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Abstract

Let k be a �eld and A a noetherian (noncommutative) k-algebra. The rigid dualizing complex
of A was introduced by Van den Bergh. When A = U(g), the enveloping algebra of a �nite
dimensional Lie algebra g, Van den Bergh conjectured that the rigid dualizing complex is (U(g)⊗∧n

g)[n], where n=dim g. We prove this conjecture, and give a few applications in representation
theory and Hochschild cohomology. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 16D90; secondary 16E40; 16E30; 17B55

Dualizing complexes were introduced as part of Grothendieck Duality Theory on
schemes, in [3], and the noncommutative version was �rst studied in [8]. The basic
change is that a dualizing complex over a noncommutative ring is a complex of bi-
modules. For technical reasons we work with noetherian algebras over a base �eld
k, and abbreviate ⊗:=⊗k . Given an algebra A, we write A◦ for the opposite algebra,
and Ae:=A ⊗ A◦. We consider left modules by default. A dualizing complex R is an
object in the bounded derived category of bimodules Db(ModAe), of �nite injective
dimension on both sides, such that the functors R HomA(−; R) and R HomA◦(−; R) in-
duce a duality (i.e. a contravariant equivalence) between Dbf (ModA) and D

b
f (ModA

◦).
The subscript f denotes complexes with �nitely generated cohomologies. See [7,8] for
details on noncommutative Grothendieck duality.
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In the fundamental paper [5], Van den Bergh de�ned the rigid dualizing complex
of a k-algebra A. A dualizing complex R is rigid if there exists an isomorphism

� : R '→RHomAe (A; R⊗ R) (1)

in D(ModAe), which we shall call a rigidifying isomorphism. According to [5], a rigid
dualizing complex R, if it exists, is unique up to isomorphism. Moreover it turns out
that rigid dualizing complexes are functorial with respect to �nite homomorphisms of
k-algebras (under some technical restrictions; cf. Theorem 1.2).
For instance, if A is a commutative �nite type k-algebra, � : X = SpecA → Spec k

is the structural morphism and �! : Dbf (Mod k) → Dbf (ModA) is the twisted inverse
image of [3], then R :=�!k is a rigid dualizing complex, and � is the fundamental class
of the diagonal X ,→ X × X .
Regarding existence of rigid dualizing complexes, Van den Bergh proved the follow-

ing result: if A is �ltered such that B :=gr A is a connected graded noetherian k-algebra,
and B has a balanced dualizing complex in the sense of [7], then A has a rigid dual-
izing complex. In particular this holds for A= U(g), the universal enveloping algebra
of a �nite dimensional Lie algebra g.
Our main result veri�es a conjecture of Van den Bergh (Private communication,

1996):

Theorem A. Let g be a �nite dimensional Lie algebra over k. Then the rigid dualizing
complex of the universal enveloping algebra U(g) is

R=

(
U(g)⊗

n∧
g

)
[n];

where n = dim g; and we consider
∧n

g as a U(g)-bimodule with trivial action from
the left and adjoint action from the right.

Observe that in the two extreme cases – g abelian or semisimple – the adjoint
representation on

∧n
g is trivial. But for a solvable Lie algebra we can get something

nontrivial, as shown in Example 2.5. The semisimple case was already known to Van
den Bergh (cf. [6, Corollary 6]).
An indication that Theorem A should be true can be seen by deforming g to an

abelian Lie algebra. In the abelian case A=U(g) is a commutative polynomial algebra,
and there is a canonical isomorphism U(g) ⊗∧n g ∼= 
nA=k . As mentioned before, the
complex 
nA=k [n] = �

!k is the rigid dualizing complex of A (cf. Remark 2.8).
The proof of Theorem A is at the end of Section 1. In Section 2 we give a few

corollaries of Theorem A, and also an analogous result for a ring D(C) of di�erential
operators over a smooth commutative k-algebra C.

1. Proof of main result

Let us start with some general facts about rigid dualizing complexes of �ltered
k-algebras.



A. Yekutieli / Journal of Pure and Applied Algebra 150 (2000) 85–93 87

If 
 is an automorphism of a ring A then the twist of a right module M by 
 is M
,
where the new action is via 
. In particular the twisted bimodule A
 has basis 1
, and
1
 · a = 
(a) · 1
 for a ∈ A. The shift by i ∈ Z of a graded module M is denoted by
M (i), whereas the shift of a complex M · is M · [i].
Proposition 1.1. Let A be a �ltered k-algebra; and assume gr A is a connected graded;
noetherian; Artin–Schelter Gorenstein algebra.
1. A has a rigid dualizing complex RA = !A[n] for some integer n and invertible
bimodule !A. Furthermore !A ∼= A
 where 
 is a �ltered k-algebra automorphism
of A.

2. The balanced dualizing complex of gr A is Rgr A=!gr A[n]; and !gr A ∼= (gr A)gr(
)(m)
for some integer m.

Proof. (Cf. [8, Proposition 6:18].) Let Ã :=ReesA⊂A[t; t−1] denote the Rees algebra.
Recall that t is a central variable and (ReesA)i=FiA · ti. Since Ã is also AS-Gorenstein
its balanced dualizing complex is RÃ= Ã
̃(m−1)[n+1], where 
̃ is a graded k-algebra
automorphism and m; n ∈ Z. Because Ã
̃ is k[t]-central, 
̃ is in fact a k[t]-algebra
automorphism. Now by [8, Theorem 6:2], RA ∼= (Ã
̃⊗Ã A)[n]. On the other hand, using
the exact sequence 0→ Ã(−1) t→ Ã→ gr A→ 0 we get

Rgr A ∼= RHomÃ(gr A; Ã
̃(m− 1)[n+ 1]) ∼= (Ã
̃ ⊗Ã gr A)(m)[n]:
We call !A the dualizing bimodule of A and 
 is the dualizing automorphism.
Next let us quote a result from [8]. A �ltration {FiA} is said to be noetherian

connected if grF A is a noetherian connected graded k-algebra. A ring homomorphism
A → B is �nite centralizing if B =

∑l
i=1 A · bi for some elements b1; : : : ; bl ∈ B that

commute with A.

Theorem 1.2 (Yekutieli and Zhang [8, Theorem 6:17]). Let A → B be a �nite cen-
tralizing homomorphism of k-algebras. Suppose A has a noetherian connected �ltra-
tion {FiA} and grF A has a balanced dualizing complex. Then the algebras A and
B have rigid dualizing complexes RA and RB respectively; and the trace morphism
TrB=A : RB → RA in D(ModAe) exists. The trace induces isomorphisms

RB ∼= RHomA(B; RA) ∼= RHomA◦(B; RA)
in D(ModAe).

Let g be a �nite dimensional Lie algebra over the �eld k, let h⊂ g be a subalgebra,
and denote by K·(h) the Chevalley–Eilenberg complex of U(h), namely the free reso-
lution of the trivial h-module k (cf. [2, Section XIII.7] or [4, Section 10:1:3]). Recall
that for any i one has Ki(h):=U(h)⊗

∧i
h, a free left U(h)-module (the action on the

exterior power
∧i

h is trivial). The boundary operator � : Ki(h)→ Ki−1(h) is

�(1⊗ x1 ∧ · · · ∧ xi) =
i∑

p=1

(−1)p+1xp ⊗ x1 ∧ · · · x̂p · · · ∧ xi

+
∑

1≤p¡q≤i
(−1)p+q ⊗ [xp; xq] ∧ x1 ∧ · · · x̂p · · · x̂q · · · ∧ xi
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for x1; : : : ; xi ∈ h. De�ne

Ki(g; h):=U(g)⊗U(h) Ki(h) ∼= U(g)⊗
i∧

h;

so that (K·(g; h); �) is a complex of free left U(g)-modules. As usual for any two
U(g)-modules M;N the tensor product M ⊗N is also a U(g)-module by the coproduct.

Lemma 1.3. Suppose h⊂ g is an ideal; and consider
∧i

h as a right U(g)-module by
the adjoint action; so that Ki(g; h) becomes a U(g)-bimodule.
1. The boundary operator � : Ki(g; h) → Ki−1(g; h) commutes with the right
U(g)-action.

2. There is a quasi-isomorphism of complexes of U(g)-bimodules K·(g; h) →
U(g=h).

Proof. 1. Since
∧i

h⊂∧i g is a U(g)-submodule for the adjoint action, it follows
that Ki(g; h)⊂Ki(g) is a sub U(g)-bimodule. Hence we may assume that h = g and
K·(g; h) =K·(g). But then the assertion is [4, Proposition 10.1.7]. (I wish to thank P.
Smith for referring me to [4].)
2. As usual we let Ki(g; h):=K−i(g; h), and the coboundary operator is (−1)i+1� :

Ki(g; h) → Ki+1(g; h). Since U(h) → U(g) is 
at we get HiK·(g; h) = 0 if i¡ 0. For
i = 0 we note that U(g) · h= h · U(g) is a two-sided ideal, and

U(g=h) ∼= U(g)=U(g) · h ∼= H0K·(g; h)
as U(g)-bimodules.

For any k-module M let M∗:=Homk(M; k). We consider
∧n

g∗ as a right U(g)-module
with the coadjoint action, and a left U(g)-module with the trivial action.

Lemma 1.4. Let h⊂ g be an ideal; with dimk h=m. Assume that 
(U(g) ·h)=U(g) ·h;
where 
 is the dualizing automorphism of U(g). Then

ExtqU(g)(U(g=h);U(g)) ∼=
U(g=h)⊗

m∧
h∗ if q= m;

0 if q 6= m
as U(g)-bimodules.

Proof. Since gr U(g) is a commutative polynomial algebra in n variables we know
that its balanced dualizing complex is Rgr U(g) ∼= (gr U(g)(−n)[n]. Therefore by Propo-
sition 1.1 the rigid dualizing complexes of U(g) and U(g=h) are RU(g) ∼= U(g)
[n]
and RU(g=h) ∼= U(g=h)�[n− m], respectively, where � is the dualizing automorphism of
U(g=h). According to Theorem 1.2 we get the vanishing of all Extq, q 6= m, and

M :=ExtmU(g)(U(g=h);U(g)) ∼= U(g=h)�
−1

as U(g)-bimodules.
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According to Lemma 1.3 we get

M =HmHomU(g)(K·(g; h);U(g));

so the bimodule M is a quotient of U(g)⊗∧m h∗. Let � be any k-basis of
∧m

h∗, and
let � be the image of 1⊗� ∈ U(g)⊗∧m h∗ in the U(g=h)-bimodule M . Hence for any
x ∈ g we have

� · x = (x − tr(ad∧mh∗x)) · �:

Since M is free of rank 1 on either side as U(g=h)-module, and since U(g=h) is an
integral domain, it follows that the generator � is a basis of M . Sending � 7→ 1⊗ � ∈
U(g=h)⊗∧m h∗ is the desired isomorphism of U(g)-bimodules.

Here is another result of Van den Bergh (cf. [6, Proof of Corollary 6]).

Lemma 1.5. Let A be a positively �ltered k-algebra such that gr A is commutative
and gr0 A = k. Let g : = gr1 A; so g is a Lie algebra over k. Let 
 be a �ltered
k-algebra automorphism of A such that gr(
) is the identity. Then there is a Lie
homomorphism � : g → k such that 
(a) = a + �( �a) for all a ∈ F1A; where �a ∈ g is
the symbol of a.

Proof. De�ne �(a):=
(a)−a for a ∈ F1A. It factors through F1A� g → F0A ,→ F1A,
is easily seen to be k-linear, and �([a; b]) = 0.

At last here is the proof of our main result.

Proof of Theorem A. According to Proposition 1.1, the rigid dualizing complex of
U(g) is RU(g) ∼= U(g)
[n]; and gr(
) is the identity. In view of Lemma 1.5, it remains
to prove that � = −tr ad∧ng. Since � is a Lie homomorphism it has to vanish on the
commutator ideal h:=[g; g], and so it factors through a :=g=h. Therefore it su�ces to
prove that the induced automorphism �
 of U(a ) satis�es �
(y) = y − tr(ad∧ngy) for
y ∈ a .
The algebra U(a ) is a commutative polynomial algebra in l=n−m variables, where

m = dimk h, so its rigid dualizing complex is U(a )[l]. According to Lemma 1.4 and
Theorem 1.2 we get

U(a ) ∼= ExtmU(g)(U(a );U(g)
) ∼= U(a )
 ⊗
m∧

h∗

as U(g)-bimodules. Therefore U(a ) �
 ∼= U(a )⊗
∧m

h, so �
(y) = y− tr(ad∧mhy) for all
y ∈ a . Finally, since

∧n−m
a is a trivial representation of g, one has

∧m
h ∼= ∧n g.

Question 1.6. Suppose g is semisimple and char k = 0. Does the quantum enveloping
algebra Uq(g) admit a rigid dualizing complex? If so, what is it?



90 A. Yekutieli / Journal of Pure and Applied Algebra 150 (2000) 85–93

2. Some corollaries and complements

Corollary 2.1. Let M be any �nitely generated U(g)-module; pure of GKdim = m;
and let I : = AnnU(g)M . Then

AnnU(g)◦Ext
n−m
U(g) (M;U(g)) = 
(I)⊂U(g)

◦
;

where 
 is the dualizing automorphism.

Proof. Let us view 
 as an anti-isomorphism 
 : U(g) → U(g)◦. De�ne M ′:=
Extn−mU(g) (M;U(g)) and I

′:=AnnU(g)◦M
′. By [8, Proposition 6:18(4)] one has 
(I)⊂ I ′.

Since M is pure, M ⊂M ′′:=Extn−m
U(g)◦

(M ′;U(g)). Hence 
−1(I ′)⊂AnnU(g)M ′′ ⊂ I .

It is a standard fact that if M is a �nite dimensional representation of g, then
ExtqU(g)(M;U(g)) = 0 for q¡n. The group ExtnU(g)(M;U(g)) is a right U(g)-module,
but the structure is not obvious 1 . Since we can make M into a U(g)-bimodule with
trivial right action, the next corollary gives the answer.

Corollary 2.2. Suppose M is a �nite dimensional k-central U(g)-bimodule. Then there
is an isomorphism of U(g)-bimodules

ExtnU(g)(M;U(g)) ∼= M∗ ⊗
n∧

g∗;

which is functorial in M.

Proof. Let I :=AnnU(g)M and B:=U(g)=I . Since k → B is a �nite homomorphism the
rigid dualizing complex of B is B∗ =Homk(B; k). By [8, Proposition 3:9],

ExtnU(g)

(
M;U(g)⊗

n∧
g

)
∼= HomB(M;B∗) ∼= M∗

as U(g)-bimodules. Now twist by
∧n

g∗.

Theorem A has an interpretation in terms of Hochschild cohomology. For a U(g)-
bimodule M denote by Hq(U(g); M) and Hq(U(g); M) the Hochschild cohomology and
homology, respectively.

Corollary 2.3. There are U(g)-bimodule isomorphisms

Hq(U(g);U(g)e) ∼=
U(g)⊗

n∧
g∗ if q= n;

0 if q 6= n:

Proof. Let us write !:=!U(g) and !∨:=HomU(g)(!;U(g)). By formula (1), ! ∼=
ExtnU(g)e (U(g); ! ⊗ !) as bimodules, so applying the twist − ⊗U(g)e (!∨ ⊗ !∨) we
get !∨ ∼= ExtnU(g)e (U(g);U(g)e). But by Theorem A, !∨ ∼= U(g)⊗∧n g∗.

1 The right module structure was calculated by S. Chemla [Bull. Soc. Math. France 122 (1994)].
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In [6], Van den Bergh proves a Poincar�e duality between the Hochschild cohomology
and homology of certain Gorenstein algebras A. We obtain the following variation of
his result.

Corollary 2.4. Let M be any k-central U(g)-bimodule. Then

Hq(U(g); M) ∼= Hn−q
(
U(g); M ⊗

n∧
g∗
)
:

Proof. Corollary 2.3 says that

R HomU(g)e (U(g);U(g)e)[n] ∼= !∨ ∼= U(g)⊗
n∧

g∗

in D(ModU(g)e). Copying the proof of [6, Theorem 1] we obtain

Hq(U(g); M)∼=HqRHomU(g)e(U(g); M)
∼=Hq(R HomU(g)e (U(g);U(g)e)⊗LU(g)e M)
∼=Hq−n(!∨ ⊗LU(g)e M)
∼=Hq−n(U(g)⊗LU(g)e (M ⊗U(g) !∨))

∼=Hn−q
(
U(g); M ⊗

n∧
g∗
)
:

Here is an easy example where the dualizing bimodule ! is not trivial.

Example 2.5. Let g be the nonabelian 2-dimensional Lie algebra, with basis x; y such
that [x; y] = y. Then tr(ad∧2gx) = 1.

If char k = 0 and C is a smooth, integral, commutative k-algebra then the ring of
di�erential operators D(C) is noetherian and has �nite global dimension. Since D(C)
can be deformed to a smooth commutative k-algebra (namely the algebra of functions
on the cotangent bundle of SpecC), one could expect D(C) to have a rigid dualizing
complex. This is indeed true, and follows from results in D-module theory.

Theorem 2.6. Let C be a smooth; integral; commutative k-algebra of dimension n;
and assume char k =0. Let D(C) be the ring of di�erential operators. Then the rigid
dualizing complex of D(C) is D(C)[2n].

Proof. Let X :=SpecC and X e:=X×X ∼= SpecCe. Then �(X;DX ) ∼= D(C), �(X e;DX e )
∼= D(C)⊗D(C) and D(C)◦ ∼= !C ⊗C D(C)⊗C !∨

C .
The sheaf DX ⊗OX !

∨
X is �ltered, and has two commuting left DX -module structures.

The two structures coincide on gr (DX ⊗OX !
∨
X ) ∼= (grDX )⊗OX !

∨
X . Hence there is an

involution of DX ⊗OX !
∨
X , which is the identity on the subsheaf !

∨
X =F0(DX ⊗OX !

∨
X ),

and exchanges the two DX -module structures.
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Denote by DX the duality functor on left DX -modules, namely DXM:= RHomDX

(M;DX ⊗OX !
∨
X )[n]; cf. [1, VI.3.6]. Let f : X ,→ X e be the diagonal embedding.

According to [1, Proposition VII.9.6] there is a functorial isomorphism DX e f+ ∼=
f+ DX . We shall apply this isomorphism with the DX -module OX .
First note that DX OX ∼= OX , as can be checked using the quasi-isomorphism


·X (DX )[n]⊗OX !
∨
X → OX in ModDX ; cf. [1] VI.3.5. Next, by [1, Theorem VI.7.4(ii)

and Theorem VI.7.11] (Kashiwara’s Theorem) we see that f+ OX ∼= DX ⊗OX !
∨
X in

ModDX e . Thus we have an isomorphism of DX e -modules

DX ⊗OX !
∨
X
∼= Ext2nDX e

(DX ⊗OX !
∨
X ;DX e ⊗OX e !

∨
X e ):

Passing to global sections, replacing D(C) by D(C)◦ and using the involution of
D(C)⊗C !∨

C , we get

D(C)⊗C !∨
C

∼= Ext2nD(C)⊗D(C)(D(C)⊗C !∨
C ; (D(C)⊗C !∨

C )⊗ (D(C)⊗C !∨
C ))

∼= Ext2n
D(C)⊗D(C)◦(D(C); (D(C)⊗C !∨

C )⊗D(C))

∼= Ext2nD(C)e (D(C);D(C)⊗D(C))⊗C !∨
C :

Twisting by !C and shifting degrees we obtain an isomorphism

D(C)[2n] ∼= RHomD(C)e (D(C);D(C)[2n]⊗D(C)[2n])

in D(ModD(C)e).

By the same arguments given for Corollaries 2.3 and 2.4, one has:

Corollary 2.7. Let D(C) be as above. Then there are D(C)-bimodule isomorphisms

Hq(D(C);D(C)e) ∼=
{
D(C) if q= 2n;
0 if q 6= 2n:

For any k-central D(C)-bimodule M one has

Hq(D(C); M) ∼= H2n−q(D(C); M):

Remark 2.8. One can show that there is a canonical choice for the rigidifying iso-
morphism � of the complex R=![n], !=U(g)⊗∧n g. This amounts to choosing an
isomorphism of bimodules � : ! '→En(U(g)), where En(U(g)):=ExtnU(g)e (U(g); !⊗!).
Here is a sketch of the proof. Let A:=gr U(g) = S(g). The bimodule ! is �ltered, and
there is a canonical isomorphism gr! ∼= 
nA=k . The standard spectral sequence of the
�ltration identi�es gr En(U(g)) with En(A):=ExtnAe (A;


2n
Ae=k). But as mentioned in the

Introduction, 
nA=k [n] is the rigid dualizing complex of A, and it comes equipped with a

canonical isomorphism 
nA=k
'→En(A). This isomorphism determines �. A similar state-

ment holds for Theorem 2.6. As a consequence the isomorphisms of Corollaries 2.3,
2.4 and 2.7 are canonical. (I thank Van den Bergh for mentioning this idea to me.)
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