Rigid dualizing complexes via differential
graded algebras (survey)

AMNON YEKUTIELI

ABSTRACT. In this article we survey recent results on rigid dualizing complexes
over commutative algebras. We begin by recalling what are dualizing complexes.
Next we define rigid complexes, and explain their functorial properties. Due to
the possible presence of torsion, we must use differential graded algebras in the
constructions. We then discuss rigid dualizing complexes. Finally we show how
rigid complexes can be used to understand Cohen-Macaulay homomorphisms
and relative dualizing sheaves.

0. Introduction

This short article is based on a lecture I gave at the “Workshop on Triangulated
Categories”, Leeds, August 2006. It is a survey of recent results on rigid
dualizing complexes over commutative rings. Most of these results are joint
work of mine with James Zhang. The idea of rigid dualizing complex is due to
Michel Van den Bergh.

By default all rings considered in this article are commutative. We begin by
recalling the notion of dualizing complex over a noetherian ring A. Next let B
be a noetherian A-algebra. We define what is a rigid complex of B-modules
relative to A. In making this definition we must use differential graded algebras
(when B is not flat over A). The functorial properties of rigid complexes are
explained. We then discuss rigid dualizing complexes, which by definition
are complexes that are both rigid and dualizing. Finally we show how rigid
complexes can be used to understand Cohen-Macaulay homomorphisms and
relative dualizing sheaves.

I wish to thank my collaborator James Zhang. Thanks also to Luchezar
Avramov, Srikanth Iyengar and Joseph Lipman for discussions regarding the
material in Section 5.
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1. Dualizing Complexes: Overview

Let A be a noetherian ring. Denote by DY(Mod A) the derived category
of bounded complexes of A-modules with finitely generated cohomology
modules.

Definition 1.1. (Grothendieck [RD]) A dualizing complex over A is a complex
R € D'fJ(Mod A) satisfying the two conditions:

(i) R has finite injective dimension.
(i) The canonical morphism A — RHomy4 (R, R) is an isomorphism.

Condition (i) means that there is an integer d such that Extfﬁ(M , R) =0 for
all i > d and all modules M.

Recall that a noetherian ring K is called regular if all its local rings Kp,
p € Spec K, are regular local rings.

Example 1.2. If K is a regular noetherian ring of finite Krull dimension (say
a field, or the ring of integers Z) then

R :=K e D’(Mod K)
is a dualizing complex over K.

Dualizing complexes over commutative rings are part of Grothendieck’s
duality theory in algebraic geometry, which was developed in [RD]. This duality
theory deals with dualizing complexes on schemes and relations between them.
See Remark 4.4.

In Section 4 we explain a new approach to dualizing complexes over com-
mutative rings, due to James Zhang and the author (see [YZ4] and [YZ5]).
Specifically, we discuss existence and uniqueness of rigid dualizing complexes.

A dualizing complex R has many automorphisms; indeed, its group of auto-
morphisms in D(Mod A) is the group A* of invertible elements. The purpose
of rigidity is to eliminate automorphisms, and to make dualizing complexes
functorial. See Theorem 4.2.

In a sequel paper [Ye2] we use the technique of perverse coherent sheaves
to construct rigid dualizing complexes on schemes, and we reproduce almost
all of the geometric Grothendieck duality theory.

Related work in noncommutative algebraic geometry (where rigid dualizing
complexes were first introduced) can be found in [VdB, YZ1, YZ2, YZ3].
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2. Rigid Complexes and DG Algebras

Let me start with a discussion of rigidity for algebras over a field. Suppose K
is a field, B is a K-algebra, and M € D(Mod B).

According to Van den Bergh [VdB] a rigidifying isomorphism for M is an
isomorphism

p: M = RHompg, 5(B, M @x M) (2.1

in D(Mod B).

Now suppose A is any ring. Trying to write A instead of K in formula (2.1)
does not make sense: instead of M ® 4 M we must take the derived tensor
product M ®% M; but then there is no obvious way to make M ®Y; M into a
complex of B ® 4 B -modules.

The problem is torsion: B might fail to be a flat A-algebra. This is where
differential graded algebras (DG algebras) enter the picture.

A DG algebra is a graded ring A = D, A?, together with a graded deriva-
tiond: A — A of degree 1, satisfyingd od = 0.

A DG algebra quasi-isomorphism is a homomorphism f : A — B respect-
ing degrees, multiplications and differentials, and such that H(f) : HA — HB
is an isomorphism (of graded algebras).

We shall only consider super-commutative non-positive DG algebras. Super-
commutative means that ab = (—1)¥ba and ¢*> = O foralla € A, b € A/ and
¢ € A%*1. Non-positive means that A = @9, _, A'.

We view a ring A as a DG algebra concentrated in degree 0. Given a DG
algebra homomorphism A — A we say that A is a DG A-algebra.

Let A be a ring. A semi-free DG A-algebra is a DG A-algebra A, such
that after forgetting the differential A is isomorphic, as graded A-algebra, to a
super-polynomial algebra on some graded set of variables.

Definition 2.2. Let A be a ring and B an A-algebra. A semi-free DG algebra
resolution of B relative to A is a quasi-isomorphism B — B of DG A-algebras,
where B is a semi-free DG A-algebra.

Such resolutions always exist, and they are unique up to quasi-isomorphism.

Example 2.3. Take A =7 and B = Z/(6). Define B to be the super-
polynomial algebra A[£] on the variable & of degree —1. So B = A @ A£ as
free graded A-module, and £2 = 0. Let d(£) := 6. Then B — B is a semi-free
DG algebra resolution of B relative to A.

For a DG algebra A one has the category DGMod A of DG A-modules. It
is analogous to the category of complexes of modules over a ring, and by a
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similar process of inverting quasi-isomorphisms we obtain the derived category
D(DGMod A); see [Ke], [Hil.
For aring A (i.e. a DG algebra concentrated in degree 0) we have

D(DGMod A) = D(Mod A),

the usual derived category.

It is possible to derive functors of DG modules, again in analogy to
D(Mod A). An added feature is that for a quasi-isomorphism A — B, the
restriction of scalars functor

D(DGMod B) — D(DGMod A)

is an equivalence.

Getting back to our original problem, suppose A is a ring and B is an A-
algebra. Choose a semi-free DG algebra resolution B — B relative to A. For
M € D(Mod B) define

Sqp/a M := RHomgg, 5(B, M @ M)
in D(Mod B).
Theorem 2.4. ([YZ4]) The functor
Sqp/4 : D(Mod B) — D(Mod B)
is independent of the resolution B — B.

The functor Sqg /A> called the squaring operation, is nonlinear. In fact, given
a morphism ¢ : M — M in D(Mod B) and an element b € B one has

S A(bp) = b* Sqp,4(#) (2.5)
in
Hompmod 5)(Sqp 4 M, Sqp,4 M).

Definition 2.6. Let B be a noetherian A-algebra, and let M be a complex in
D}’(Mod B) that has finite flat dimension over A. Assume

p:M—:>SqB/AM

is an isomorphism in D(Mod B). Then the pair (M, p) is called a rigid complex
over B relative to A.

Definition 2.7. Say (M, p) and (N, o) are rigid complexes over B relative to
A. A morphism ¢ : M — N in D(Mod B) is called a rigid morphism relative
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to A if the diagram
M —"— Sqyz M
¢l lqu/A(¢)
N —"— Squ, N

is commutative.

We denote by D'f’(Mod B);ig/ 4 the category of rigid complexes over B relative
to A.

Example 2.8. Take M = B = A. Then
Sq4,4 A =RHomyg,a(A, A®4s A) = A,
and we interpret this as a rigidifying isomorphism
PN A S Squ 4 A.
The tautological rigid complex is

(A, ') € DR(Mod A)sig/a-

3. Properties of Rigid Complexes
The first property of rigid complexes explains their name.
Theorem 3.1. ([YZ4]) Let A be a ring, B a noetherian A-algebra, and
(M, p) € DX(Mod B)sig/a-
Assume the canonical ring homomorphism
B — Hompwod 5)(M, M)

is bijective. Then the only automorphism of (M, p) in D?(Mod B)iig/a is the
identity 1.

The proof is very easy: an automorphism ¢ of M has to be of the form
¢ = b1y for some invertible element b € B. If ¢ is rigid then b = b* (cf.
formula (2.5)), and hence b = 1.

We find it convenient to denote ring homomorphisms by f* etc. Thus a ring
homomorphism f*: A — B corresponds to the morphism of schemes

f :Spec B — Spec A.
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Let A be a noetherian ring. Recall that an A-algebra B is called essentially
finite type if it is a localization of some finitely generated A-algebra. We say
that B is essentially smooth (resp. essentially étale) over A if it is essentially
finite type and formally smooth (resp. formally étale).

Example 3.2. If A’ is a localization of A then A — A’ is essentially étale. If
B = Alty, ..., t,] is a polynomial algebra then A — B is smooth, and hence
also essentially smooth.

Let A be a noetherian ring and f* : A — B an essentially smooth homo-
morphism. Then Q}a /4 1s a finitely generated projective B-module. Let

Spec B = ]_[ Spec B;
be the decomposition into connected components, and for every i let n; be the
rank of Qgi /4- We define a functor
f*:D(Mod A) — D(Mod B)
by
fﬁM = @ Q'E,/A[n;] Q4 M.
Recall that a ring homomorphism f*: A — B is called finite if B is a

finitely generated A-module. Given such a finite homomorphism we define a
functor

f": D(Mod A) — D(Mod B)
by
f’M := RHomyu (B, M).

Theorem 3.3. ([YZ4]) Let A be a noetherian ring, let B, C be essentially finite
type A-algebras, let f* : B — C be an A-algebra homomorphism, and let

(M, p) € DR(Mod B)sig,a-

(1) If f* is finite and f’M has finite flat dimension over A, then f°M has an
induced rigidifying isomorphism

()t f'M = Sqeu [ M.

The assignment

(M, p)— f* (M, p):= (f"(p), f*M)

is functorial.
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(2) If f* is essentially smooth then f*M has an induced rigidifying isomor-
phism

fH o) : f*M > Sac)s f*M.
The assignment
(M, p) = f5(M, p) = (f*(p). [*M)

is functorial.

4. Rigid Dualizing Complexes

Let K be a regular noetherian ring of finite Krull dimension. We denote by
EFTAIg /K the category of essentially finite type K-algebras.

Definition 4.1. A rigid dualizing complex over A relative to K is a rigid
complex (R4, pa), such that R, is a dualizing complex.

Theorem 4.2. ([YZ5]) Let K be a regular finite dimensional noetherian ring,
and let A be an essentially finite type K-algebra.

(1) The algebra A has a rigid dualizing complex (R4, p4), which is unique up
to a unique rigid isomorphism.

(2) Given a finite homoanorphism f*: A — B, there is a unique rigid isomor-
phism f* (R4, pa) = (Rg, pp).

(3) Givenan essentially smooth homomorphism f* : A — B, there is a unique
rigid isomorphism f*(Ra, pa) — (Rg, pp).

Here is how the rigid dualizing complex (R4, p4) is obtained. We begin
with the tautological rigid complex

(K, p™) € D2(Mod K)yig/xc,

which is dualizing (cf. Examples 1.2 and 2.8). Now the structural homomor-
phism K — A can be factored into

KBSl a,

where f* is essentially smooth (B is a polynomial algebra over K); g* is finite
(a surjection); and /#* is also essentially smooth (a localization).

It is not hard to check (see [RD, Chapter V]) that each of the complexes
f°K, g” f°K and h* g" f*K is dualizing over the respective ring. In particular,
2" K has bounded cohomology, and hence it has finite flat dimension over K.
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According to Theorem 3.3 we then have a rigid complex
(Ra. pa) :=h* 8" (K, p™) € DR(Mod A/

Definition 4.3. Given a homomorphism f*: A — B in EFTAIg /K, define the
twisted inverse image functor

f':Df(Mod A) — D;f (Mod B)
by the formula
f'M := RHomg (B ®% RHoms(M, Ry), Rp).

It is easy to show that the assignment f* — f' is a pseudofunctor from
the category EFTAIg /K to the 2-category Cat of all categories. Moreover,
using Theorem 4.2 one can show that this operation has very good properties.
For instance, when f* is finite, then there is a functorial nondegenerate trace
morphism

Try: f'M - M.

Remark 4.4. According to Grothendieck’s duality theory in [RD], if f : X —
Y is afinite type morphism between noetherian schemes, and if Y has a dualizing
complex, then there is a functor

19 Df(Mod Oy) — DI (Mod Oy),

with many good properties.

Let FTAlg /K be the category of finite type K-algebras. By restricting
attention to affine schemes, the results of [RD] give rise to a pseudofunctor
f*+ f'O from FTAIg /K to Cat. It is not hard to show that the pseudofunc-
tor f* > f'© is isomorphic to our 2-functor f* > f'; see [YZ5, Theorem
4.10].

It should be noted that our construction works in the slightly bigger category
EFTAIg /K. It also has the advantage of being local; whereas in [RD] some of
the results require that morphisms between affine schemes be compactified.

5. Rigid Complexes and CM Homomorphisms

In this final section we discuss the relation between rigid complexes and Cohen-
Macaulay homomorphisms.

Definition 5.1. A ring A is called tractable if there is an essentially finite
type homomorphism K — A, for some regular noetherian ring of finite Krull
dimension K.
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Such a homomorphism K — A is called a traction for A. It is not part of
the structure — the ring A does not come with any preferred traction. “Most
commutative noetherian rings we know” are tractable.

Given a traction K — A we denote by R,k the rigid dualizing complex
of A relative to K; cf. Theorem 4.2. (The rigidifying isomorphism o4k is
implicit.)

Recall that a noetherian ring A is called Cohen-Macaulay (resp. Gorenstein)
if all its local rings Ay, p € Spec A, are Cohen-Macaulay (resp. Gorenstein)
local rings. The implications are regular = Gorenstein = Cohen-Macaulay.

Let f*: A — B be a ring homomorphism. For p € Spec A let k(p) :=
(A/p)p, the residue field. The fiber of f* above p is the k(p)-algebra B ® 4 k(p).
Now assume f* is an essentially finite type flat homomorphism. If all the
fibers of f* are Cohen-Macaulay (resp. Gorenstein) rings, then we call f* an
essentially Cohen-Macaulay (resp. essentially Gorenstein) homomorphism.

Theorem 5.2. ([Ye2]) Let A be a tractable ring, and let f*: A — B be
homomorphism which is of essentially finite type and of finite flat dimension.
Then there exists a rigid complex Rg 4 over B relative to A, unique up to a
unique rigid isomorphism, with the following property:

(*) Let K — A be some traction. Then

Rk ® Rpja = Rpx
in D(Mod B).

Condition (*) implies that the support of the complex Rp,4 is Spec B. One
can prove that

f'M = Rpa @4 M

for M € D2(Mod A).
If the ring A is Gorenstein, then R4,k is a shift of an invertible A-module.
Hence:

Corollary 5.3. Assume that in Theorem 5.2 the ring A is Gorenstein. Then
Rpya is a dualizing complex over B

The rigid complex Rp,4 allows us to characterize Cohen-Macaulay homo-
morphisms, as follows.

Theorem 5.4. ([Ye2]) Let A be a tractable ring, and let f*: A — B be an
essentially finite type flat homomorphism. Then the following conditions are
equivalent:
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(1) f* is an essentially Cohen-Macaulay homomorphism.
(ii) Let

Spec B = ]_[ Spec B;

l

be the decomposition into connected components. Then for any i there is
a finitely generated B;-module wp, 4, which is flat over A, and an integer
n;, such that

Rp/a = @ ®p,/aln;]
i

in D(Mod B).

The module
WB/A = @wB,/A
i

is called the relative dualizing module of f*: A — B. Note that the complex
@D, ws, aln;]is rigid, but in general it is not a dualizing complex over B. Still
the fibers of @I. ®p,/4[n;] are dualizing complexes — this can be seen by taking
A’ = k(p) in the next result, and using Corollary 5.3

Here is a “rigid” version of Conrad’s base change theorem [Co].
Theorem 5.5. ([Ye2]) Let

A —— B

L

Al —— B
be a cartesian diagram of rings, i.e.
B'= A ®y4 B,

with A and A’ tractable rings. Assume A — B is an essentially Cohen-
Macaulay homomorphism. (There isn’t any restriction on the homomorphism
A — A) Then:

(1) A" — B’ is an essentially Cohen-Macaulay homomorphism.
(2) There is a unique isomorphism of B’-modules

wp = A ®a4 ®B/A

which respects rigidity.
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From this we can easily deduce the next result.

Corollary 5.6. Let A be a tractable ring, and let f* : A — B be an essentially
Cohen-Macaulay homomorphism. Then the following conditions are equiva-

lent:

(1) f* is an essentially Gorenstein homomorphism.
(ii) @p/4 is an invertible B-module.

Remark 5.7. The recent paper [AI] contains results similar to Theorem 5.4
and Corollary 5.6, obtained by different methods, and without the requirement
that A is tractable.
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