the arrow marked2” is the one from Lemma&.11, is commutative.
For the proof we shall need three lemmas.

Lemma 9.14. Suppose that” = Spec K andY”’ = Spec K’ with K and K fields; and
thate : Z — X is a finite morphism such thgtoe : Z — Y is a Cohen-Macaulay
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morphism of relative dimension. DefineZ’ := Z x x X', with projections’ : 7’ — X’
andd : Z' — Z. Then the diagram

9 oe
(915) e*wz/y[m] g}d*wz//y/[m]
Trcl lh*(Tre/)
5.9

WX/Y[”] E— h*wX’/Y/ [n]
in D(Mod Ox) is commutative.

Proof. SinceZ is finite over K it has finitely many points. By restricting to one of the
points of Z we can actually assume thdtand X are affine, sayZ = SpecC andX =
Spec B. Hence we can also suppose tat= Spec C' and X’ = Spec B’. We now have
to prove that

9f7g o TI'e = ’I‘I‘e/ 09f06,g : OJC/K[’ITL] — wB//K/[n].
Due to rigidity and the fact thaflompvod By (We/k [M], W' Kk [n]) = C” it follows that
these two morphisms are equal. O

Lemma 9.16. Suppos€” = Spec K whereK is a field. There exists a closed embedding
e: Z — X suchthatfoe : Z — Y isfinite(hence Cohen-Macaulay of relative dimension
0); and

fe(Tre) s (foe)wwzy — R fuwx)y
is surjective.
Proof. According to Corollary 6.23 we can assume that= K. Thenwx/y = H"Kx,
whereK x is the rigid residue complex of . The K-moduleR" f, wx/y = Hf.Kx is

finitely generated, and is a quotientfC%.. But f. K% = lim_, (foe).K% asZ runs over
the finite length closed subschemes¥fAnd for any suchZ one hasC), = wy,y. O

Lemma 9.17. In the setup of Propositiof.4, assume thaf* is a Cohen-Macaulay ho-
momorphism of relative dimensian By Proposition$8.2and9.4there are isomorphisms

wpaln] = A2 fAX AQY flA=A@swp)aln]
in D(Mod B). Letf : wp/a — wp, a1 be the resultingB-linear homomorphism. Then

0 :wp/aln] — wp, a[n] is arigid base change morphism relativeAo and consequently
0=10g,.

Proof. Consider the diagram

PB

4 ®p
RB T}UJB/A ®A RA M(SqB/AwB/A) ®% (SQA/K RA) <—§ SqB/K RB

19Tr, 1®Sqg/k (Try)

PB/A®PA
Trp, wp/a®a Rj A(SQB/A wpya) @G (Sqa/x Ra)
Sapn /x (Tra)

0®1 ? Sqy 4(0)®1

o PB/A®PA o
Rp ——wp/a®1 Ri 2 (Sapawpya) ®% (Saax Ra) «——— Sap/x Re

PB
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of morphisms irD(Mod B). The subdiagrams on the top and on the bottom (involyigng
andpp) are commutative by definition of the rigidifying isomorphispp,4 andpg, 4.
The left rectangle is commutative by definition éf This implies that the right rectan-
gle, which is basically obtained from the left rectangle Quaring, is commutative. The
middle-upper square commutes becdlisgs a rigid morphism. The conclusion is that the
square marked “?” is commutative, and hefqg ,(0) o pp/a = pp a0 b;i.e.0is arigid
base change morphism. Due to uniqueness of such morphissesanbat = 6¢,. O

Proof of Theoren®.12 We proceed in several steps.

Step 1. Supposg : Y/ — Y is a closed embedding. By Proposition 9.4 we can re-
placeg. R" fl wx/ /vy = g« RO f! "' Oy with R°f, f' g. Oy, and then, by Lemma 9.17,
instead o™ f..(A¢,4) we have the homomorphism

Rof* f’(g*) :Rof* f’OY N Rof* f’g* OY/,

corresponding to the sheaf homomorphigin: Oy — g. Oy.. Since the trace map
Try : Rf. f* — 1is functorial, it follows that diagram (9.13) commutes iistbase.

Step 2. Now supposkF = Spec K andY”’ = Spec K/, whereK and K’ are fields and
the homomorphisnk’ — K’ is finite. Also suppose that is finite. ThusX = Spec B
andX’ = Spec B’, whereB is a finite K-algebra, and3’ = B @ K’. In this situation
wp/xk = Homg (B, K), and the rigid tracélrg/x : wp,x — K is evaluation afl.
Likewise for K" andB’. The rigid base change morphigy, : wp,x — wp//x- relative
to K arises from the canonical isomorphigfiom g (B’, K') & K’ @ x Homg (B, K).
Therefore diagram (9.13) commutes in this case.

Step 3. In this step we assume that Spec K andY’ = Spec K’, whereK andK' are
fields, and the homomorphisiki — K is finite. Choose a closed embeddingZ — X
as in Lemma 9.16, and le&t’ and¢e’ be as in Lemma 9.14. LeB := T'(Z,0z) and
B':=T(Z',0z). Consider the diagram

Tre Trf
wp/k —< s R f, wx/k —— K

efoc,gl lef,g l(]*
Tr Try/

wp kT —S R Wy — K

By Lemma 9.14 the left square is commutative. And by step Zaltioe big rectangle is
commutative. Sincér, is surjective it follows that the right square also commutes

Step 4. Assum&’ = {y'} = Spec K’ whereK" is a field. Lety := ¢g(y’) € Y. The point
y might fail to be closed. However, since we are interesta@iinlinear homomorphisms,
we can replacé” with Spec Oy,,. The only difficulty that may arise is that tfie-scheme
Spec Oy, might not be of finite type. This can be repaired as followsiade aK-algebra
KK, which is a localization of a polynomi&l-algebra, such thd — Oy, is finite. Since
K is an essentially finite typ&-algebra which is also regular, we can repl&cevith K,
as explained in Corollary 6.23.

So we now havg = g(y’) a closed point of. The morphisny : Y/ — Y factors
through the finite morphisii’ — Spec k(y) and the closed embeddifgec k(y) — Y.
Combining steps 1 and 2 we conclude that diagram (9.13) cdesnu

Step 5. This is the general case. We must show that@ueo-linear homomorphisms
g*R" f. wx,y — Oy are equal. It suffices to check that they become equal in tidue
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field k(y’) for any closed poiny’ € Y’. Using step 1 we can repla&€ with Spec k(y').

Now using step 4 we are done. O
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