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Dualizing complexes and perverse modules over

differential algebras

Amnon Yekutieli and James J. Zhang

Abstract

A differential algebra of finite type over a field k is a filtered algebra A, such that the
associated graded algebra is finite over its center, and the center is a finitely generated
k-algebra. The prototypical example is the algebra of differential operators on a smooth
affine variety, when char k = 0. We study homological and geometric properties of differ-
ential algebras of finite type. The main results concern the rigid dualizing complex over
such an algebra A: its existence, structure and variance properties. We also define and
study perverse A-modules, and show how they are related to the Auslander property of
the rigid dualizing complex of A.

0. Introduction

The ‘classical’ Grothendieck Duality theory, dealing with dualizing complexes over schemes, was
developed in the book Residues and Duality by Hartshorne [Ha66]. A duality theory for noncom-
mutative noetherian algebras over a base field k was introduced in [Ye92]. Roughly speaking, a
dualizing complex over a k-algebra A is a complex R ∈ Db(ModAe), such the functor

RHomA(−, R) : Db
f (ModA) → Db

f (ModAop)

is a duality, with inverse RHomAop(−, R). Here Aop is the opposite algebra, Ae := A ⊗k Aop, and
Db

f (ModA) is the derived category of bounded complexes of A-modules with finite cohomologies.
See Definition 4.1 for details. In the decade since its introduction, this noncommutative duality
theory has progressed in several directions; cf. [vdB97, Jo98, MY01, WZ00, Ch04].

One of the biggest problems in noncommutative duality theory is existence of dualizing com-
plexes. The most effective existence criterion to date is due to Van den Bergh [vdB97]. It states the
following: suppose the k-algebra A has some exhaustive nonnegative filtration G = {GiA} such that
the graded algebra grGA is connected, noetherian and commutative. Then A has a rigid dualizing
complex RA (see Definition 4.10). Moreover, in [YZ99] we proved that the dualizing complex RA
has the Auslander property (see Definition 4.6), and it is unique up to a unique isomorphism.

Let us remind the reader that a graded k-algebra Ā is called connected if Ā =
⊕

i∈N Āi, Ā0 = k

and each Āi is a finite k-module. An exhaustive nonnegative filtration G on A, such that the
graded algebra Ā := grGA is a noetherian connected graded k-algebra, can be considered as a
‘noncommutative compactification of SpecA’. Indeed, when A is commutative, let Ã := ReesGA ⊂
A[t] be the Rees algebra. Then Proj Ã is a projective scheme over k, the divisor {t = 0} is ample,
and its complement is isomorphic to SpecA.

Received 20 December 2003, accepted in final form 2 July 2004, published online 21 April 2005.
2000 Mathematics Subject Classification 16D90 (primary), 18G10, 16S32, 16W70, 16U20 (secondary).
Keywords: noncommutative rings, filtered rings, dualizing complexes.

This research was supported by the US–Israel Binational Science Foundation. The second author was partially
supported by the US National Science Foundation.
This journal is c© Foundation Compositio Mathematica 2005.

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl


Differential algebras

We have observed that often in the literature one encounters algebras A that are equipped
with an exhaustive nonnegative filtration F = {FiA}, such that grFA is noetherian and finite over
its center, yet is not connected. The main goal of this paper is to prove that Van den Bergh’s
existence criterion also applies to such algebras, and furthermore the rigid dualizing complex RA
has especially good homological and geometric properties. These properties shall be used in our
sequel paper [YZ02] to construct rigid dualizing complexes over noncommutative ringed schemes.

Let us now introduce some conventions. Throughout the paper k is a field. By default all
k-algebras are associative unital algebras, all modules are left modules, and all bimodules are central
over k. Given a k-algebra A, we denote by ModA the category of A-modules. The unadorned tensor
product ⊗ will mean ⊗k.

Let C be a finitely generated commutative k-algebra and let A be a C-ring (i.e. there is a ring
homomorphism C → A). We call A a differential C-ring of finite type if there exists a nonnegative
exhaustive filtration F = {FiA}i∈Z of A such that grFA is a finite module over its center Z(grFA),
and Z(grFA) is a finitely generated C-algebra. We also call A a differential k-algebra of finite type.
See Definitions 2.1 and 2.2 for a precise formulation. The prototypical examples are:

(1) A is a finite C-algebra (e.g. an Azumaya algebra);

(2) A is the ring D(C) of differential operators of C, where C is smooth and char k = 0; and

(3) A is the universal enveloping algebra U(C;L) of a finite Lie algebroid L over C.

In (1) and (3) there are no regularity assumptions on C, A or L. It is not hard to see that any
quotient A/I is also a differential k-algebra of finite type. Also if A1 andA2 are differential k-algebras
of finite type then so is the tensor product A1 ⊗A2.

The key technical result is the following ‘Theorem on the Two Filtrations’.

Theorem 0.1. Let A be a differential k-algebra of finite type. Then there is a nonnegative exhaustive
filtration G = {GiA}i∈Z of A such that grGA is a commutative, finitely generated, connected graded
k-algebra.

Theorem 0.1 is proved in § 3, where it is restated as Theorem 3.1.
Since Van den Bergh’s criterion can now be applied, and using results from [YZ99], we obtain

the following corollary.

Corollary 0.2. Let A be a differential k-algebra of finite type. Then A has an Auslander rigid
dualizing complex RA. For any finite A-module M one has CdimM = GKdimM .

The corollary is proved in § 8, where it is restated as Theorem 8.1. We remind that GKdimM
is the Gelfand–Kirillov dimension of M . The canonical dimension CdimM is defined by

CdimM := − inf{q | ExtqA(M,RA) �= 0} ∈ Z ∪ {−∞}

for a finite A-module M , and by

CdimM := sup {CdimM ′ |M ′ ⊂M is finite}

in general. The Auslander property states that CdimM ′ � CdimM for any finite left or right
A-module M and any submoduleM ′ ⊂M ; and it implies that Cdim is an exact dimension function.

The rigid perverse t-structure on Db
f (ModA) is defined as follows:

pDb
f (ModA)�0 := {M ∈ Db

f (ModA) | Hi RHomA(M,RA) = 0 for all i < 0}

and
pDb

f (ModA)�0 := {M ∈ Db
f (ModA) | Hi RHomA(M,RA) = 0 for all i > 0}.
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The heart
pDb

f (ModA)0 := pDb
f (ModA)�0 ∩ pDb

f (ModA)�0

is called the category of perverse A-modules. It is an abelian category, dual to the category Modf A
op

of finite Aop-modules.
There is an alternative characterization of the rigid perverse t-structure on Db

f (ModA), which
resembles the original definition in [BBD81]. For a module M and any integer i, define ΓMi

M to
be the largest submodule of M with Cdim � i. This is a functor ΓMi

: ModA → ModA, and we
denote by Hj

Mi
its jth right derived functor. The next result is a special case of Theorem 7.9.

Theorem 0.3. Let A be a differential k-algebra of finite type and M ∈ Db
f (ModA).

(1) M ∈ pDb
f (ModA)�0 if and only if CdimHjM < i for all integers i, j such that j > −i.

(2) M ∈ pDb
f (ModA)�0 if and only if Hj

Mi
M = 0 for all integers i, j such that j < −i.

Interestingly, Kashiwara [Ka03] has recently proved a similar result; see Remark 7.11.
Suppose C is a finitely generated commutative k-algebra. A C-bimoduleM is called a differential

C-bimodule if it has some bounded below exhaustive filtration F = {FiM}i∈Z by C-sub-bimodules,
such that grFM is a central C-bimodule. This equivalent to the condition that the support of the
Ce-module M is in the diagonal ∆(U) ⊂ U2, where U := SpecC (see Proposition 5.21).

Theorem 0.4. Let C be a finitely generated commutative k-algebra and A a differential C-ring of
finite type. Let RA be the rigid dualizing complex of A. Then for every i the cohomology bimodule
HiRA is a differential C-bimodule.

This theorem is repeated as Theorem 8.14. One consequence is that the rigid dualizing complex
RA localizes on SpecC (see Corollary 8.15).

Let Ae := A ⊗ Aop. It is also a differential k-algebra of finite type, so it has a rigid dualizing
complex RAe , and the category pDb

f (ModAe)0 of perverse Ae-modules exists. By definition the rigid
dualizing complex RA of A is an object of Db(ModAe).

Theorem 0.5. Let A be a differential k-algebra of finite type. Then the rigid dualizing complex
RA is a perverse Ae-module, i.e. RA ∈ pDb

f (ModAe)0.

This theorem is repeated as Theorem 8.9. In addition to being interesting in itself, this result is
used in [YZ02] to glue rigid dualizing complexes on noncommutative ringed schemes – as perverse
bimodules.

1. Filtrations of rings

By a filtration of a k-algebra A we mean an ascending filtration F = {FiA}i∈Z by k-submodules
such that 1 ∈ F0A and FiA · FjA ⊂ Fi+jA. We call (A,F ) a filtered k-algebra, but often we just
say that A is a filtered algebra and leave F implicit.

Suppose (A,F ) is a filtered k-algebra. Given an A-module M , by an (A,F )-filtration of M we
mean an ascending filtration F = {FiM}i∈Z of M by k-submodules such that FiA · FjM ⊂ Fi+jM
for all i and j. We call (M,F ) a filtered (A,F )-module, and allow ourselves to drop reference to F
when no confusion may arise.

We say that the filtration F on M is exhaustive if M =
⋃
i FiM , F is separated if 0 =

⋂
i FiM ,

F is bounded below if Fi0−1M = 0 for some integer i0, and F is nonnegative if F−1M = 0. The trivial
filtration on M is F−1M := 0, F0M := M .
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Differential algebras

Let us recall some facts about associated graded modules, and establish some notation. It will be
convenient to use the ordered semigroup Z∪{−∞} where −∞ < i for every i ∈ Z, and i+ j := −∞
if either i = −∞ or j = −∞.

Let (M,F ) be an exhaustive filtered module. The associated graded module is

gr(M,F ) = grFM =
⊕
i∈Z

grFi M :=
⊕
i∈Z

FiM

Fi−1M
.

Given an element m ∈M the F -degree of m is

degF (m) := inf {i | m ∈ FiM} ∈ Z ∪ {−∞}.

The F -symbol of m is

symbF (m) := m+ Fi−1M ∈ grFi M

if i = degF (m) ∈ Z; and symbF (m) := 0 if degF (m) = −∞. Thus, the homogeneous elements of
grFM are the symbols.

Recall that the product on the graded algebra grFA is defined on symbols as follows. Given
elements a1, a2 ∈ A let di := degF (ai) and āi := symbF (ai). If both di > −∞ then

ā1 · ā2 := a1 · a2 + Fd1+d2−1A ∈ grFd1+d2A.

Otherwise ā1 · ā2 := 0. Similarly one defines a graded (grFA)-module structure on a filtered
module M .

If A =
⊕

i∈ZAi is a graded algebra then A is also filtered, where

FiA :=
⊕
j�i

Aj .

The filtration F is exhaustive and separated. Moreover, A ∼= grFA as graded algebras. The isomor-
phism sends a ∈ Ai to its symbol symbF (a) ∈ grFi A.

Lemma 1.1. Suppose that the k-algebra A is generated by a sequence of elements {ai}i∈I , where
I is an indexing set (possibly infinite). Given a sequence {di}i∈I of nonnegative integers, there is a
unique nonnegative exhaustive filtration F = {FdA}d∈Z such that:

(i) for every d, FdA is the k-linear span of the products aj1 · · · ajm such that dj1 + · · · + djm � d;

(ii) the graded algebra grFA is generated by a sequence of elements {āi}i∈I , where for every i ∈ I
either āi = symbF (ai) ∈ grFdi

A or āi = 0.

Proof. Let x = {xi}i∈I be a sequence of distinct indeterminates, and let k〈x〉 be the free associative
algebra on these generators. Define φ : k〈x〉 → A to be the surjection sending xi �→ ai. Put on k〈x〉
the grading such that deg(xi) = di. This induces a filtration F = {Fdk〈x〉}d∈Z where

Fdk〈x〉 :=
⊕
e�d

k〈x〉e.

This filtration can now be transferred to A by setting FdA := φ(Fdk〈x〉). Clearly (A,F ) is exhaustive
and nonnegative, and also condition (i) holds. This condition also guarantees uniqueness.

As for condition (ii), consider the surjective graded algebra homomorphism

grF (φ) : grFk〈x〉 → grFA.

Because of the way the filtration on k〈x〉 was constructed, the graded algebra grFk〈x〉 is a free
algebra on the symbols x̄i := symbF (xi). Define āi := grF (φ)(x̄i). These elements have the required
properties.
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Conversely, we have the following two lemmas, whose standard proofs we leave out.

Lemma 1.2. Let F = {FdA} be an exhaustive nonnegative filtration of A, and let {ai}i∈I be a
sequence in A. Denote by āi := symbF (ai). Suppose that the sequence {āi}i∈I generates grFA as
k-algebra. Then:

(1) A is generated by {ai}i∈I as k-algebra;

(2) let di := max {0,degF (ai)}. Then F coincides with the filtration from Lemma 1.1.

Lemma 1.3. Let (A,F ) be a nonnegative exhaustive filtered k-algebra and let (M,F ) be a bounded
below exhaustive filtered (A,F )-module. Suppose that {ai}i∈I ⊂ A, {bj}j∈J ⊂ A and {ck}k∈K ⊂M
are sequences satisfying:

(i) the set of symbols {āi}i∈I ∪ {b̄j}j∈J generates grFA as k-algebra;

(ii) the set of symbols {c̄k}k∈K generates grFM as (grFA)-module;

(iii) for every i, j the symbols āi and b̄j commute.

Then for every integer d the k-module FdM is generated by the set of products

{ai1 · · · aipbj1 · · · bjqck | degF (ai1) + · · · + degF (bj1) + · · · + degF (ck) � d}.

The base field k is of course trivially filtered. The filtered k-modules (M,F ) form an additive
category FiltModk, in which a morphism φ : (M,F ) → (N,F ) is a k-linear homomorphism φ : M →
N such that φ(FiM) ⊂ FiN .

The Rees module of (M,F ) is

Rees(M,F ) = ReesFM :=
⊕
i∈Z

FiM · ti ⊂M [t] = M ⊗k k[t]

where t is a central indeterminate of degree 1. We get an additive functor

Rees : FiltModk → GrModk[t]

where GrModk[t] is the abelian category of graded k[t]-modules and degree 0 homomorphisms.

For a scalar λ ∈ k let us denote by spλ the specialization to λ of a k[t]-module M̃ , namely

spλ M̃ := M̃/(t− λ)M̃ .

If λ �= 0 then
spλ : GrModk[t] → Mod k

is an exact functor, since spλ M̃ is isomorphic to the degree zero component of the localization M̃t.
For λ = 0 we get a functor

sp0 : GrModk[t] → GrModk.

Given any (M,F ) ∈ FiltModk one has

sp0 Rees(M,F ) ∼= gr(M,F ) = grFM.

On the other hand, given a graded k[t]-module M̃ there is a filtration F on M := sp1 M̃ defined by

FiM := Im
(⊕
j�i

M̃j →M

)
.

This is a functor
sp1 : GrModk[t] → FiltModk.

If (M,F ) is exhaustive, then
sp1 Rees(M,F ) ∼= (M,F ).
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For a graded module M̃ ∈ GrModk[t] we have

Rees sp1 M̃
∼= M̃/{t-torsion}.

If A is a filtered k-algebra, then Ã := ReesA and Ā := grA are graded algebras, and we obtain
corresponding functors Rees, sp1 and sp0 between FiltModA, GrMod Ã and GrMod Ā.

The next lemma states that a filtration can be lifted to the Rees ring.

Lemma 1.4. Let F be an exhaustive nonnegative filtration of the k-algebra A, and let Ã :=
ReesFA ⊂ A[t]. For any integer i define

F̃iÃ :=
⊕
j∈N

(Fmin(i,j)A) · tj ∈ A[t].

Then:

(i) Ã =
⋃
i F̃iÃ, F̃−1Ã = 0 and F̃iÃ · F̃jÃ ⊂ F̃i+jÃ, thus F̃ = {F̃iÃ} is an exhaustive nonnegative

filtration of the algebra Ã;

(ii) there is an isomorphism of k-algebras

grF̃ Ã ∼= (grFA) ⊗ k[t]

(not respecting degrees).

Proof. (1) Since F−1A = 0, we get F̃−1Ã = 0. Let Ãj := (FjA) · tj, the jth graded component of Ã.
Then for any i, j there is equality

Ãj ∩ (F̃iÃ) = (Fmin(i,j)A) · tj .

Hence Ãj ⊂ F̃jÃ. It remains to check the products. For any two pairs of numbers (i, k) and (j, l)
one has

min(i, k) + min(j, l) � min(i+ j, k + l).
Therefore

((Fmin(i,k)A) · tk) · ((Fmin(j,l)A) · tl) ⊂ ((Fmin(i+j,k+l)A) · tk+l).
This says that F̃iÃ · F̃jÃ ⊂ F̃i+jÃ.

(2) We have isomorphisms

grF̃ Ã ∼=
⊕
0�i

⊕
i�j

(grFi A) · tj

and
(grFA) ⊗ k[t] ∼=

⊕
0�i

⊕
0�j

(grFi A) · tj.

The isomorphism grF̃ Ã �−→ (grFA)⊗k[t] we want is defined on every summand (grFi A)·tj by dividing
by ti.

2. Differential k-algebras of finite type
Let C be a ring. Recall that a C-ring is a ring A together with a ring homomorphism C → A, called
the structural homomorphism. Observe that a C-ring is also a C-bimodule.

Definition 2.1. Suppose C is a commutative k-algebra and A is a C-ring. A differential C-filtration
on A is a filtration F = {FiA}i∈Z with the following properties:

(i) 1 ∈ F0A and FiA · FjA ⊂ Fi+jA;
(ii) F−1A = 0 and A =

⋃
FiA;
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(iii) each FiA is a C-sub-bimodule;
(iv) the graded ring grFA is a C-algebra.

A is called a differential C-ring if it admits some differential C-filtration.

The name ‘differential filtration’ signifies the similarity to Grothendieck’s definition of differential
operators; see [EG67].

Note that properties (i) and (iii) imply that the image of the structural homomorphism C → A
lies in F0A, so that (iv) makes sense.

Definition 2.2. Let C be a commutative noetherian k-algebra and A a C-ring. A differential
C-filtration of finite type on A is a differential C-filtration F = {FiA} such that the graded C-algebra
grFA is a finite module over its center Z(grFA), and Z(grFA) is a finitely generatedC-algebra. We say
that A is a differential C-ring of finite type if it admits some differential C-filtration of finite type.

If C is a finitely generated commutative k-algebra and A is a differential C-ring of finite type,
then A is also a differential k-ring of finite type. In this case we also call A a differential k-algebra
of finite type.

Example 2.3. Let C be a finitely generated commutative k-algebra and A a finite C-algebra.
Then A is a differential C-ring of finite type. As filtration we can take the trivial filtration F−1A := 0
and F0A := A.

Example 2.4. Suppose char k = 0, C is a smooth commutative k-algebra and A := D(C) is the ring
of k-linear differential operators. Then A is a differential C-ring of finite type. For filtration we can
take the filtration F = {FiA} by order of operator, in which F−1A := 0, F0A := C, F1A := C⊕T (C)
and Fi+1A := FiA · F1A for i � 1. Here T (C) := Derk(C), the module of derivations.

Example 2.5. A special case of Example 2.4 is when C := k[x1, . . . , xn], a polynomial ring. Then A
is called the nth Weyl algebra. Writing yi := ∂/∂xi the algebra A is generated by the 2n elements
x1, . . . , xn, y1, . . . , yn, with relations [xi, xj ] = [yi, yj ] = [yi, xj ] = 0 for i �= j and [yi, xi] = 1.
In addition to the filtration F above there is also a differential k-filtration of finite type G = {GiA}
where G−1A := 0, G0A := k, G1A := k +(

∑
i k ·xi)+ (

∑
i k · yi) and Gi+1A := GiA ·G1A for i � 1.

Example 2.6. This example generalizes Example 2.5. Let C be a finitely generated commutative
k-algebra (not necessarily smooth, and char k arbitrary), and let L be a finite C-module (not
necessarily projective). Suppose L has a k-linear Lie bracket [−,−]. The module of derivations
T (C) := Derk(C) is also a k-Lie algebra. Suppose α : L→ T (C) is a C-linear Lie homomorphism,
namely α(cξ) = cα(ξ) and α([ξ, ζ]) = [α(ξ), α(ζ)] for all c ∈ C and ξ, ζ ∈ L. L is then called a Lie
algebroid or a Lie–Rinehart algebra (cf. [Ch99, Ri63]). The ring of generalized differential operators
D(C;L), also called the universal enveloping algebra and denoted by U(C;L), is defined as follows.
Choose k-algebra generators c1, . . . , cp for C and C-module generators l1, . . . , lq for L. Let

k〈x,y〉 := k〈x1, . . . , xp, y1, . . . , yq〉
be the free associative algebra. We have a ring surjection φ0 : k〈x〉 → C with φ0(xi) := ci. Let
I0 := Ker(φ0). Next there is a surjection of k〈x〉-modules

φ1 : k〈x〉q =
q⊕
j=1

k〈x〉 · yj → L

with φ1(yj) := lj . Define I1 := Ker(φ1) ⊂ k〈x〉q. For any i, j choose polynomials fi,j(x) and gi,j,k(x)
such that [li, lj ] =

∑
k gi,j,k(c)lk ∈ L and α(li)(cj) = fi,j(c) ∈ C. Now define

U(C;L) :=
k〈x,y〉
I

626



Differential algebras

where I ⊂ k〈x,y〉 is the two-sided ideal generated by I0, I1 and the polynomials [yi, yj] −∑
k gi,j,k(x)yk and [yi, xj ] − fi,j(x).
The ring U(C;L) has the following universal property: given any ringD, any ring homomorphism

η0 : C → D and any C-linear Lie homomorphism η1 : L→ D satisfying [η1(l), η0(c)] = η0(α(l)(c)),
there is a unique ring homomorphism η : U(C;L) → D through which η0 and η1 factor.

Put on k〈x,y〉 the filtration F such that degF (xi) = 0 and degF (yj) = 1. Let F be the filtration
induced on U(C;L) by the surjection φ : k〈x,y〉 � U(C;L). Then grFU(C;L) is a commutative
C-algebra, generated by the elements l̄j := grF (φ)(yj), j ∈ {1, . . . , q}. We see that U(C;L) is a
differential C-ring of finite type. If C = k[x1, . . . , xn] and L = T (C), then we are in the situation
of Example 2.5. If C = k, then U(C;L) = U(L) is the usual universal enveloping algebra of the Lie
algebra L.

Lemma 2.7 [ATV91, Theorem 8.2]. Suppose that A =
⊕

i∈NAi is a graded k-algebra and t ∈ A is
a central homogeneous element of positive degree. The following are equivalent:

(i) A is left noetherian;

(ii) A/(t) is left noetherian.

The next proposition follows almost directly from the definition and Lemma 2.7.

Proposition 2.8. If A is a differential k-algebra of finite type, then it is a noetherian finitely
generated k-algebra.

The class of differential k-algebras of finite type is closed under tensor products as we now show.

Proposition 2.9. Let C1 and C2 be noetherian commutative k-algebras, and assume that C1 ⊗C2

is also noetherian. Let Ai be a differential Ci-ring of finite type for i = 1, 2. Then A1 ⊗ A2 is a
differential (C1 ⊗ C2)-ring of finite type.

Proof. Choose differential filtrations of finite type {FnA1} and {FnA2} of A1 and A2. Define a
filtration on A1 ⊗A2 as follows:

Fn(A1 ⊗A2) :=
∑

l+m=n

FlA1 ⊗ FmA2.

Then

grF (A1 ⊗A2) ∼= (grFA1) ⊗ (grFA2)

as graded rings. Since grFA1 and grFA2 are finite modules over their centers it follows that (grFA1)⊗
(grFA2) is a finite module over its center.

3. The theorem on the two filtrations

The next theorem generalizes the case of the nth Weyl algebra and its two filtrations (see
Examples 2.4 and 2.5 above). McConnell and Stafford also considered such filtrations, and our
result extends their [MS89, Corollary 1.7]. The basic idea is attributed in [MS89] to Bernstein.

We recall that a graded k-algebra A is called connected if A =
⊕

i∈NAi, A0 = k and each Ai is
a finite k-module.

Theorem 3.1. Let A be a k-algebra. Assume that A has a differential k-filtration of finite type
F = {FiA}i∈Z. Then there is a nonnegative exhaustive k-filtration G = {GiA}i∈Z such that grGA
is a commutative, finitely generated, connected graded k-algebra.
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Observe that G is also a differential filtration of finite type on A. As mentioned in the introduc-
tion, Theorem 3.1 is used to prove the existence of an Auslander rigid dualizing complex over A.

The following easy lemma is used often in the proof of the theorem.

Lemma 3.2. Let F = {FiA} be a nonnegative exhaustive filtration of A and let a1, a2 ∈ A be two
elements. Define āi := symbF (ai) ∈ grFA and di := degF (ai) ∈ N ∪ {−∞}. Then the commutator
[ā1, ā2] = 0 if and only if

degF ([a1, a2]) � d1 + d2 − 1.

Proof of Theorem 3.1. Step 1. Write Ā := grFA. Then the center Z(Ā) is a graded, finitely gen-
erated, commutative k-algebra, and Ā is a finite Z(Ā)-module. For any element a ∈ A we write
ā := symbF (a) ∈ grFA.

Let d1 ∈ N be large enough such that Z(Ā) is generated as Z(Ā)0-algebra by finitely many
elements of degrees � d1, and Ā is generated as Z(Ā)-module by finitely many elements of degrees
� d1.

Choose nonzero elements a1, . . . , am ∈ F0A ∼= Ā0 such that their symbols ā1, . . . , ām are in Z(Ā)0,
and they generate Z(Ā)0 as k-algebra. Next choose elements b1, . . . , bn ∈ Fd1A−F0A such that the
symbols b̄1, . . . , b̄n are in Z(Ā), and they generate Z(Ā) as Z(Ā)0-algebra. Finally choose nonzero
elements c1, . . . , cp ∈ Fd1A such that the symbols c̄1, . . . , c̄p generate

⊕d1
j=0 Āj as Z(Ā)0-module.

This implies that c̄1, . . . , c̄p generate Ā as a Z(Ā)-module.

The symbols ā1, . . . , ām, b̄1, . . . , b̄n, c̄1, . . . , c̄p generate Ā as k-algebra, so by Lemma 1.2 the ele-
ments a1, . . . , cm, b1, . . . , bn, c1, . . . , cp generate A as k-algebra. Let

k〈x,y,z〉 := 〈x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉

be the free associative algebra, and define a surjective ring homomorphism φ : k〈x,y,z〉 → A by
sending xi �→ ai, yi �→ bi and zi �→ ci. We are now in the situation of Lemma 1.2. The free algebra
k〈x,y,z〉 also has a filtration F , where degF (xi) := degF (ai), degF (yi) := degF (bi) etc., and φ is a
strict surjection, meaning that Fi(A) = φ(Fik〈x,y,z〉).

Let us denote substitution by f(a, b, c) := φ(f(x,y,z)). Consider the subrings

k〈a〉 ⊂ k〈a, b〉 ⊂ A = k〈a, b, c〉

with filtrations F induced by the inclusions into A. The reader is warned that these filtrations might
differ from the filtrations induced by φ : k〈x〉 � k〈a〉 and φ : k〈x,y〉 � k〈a, b〉 respectively.

We observe that the commutators [ai, aj ] = 0 for all i, j, since ai = āi ∈ Z(Ā)0. This also says
that [āi, b̄j ] = 0, so according to Lemma 3.2 we get

[ai, bj ] ∈ FdegF (bj)−1A

for all i, j. Therefore, by Lemma 1.3, applied to the filtered k-algebra k〈a〉 and the filtered
k〈a〉-module Fd1A, we see that there are noncommutative polynomials f1

i,j,k(x) ∈ k〈x〉 such that

degF (f1
i,j,k(x)) + degF (ck) � degF (bj) − 1 and [ai, bj ] =

∑
k

f1
i,j,k(a) · ck. (3.3)

Note that either f1
i,j,k(x) �= 0, in which case degF (f1

i,j,k(x)) = 0; or f1
i,j,k(x) = 0 and then

degF (f1
i,j,k(x)) = −∞. The choice f1

i,j,k(x) = 0 is of course required when degF (ck) � degF (bj).

Likewise [bi, bj ] ∈ FdegF (bi)+degF (bj)−1A, so by Lemma 1.3, applied to the filtered k-algebra k〈a, b〉
and the filtered k〈a, b〉-module A, we see that there are noncommutative polynomials f2

i,j,k(x)
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and g2
i,j,k(y) such that

degF (f2
i,j,k(x)) + degF (g2

i,j,k(y)) + degF (ck) � degF (bi) + degF (bj) − 1

and [bi, bj ] =
∑
k

f2
i,j,k(a) · g2

i,j,k(b) · ck. (3.4)

Similarly there are polynomials f3
i,j,k(x) such that

degF (f3
i,j,k(x)) + degF (ck) � degF (cj) − 1 and [ai, cj ] =

∑
k

f3
i,j,k(a) · ck,

and there are polynomials f4
i,j,k(x) and g4

i,j,k(y) such that

degF (f4
i,j,k(x)) + degF (g4

i,j,k(y)) + degF (ck) � degF (bi) + degF (cj) − 1

and [bi, cj ] =
∑
k

f4
i,j,k(a) · g4

i,j,k(b) · ck.

The same idea applies to cicj : there are polynomials f5
i,j,k(x) and g5

i,j,k(y) such that

degF (f5
i,j,k(x)) + degF (g5

i,j,k(y)) + degF (ck) � degF (ci) + degF (cj)

and ci · cj =
∑
k

f5
i,j,k(a) · g5

i,j,k(b) · ck.

Let G be the standard grading on k〈x〉, namely degG(xi) := 1. This induces a filtration G.
Define

e0 := max {0,degG(f li,j,k(x))},
e1 := e0 + 1 and e2 := e0 + e1 + 1.

Put on the free algebra k〈x,y,z〉 a new grading G by declaring

degG(yi) := e2 degF (bi)

degG(zi) := e2 degF (ci) + e1,

and keeping degG(xi) = 1 as above. We get a new filtration G on k〈x,y,z〉. Using this we obtain a
new filtration G on A with

GiA := φ(Gik〈x,y,z〉).

Step 2. Now we verify that the filtration G has the required properties. Since the filtration G on
k〈x,y,z〉 is nonnegative exhaustive, and φ is a strict surjection, it follows that the filtration G on A
is also nonnegative exhaustive. The rest requires some work, and in order to simplify our notation
we are going to ‘recycle’ the expressions Ā, āi, etc. From here on we define Ā := grGA. We have a
surjective graded k-algebra homomorphism

φ̄ := grG(φ) : grGk〈x,y,z〉 → grGA = Ā.

Let x̄i := symbG(xi), ȳi := symbG(yi), etc. Then

grGk〈x,y,z〉 = k〈x̄, ȳ, z̄〉 := k〈x̄1, . . . , x̄m, ȳ1, . . . , ȳn, z̄1, . . . , z̄p〉
which is also a free algebra. Define āi := φ̄(x̄i), b̄i := φ̄(ȳi) and c̄i := φ̄(z̄i). Observe that either
degG(ai) = degG(xi), in which case āi = symbG(ai), and it is a nonzero element of ĀdegG(ai)

; or
degG(ai) < degG(xi), and then āi = 0. Similar statements hold for b̄i and c̄i.

Since φ̄ is surjective we see that Ā is generated as k-algebra by the elements ā1, . . . , ām, b̄1, . . . , b̄n,
c̄1, . . . , c̄p. These elements are either of positive degree or are 0, and hence Ā is connected graded.
We claim that Ā is commutative.
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We know already that [āi, āj ] = 0. Let us check that [āi, b̄j ] = 0. If either degG(ai) < degG(xi)
or degG(bj) < degG(yj), then āib̄j = b̄j āi = 0. Otherwise, āi = symbG(ai) and b̄j = symbG(bj).
By formula (3.3) we have

degG([ai, bj ]) � max{degG(f1
i,j,k(a)) + degG(ck)}

� max{degG(f1
i,j,k(x)) + degG(ck)}.

For any k such that f1
i,j,k(x) �= 0 we have degF (ck) � degF (bj) − 1, and then

degG(ck) � degG(zk) = e2 degF (ck) + e1 � e2(degF (bj) − 1) + e1.

Also degG(f1
i,j,k(x)) � e0. Because

degG(bj) = degG(yj) = e2 degF (bj)

and

degG(ai) = degG(xi) = 1,

we get

degG([ai, bj ]) � e0 + (e2(degF (bj) − 1) + e1)

= degG(ai) + degG(bj) − 2.

Using Lemma 3.2 we conclude that [āi, b̄j ] = 0.

Next let us consider the commutator [b̄i, b̄j ]. If either degG(bi) < degG(yi) or degG(bj) <
degG(yj), then b̄ib̄j = b̄j b̄i = 0. Otherwise, b̄i = symbG(bi) and b̄j = symbG(bj). By formula
(3.4), if f2

i,j,k(x) �= 0, then

degF (g2
i,j,k(y)) + degF (ck) � degF (bi) + degF (bj) − 1.

Also

degG(g2
i,j,k(y)) = e2 degF (g2

i,j,k(y))

degG(ck) � degG(zk) = e2 degF (ck) + e1.

Therefore, looking only at indices k such that f2
i,j,k(x) �= 0, we obtain

degG([bi, bj ]) � max{degG(f2
i,j,k(a)) + degG(g2

i,j,k(b)) + degG(ck)}
� max{degG(f2

i,j,k(x)) + degG(g2
i,j,k(y)) + degG(ck)}

� e0 + max{e2 degF (g2
i,j,k(y)) + e2 degF (ck) + e1}

= e2 max{degF (g2
i,j,k(y)) + degF (ck) + 1} + (e0 + e1 − e2)

� e2(degF (bi) + degF (bj)) − 1

= degG(bi) + degG(bj) − 1.

So according to Lemma 3.2 we conclude that [b̄i, b̄j ] = 0.

The calculation for the other commutators is similar.

Finally we show that, amusingly, c̄ic̄j = 0. If either degG(ci) < degG(zi) or degG(cj) < degG(zj),
then automatically c̄ic̄j = 0. Otherwise, c̄i = symbG(ci) and c̄j = symbG(cj). For any k such that
f5
i,j,k(x) �= 0 one has

degF (g5
i,j,k(y)) + degF (ck) � degF (ci) + degF (cj).
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Therefore, looking only at indices k such that f5
i,j,k(x) �= 0, we obtain

degG(cicj) � max{degG(f5
i,j,k(a)) + degG(g5

i,j,k(b)) + degG(ck)}
� max{degG(f5

i,j,k(x)) + degG(g5
i,j,k(y)) + degG(ck)}

� e0 + max{e2 degF (g5
i,j,k(y)) + e2 degF (ck) + e1}

= e2 max{degF (g5
i,j,k(y)) + degF (ck)} + (e0 + e1)

� e2(degF (ci) + degF (cj)) + (e0 + e1)

= degG(ci) + degG(cj) − 1.

So, by definition of the product in Ā, we get c̄ic̄j = 0.

Proposition 3.5. In the situation of Theorem 3.1 assume that the k-algebra A is graded, and
that every k-submodule FiA is also graded. Then the filtration G can be chosen such that every
k-submodule GiA is graded.

Proof. Simply choose the generators a1, . . . , b1, . . . , c1, . . . , cp ∈ A used in the proof to be homo-
geneous.

4. Review of dualizing complexes
For a k-algebra A we denote by Aop the opposite algebra, and by Ae := A ⊗ Aop the enveloping
algebra. Recall that an A-module means a left A-module. With this convention a right A-module
is an Aop-module, and an A-bimodule is an Ae-module.

In this section we review the definition of dualizing complexes over rings and related concepts.
Let ModA be the category of A-modules, and let Modf A be the full subcategory of finite

(i.e. finitely generated) modules. The latter is abelian when A is left noetherian. Let D(ModA)
be the derived category of A-modules. The full subcategory of bounded complexes is denoted by
Db(ModA), the full subcategory of complexes with finite cohomologies is denoted by Df(ModA),
and their intersection is Db

f (ModA).

Definition 4.1 [Ye92, YZ99]. Let A be a left noetherian k-algebra and B a right noetherian
k-algebra. A complex R ∈ Db(Mod (A⊗Bop)) is called a dualizing complex over (A,B) if it satisfies
the following three conditions:

(i) R has finite injective dimension over A and over Bop;
(ii) R has finite cohomology modules over A and over Bop;
(iii) the canonical morphisms B → RHomA(R,R) in D(ModBe), and A → RHomBop(R,R) in

D(ModAe), are both isomorphisms.

In the case A = B, we say R is a dualizing complex over A.

Whenever we refer to a dualizing complex over (A,B), we tacitly assume that A is left noetherian
and B is right noetherian.

Remark 4.2. There are many non-isomorphic dualizing complexes over a given k-algebra A.
The isomorphism classes of dualizing complexes are parameterized by the derived Picard group
DPic(A), whose elements are the isomorphism classes of two-sided tilting complexes. See [Ye99] and
[MY01].

We now give two easy examples.

Example 4.3. Suppose A is a Gorenstein noetherian ring, namely the bimodule R := A has finite
injective dimension as left and right module. Then R is a dualizing complex over A.
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Example 4.4. If A is a finite k-algebra, then the bimodule A∗ := Homk(A,k) is a dualizing complex
over A. In fact it is a rigid dualizing complex (see Definition 4.10).

Definition 4.5. Let R be a dualizing complex over (A,B). The duality functors induced by R are
the contravariant functors

D := RHomA(−, R) : D(ModA) → D(ModBop)

and
Dop := RHomBop(−, R) : D(ModBop) → D(ModA).

By [YZ99, Proposition 1.3] the functors D and Dop are a duality (i.e. an anti-equivalence)
of triangulated categories between Df(ModA) and Df(ModBop), restricting to a duality between
Db

f (ModA) and Db
f (ModBop).

Definition 4.6 [Ye96, YZ99]. Let R be a dualizing complex over (A,B). We say that R has the
Auslander property, or that R is an Auslander dualizing complex, if the conditions below hold.

(i) For every finite A-moduleM , every integers p > q, and every Bop-submoduleN ⊂ ExtpA(M,R),
one has ExtqBop(N,R) = 0.

(ii) The same holds after exchanging A and Bop.

Rings with Auslander dualizing complexes can be viewed as a generalization of Auslander regular
rings (cf. [Bj89, Le92]).

Example 4.7. If A is either the nth Weyl algebra or the universal enveloping algebra of a finite-
dimensional Lie algebra, then A is Auslander regular, and the bimodule R := A is an Auslander
dualizing complex.

Definition 4.8. An exact dimension function on ModA is a function

dim : ModA→ {−∞} ∪ R ∪ {infinite ordinals},
satisfying the following axioms:

(i) dim 0 = −∞;
(ii) for every short exact sequence 0 → M ′ → M → M ′′ → 0 one has dimM = max{dimM ′,

dimM ′′};
(iii) if M =

⋃
αMα then dimM = sup{dimMα}.

The basic examples of dimension functions are the Gelfand–Kirillov dimension, denoted by
GKdim, and the Krull dimension, denoted by Kdim. See [MR87, Section 6.8.4]. We now give another
dimension function.

Definition 4.9 [Ye96, YZ99]. Let R be an Auslander dualizing complex over (A,B). Given a finite
A-module M the canonical dimension of M with respect to R is

CdimR;AM := − inf{q | ExtqA(M,R) �= 0} ∈ Z ∪ {−∞}.
For any A-module M we define

CdimR;AM := sup{dimM ′ |M ′ ⊂M is finite}.
Likewise, we define CdimR;Bop N for a Bop-module N .

Often we abbreviate CdimR;A by dropping subscripts when no confusion can arise. According
to [YZ99, Theorem 2.1], Cdim is an exact dimension function on ModA and ModBop.
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The following concept is due to Van den Bergh. Let R be a dualizing complex over A. Since R
is a complex of Ae-modules, the complex R ⊗ R consists of modules over Ae ⊗ Ae ∼= (Ae)e. In the
definition below, RHomAe(A,R⊗R) is computed using the ‘outside’ Ae-module structure of R⊗R,
and the resulting complex retains the ‘inside’ Ae-module structure.

Definition 4.10 [vdB97, Definition 8.1]. Let R be a dualizing complex over A. If there is an
isomorphism

ρ : R→ RHomAe(A,R ⊗R)
in D(ModAe), then we call (R, ρ), or just R, a rigid dualizing complex. The isomorphism ρ is called
a rigidifying isomorphism.

A rigid dualizing complex, if it exists, is unique up to isomorphism, by [vdB97, Proposition 8.2].
A ring homomorphism A→ B is said to be finite if B is a finite A-module on both sides.

Definition 4.11 [YZ99, Definition 3.7]. Let A → B be a finite homomorphism of k-algebras.
Assume the rigid dualizing complexes (RA, ρA) and (RB , ρB) exist. Let TrB/A : RB → RA be a
morphism in D(ModAe). We say that TrB/A is a rigid trace if it satisfies the following two conditions.

(i) TrB/A induces isomorphisms

RB ∼= RHomA(B,RA) ∼= RHomAop(B,RA)

in D(ModAe).
(ii) The diagram

RB

Tr

��

ρB �� RHomBe(B,RB ⊗RB)

Tr⊗Tr
��

RA
ρA �� RHomAe(A,RA ⊗RA)

in D(ModAe) is commutative.

Often we say that TrB/A : (RB , ρB) → (RA, ρA) is a rigid trace morphism.

By [YZ99, Theorem 3.2], a rigid trace TrB/A is unique (if it exists). In particular taking the
identity map A → A and any two rigid dualizing complexes (R, ρ) and (R′, ρ′) over A, it follows
there is a unique isomorphism R

�−→ R′ that is a rigid trace; see [YZ99, Corollary 3.4]. Given another
finite homomorphism B → C such that the rigid dualizing complex (RC , ρC) and the rigid trace
TrC/B exist, the composition TrC/A := TrC/B ◦TrB/A is a rigid trace.

Finally we mention that by [YZ99, Corollary 3.6] the cohomology bimodules HiRA of the rigid
dualizing complex are central Z(A)-bimodules, where Z(A) is the center of A.

Example 4.12. Suppose that A is a finitely generated commutative k-algebra. Choose a finite
homomorphism k[t] → A where k[t] = k[t1, . . . , tn] is the polynomial algebra. Define RA :=
RHomk[t](A,Ωn

k[t]/k[n]), and consider this as an object of Db(ModAe). By [Ye99, Proposition 5.7],
the complex RA is an Auslander rigid dualizing complex, and in fact it is equipped with a canonical
rigidifying isomorphism ρA.

5. Quasi-coherent ringed schemes and localization

In order to study geometric properties of dualizing complexes, it is convenient to use the language
of schemes and quasi-coherent sheaves. See [YZ02, Theorems 0.1 and 0.2].
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Let (X,A) be a ringed space over k. Thus X is a topological space and A is a sheaf of (possibly
noncommutative) k-algebras on X. By an A-bimodule we mean a sheaf M of k-modules on X
together with a left A-module structure and a right A-module structure that commute with each
other. In other words, M is a module over the sheaf of rings A⊗kX Aop, where kX is the constant
sheaf k on X. An A-ring is a sheaf B of rings on X together with a ring homomorphism A → B.
Note that B is an A-bimodule.

Definition 5.1. Let X be k-scheme. An OX -ring A is called a quasi-coherent OX -ring if A is a
quasi-coherent OX-module on both sides. The pair (X,A) is then called a quasi-coherent ringed
scheme.

Let (X,A) be a quasi-coherent ringed scheme. An A-module M is called quasi-coherent if locally,
on every sufficiently small open set U , it has a free resolution

A|(J)
U → A|(I)U → M|U → 0;

cf. [EG71]. Equivalently, M is quasi-coherent as an OX -module. We denote the category of quasi-
coherent A-modules by QCohA.

Proposition 5.2. Let (X,A) be a quasi-coherent ringed scheme, let U ⊂ X be an affine open set
and A := Γ(U,A). The functor Γ(U,−) is an equivalence of categories QCohA|U → ModA.

Proof. This is a slight generalization of [EG71, Corollary 1.4.2 and Theorem 1.5.1]. See also [Ha77,
Corollary II.5.5].

Given an A-module M , we usually denote the corresponding quasi-coherent A|U -module by
A|U ⊗AM .

The following definition is due to Silver [Si67, p. 47].

Definition 5.3. Let A be a ring. An A-ring A′ is called a localization of A if A′ is a flat A-module
on both sides, and if the multiplication map A′ ⊗A A

′ → A′ is bijective.

Example 5.4. Let A be a ring and S ⊂ A a (left and right) denominator set. The ring of fractions
AS of A with respect to S is the prototypical example of a localization of A. For reference we call
such a localization an Ore localization.

We remind the reader that a denominator set S is a multiplicatively closed subset of A satisfying
the left and right Ore conditions and the left and right torsion conditions (see [MR87, § 2.1]). The left
Ore condition is that for all a ∈ A and s ∈ S there exist a′ ∈ A and s′ ∈ S such that as′ = a′s.
The left torsion condition is

{a ∈ A | as = 0 for some s ∈ S} ⊂ {a ∈ A | sa = 0 for some s ∈ S}.
The right Ore and torsion conditions for A are the respective left conditions for Aop.

Not all localizations are Ore, as we see in Example 5.7.
Below we give a list of some nice descent properties enjoyed by localization, that are proved in

[Si67, § 1].

Lemma 5.5. Let A be a ring and let A′ be a localization of A.

(1) For any A′-module M ′ the multiplication A′ ⊗AM
′ →M ′ is bijective.

(2) LetM ′ be an A′-module andM ⊂M ′ an A-submodule. Then the multiplication A′⊗AM →M ′

is injective.

(3) Let M be an A-module and φ : M → A′ ⊗AM the homomorphism φ(m) := 1 ⊗m. Then for
any A′-submodule N ′ ⊂ A′ ⊗AM the multiplication A′ ⊗A φ

−1(N ′) → N ′ is bijective.
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(4) In the situation of part (3), the A-submodule φ(M) ⊂ A′ ⊗AM is essential.

(5) Localization of a left noetherian ring is left noetherian.

Proposition 5.6. Let (X,A) be a quasi-coherent ringed scheme, and let V ⊂ U be affine open sets
in X. Define C := Γ(U,OX), C ′ := Γ(V,OX), A := Γ(U,A) and A′ := Γ(V,A).

(1) The multiplication maps C ′ ⊗C A→ A′ and A⊗C C
′ → A′ are bijective.

(2) A→ A′ is a localization.

(3) Let M be a quasi-coherent A-module. Then the multiplication map

A′ ⊗A Γ(U,M) → Γ(V,M)

is bijective.

Proof. Define C := Γ(U,OX) and C ′ := Γ(V,OX ). We first show that C ′ is a localization of C,
namely that φ : C → C ′ is flat and ψ : C ′⊗C C

′ → C ′ is bijective. This can be checked locally on V .
Choose an affine open covering V =

⋃
i Vi with Vi = SpecCsi for suitable elements si ∈ C. We note

that Csi
∼= C ′

si
∼= Γ(Vi,OX) for all i. Hence, restricting φ and ψ to Vi, namely applying Csi ⊗C −

to them, we obtain bijections.
Let M be any quasi-coherent A-module. By [Ha77, Proposition 5.1], multiplication

C ′ ⊗C Γ(U,M) → Γ(V,M)

is bijective.
Because A is a quasi-coherent left and right OX-module, the previous formula implies that

C ′ ⊗C A→ A′ and A⊗C C
′ → A′ are both bijective. In addition, since we now know that

A′ ⊗A Γ(U,M) ∼= C ′ ⊗C Γ(U,M),

we may conclude that
A′ ⊗A Γ(U,M) → Γ(V,M)

is bijective.
Finally we have a sequence of isomorphisms that are all compatible with the multiplication

homomorphisms into A′:

A′ ⊗A A
′ ∼= A′ ⊗A (A⊗C C

′) ∼= A′ ⊗C C
′

∼= (A⊗C C
′) ⊗C C

′ ∼= A⊗C (C ′ ⊗C C
′)

∼= A⊗C C
′ ∼= A′.

Example 5.7. Let X be an elliptic curve over C and O ∈ X the zero element for the group structure.
Let P ∈ X be any nontorsion point. Define U := X − {O} and V := X − {O,P}, which are affine
open sets, and C := Γ(U,OX ), C ′ := Γ(V,OX). By the previous proposition C → C ′ is a localization.
We claim this is not an Ore localization. If it were an Ore localization, then there would be some
noninvertible nonzero function s ∈ C that becomes invertible in C ′. Hence, the divisor of s on X
would be (s) = n(O − P ) for some positive integer n. In the group structure this would mean that
P is a torsion point, and this is a contradiction.

Definition 5.8. Let A be a ring, let M be an A-bimodule and let A′ be a localization of A. If the
canonical homomorphisms

A′ ⊗AM → A′ ⊗AM ⊗A A
′

and
M ⊗A A

′ → A′ ⊗AM ⊗A A
′

are bijective, then M is said to be evenly localizable to A′.
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Trivially the bimodule M := A is evenly localizable to A′. The next lemma is also easy and we
omit its proof.

Lemma 5.9. Let M be an A-bimodule. Suppose that A′ is a localization of A.

(1) If A is commutative, M is a central A-bimodule and A′ is an A-algebra, then M is evenly
localizable to A′.

(2) If there is a short exact sequence of A-bimodules 0 → L→M → N → 0 with L and N evenly
localizable to A′, then M is also evenly localizable to A′.

(3) Suppose that M ∼= limi→Mi for some directed system of A-bimodules {Mi}. If each Mi is
evenly localizable to A′, then so is M .

Proposition 5.10. Let C be a commutative ring and let M be a C-bimodule. Define U := SpecC.
The following conditions are equivalent.

(i) For any multiplicatively closed subset S ⊂ C, with localization CS , M is evenly localizable to
CS .

(ii) M is evenly localizable to C ′ := Γ(V,OU ) for every affine open set V ⊂ U .

(iii) There is a sheaf of OU -bimodules M, quasi-coherent on both sides, with M ∼= Γ(U,M). Such
M is unique up to a unique isomorphism.

Proof. (i) ⇒ (ii) Let us write

φ : C ′ ⊗C M → C ′ ⊗C M ⊗C C
′.

As in the proof of Proposition 5.6 we choose an affine open covering V =
⋃
i Vi with Vi = SpecCsi

and C ′
si
∼= Csi . It suffices to show that the homomorphism φi obtained by applying C ′

si
⊗C′ − to φ

(localizing on the left) is bijective for all i. Using the hypothesis (i) with S := {sli}l∈N and the fact
that Csi → C ′

si
is bijective we get

C ′
si
⊗C′ (C ′ ⊗C M) ∼= Csi ⊗C M ⊗C Csi

and

C ′
si
⊗C′ (C ′ ⊗C M ⊗C C

′) ∼= Csi ⊗C M ⊗C Csi ⊗C C
′

∼= Csi ⊗C M ⊗C Csi .

So φi is bijective.
Similarly, one shows that

M ⊗C C
′ → C ′ ⊗C M ⊗C C

′

is bijective.
(ii) ⇒ (i) For any element s ∈ S let V := SpecCs ⊂ U . By assumption,

Cs ⊗C M ∼= Cs ⊗C M ⊗C Cs ∼= M ⊗C Cs.

Taking direct limit over s ∈ S, we get

CS ⊗C M ∼= CS ⊗C M ⊗C CS ∼= M ⊗C CS .

(ii) ⇒ (iii) Let M := OU⊗CM be the sheafification of the (left) C-moduleM to U . By definition,
M is a quasi-coherent left OU -module.

Given an affine open set V ⊂ U write C ′ := Γ(V,OU ). By Proposition 5.6 the multiplication
map C ′ ⊗C M → Γ(V,M) is a bijection. Therefore, Γ(V,M) ∼= C ′ ⊗C M ⊗C C

′. Since M is evenly
localizable to C ′, it follows that M ⊗C C

′ → Γ(V,M) is also bijective. We conclude that M is also
a quasi-coherent right OU -module.
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Regarding the uniqueness, suppose that N is another OU -bimodule quasi-coherent on both sides
such that Γ(U,N ) ∼= M as bimodules. For any affine open set V as above, we get an isomorphism
of C ′-bimodules

Γ(V,M) ∼= C ′ ⊗C M ⊗C C
′ ∼= Γ(V,N )

which is functorial in V . Therefore, M ∼= N as OU -bimodules.
(iii) ⇒ (ii) Since M is quasi-coherent on both sides, for any affine open set V = SpecC ′ we have

Γ(V,M) = C ′ ⊗C M = M ⊗C C
′,

so M is evenly localizable to C ′.

The relation between even localization and Ore localization of a ring is explained in the next
theorem.

Theorem 5.11. Let C be a commutative ring, let A be a C-ring and S ⊂ C a multiplicatively
closed subset. Denote by CS the ring of fractions of C with respect to S. Then the following two
conditions are equivalent.

(i) The image S̄ of S in A is a denominator set, with ring of fractions AS̄ .

(ii) The C-bimodule A is evenly localizable to CS.

When these conditions hold, the multiplication map

CS ⊗C A⊗C CS → AS̄

is bijective.

Proof. (i) ⇒ (ii) Since AS̄ is the left ring of fractions of A with respect to S̄ (see [MR87, § 2.1.3]),
it follows that the homomorphism CS ⊗C A→ AS̄ is bijective. On the other hand, since AS̄ is also
the right ring of fractions, A⊗C CS → AS̄ is bijective.

(ii) ⇒ (i) Write
Q := CS ⊗C A⊗C CS

and
φ : A→ Q, φ(a) := 1 ⊗ a⊗ 1.

The assumption that A is evenly localizable to CS implies that

Ker(φ) = {a ∈ A | as = 0 for some s ∈ S}
= {a ∈ A | sa = 0 for some s ∈ S},

verifying the torsion conditions.
The even localization assumption also implies that given a1 ∈ A and s1 ∈ S there are a2 ∈ A

and s2 ∈ S such that
s−1
1 ⊗ a1 ⊗ 1 = 1 ⊗ a2 ⊗ s−1

2 ∈ Q.

Multiplying this equation by s1 on the left and by s2 on the right we obtain 1 ⊗ a1s2 ⊗ 1 =
1⊗ s1a2 ⊗ 1. Therefore, φ(s1a2 − a1s2) = 0. Since Q ∼= A⊗C CS there exists some s3 ∈ S such that
(s1a2 − a1s2)s3 = 0 in A, i.e.

s1(a2s3) = a1(s2s3) ∈ A.

We have verified the right Ore condition. The left Ore condition is verified the same way.

Remark 5.12. The theorem applies to any ring A and any commutative multiplicatively closed
subset S ⊂ A, since we can take C := Z[S] ⊂ A.

We will need a geometric interpretation of Theorem 5.11.
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Corollary 5.13. Let C be a commutative ring, let U := SpecC and let A be a C-ring. The
following conditions are equivalent:

(i) for every multiplicatively closed set S ⊂ C the C-bimodule A is evenly localizable to CS ;

(ii) for every multiplicatively closed set S ⊂ C its image S̄ ⊂ A is a denominator set;

(iii) there is a quasi-coherent OU -ring A such that Γ(U,A) ∼= A as C-rings.

When these conditions hold the quasi-coherent OU -ring A is unique up to a unique isomorphism.

Proof. (i) and (ii) are equivalent by Theorem 5.11. The implication (iii) ⇒ (i) is a special case of
Proposition 5.10. It remains to show that (i) ⇒ (iii).

By Proposition 5.10 there is an OU -bimodule A, quasi-coherent on both sides, such that
A ∼= Γ(U,A) as C-bimodules. The bimodule A is unique up to a unique isomorphism. Next, by
Theorem 5.11, for any s ∈ C, letting S := {si}i∈N, the image S̄ ⊂ A is a denominator set.
Therefore, on V := SpecCs we have canonical isomorphisms

Γ(V,A) ∼= Cs ⊗C A⊗C Cs ∼= AS̄ ,

where AS̄ is the ring of fractions of A with respect to S̄. Hence, A has a unique structure of
quasi-coherent OX-ring.

Here is an (somewhat artificial) example of a C-ring A satisfying the conditions of Corollary 5.13,
but the Ce-ring Ae fails to satisfy them.

Example 5.14. Let C := Q[t] with t a variable, and let U := SpecC. Take A := Q(t)[a;σ], an Ore
extension of the field Q(t), where σ is the automorphism σ(t) = −t. Since every nonzero element
s ∈ C is invertible in A, the C-ring A is evenly localizable to CS for any multiplicatively closed
subset S ⊂ C. Hence, there is a quasi-coherent ringed scheme (U,A) with Γ(U,A) ∼= A as C-rings.
(In fact, A is a constant sheaf on U .) Likewise there is a quasi-coherent ringed scheme (U,Aop).

We claim that there does not exist a quasi-coherent ringed scheme (U2,Ae) such that Γ(U2,Ae) ∼=
Ae as Ce-rings. By Corollary 5.13, it suffices to exhibit a multiplicatively closed subset S ⊂ Ce that is
not a denominator set in Ae. Consider the element s := t⊗1−1⊗ t ∈ Ce and the set S := {sn}n∈N.
Let µ : Ae → A be the multiplication map µ(a1 ⊗ a2) := a1a2, which is a homomorphism of
(left) Ae-modules, and denote by I the left ideal Ker(µ). Then Ae · s ⊂ I. On the other hand
s(a⊗ 1) = ta⊗ 1−a⊗ t, so µ(s(a⊗ 1)) = ta−at = 2ta, and by induction µ(sn(a⊗ 1)) = (2t)na �= 0
for all n � 0. We conclude that sn(a⊗ 1) /∈ Ae · s, so S fails to satisfy the left Ore condition.

Example 5.15. The quasi-coherent ringed scheme (U,A) of the previous example also has the fol-
lowing peculiarity: the Ce-module A is not supported on the diagonal ∆(U) ⊂ U2. Indeed, for every
n � 0 one has sna = (2t)na �= 0.

Definition 5.16. Let C be a commutative k-algebra and M a C-bimodule. A differential
C-filtration on M is an exhaustive, bounded below filtration F = {FiM} where each FiM is a
C-sub-bimodule, and grFM is a central C-bimodule. If M admits some differential C-filtration
then we call M a differential C-bimodule.

Localization of a ring was defined in Definition 5.3, and even localization of a bimodule was
introduced in Definition 5.8.

Proposition 5.17. Let C be a commutative k-algebra and let M be a differential C-bimodule.
If C ′ is a localization of C, then M is evenly localizable to C ′.

Proof. If M is a central C-bimodule, then according to Lemma 5.9(1) M is evenly localizable to C ′.
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Now let M be a C-bimodule equipped with a differential C-filtration F . Say Fi0−1M = 0.
We prove by induction on i � i0 that FiM is evenly localizable to C ′. First Fi0M is central, so the
above applies to it. For any i there is an exact sequence

0 → Fi−1M → FiM → grFi M → 0.

By the previous paragraph and by the induction hypothesis Fi−1M and grFi M are evenly localizable
to C ′. The flatness of C → C ′ extends this to FiM , see Lemma 5.9(2). Finally we use Lemma 5.9(3).

Corollary 5.18. Let C be a finitely generated commutative k-algebra, A a differential C-ring of
finite type, s ∈ C and S := {si}i∈N. Then:

(1) the image S̄ of S in A is a denominator set;

(2) let Cs and As be the Ore localizations S, then Cs is a finitely generated k-algebra and As is a
differential Cs-ring of finite type.

Proof. (1) Use Proposition 5.17 and Theorem 5.11.
(2) Suppose that F = {FiA} is a differential C-filtration of finite type. Then setting

FiAs := Cs ⊗C (FiA) ⊗C Cs ⊂ As

we obtain a filtration F of As such that grFAs ∼= Cs ⊗C grFA as graded Cs-algebras.

Remark 5.19. The ideas in [KL00, Theorem 4.9] can be used to show the following. In the setup of
the previous corollary let M be a finite A-module and M̄ := Im(M → As ⊗AM). Then

GKdimA M̄ = GKdimAs(As ⊗AM).

Corollary 5.20. Let C be a commutative k-algebra, let U := SpecC and let A be a differential
C-ring.

(1) There is a quasi-coherent OU -ring A, unique up to a unique isomorphism, such that
Γ(U,A) ∼= A as C-rings.

(2) For any multiplicatively closed set S ⊂ C its image S̄ ⊂ A is a denominator set.

(3) Given an affine open set V ⊂ U let C ′ := Γ(V,OU ). Then A′ := C ′ ⊗C A⊗C C
′ is a k-algebra

and A→ A′ is a localization of rings. If A is noetherian then so is A′.

Proof. A is a differential C-bimodule, so by Proposition 5.17 A is evenly localizable to CS for
any multiplicatively closed set S ⊂ C. By Corollary 5.13 there is a quasi-coherent OU -ring A,
and by Proposition 5.6 we have A′ ∼= Γ(V,A). The assertion about noetherian rings follows from
Lemma 5.5(5).

Proposition 5.21. Let C be a commutative k-algebra, let U := SpecC, let M be a Ce-module and
let M := OU2 ⊗Ce M , the quasi-coherent OU2-module associated to M . Assume Ce is noetherian.
Then the following conditions are equivalent:

(i) M is a differential C-bimodule;

(ii) M is supported on the diagonal ∆(U) ⊂ U2.

Proof. (i) ⇒ (ii) Denote by I := Ker(Ce � C) and I := OU2 ⊗Ce I. So I is an ideal defining the
diagonal ∆(U). Suppose F = {FiM} is a differential C-filtration of M , with Fi0−1M = 0. Then for
all i � i0 we have

Ii−i0+1 · FiM = 0.
It follows that the OU2-module FiM := OU2⊗CeFiM is supported on ∆(U). However, M =

⋃
FiM.
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(ii) ⇒ (i) Let {Mα} be the set of coherent OU2-submodules of M, so M =
⋃

Mα. Now Mα

is a coherent OU2-module supported on the diagonal ∆(U), so there is some integer iα � 0 such
that I iα+1 · Mα = 0. It follows that the Ce-module Mα := Γ(U2,Mα) satisfies Iiα+1 · M = 0.
And M =

⋃
Mα.

Define a filtration F on M by FiM := HomCe(Ce/Ii+1,M) for i � 0, and F−1M := 0. Then
Mα ⊂ FiαM , and this implies that M =

⋃
FiM . Finally I · FiM ⊂ Fi−1M , and hence grFi M is a

central C-bimodule.

6. Localization of dualizing complexes

In this section we study the behavior of rigid dualizing complexes over rings with respect to local-
ization (cf. Definition 5.8).

Definition 6.1. Let A→ A′ be a localization homomorphism between two noetherian k-algebras.
Suppose the rigid dualizing complexes (R, ρ) and (R′, ρ′) of A and A′, respectively, exist. A rigid
localization morphism is a morphism

qA′/A : R→ R′

in D(ModAe) satisfying the conditions below.

(i) The morphisms A′ ⊗A R→ R′ and R⊗A A
′ → R′ induced by qA′/A are isomorphisms.

(ii) The diagram

R
ρ ��

q

��

RHomAe(A,R ⊗R)

q⊗q
��

R′ ρ′ �� RHom(A′)e(A′, R′ ⊗R′)

in D(ModAe) is commutative, where q := qA′/A.

We sometimes express this by saying that qA′/A : (R, ρ) → (R′, ρ′) is a rigid localization morphism.

We now give a generalization of [YZ03, Theorem 3.8].

Theorem 6.2. Let A be a noetherian k-algebra and let A′ be a localization of A. Assume that A
has a dualizing complex R such that the cohomology bimodules HiR are evenly localizable to A′.
Then we have the following.

(1) The complex

R′ := A′ ⊗A R⊗A A
′

is a dualizing complex over A′.
(2) If R is an Auslander dualizing complex over A, then R′ is an Auslander dualizing complex over

A′.
(3) SupposeR is a rigid dualizing complex over A with rigidifying isomorphism ρ, and Ae is noethe-

rian. Then R′ is a rigid dualizing complex over A′. Furthermore R′ has a unique rigidifying
isomorphism ρ′ such that the morphism qA′/A : R → R′ defined by r �→ 1 ⊗ r ⊗ 1 is a rigid
localization morphism.

(4) In the situation of part (3), the rigid localization morphism qA′/A : (R, ρ) → (R′, ρ′) is unique.

Proof. (1) This follows essentially from the proof of [YZ99, Theorem 1.13]. There A was commu-
tative and A′ was the localization of A at some prime ideal, but the arguments are valid for an
arbitrary localization A′.
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(2) To check the Auslander property for R′ let M ′ be any finite A′-module. By Lemma 5.5(2)
there is a finite A-module M such that M ′ ∼= A′ ⊗AM . For any i, [YZ03, Lemma 3.7(1)] implies
that

ExtiA′(M ′, R′) ∼= ExtiA(M,R′) ∼= ExtiA(M,R) ⊗A A
′

as (A′)op-modules. Given any (A′)op-submodule N ′ ⊂ ExtiA′(M ′, R′), Lemma 5.5(3) tells us that
there is an Aop-submodule N ⊂ ExtiA(M,R) such that N ′ ∼= N ⊗A A

′. For such N we have

Extj(A′)op(N ′, R′) ∼= A′ ⊗A ExtjAop(N,R)

which is 0 for all j < i. By symmetry we get the other half of the Auslander property for R′.
(3) As in the proof of [YZ03, Theorem 3.8(2)] we have a canonical isomorphism

A′ ⊗A RHomAe(A,R ⊗R) ⊗A A
′ �−→ RHom(A′)e(A

′, R′ ⊗R′)

in D(Mod (A′)e). This defines a rigidifying isomorphism ρ′ that respects qA′/A as depicted in the
diagram in Definition 6.1. Given any other morphism

ρ′′ : R′ → RHom(A′)e(A
′, R′ ⊗R′)

that renders the diagram commutative, applying the functor A′ ⊗A − ⊗A A
′ to the whole diagram

we deduce that ρ� = ρ′.
(4) Write q1 := qA/A′ . Suppose q2 : (R, ρ) → (R′, ρ′) is another rigid localization morphism.

Consider the commutative diagrams

R
ρ ��

qi

��

RHomAe(A,R ⊗R)

qi⊗qi

��
R′ ρ′ �� RHom(A′)e(A′, R′ ⊗R′)

in D(ModAe). Applying the base change functor (A′)e ⊗Ae − to these diagrams we obtain diagrams

A′ ⊗A R⊗A A
′ 1⊗ρ⊗1 ��

1⊗qi⊗1

��

A′ ⊗A RHomAe(A,R ⊗R) ⊗A A
′

1⊗(qi⊗qi)⊗1
��

R′ ρ′ �� RHom(A′)e(A′, R′ ⊗R′)

consisting of isomorphisms in D(Mod (A′)e); cf. [YZ03, Proof of Theorem 3.8(2)]. We obtain an
isomorphism τ : R′ → R′ such that

1 ⊗ q2 ⊗ 1 = τ ◦ (1 ⊗ q1 ⊗ 1) : A′ ⊗A R⊗A A
′ → R′.

However, then τ : (R′, ρ′) → (R′, ρ′) is a rigid trace morphism. By [YZ03, Theorem 3.2], τ has to
be the identity. This implies 1 ⊗ q2 ⊗ 1 = 1 ⊗ q1 ⊗ 1 and therefore q2 = q1.

The next proposition guarantees that under suitable assumptions the rigid trace localizes.

Proposition 6.3. Let

A ��

��

A′

��
B �� B′

be a commutative diagram of k-algebras, where the horizontal arrows are localizations, the vertical
arrows are finite, and the multiplication maps A′⊗AB → B′ and B⊗AA

′ → B′ are bijective. Assume
A,A′, Ae, B,B′ and Be are all noetherian. Also assume the rigid dualizing complexes (RA, ρA)
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and (RB , ρB) exist, and so does the rigid trace morphism TrB/A : RB → RA. By Theorem 6.2 the
complexes RA′ := A′ ⊗A RA ⊗A A

′ and RB′ := B′ ⊗B RB ⊗B B
′ are rigid dualizing complexes over

A′ and B′, respectively, with induced rigidifying isomorphisms ρA′ and ρB′ . Then the morphism

TrB′/A′ := 1 ⊗ TrB/A⊗1 : RB′ → RA′

is a rigid trace.

Proof. We begin by showing that the morphism ψ′ : RB′ → RHomA′(B′, RA′) induced by TrB′/A′

is an isomorphism. Let us recall how ψ′ is defined: one chooses a quasi-isomorphism RA′ → I ′

where I ′ is a bounded below complex of injective (A′)e-modules. Then TrB′/A′ is represented by an
actual homomorphism of complexes τ ′ : RB′ → I ′. The formula for ψ′ : RB′ → HomA′(B′, I ′) is
ψ′(β′)(b′) = τ ′(b′β′) for β′ ∈ RB′ and b′ ∈ B′.

Let RA → I be a quasi-isomorphism where I is a bounded below complex of injective
Ae-modules, and let τ : RB → I be a homomorphism of complexes representing TrB/A. We know
that the homomorphism ψ : RB → HomA(B, I) given by the formula ψ(β)(b) = τ(bβ) is a quasi-
isomorphism.

Since RA′ ∼= A′ ⊗A I ⊗A A
′ there is a quasi-isomorphism A′ ⊗A I ⊗A A

′ → I ′, and using it we
can assume that τ ′ = 1 ⊗ τ ⊗ 1 as morphisms

RB′ = A′ ⊗A RB ⊗A A
′ → A′ ⊗A I ⊗A A

′ → I ′.

Thus, we get a commutative diagram

RB
ψ ��

��

RHomA(B,RA)

��
RB′

ψ′
�� RHomA′(B′, RA′)

in D(ModAe). Applying the base change −⊗Ae (A′)e to the diagram we conclude that ψ′ = 1⊗ψ⊗1.
So it is an isomorphism.

By symmetry RB′ → RHom(A′)op(B′, RA′) is also an isomorphism.
Next we have to show that the diagram

RB′
ρB′ ��

Tr

��

RHom(B′)e(B′, RB′ ⊗RB′)

Tr⊗Tr
��

RA′
ρA′ �� RHom(A′)e(A′, RA′ ⊗RA′)

(6.4)

is commutative. This is true since (6.4) was obtained by applying − ⊗Ae (A′)e to the following
commutative diagram.

RB
ρB ��

Tr

��

RHomBe(B,RB ⊗RB)

Tr⊗Tr
��

RA
ρA �� RHomAe(A,RA ⊗RA)

If a k-algebra A has an Auslander rigid dualizing complex R, then we write CdimA := CdimR;A

for this preferred dimension function.
We finish this section with a digression from our main theme, to present the following corollary to

Theorem 6.2.
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Corollary 6.5. Suppose char k = 0, A is the nth Weyl algebra over k and D is its total ring of
fractions, i.e. the nth Weyl division ring. Then D[2n] is an Auslander rigid dualizing complex over
D, and hence the canonical dimension of D is CdimDD = 2n.

Proof. By [Ye00], A[2n] is a rigid Auslander dualizing complex over A. Now use Theorem 6.2 with
A′ := D.

We see that unlike the Gelfand–Kirillov dimension GKdim, which cannot distinguish between
the various Weyl division rings (since GKdimD = ∞), the canonical dimension is an intrinsic
invariant of D that does recover the number n. Moreover, this fact can be expressed as a ‘classical’
formula, namely

ExtiD⊗Dop(D,D ⊗D) ∼=
{
D if i = 2n,
0 otherwise.

7. Perverse modules and the Auslander condition

In this section we discuss t-structures on the derived category Db
f (ModA). We begin by recalling

the definition of a t-structure and its basic properties, following [KS90, ch. X].

Definition 7.1. Suppose that D is a triangulated category and D�0,D�0 are two full subcategories.
Let D�n := D�0[−n] and D�n := D�0[−n]. We say that (D�0,D�0) is a t-structure on D if:

(i) D�−1 ⊂ D�0 and D�1 ⊂ D�0;
(ii) HomD(M,N) = 0 for M ∈ D�0 and N ∈ D�1;
(iii) for any M ∈ D, there is a distinguished triangle

M ′ →M →M ′′ →M ′[1]

in D with M ′ ∈ D�0 and M ′′ ∈ D�1.

When these conditions are satisfied we define the heart of D to be the full subcategory
D0 := D�0 ∩D�0.

Given a t-structure there are truncation functors τ�n : D → D�n and τ�n : D → D�n, and
functorial morphisms τ�nM →M , M → τ�nM and τ�n+1M → (τ�nM)[1] such that

τ�nM →M → τ�n+1M → (τ�nM)[1]

is a distinguished triangle in D. One shows that the heart D0 is an abelian category, and the functor

H0 := τ�0τ�0 ∼= τ�0τ�0 : D → D0

is a cohomological functor.

Example 7.2. Let A be a left noetherian ring. The standard t-structure on Db
f (ModA) is

Db
f (ModA)�0 := {M ∈ Db

f (ModA) | HjM = 0 for all j > 0}
and

Db
f (ModA)�0 := {M ∈ Db

f (ModA) | HjM = 0 for all j < 0}.
For a complex

M = (· · · →Mn dn

−→Mn+1 → · · · )
the truncations are

τ�nM = (· · · →Mn−2 →Mn−1 → Ker(dn) → 0 → · · · )

643



A. Yekutieli and J. J. Zhang

and
τ�nM = (· · · → 0 → Coker(dn−1) →Mn+1 →Mn+2 → · · · ).

The heart Db
f (ModA)0 is equivalent to Modf A.

Other t-structures on Db
f (ModA) are referred to as perverse t-structures, and the notation

(pDb
f (ModA)�0, pDb

f (ModA)�0) is used. The letter ‘p’ stands for ‘perverse’, but often it will also
signify a specific perversity function (see below).

Now suppose for i = 1, 2 we are given triangulated categories Di, endowed with t-structures
(D�0

i ,D�0
i ). An exact functor F : D1 → D2 is called t-exact if F (D�0

1 ) ⊂ D�0
2 and F (D�0

1 ) ⊂ D�0
2 .

The functor F : D0
1 → D0

2 between these abelian categories is then exact. To apply this defini-
tion to a contravariant functor F we note that ((D�0)op, (D�0)op) is a t-structure on the opposite
category Dop. A contravariant triangle functor F : D1 → D2 is called t-exact if F (D�0

1 ) ⊂ D�0
2 and

F (D�0
1 ) ⊂ D�0

2 .

Example 7.3. Let A be a left noetherian k-algebra and let B be a right noetherian k-algebra.
Suppose that we are given a dualizing complex R over (A,B), and let D and Dop be the duality
functors that R induces; see Definitions 4.1 and 4.5. Put the standard t-structure on Db

f (ModBop)
(see Example 7.2). Define subcategories

pDb
f (ModA)�0 := {M ∈ Db

f (ModA) | DM ∈ Db
f (ModBop)�0}

and
pDb

f (ModA)�0 := {M ∈ Db
f (ModA) | DM ∈ Db

f (ModBop)�0}.
Since D : Db

f (ModA) → Db
f (ModBop) is a duality it follows that

(pDb
f (ModA)�0, pDb

f (ModA)�0)

is a t-structure on Db
f (ModA), which we call the perverse t-structure induced by R. The functors D

and Dop are t-exact, and

D : pDb
f (ModA)0 → Db

f (ModBop)0 ≈ Modf B
op

is a duality of abelian categories.

Definition 7.4. Suppose that A is a noetherian k-algebra with rigid dualizing complex RA. The
perverse t-structure induced on Db

f (ModA) by RA is called the rigid perverse t-structure. An object
M ∈ pDb

f (ModA)0 is called a perverse A-module.

In the remainder of this section we concentrate on another method of producing t-structures
on Db

f (ModA). This method is of a geometric nature, and closely resembles the t-structures that
originally appeared in [BBD81].

A perversity is a function p : Z → Z satisfying p(i) − 1 � p(i + 1) � p(i). We call the function
p(i) = 0 the trivial perversity, and the function p(i) = −i is called the minimal perversity.

Let A be a ring. Fix an exact dimension function dim on ModA (see Definition 4.8). For an
integer i let Mi(dim) be the full subcategory of ModA consisting of the modules M with dimM � i.
The subcategory Mi(dim) is localizing, and there is a functor

ΓMi(dim) : ModA→ ModA

defined by
ΓMi(dim)M := {m ∈M | dimAm � i} ⊂M.

The functor ΓMi(dim) has a derived functor

RΓMi(dim) : D+(ModA) → D+(ModA)

644



Differential algebras

calculated using injective resolutions. For M ∈ D+(ModA) the jth cohomology of M with supports
in Mi(dim) is defined to be

Hj
Mi(dim)M := HjRΓMi(dim)M.

The definition above was introduced in [Ye96, YZ03]. It is based on the following geometric paradigm.

Example 7.5. If A is a commutative noetherian ring of finite Krull dimension and we set dimM :=
dim SuppM for a finite module M , then

Hj
Mi(dim)M

∼= lim→ Hj
ZM

where Z runs over the closed sets in SpecA of dimension � i.

Definition 7.6. Let A be a left noetherian ring. Given an exact dimension function dim on ModA
and a perversity p, define subcategories

pDb
f (ModA)�0 := {M ∈ Db

f (ModA) | dim HjM < i for all i, j with j > p(i)}

and
pDb

f (ModA)�0 := {M ∈ Db
f (ModA) | Hj

Mi(dim)
M = 0 for all i, j with j < p(i)}

of Db
f (ModA).

Example 7.7. Suppose dim is any exact dimension function such that dimM > −∞ for all M �= 0.
Take the trivial perversity p(i) = 0. Then

pDb
f (ModA)�0 = Db

f (ModA)�0

and
pDb

f (ModA)�0 = Db
f (ModA)�0,

namely the standard t-structure on Db
f (ModA).

The following lemma is straightforward.

Lemma 7.8. In the situation of Definition 7.6, let p be the minimal perversity, namely p(i) = −i,
and let M ∈ Db

f (ModA). Then:

(1) M ∈ pDb
f (ModA)�0 if and only if dim H−iM � i for all i;

(2) M ∈ pDb
f (ModA)�0 if and only if Hj

Mi(dim)
M = 0 for all j < −i, if and only if RΓMi(dim)M ∈

Db
f (ModA)�−i for all i.

Recall that if R is an Auslander dualizing complex over the rings (A,B) then the canonical
dimension CdimR (Definition 4.9) is an exact dimension function on ModA.

Theorem 7.9. Let A be a left noetherian k-algebra and B a right noetherian k-algebra. Suppose
R is an Auslander dualizing complex over (A,B). Let dim be the canonical dimension function
CdimR;A on ModA, and let p be the minimal perversity p(i) = −i. Then:

(1) the pair

(pDb
f (ModA)�0, pDb

f (ModA)�0)

from Definition 7.6 is a t-structure on Db
f (ModA);

(2) put on Db
f (ModBop) the standard t-structure, then the duality functors D and Dop determined

by R (see Definition 4.5) are t-exact.
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Proof. In the proof we use the abbreviations D(A) := Db
f (ModA), etc.

If M ∈ pD(A)�−1, then M [−1] ∈ pD(A)�0. By Lemma 7.8(1) we get dimH−i(M [−1]) � i.
Changing indices, we get dim H−iM � i − 1 � i. Again using Lemma 7.8(1), we see that the first
part of condition (i) of Definition 7.1 is verified. The second part of condition (i) is verified similarly
using Lemma 7.8(2).

By the Auslander condition dimH−j R = dimExt−jBop(B,R) � j for all j. Therefore, according
to Lemma 7.8(1) we get R ∈ pD(A)�0. On the other hand, since

Hj
Mi(dim)R

∼= lim−→
a∈F

ExtjA(A/a, R),

where F is the Gabriel filter of left ideals corresponding to Mi(dim), the Auslander condition and
Lemma 7.8(2) imply that R ∈ pD(A)�0.

Let M ′ →M →M ′′ →M ′[1] be a distinguished triangle in D(A). Since dim is exact, and using
the criterion in Lemma 7.8(1), we see that if M ′ and M ′′ are in pD(A)�0, then so is M . Likewise,
applying the functor Hj

Mi(dim) to this triangle and using Lemma 7.8(2) it follows that if M ′ and M ′′

are in pD(A)�0, then so is M .
Suppose that we are given M ∈ pD(A)�0, N ∈ pD(A)�1 and a morphism φ : M → N . In order

to prove that φ = 0 we first assume that M is a single finite module, concentrated in some degree

−l, with l � 0 and dimM � l. Then φ factors through M
φ′−→ RΓMl(dim)N → N . Now M ∈ D(A)�−l

and, by Lemma 7.8(2), RΓMl(dim)N ∈ D(A)�−l+1; hence φ′ = 0. Next let us consider the general
case. Let H−lM be the lowest nonzero cohomology of M . We have a distinguished triangle

T := ((H−lM)[l] →M →M ′′ → (H−lM)[l + 1])

where M ′′ is the standard truncation of M . According to Lemma 7.8(1) we have dimH−lM �
l, so by the previous argument the composition (H−lM)[l] → M

φ−→ N is zero. So applying
HomD(ModA)(−, N) to the triangle T , we conclude that φ comes from some morphism φ′′ : M ′′ → N .
Since M ′′ ∈ pD(A)�0 and by induction on the number of nonvanishing cohomologies we have φ′′ = 0.
Therefore, condition (ii) is verified.

Next suppose that M ∈ D(Bop)�0. In order to prove that DopM ∈ pD(A)�0 we can assume that
M is a single finite Bop-module, concentrated in degree −l for some l � 0. By [YZ03, Proposition
5.2] and its proof we deduce that

RΓMi(dim)D
opM = RΓMi(dim) RHomBop(M,R)

∼= RHomBop(M,RΓMi(dim)R).

As we saw above, the Auslander condition implies that RΓMi(dim)R ∈ D(Bop)�−i. However, M ∈
D(Bop)�−l, and hence

RHomBop(M,RΓMi(dim)R) ∈ D(A)�l−i ⊂ D(A)�−i.

Now the criterion in Lemma 7.8(2) tells us that DopM ∈ pD(A)�0.
LetM ∈ D(Bop)�0. We wish to prove that DopM ∈ pD(A)�0. To do so we can assume thatM is a

single finite module, concentrated in some degree l � 0. Then for every i, H−iDopM = Ext−iBop(M,R)
has dim H−iDopM � i. Now apply Lemma 7.8(1).

At this point we know that Dop(D(Bop)�0) ⊂ pD(A)�0 and Dop(D(Bop)�0) ⊂ pD(A)�0.
Let M ∈ D(A) be an arbitrary complex, and consider the distinguished triangle

τ�−1DM → DM → τ�0DM → (τ�−1DM)[1]

in D(Bop) obtained from the standard t-structure there. Applying Dop we obtain a distinguished
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triangle
M ′ →M →M ′′ →M ′[1]

in D(A), where M ′ := Dopτ�0DM and M ′′ := Dopτ�−1DM . This proves that condition (iii) is
fulfilled, so we have a t-structure on D(A), and also that the functor Dop is t-exact.

To finish the proof we invoke [KS90, Corollary 10.1.18], which tells us that D is also t-exact.

Problem 7.10. Let A be a left noetherian ring. Find necessary and sufficient conditions on a dimen-
sion function dim on ModA, and on a perversity function p, such that Theorem 7.9(1) holds.

Remark 7.11. The idea for Definition 7.6 comes from [KS90, p. 438, Exercise X.2]. In his recent
paper Kashiwara [Ka03] considered similar t-structures. In particular, his results imply that when
A = B is a commutative finitely generated k-algebra, and R is the rigid dualizing complex of A,
then Theorem 7.9 holds for any perversity function p. (Note that here canonical dimension coincides
with Krull dimension.) In part (2) of the theorem one has to put the perverse t-structure determined
by the dual perversity p∗(i) := −i− p(i) on Db

f (ModAop).

8. The rigid dualizing complex of a differential k-algebra

We begin this section with the following consequence of previous work.

Theorem 8.1. Let A be a differential k-algebra of finite type. Then A has an Auslander rigid
dualizing complex RA. For a finite A-module M the canonical dimension CdimM coincides with
the Gelfand–Kirillov dimension GKdimM .

Proof. According to Theorem 3.1, A has a nonnegative exhaustive filtration G = {GiA} such that
grGA is a commutative, finitely generated, connected graded k-algebra. Now use [YZ99, Corollary
6.9].

Recall that a ring homomorphism f : A → B is called finite centralizing if there exist elements
b1, . . . , bn ∈ B that commute with all elements of A and B =

∑
iAbi.

Proposition 8.2. Let A be a differential k-algebra of finite type and f : A→ B a finite centralizing
homomorphism. Then B is also a differential k-algebra of finite type, and the rigid trace TrB/A :
RB → RA exists.

Proof. By Theorem 3.1 we can find a differential k-filtration of finite type F = {FiA} of A such
that grFA is connected. By [YZ99, Lemma 6.13] and its proof there is a filtration F = {FiB} of
B such that grFB is connected, f(FiA) ⊂ FiB and grF (f) : grFA → grFB is a finite centralizing
homomorphism. It follows that grFB is finite over its center, so B is a differential k-algebra of finite
type. By [YZ99, Theorem 6.17] the rigid trace TrB/A : RB → RA exists.

Let A be a differential k-algebra of finite type with rigid dualizing complex RA. The derived
category Db

f (ModA) has on it the rigid perverse t-structure induced by RA, whose heart is the
category of perverse A-modules pDb

f (ModA)0. See Definition 7.4.

Proposition 8.3. Let A → B be a finite centralizing homomorphism between two differential
k-algebras of finite type. Denote by restB/A : D(ModB) → D(ModA) the restriction of scalars
functor.

(1) Let M ∈ Db
f (ModB). Then M ∈ pDb

f (ModB)0 if and only if restB/AM ∈ pDb
f (ModA)0.

(2) If A→ B is surjective, then the functor

restB/A : pDb
f (ModB)0 → pDb

f (ModA)0

is fully faithful.
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Proof. (1) Define the duality functors DA := RHomA(−, RA) and DB := RHomB(−, RB). According
to [YZ99, Proposition 3.9(1)] the trace TrB/A : RB → RA gives rise to a commutative diagram

Db
f (ModB)

restB/A ��

DB

��

Db
f (ModA)

DA

��
Db

f (ModBop)op
restBop/Aop

�� Db
f (ModAop)op

in which the vertical arrows are equivalences. By definition M ∈ pDb
f (ModB)0 if and only if

HiDBM = 0 for all i �= 0. Likewise, restB/AM ∈ pDb
f (ModA)0 if and only if HiDA restB/AM = 0

for all i �= 0. However,

HiDA restB/AM ∼= restBop/Aop HiDBM.

(2) In view of (1) we have a commutative diagram

pDb
f (ModB)0

restB/A ��

DB

��

pDb
f (ModA)0

DA

��
(Modf B

op)op
restBop/Aop

�� (Modf A
op)op

where the vertical arrows are equivalences. The lower horizontal arrow is a full embedding, since
it identifies Modf B

op with the full subcategory of Modf A
op consisting of modules annihilated by

Ker(Aop → Bop). Hence, the top horizontal arrow is fully faithful.

Lemma 8.4. Suppose that A and B are k-algebras, M,M ′ ∈ Db(ModAe) and N,N ′ ∈ Db(ModBe).
Then there is a functorial morphism

µ : RHomA(M,M ′) ⊗ RHomB(N,N ′) → RHomA⊗B(M ⊗N,M ′ ⊗N ′)

in D(Mod (A⊗B)e). If A and B are left noetherian and all the modules HpM and HpN are finite,
then µ is an isomorphism.

Proof. Choose projective resolutions P →M and Q→ N over Ae and Be, respectively. So P ⊗Q→
M ⊗N is a projective resolution over (A⊗B)e, and we get a map of complexes

µ : HomA(P,M ′) ⊗ HomB(Q,N ′) → HomA⊗B(P ⊗Q,M ′ ⊗N ′)

over (A⊗B)e.
Now assume the finiteness of the cohomologies. To prove that µ is a quasi-isomorphism we might

as well forget the right module structures. Choose resolutions Pf → M and Qf → N by complexes
of finite projective modules over A and B, respectively. We obtain a commutative diagram

HomA(P,M ′) ⊗ HomB(Q,N ′)
µ ��

��

HomA⊗B(P ⊗Q,M ′ ⊗N ′)

��
HomA(Pf ,M

′) ⊗ HomB(Qf , N
′)

µ �� HomA⊗B(Pf ⊗Qf ,M
′ ⊗N ′)

in which the vertical arrows are quasi-isomorphism and the bottom arrow is an isomorphism of
complexes.

Recall that by Proposition 2.9 the tensor product of two differential k-algebras of finite type is
also a differential k-algebra of finite type.
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Theorem 8.5. Suppose that A and B are differential k-algebras of finite type. Then the rigid
dualizing complexes satisfy

RA⊗B ∼= RA ⊗RB

in D(Mod(A⊗B)e).

Proof. We will prove that RA ⊗RB is a rigid dualizing complex over A⊗B.
Consider the Kunneth spectral sequence

(HpRA) ⊗ (HqRB) ⇒ Hp+q(RA ⊗RB).

Since A⊗B is noetherian it follows that Hp+q(RA ⊗RB) is a finite (A⊗B)-module on both sides.
From Lemma 8.4 we see that the canonical morphism

A⊗B → RHomA⊗B(RA ⊗RB , RA ⊗RB)

in D(Mod (A⊗B)e) is an isomorphism. Likewise for RHom(A⊗B)e .
Next using this lemma with Ae and Be, and by the rigidity of RA and RB , we get isomorphisms

RHom(A⊗B)e(A⊗B, (RA ⊗RB) ⊗ (RA ⊗RB))
∼= RHomAe⊗Be(A⊗B, (RA ⊗RA) ⊗ (RB ⊗RB))
∼= RHomAe(A,RA ⊗RA) ⊗ RHomBe(B,RB ⊗RB)
∼= RA ⊗RB

in D(Mod (A⊗B)e).
It remains to prove that the complex RA ⊗ RB has finite injective dimension over A ⊗ B and

over (A ⊗ B)op. This turns out to be quite difficult (cf. Corollary 8.6 below). By Theorem 3.1
there is a filtration F of A such that grFA is connected, finitely generated and commutative. Let
Ã := ReesFA ⊂ A[s], which is a noetherian connected graded k-algebra. By [YZ99, Theorem 5.13],
Ã has a balanced dualizing complex RÃ ∈ Db(GrMod(Ã)e). The same holds for B: there is a filtration
G, a Rees ring B̃ := ReesGB ⊂ B[t] and a balanced dualizing complex RB̃. According to [vdB97,
Theorem 7.1] the complex R

Ã
⊗ R

B̃
is a balanced dualizing complex over Ã ⊗ B̃. In particular,

RÃ ⊗RB̃ has finite graded-injective dimension over Ã⊗ B̃.

Now A ∼= Ã/(s − 1), so by [YZ99, Lemma 6.3] the complex

Q := (A⊗ B̃) ⊗
Ã⊗B̃ (R

Ã
⊗R

B̃
)

has finite injective dimension over A⊗B̃. However, the algebra A⊗B̃ is graded (the element 1⊗t has
degree 1), and Q is a complex of graded (A⊗ B̃)-modules. Therefore, Q has finite graded-injective
dimension over this graded ring. Applying [YZ99, Lemma 6.3] again (it works for any graded ring,
connected or not) we see that

(A⊗B) ⊗
A⊗B̃ Q

∼= (A⊗B) ⊗
Ã⊗B̃ (R

Ã
⊗R

B̃
)

has finite injective dimension over A⊗B.
According to [YZ99, Theorem 6.2] there is an isomorphism RA ∼= A ⊗

Ã
R
Ã
[−1] in D(ModA).

Likewise, RB ∼= B ⊗
B̃
R
B̃
[−1]. Hence,

RA ⊗RB ∼= (A⊗B) ⊗Ã⊗B̃ (RÃ ⊗RB̃)[−2]

has finite injective dimension over A⊗B.
By symmetry RA ⊗RB has finite injective dimension also over (A⊗B)op.
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Corollary 8.6. Suppose that A and B are differential k-algebras of finite type, and the complexes
M ∈ Db

f (ModA) and N ∈ Db
f (ModB) have finite injective dimension over A and B, respectively.

Then M ⊗N has finite injective dimension over A⊗B.

Proof. Let M∨ := RHomA(M,RA) and N∨ := RHomB(N,RB). The complexes M∨ ∈ Db
f (ModAop)

and N∨ ∈ Db
f (ModBop) have finite projective dimension (i.e. they are perfect); see [Ye99, Theo-

rem 4.5]. Since the tensor product of projective modules is projective it follows that M∨ ⊗ N∨ ∈
Db

f (Mod(Aop ⊗ Bop)) has finite projective dimension. Using Theorem 8.5, and Lemma 8.4 we see
that

RHomA⊗B(M ⊗N,RA⊗B) ∼= RHomA⊗B(M ⊗N,RA ⊗RB) ∼= M∨ ⊗N∨.
Applying RHomA⊗B(−, RA⊗B) to these isomorphisms we get

M ⊗N ∼= RHomA⊗B(M∨ ⊗N∨, RA⊗B),

so this complex has finite injective dimension.

Problem 8.7. Is there a direct proof of the corollary? Is it true in greater generality, for example,
for any two noetherian k-algebras A and B?

Remark 8.8. We take this opportunity to correct a slight error in [YZ99]. In [YZ99, Theorem 6.2(1)]
the complex R should be defined as R := (R̃t)0, namely the degree 0 component of the localization
with respect to the element t. The rest of that theorem (including the proof) is correct.

If A is a differential k-algebra of finite type, then so is the enveloping algebra Ae. Hence, the
rigid dualizing complex RAe exists, as does the rigid perverse t-structure on Db

f (ModAe), whose
heart is the category pDb

f (ModAe)0 of perverse Ae-modules.

Theorem 8.9. Let A be a differential k-algebra of finite type with rigid dualizing complex RA.
Then RA ∈ pDb

f (ModAe)0.

Proof. Consider the k-algebra isomorphism

τ : (Aop)e = Aop ⊗A
�−→ A⊗Aop = Ae

with formula τ(a1 ⊗ a2) := a2 ⊗ a1. Given an Ae-module M let τM be the (Aop)e-module with
action via τ , i.e.

(a1 ⊗ a2) ·τ m := τ(a1 ⊗ a2) ·m = a2ma1

for m ∈ M and a1 ⊗ a2 ∈ (Aop)e. Performing this operation on the complex RA ∈ D(ModAe)
we obtain a complex τRA ∈ D(Mod (Aop)e). Each of the conditions in Definitions 4.1 and 4.10 is
automatically verified, and hence RAop := τRA is a rigid dualizing complex over Aop.

According to Theorem 8.5 we get an isomorphism

RAe ∼= RA ⊗RAop = RA ⊗ (τRA)

in D(Mod (Ae)e). However, the left (respectively right) Ae action on RA ⊗ (τRA) is exactly the
outside (respectively inside) action on RA ⊗RA. By rigidity (cf. Definition 4.10) we have

RA ∼= RHomAe(A,RA ⊗RA) ∼= RHomAe(A,RAe)

in D(ModAe).
Finally, since Ae ∼= (Ae)op, via the involution τ , we may view RHomAe(−, RAe) as an auto-

duality of Db
f (ModAe). By definition of the rigid t-structure this duality exchanges Modf A

e and
pDb

f (ModAe)0. Since A ∈ Modf A
e it follows that RA ∈ pDb

f (ModAe)0.

We know that the cohomology bimodules HiRA are central Z(A)-modules. The next lemma is
used a few times.
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Lemma 8.10. Let A be a differential k-algebra of finite type and a ∈ A a noninvertible central
regular element. Define B := A/(a). Let RA and RB denote the rigid dualizing complexes of A and
B, respectively. Then there is a long exact sequence

· · · → HiRB → HiRA
a−→ HiRA → Hi+1RB → · · ·

of A-bimodules.

Proof. Trivially A → B is a finite centralizing homomorphism. By Proposition 8.2 the trace mor-
phism TrB/A : RB → RA exists. In particular, RB ∼= RHomA(B,RA). There is an exact sequence of
bimodules

0 → A
a−→ A→ B → 0.

Applying the functor RHomA(−, RA) to it and taking cohomologies we obtain the long exact
sequence we want.

Below we give a couple of examples of differential k-algebras of finite type and their rigid dualizing
complexes.

Example 8.11. Let C be a smooth n-dimensional k-algebra in characteristic 0 and A := D(C) the
ring of differential operators. Then the rigid dualizing complex is RA = A[2n]; see [Ye00].

Example 8.12. Let g be an n-dimensional Lie algebra over k and A := U(g) its universal enveloping
algebra. By [Ye00] the rigid dualizing complex is RA = A ⊗ (

∧n g)[n], where
∧n g has the adjoint

A action on the left and the trivial action on the right.

Suppose that A is a ring with nonnegative exhaustive filtration F such that the Rees ring
Ã := ReesFA is left noetherian. We recall that a filtered (A,F )-module (M,F ) is called good if it
is bounded below, exhaustive and ReesFM is a finite Ã-module.

In the two previous examples the cohomology bimodules HiRA all came equipped with filtrations
that were both differential and good on both sides. These properties turn out to hold in general, as
Theorems 8.13 and 8.14 show.

Theorem 8.13. Let A be a differential k-algebra of finite type, and let RA be the rigid dualizing
complex of A. Let F be some differential k-filtration of finite type of A. Then for every i there is an
induced filtration F of HiRA, such that (HiRA, F ) is a good filtered (A,F )-module on both sides.

Proof. Define Ã := ReesFA ⊂ A[t]. Let F̃ = {F̃iÃ} be the filtration from Lemma 1.4. Then

grF̃ Ã ∼= (grFA) ⊗ k[t]

as k-algebras. The center is

Z(grF̃ Ã) ∼= Z(grFA) ⊗ k[t],

which is a finitely generated commutative k-algebra. Also grF̃ Ã is a finite Z(grF̃ Ã)-module.
We conclude that F̃ is a differential k-filtration of finite type on Ã. Moreover, each k-submodule
F̃iÃ is graded, where Ã ⊂ A[t] has the grading F in which degF (t) = 1.

Applying Theorem 3.1 and Proposition 3.5 to the filtered k-algebra (Ã, F̃ ), we obtain another
filtration G̃ on Ã. This new filtration is also differential k-filtration of finite type, and each
k-submodule G̃iÃ ⊂ Ã is graded (for the grading F ). Furthermore, grG̃Ã is a connected graded
k-algebra (when considered as Z-graded ring with the grading G̃).

Define
B := ReesG̃Ã ⊂ Ã[s] ⊂ A[s, t].

This is a Z2-graded ring with grading (G̃, F ), in which deg(G̃,F )(s) = (1, 0) and deg(G̃,F )(t) = (0, 1).
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Consider the k-algebra B with its grading G̃. This is a connected graded k-algebra. The quotient
B/(s) ∼= grG̃Ã is a finitely generated commutative k-algebra. Therefore, by [YZ99, Theorem 5.13],
B has a balanced dualizing complex RB ∈ Db(GrModBe). By [vdB97, Theorem 6.3] we get

RB ∼= (RΓmB)∗

in D(GrModBe). Here Γm is the torsion functor with respect to the augmentation ideal m of B, and

(M)∗ := Homgr
k

(M,k) =
⊕
i

Homk(M−i,k),

the graded dual of the graded k-module M . In particular, for every p there is an isomorphism of
B-bimodules H−pRB ∼= (Hp

mB)∗ where

Hp
mB := HpRΓmB ∼= lim

k→
ExtpB(B/mk, B).

Now for each k

ExtpB(B/mk, B) =
⊕

(i,j)∈Z2

ExtpB(B/mk, B)(i,j)

where (i, j) is the (G̃, F ) degree. Therefore in the direct limit we get a double grading

Hp
mB =

⊕
(i,j)∈Z2

(Hp
mB)(i,j).

Since for every i the k-module (Hp
mB)i =

⊕
j∈Z(H

p
mB)(i,j) is finite it follows that the graded dual

(Hp
mB)∗, which is computed with respect to the G̃ grading, is also Z2-graded. We see that H−pRB

is in fact a Z2-graded B-bimodule.
By [YZ99, Theorem 6.2] the complex RÃ := ((RB [−1])s)0 is a rigid dualizing complex over the

ring Ã ∼= B/(s− 1); cf. Remark 8.8. Hence, each cohomology

HpR
Ã
∼= Hp−1RB

(s − 1) · Hp−1RB
= spG̃1 Hp−1RB

is a graded Ã-bimodule (with the Z-grading F in which degF (t) = 1), finite on both sides.
Next we have A ∼= Ã/(t−1). Because t−1 is a central regular non-invertible element, Lemma 8.10

states there is an exact sequence

· · · → HpRA → HpR
Ã

t−1−−→ HpR
Ã
→ Hp+1RA → Hp+1R

Ã
→ · · ·

of A-bimodules. Since HpRÃ is graded, the element t − 1 is a nonzero divisor on it, and therefore
we get an exact sequence

0 → Hp−1RÃ
t−1−−→ Hp−1RÃ → HpRA → 0.

Thus, the bimodule

HpRA ∼=
Hp−1RÃ

(t− 1) · Hp−1RÃ
= spF1 Hp−1RÃ

inherits a bounded below exhaustive filtration F , and Rees(HpRA, F ), being a quotient of Hp−1R
Ã
,

is a finite Ã-module on both sides. By definition (HpRA, F ) is then is a good filtered (A,F )-module
on both sides.

Theorem 8.14. Let C be a finitely generated commutative k-algebra, let A be differential C-ring
of finite type, and let RA be the rigid dualizing complex of A. Then for every i the C-bimodule
HiRA is differential.
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Proof. Using the same setup as in the proof of Theorem 8.13, define

Ā := grFA = spF0 Ã = Ã/(t).

So Ā is a C-algebra. Let RĀ be the rigid dualizing complex of Ā. By [YZ99, Corollary 3.6] the
Ā-bimodule HiRĀ is Z(Ā)-central, and hence it is a central C-bimodule. According to Lemma 8.10
there is an exact sequence of Ã-bimodules

Hi−1RÃ
t−→ Hi−1RÃ → HiRĀ.

Therefore,
sp0(H

i−1RÃ) = (Hi−1RÃ)/t · (Hi−1RÃ) ↪→ HiRĀ

is a central C-bimodule.
To conclude the proof, consider the filtration F of HiRA from Theorem 8.13. Because

(HiRA, F ) ∼= sp1(Hi−1R
Ã
) is a good filtered (A,F )-module, say on the left, we see that (HiRA, F )

is exhaustive and bounded below. Now

Rees(HiRA, F ) ∼= (Hi−1RÃ)/{t-torsion},
so gr (HiRA, F ) is a quotient of sp0 (Hi−1R

Ã
). It follows that gr (HiRA, F ) is a central C-bimodule.

Thus, F is a differential C-filtration of HiRA.

Corollary 8.15. In the situation of Theorem 8.14, let U := SpecC. Given an affine open set
V ⊂ U let C ′ := Γ(V,OU ). Then A′ := C ′ ⊗C A⊗C C

′ is a noetherian k-algebra, A→ A′ is flat and
R′ := A′ ⊗A RA ⊗A A

′ is an Auslander rigid dualizing complex over A′.

Proof. According to Corollary 5.20, A′ is a noetherian k-algebra and A → A′ is a localization.
We know that Ae is noetherian. By Theorem 8.14 each of the cohomology bimodules HiRA are
differential as C-bimodules, hence by Proposition 5.17 they are evenly localizable to C ′. Thus, all
of the hypotheses of Theorem 6.2(1)–(3) are satisfied.
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