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0 Introduction

Background In his talk at the Edinburgh congress in 1958 [Gr], A. Groth-
endieck described a duality theory for coherent sheaves. For the special case
of a scheme X of finite type over a field k, this duality theory is based
on a certain canonical complex of quasi-coherent sheaves called the residue
complex. 1t replaces the sheaf of top degree differential forms which ap-
pears in Serre duality on projective space. The residue complex K is a
direct sum of sheaves D(X/Y), where Y runs over the irreducible closed
subsets of X. Say Y has generic point y and L C Oy, is a field such
that L/k is separable and k(y)/L is finite. Then D(X/Y) is canonically

isomorphic to Hom{" (Ox,, Q7 /k), where Ox , has the my-adic topology

and p = ranky, Qi k-
The full treatment of Grothendieck’s duality theory, namely the text
“Residues and Duality” [RD] by R. Hartshorne, places the theory in the
abstract setting of derived categories. Instead of the single dualizing object
K, one has a functor f': DF(Y) — DF(X) assigned to every morphism
f X = Y (in a suitable category of schemes), and when f is proper,
f' is right adjoint to Rf,. If X is a scheme of finite type over a field k,
with structural morphism m, then the residue complex is obtained as the
Cousin complex associated to 7'k € D (X). In [RD] ch. VI it is denoted by
72k = E(r'k). What is lost in this general, yet natural, approach, is the
module structure of the residue complex. The summands of 7k are not
expressed in a concrete form (they are local cohomologies of 7'k), and a for-
tiori, neither is the coboundary operator. Moreover, 72k is only determined
up to isomorphism, and in order to make this isomorphism unique one must
introduce a substantial amount of extra data (cf. [RD] ch. VI thm. 3.1).
There have been many efforts since then to state parts of the theory
in terms more accessible to computation. All these efforts utilize some sort



of residue map defined on differential forms. For curves this is a classical
construction, used by J.P. Serre in [Se|. For higher dimensions one had
Grothendieck’s residue symbol ([RD] ch. III §9). Out of that grew two
types of residue maps. Say X is an n-dimensional variety over a perfect
field k. The first type is a residue map on local cohomology groups, Res :
HZ(Q’;(/,C) — k, for closed points x € X. This is the approach taken by E.
Kunz, J. Lipman and others (see [Lil], [Li2], [HK] and [Hu]). The second
type resembles Serre’s residue map, in that it uses differential forms with
values in local fields (only this time of dimension n). This approach was
developed by A.N. Parshin and V.G. Lomadze, who were influenced by the
work of F. El Zein [EZ]. Let us mention that in [Be], A. Beilinson shows
(among other things) how to get Parshin’s residue map using a generalization
of J. Tate’s construction (cf. [Ta2] and [AK] ch. VIII §2). We shall make
use of the Parshin residue map here.

The objective of this monograph is to give an explicit construction of the
Grothendieck residue complex Ky when X is a reduced scheme of finite type
over a perfect field k. By “explicit” we mean a construction that involves
concrete realizations of the complex as an Ox-module (differential forms
etc.) and straightforward formulas for the coboundary operator. Thus on
the one hand the complex K should be constructed in some direct fash-
ion, and on the other hand, an isomorphism K = 7'k in D(X) should be
exhibited. By the very nature of 7', getting such an isomorphism, not to
mention making this isomorphism canonical, requires “going outside of X,
i.e. considering morphisms between schemes and the variance of Ky (cf.
remark 4.5.10).

Outline of the construction As in Grothendieck’s original description,
our complex K% is a direct sum of dual modules K(z), x € X (denoted
D(X/Y) in [Gr]). For any coefficient field o : k(z) — Ox., (i.e. a k-algebra
lifting) we set (o) = Homz‘zgg(@xﬁ,w(a@)), where Ox , has the m,-adic
topology, d := ranky,) Q}C(I)/k and w(z) := Qg(m)/k. Our first task is to

find, for any two coefficient fields o,0’, a canonical isomorphism @, , :

K(o) = K(o'), such that for three coefficient fields o, o, 0", one has @, 5 =
Oy g1 0 @y 5. This will give us a module () together with isomorphisms
®, : K(o) = K(z). The second task is, given a pair of points z,y € X
with y € {z}~ of codimension 1 (i.e. y is an immediate specialization of ),
and given coefficient fields o, 7 for =,y respectively, to find a coboundary

homomorphism 0, ) ,/> : K(o) — K(7). The homomorphisms 6, ) »/r



should commute with the isomorphisms ®,, and @, ./, thus defining a
coboundary homomorphism §, ) : K(z) — K(y).

It turns out that both tasks are accomplished simultaneously, once for-
mulated properly. Let us assume for simplicity that X is integral, of dimen-
sion n. A saturated chain of length [ in X is a sequence & = (zg,...,z;) of
points of X with each z;1; and immediate specialization of ;. A pair of com-
patible coefficient fields for £ is a pair of coefficient fields o : k(zg) — (§wa0
and 7 : k(z;) — @X,wz such that “upon completion along &, o becomes a
k(z;)-algebra homomorphism, via 77 - see def. 4.1.5 for the precise state-
ment. Given a saturated chain ¢ and compatible coefficient fields o /7 for it,
there is a naturally defined homomorphism ¢,/ which we shall describe
later on in the introduction. Now observe that if z is the generic point
of X then z has a unique coefficient field p, and K(p) = w(z) = QF k(X k"
We prove that for any y € X there is a finite set of saturated chains 52
the form £ = (z,...,y), such that for any coeflicient field o for y, the map
>eesOp/0 + w(@) = K(o) is surjective (Internal Residue Isomorphism,
thm. 4.3.13). Moreover, the kernel w(x)po1.s of this map is independent of
o. This provides the sought after isomorphism ®, ;. Since for any satu-
rated chain n = (y,..., z) there are many compatible coefficient fields o /7,
and since Oy, .y . 2).p/7 = O(y,...2)i0/7 © O(a,..y),p/os W get the commuta-
tion between the ®’s and the d’s. Thus the coboundary homomorphism
d¢ : K(y) — K(2) is defined.

The collection ({C(x)}, {0¢}, {®s}) is called a system of residue data on
X. It is unique up to a unique isomorphism. The passage to the residue
complex is easy. Define X := {z € X | dim{z} = ¢}, £ = D.cx, K@)
and 0x := )2, ) O(z,y) (see thm. 4.3.20). The fact that 6% =0 is an imme-
diate consequence of the Parshin-Lomadze theorem on the sum of residues
(thm. 4.2.15; cf. [Pal] §1 prop. 7 and [Lo] §3 thm. 3).

Some properties of the complex K can be deduced directly from its
construction. For an open immersion ¢ : U — X there is a canonical iso-
morphism ;" : K, 5 i*Ky (prop. 4.4.1). For a finite morphism f: X — Y
there is a canonical isomorphism ')/I} Ky S bIC;, (see def. 4.4.3 and thm.
4.4.5), and hence a trace map Try : £,y — Kj. Let 7 : X — Speck be the
structural morphism. There is a nonzero homomorphism Tr; : W*Kg( — k
(cor. 4.4.13), which for proper 7 induces a homomorphism of complexes
Try @ 7Ky — k (thm. 4.4.14). If X is integral of dimension n then
wx := H7"K is the sheaf of regular differential forms of Kunz (thm. 4.4.16).

Although the complex K is canonical, it is somewhat difficult to identify



it with 7'k in D(X). For X smooth irreducible of dimension n we show that
the fundamental class Cx : Q% /k[n] — K is a quasi-isomorphism, thus

giving an isomorphism Ky 2 7'k in D(X) (thm. 4.5.2). From this it follows
that on any reduced X, K is a residual complex (see def. 4.3.1 and cor.
4.5.6). If 7 is proper and some isomorphism Ky = 7'k exists, then there is a
unique isomorphism (x : K = 7'k in D(X) such that our trace morphism
Try : mKy — k corresponds to that of [RD] ch. VII cor. 3.4 b) (thm.
4.5.9). We prove existence of such an isomorphism only when 7 factors into
m = pf with f finite and p smooth (cor. 4.5.8); note that this includes all
quasi-projective varieties. In the appendix (by P. Sastry) the existence of
a canonical isomorphism (y : Ky — 7'k in D(X) is established in general
(see remark 4.5.10). A complete treatment of the identification Ky = 2k
shall appear in [SY], where both K and 72k are considered as sheaves on
the site Vzu, of [Lil].

The explicit construction of the residue complex shows that it carries a
canonical structure of a complex of right Dyx-modules, regardless of singu-
larities or the characteristic of the field k. We indicate how the bigraded
Ox-module K} = Homx (., K) of [EZ] ch. II §2.1 can be made into
a double complex, without having to embed X in a smooth scheme. These
issues are discussed in digressions 4.5.12 and 4.5.13.

Let us briefly explain the contents of the various chapters.

Semi-Topological Rings The topologized rings one runs across in this
area (e.g. Beilinson completions of Ox-algebras) usually do not have adic
topologies. Thus the conventional methods (say, those of [EGA I] ch. 0
§7) are not applicable. To complicate matters even further, these aren’t
topological rings in the usual sense : the multiplication map A x A — A is
not continuous. It was not at all clear what can be done with such rings
(take completion for instance, remark 1.2.10). Since our work relies heavily
on topological considerations, we undertook to develop the theory of semi-
topological rings.

A semi-topological (ST) ring is a ring A, equipped with a linear topology
on its additive group, such that for all a € A the multiplications = — az
and = — za are continuous endomorphisms (def. 1.2.1). Similarly we define
ST A-modules (def. 1.2.2). Relaxing the continuity requirement enables an
unexpectedly rich structure. Let us denote by STMod(A) the category of
left ST A-modules and continuous A-linear homomorphisms. In STMod(A)
there are direct sums, products, limits and tensor products. Given an inde-



terminate ¢ one defines new ST rings A[t], A[[t]], A((¢)), etc., of polynomi-
als, power series and Laurent series respectively. (Note that even if A is a
topological ring (in the usual sense), A((¢)) needn’t be - remark 1.3.8.) A
continuous homomorphism of ST rings A — B determines a base change
functor STMod(A) — STMod(B), M — B ®4 M, which is left adjoint to
“restriction of scalars” (prop. 1.2.14). In particular, if A4 is the ring A with
the discrete topology and MY is a discrete A%-module, then M := A® 4a M4
is said to have the fine A-module topology (def. 1.2.3 and remark 1.2.16).

Given a ST ring A and an ideal I C A, one can define a ST ring
A = lim,, A/I™! (having the usual I-adic topology when A is discrete).
Suppose A is a commutative noetherian ST ring and M is a finitely gen-
erated A-module with the fine A-module topology. Generalizing the I-adic
case we have an isomorphism of ST A-modules A® AM =lim,,, M/I nt+lpr
(prop. 1.2.20).

In section 1.5 we examine the differential calculus over commutative ST
rings. Let A be a commutative ST k-algebra (def. 1.2.17). It turns out
that continuous k-derivations of A into separated ST A-modules are repre-
sented by a universal derivation d : A — QL’S?. One defines topologically
smooth and étale homomorphisms relative to k, extending the usual no-
tions of formally smooth and étale homomorphisms (see def. 1.5.7 and thm.
1.5.11). For instance, if A — B is topologically étale relative to k then
(B®a Qkﬁp)sep ~ ngekp. Suppose A is a noetherian commutative ST k-
algebra, differentially of finite type over k (def. 1.5.16). Let I C A be an
ideal and let A be the ST k-algebra lim, , A /I 1. Then A is topologically
étale over A relative to k (thm. 1.5.18). This implies that for such A, A[[¢]]
is topologically étale over A[t] relative to k.

We think that ST rings can be used to generalize the work of R. Hiibl on
traces of differential forms [Hu]. Another possible application is for calcu-
lations involving Beilinson’s sheaf of adeles (with values in Ox), which can
be made into a sheaf of ST rings.

Topological Local Fields An n-dimensional local field consists of a field
K, together with complete discrete valuation rings Oi,..., Oy, such that
for s = 1,...,n — 1 the residue field x; of O; is the fraction field of O,
and K is the fraction field of O;. Let k be a fixed perfect field. A topolog-
ical local field (TLF) K over k is a local field which is also a ST k-algebra.
We require that there will be some isomorphism K 2 F((t,))...((t1)) (a
parametrization) with F' discrete and rankp Q}:/k < oo (def. 2.1.10). The



category of TLFs over k is denoted by TLF(k). Changing the parametriza-
tion involves continuous differential operators, and this process is explored
in thm. 2.1.17. We show that if K — L is a finite morphism in TLF(k)
then L has the fine K-module topology. In characteristic p the topology
is, in a sense, superfluous - see prop. 2.1.21. This is because a differential
operator of order < p" — 1 is linear over the field K®"/¥) and is therefore
continuous (thm. 2.1.14). We give an example of a TLF K of dimension 2
in characteristic 0 and many automorphisms of it (as a local field) which
aren’t continuous (example 2.1.22). Thus K has many equally “natural”
topologies. This example refutes the claim made by Lomadze, that a local
field has a canonical topology on it ([Lo] p. 502).

At this point the reader, accustomed to the classical (i.e. 1-dimensional)
situation, where the topology is determined by the valuation, may ask: which
is the “correct” topology on a local field? The answer is that the same
algebro-geometric data that defines the local field (a chain of points & =
(zo,...,zy) in a scheme, see §3.3) also defines the topology.

In section 2.1 we define a base change operation for TLFs. To do this it is
necessary to introduce clusters of topological local fields, which are artinian
ST algebras whose residue fields are TLFs. The prototypical example of
finitely ramified base change is the morphism k((s)) — k((s))((¢)), which
is gotten from the morphism k(s) — k(s)((¢)) by the base change k(s) —
E((s)). In section 2.3 we prove the existence of traces of differential forms,
using results of E. Kunz [Kul].

Our approach to the residue functor is axiomatic (§2.4). Theorem 2.4.3
is an improved version of [Lo] thm. 1, adapted to the setup of topological
local fields. It says that there is a contravariant functor Res on the the
category TLF(k), such that Res K = Q7°°P for a TLF K. Given a morphism

K/k
K — L the map Resy, /x : Qz’;zp — Q}Sﬁcp is a homomorphism of differential
graded ST left Q75 P-modules. The proof uses the notion of topological

K/k

smoothness and the/ separated de Rham cohomology algebra H*Q*L’?;’?. The
residue functor is actually defined on the category CTLF,eq(k) of reduced
clusters of TLFs. We are able to prove the following: let A — B be a
morphism in CTLF,eq(k). Then the residue pairing (—, —)p/4 is a perfect
pairing of semi-topological A-modules (Topological Duality, thm. 2.4.22).
We also prove: the residue maps commute with topologically smooth, finitely
ramified base change (thm. 2.4.23).

We wish to point out that in characteristic 0, the residue theory for local
fields developed in [Lo] is faulty, since it does not take the topology into



account. This rather surprising fact is clearly demonstrated by example
2.4.24. Also included in this section are digressions on residues in Milnor
K-theory and on de Rham cohomology.

Beilinson Completions Given any chain £ = (zp,...,2;) in X and a
quasi-coherent sheaf M, the Beilinson completion M¢ of M along & is de-
fined (def. 3.1.1). The completion operation (—)¢ is a special case of Beilin-
son’s adeles, described in [Be] (see [Hr| for a discussion and proofs). We
introduce a topology on the completion Mg in a natural way (def. 3.2.1). If
¢ = (z) and M is coherent then M is just the mg-adic completion of M,
with the m,-adic topology. For chains of length > 1 the topology is more
complicated.

It turns out that given a chain ¢ in X, the completion Ox ¢ := (Ox)¢
is a commutative ST k-algebra, and for any quasi-coherent sheaf M, M,
is a ST Ox¢-module. Any differential operator D : M — N extends to a
continuous DO D¢ : Mg — Ng. If 7 is a face of € (i.e. a subchain), the face
map M, — M; is continuous. We prove that for a saturated chain & of
length n > 1 the face map Mg, — M is dense (Approximation Theorem,
thm. 3.2.11) and the face map Mg,e — Mg is strict (thm. 3.2.14). We also
prove that the completion Oy ¢ is a Zariski ST ring (see def. 3.2.10 and thm.
3.3.8), so the functor (—)¢ is exact (in the topological sense). For any face
n of £, Ox ¢ is topologically étale over Oy, relative to k (cor. 3.2.8). This,
with the Zariski property, shows that the completion (2% / i )¢ is isomorphic,
as a ST differential graded k-algebra, to the separated algebra of differentials
Qgiei/k (def. 1.5.3).

Let £ = (z,...,y) be a saturated chain of length n. Then k(&) := k(z)¢
is an n-dimensional reduced cluster of TLFs, whose spectrum is determined
by repeated normalizations (thm. 3.3.2, cor. 3.3.7). This shows that Ox ¢
is a semi-local ring with Jacobson radical m¢ := (m;)¢. On the other hand,
these results connect the geometry to the theory of topological local fields
and residues.

Residues on Schemes Given a coefficient field o : k(y) — Ox () = (’A)X’y
the induced map & : k(y) — k(&) is a morphism in CTLF,q(k). Thus we
obtain Parshin’s residue map

. . Resk(e)/hwyo
Rese + Dy = Ly * iy



(def. 4.1.3). Using thm. 4.1.12 which compares completion to finitely rami-
fied base change we prove the transitivity of the residue maps for compatible
coefficient fields. Given saturated chains (z,...,y) and (y,..., z), and com-
patible coefficient fields o /7 for (y,...,z), one has (cor. 4.1.16):

Res(w,...,y,...,z)ﬂ' = Res(y,...,z),T © Res(w,...,y),a : QZ(Q;)/]C - QZ(z)/k .

We can now define the coboundary homomorphism d¢ /. Let § =

(z,...,y) be a saturated chain and let /7 be compatible coefficient fields
for £&. For any ¢ € K(o) consider the diagram:
Oxe —L— wio)
‘loc Res¢ -
)
OX,y (4)). w(y)

Since Resg - is a locally differential operator (def. 3.1.8) it follows that d(¢)
is continuous for the m,-adic topology, and its completion 6(¢)(,) : Ox ) —
w(y) is k(y)-linear (via 7). Thus we get d¢ /- : K(o) — K(7).

Let us say a few words about holomorphic forms. Say & = (z,...,y) is a
saturated chain and 7 is a coeflicient field for y. Define d¢ ; : w(z) — K(7)
by d¢r(c)(a) := Res¢ (ar), o € w(z), a € Ox,y. Using a base change
argument we prove that w(z)noe := ker(de ;) C w(z) is independent of 7
(lemma 4.2.1). The elements of w(x)ne1¢ are said to be holomorphic along €.
The quotient w(z) /w(x)no1:¢ is a cofinite Oy ,-module, with socle canonically
isomorphic to w(y). This allows us to define the order of pole along ¢ of a
form a € w(z) (def. 4.2.10).

Finally, we wish to stress the role of topological considerations in this
work. Take the Parshin residue map Res¢, : Qz(w)/k — QZ(y)/k' Even
though it is a map between algebraic objects, it is defined using topolog-
ical methods (viz. TLF’s). Moreover, its important properties (e.g. being
a locally differential operator, prop. 4.1.4; or transitivity, cor. 4.1.16) are
proved topologically. The main result of the paper, the internal residue
isomorphism (thm. 4.3.13), is also proved using topological arguments.

Problems Here is a list of some problems related to the present construc-
tion.

10



1) Let k be a perfect field, and let f : X — Y be a smooth morphism of
relative dimension n between reduced k-schemes of finite type. Describe
explicitly the derived category isomorphism Ky = wy/y[n] ®oy f*Ky

2) Remove the hypothesis that X is reduced.

3) Remove the hypothesis that & is a perfect field. Allow & to be any field,
or a complete DVR with perfect residue field, or Z. This may require a more
sophisticated theory of topological local fields.

4) Equivariant case: let f : X — Y be an equivariant morphism for the
action of some algebraic group G over k (an algebraically closed field). Relate
the complexes of invariants I'(X, K )¢*) and I'(Y, K3, ) %),

5) Explore connections with de Rham homology and intersection homology,
especially when k = C (cf. digressions 4.5.12 and 4.5.13).
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1 Semi-Topological Rings

1.1 Preliminaries on Linearly Topologized Abelian Groups

Let M be an abelian group. Given a nonempty collection {Ug,}acr of
subgroups of M, let 7 be the topology on M generated by the subbasis
{z + Uqs}trem,acr- With this topology M becomes a topological group. We
call T the linear topology generated by {U,}acr, and we say that M is a
linearly topologized abelian group. Let us begin with an elementary but
useful lemma (cf. [GT] ch. I §2.3 and §2.4).

Lemma 1.1.1 Let M be an abelian group, let {Ny} be a collection of lin-
early topologized abelian groups, and for each «, let ¢o : M — N, (resp.
¢o : No = M) be a homomorphism.

a) There exists a coarsest (resp. finest) linear topology T on M such that
all the homomorphisms ¢ are continuous.

b) Let L be a linearly topologized abelian group and let 1 : L — M (resp.
¥ : M — L) be a homomorphism. Suppose that all the composed
homomorphisms ¢q © ) : L — N, (resp. ¥ o ¢o : No — L) are
continuous. Then 1 is continuous relative to T .

Proof First consider homomorphisms ¢, : M — N,. Let {Ug} be the
collection of subgroups of M of the form Uz = ¢,1(V,), with V, an open
subgroup of N, for some «. The linear topology 7 generated by {Us} has
the required properties.

Next consider homomorphisms ¢, : No, — M. Here we take for {Us}
the collection of all subgroups of M such that for all «, ¢31(Up) is open in
Ng, and we let 7 be the linear topology generated by {Us}. O

12



Note that in the case ¢ : No — M the subgroups of the form Uz =
Yo Pa(Va), with V,, C N, open, are a fundamental system of neighborhoods
of 0 for the topology T.

Denote by TopAb the category of linearly topologized abelian groups
and continuous homomorphisms. This is an additive category, but not an
abelian one.

Definition 1.1.2 A sequence of homomorphisms M’ A M M in TopAb
1s called exact if it is exact in the category Ab of abelian groups and if ¢ and
1 are strict.

(See [GT] ch. III §2.8 for the definition of a strict homomorphism.)

It follows from lemma 1.1.1 that the category TopAb has direct and in-
verse limits; the underlying abelian groups are just the corresponding limits
in Ab. In particular, TopAb has infinite direct sums and products. Note
that the topology on [], M, is the usual product topology.

Definition 1.1.3 Let M be a linearly topologized abelian group.

a) The associated separated topological group of M is defined to be the
quotient M*P := M /{0}, where {0} is the closure of {0} in M.

b) The completion of M is defined to be the inverse limit MP' := lim,
M /U, in TopAb, where {U,} is the collection of open subgroups of M.

c) M is said to be separated (resp. separated and complete) if the canon-
ical homomorphism M — M5P (resp. M — M) is bijective.

Note that the canonical homomorphisms M — M%P_ AP — MPl and
M — M are all strict. Both functors M — M%P and M +— M are
additive idempotent endo-functors on TopAb.

Lemma 1.1.4 Let M be a linearly topologized abelian group. Then M is
separated and complete in the sense of definition 1.1.3 iff every Cauchy net
i M has a unique limit.

Proof This is an immediate consequence of [GT] ch. III §7.3 cor. 2 to prop.
2, and of [Ko] §2.3 and §5.4. O

It turns out that separated modules are more interesting, from the point
of view of semi-topological rings, than complete ones; consider remark 1.2.10
and theorem 1.5.11.
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Proposition 1.1.5 a) An inverse limit of separated (resp. separated and
complete) linearly topologized abelian groups is separated (resp. sepa-
rated and complete).

b) A direct sum of separated (resp. separated and complete) linearly topol-
ogized abelian groups is separated (resp. separated and complete).

c) Let M = @,y My be a countable direct sum of separated linearly
topologized abelian groups and let (x;)ien be a Cauchy net (i.e. a
Cauchy sequence) in M. Then there is some ng such that z; € @,
M, for alli.

Proof a) See [GT] ch. IT §3.5 cor. to prop. 10, and ch. I §8.2 cor. 2 to prop.
7.

b) See [Ko] §10.2 (8) and §13.4 (2); the proofs there are for vector spaces
but work also for linearly topologized abelian groups.

c) This is an easy exercise using a “diagonal” argument and the fact that
the subgroups of the form € U,,, with U,, C M,, open, are a fundamental
system of neighborhoods of 0 in € M,,. O

Generalizing the result on inverse limits in Ab we have:

Proposition 1.1.6 Let

0 — M & M; % M" = 0)ien

be an inverse system of exact sequences in TopAb. Assume that M, — M;
1s surjective for all 1 € N. Then the sequence

0 — lim M/ % lim M; 5 lim M" — 0
<1 <1 <1

1s exact in TopAb.

Proof Consider the commutative diagram in TopAb

oo T L [ L

| |

¢ Y

0 — lime M —2+ lim. M; —%—~ lim( M —— 0
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The top row is exact in TopAb and the vertical maps are strict monomor-
phisms. Also, the bottom row is exact in Ab by [Ha] ch. IT prop. 9.1. Hence
¢ is a strict monomorphism.

In order to show that 1) is strict it suffices to check that for every open
subgroup V' C lim. M;, (V) is open in lim. M. Let y;; : M; — M; be
the maps in the system (M;). We may assume that

V:(liinMi)ﬂ(Vgx---ananH><M,H_2><---)

where V; C M; are open subgroups and +;;(V;) C V; for 0 <i < j <n. Let
W = (l?_nMZ”) N (1o (Vo) X -+« X by (Vi) X My X M) g % -+ +)

which is open in lim, M. We claim that (V) = W. Clearly (V) C W.
Given 2" = (z§,27,...) € W, choose any z € ¢ !(z"). Now z, € V,, +
¢n(M)), so there is some z' € lim, M/ with z,, — ¢y, (z],) € V,. Setting
y:=z— ¢(z') we get y € VNept(z"). O

Proposition 1.1.7 Let (M;);en be a direct system in TopAb s.t. all the
homomorphisms M; — M;(1 are strict monomorphisms, and let M =
lim;_, M;. Then for all i, M; — M 1is a strict monomorphism. If more-
over all the groups M; are separated, then so is M.

Proof We may assume 7 = 0. The injectivity of My — M is known. Let
Uy C My be any open subgroup. By hypothesis we can choose for every
j > 1 an open subgroup U; C M; s.t. Uj_1 = U; N M;_1. Then U := |JU;
is an open subgroup of M and Uy = U N M.

Now suppose all the M; are separated, and let x € M, x # 0. Then
z € M; for some i, and there is an open subgroup U; C M; s.t. = ¢ U;. Let
U C M be an open subgroup s.t. U; = U N M;; then x ¢ U. Hence M is
separated. O

Proposition 1.1.8 (Sufficient Conditions for Density)

a) Let M = (0 - M° — M' - M? - 0) and N' = (0 - N° —
N' — N?2 — 0) be two compleves in TopAb, with N' exact, and let
¢ : M — N be a homomorphism of complexes. Suppose ¢° : M? —
N and ¢? : M? — N? are dense. Then ¢' : M' — N' is dense too.

15



b) Let (¢; : M; — N;)ien be an inverse system of dense homomorphisms
in TopAb, with M;y1 — M; surjective for all . Then ¢ : lim,; M; —
lim, ; N; is dense.

c) Let (po : My — No)aer be a direct system of dense homomorphisms
in TopAb. Then ¢ : limy—, M, — lim,—, N, is dense.

Proof a) Given any open subgroup U C N!, let N! := N!'/U and let
¢' : M' — N'! be the induced homomorphism. We must show that ¢' is
surjective. Set N? := NY/NYNU and N? := N?/im(U — N?). So N is
an exact complex of discrete groups. By assumption ¢° : M? — N9 and
¢ : M? — N? are surjective; hence so is ¢'.

b) Let U C lim,; N; be any open subgroup. Then U is the preimage of an
open subgroup U; C N; for some j. Thus (lim.; N;)/U — N;/Uj is injec-

tive. BY assumption lim, ; M; — M; and ¢; : M; — N;/U; are surjective.
Hence ¢ : lim, ; M; — (lim; N;)/U is surjective too.

c) Let U C lim,—, N, be any open subgroup. For 3 € I let Ug C Ng be the
preimage of U. Then (lim,—, N,)/U = limg%(Na/Ua). Since ¢, : M, —
N, /U, are assumed to be surjective, so is ¢ : limy—, My — (lim,—, N,)/U.
O

1.2 Semi-Topological Rings

We will be considering topologized rings in which multiplication is con-
tinuous only in one argument. To distinguish these rings from ordinary
topological rings we adopt the name “semi-topological ring”. The following
notation will be used throughout this section. Given a ring A and an element
a € A, left and right multiplication by a will be denoted by A, : b — ab and
Pa b= ba, b € A. Similarly given a left A-module M and elements a € A
and z € M, weset \g : y — ay,y € M, and p, : b— bz, b € A. In order
to emphasize where a € A acts we may indicate the module in superscript,
e.g.: AM M — M. All rings under consideration have 1.

Definition 1.2.1 A semi-topological (ST) ring is a ring A together with a
topology on it satisfying the following conditions:

i) The additive group of A is a linearly topologized abelian group.

ii) For every a € A the multiplications Mg, pq : A — A are continuous.
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Definition 1.2.2 Let A be a semi-topological ring. A semi-topological (ST)
left A-module is a left A module M together with a topology on it satisfying
the following conditions:

i) M is a linearly topologized abelian group.

ii) For every a € A and every x € M the multiplications A\g : M — M
and pg : A — M are continuous.

Similarly one defines semi-topological right modules and bimodules.

Denote by STMod(A) the category of semi-topological left A-modules
and continuous A-linear homomorphism. It is an additive subcategory of
TopAb, closed under direct and inverse limits. We define exact sequences in
STMod(A) to be those which are exact in TopAb(A) (see def. 1.1.2). Given
M,N € STMod(A), we denote the group of morphisms between them by
Hom%™ (M, N). (The category of right modules we denote by STMod(A°).)

Suppose M is a left A-module. Consider it as an abelian group with
homomorphisms p, : A — M, z € M. Let T be the finest topology on M
making all the p, continuous (see lemma 1.1.1). We claim that with this
topology M becomes a semi-topological A-module. It suffices to show that
for every a € A the endomorphism AM : M — M is continuous. Choose
such a. For each z € M we have AM o p, = p, o A}l : A — M, which is
continuous by definition. From lemma 1.1.1 it follows that A} is continuous.

Definition 1.2.3 The above topology on M is called the fine A-module
topology.

The next proposition gives a characterization of this topology.

Proposition 1.2.4 Let A be a semi-topological ring and let M be a semi-
topological A-module. Then M has the fine A-module topology iff for every
semi-topological A-module N

Hom%™ (M, N) = Hom (M, N). (1.2.5)
Proof Suppose M has the fine A-module topology. Let ¢ : M — N be
an A-linear homomorphism; we must show that it is continuous. For any

x € M, one has 9 o p; = py(y) : A = N, which is continuous by definition.
According to lemma 1.1.1 9 is also continuous. In particular, Taking N
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to be the same module as M but with various topologies (satisfying the
conditions of def. 1.2.2), and taking 1 : M — N to be the identity map, we
see that the fine A-module topology is indeed the finest of them all.
Conversely, suppose that equality holds in (1.2.5). Then using the same
setup as above, but this time N is the module M with the fine A-module
topology, we see that the topology on M is finer than the fine A-module
topology, and hence equal to it. O

Corollary 1.2.6 Let {M,} be a direct system of ST A-modules. If every
M, has the fine A-module topology then so does lim,_, M.

Definition 1.2.7 Let M be a semi-topological left A-module and let {mg}
be a subset of M. M is said to be free with basis {my} if for any semi-
topological A-module N and any subset {ny} C N there is a unique contin-
uous A-linear homomorphism ¢ : M — N with ¢(my) = ng. Similarly for
right modules.

Clearly M is free iff M = @, A in STMod(A). We have another corollary
to prop. 1.2.4:

Corollary 1.2.8 Suppose ¢ : M — N is a continuous surjective homo-
morphism of semi-topological A-modules, where M has the fine A-module
topology. Then ¢ is a strict epimorphism iff N has the fine A-module topol-
ogy. In particular, this is the case when M 1is free.

A ring homomorphism f : A — B is called centralizing if B = f(A) -
Cp(A), where Cp(A) is the centralizer of A in B.

Proposition 1.2.9 Let A be a semi-topological ring and let f : A — B be a
centralizing ring homomorphism. Put on B, considered as a left A-module
via f, the fine A-module topology. Then the following hold:

a) As a right A-module via f, B has the fine A-module topology. In
particular, B is a semi-topological A-A-bimodule.

b) B is a semi-topological ring.

c) Let M be a left B-module. The fine B-module topology on M coincides
with the fine A-module topology on it.
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Proof a) Choose a subset {c,} C Cp(A) such that the bimodule homo-
morphism ¢ : @, A —= B, ¢(3_aa) = D aaCa = Y Calq, is surjective. By
corollary 1.2.8, used twice, ¢ is a strict epimorphism and B has the fine
A-module topology as a right A-module.

b) For every b € B the map A, (resp. pp) is an endomorphism of the right
(resp. left) A-module B. By part a) and proposition 1.2.4 both A, and py
are continuous.

c¢) This follows from cor. 1.2.8 and the fact that a direct sum of strict ho-
momorphisms is strict. O

Observe that the proposition includes the case of a surjective ring ho-
momorphism. Given a semi-topological ring A, let I be the closure of 0.
Then I is an ideal and A%® = A/I is a semi-topological ring. Similarly, if
M is a semi-topological left A-module, then M®*P is an A®P-module. Thus
M — M is a functor STMod(A) — STMod(A%P) and A — AP is a
functor on semi-topological rings.

Suppose A is a semi-topological ring and B C A a subring. Then B is
also a semi-topological ring, and the same is true of its closure B~. Similarly
for a submodule.

Remark 1.2.10 The author does not know whether the completion M°P! is,
in general, a semi-topological A-module. The difficulty is in establishing the
continuity of py : A — M! for z in the “boundary” M — M. Of course,
if the topology on M is generated by A-submodules there is no difficulty.

Definition 1.2.11 Let A be a semi-topological ring and let M and N be
right and left semi-topological A-modules, respectively. The tensor product
topology on M @4 N 1is by definition the finest linear topology such that for
every x € M and every y € N the homomorphisms Ay : N — M ®4 N,
Y = z®y, andpy: M - M N, z' — 2! @y, are continuous (see lemma
1.1.1).

Whenever a tensor product of semi-topological modules is encountered,

it will be endowed with this topology by default. We state the following
lemma whose proof is an application of lemma 1.1.1.
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Lemma 1.2.12 Suppose L is a linearly topologized abelian group and ¢ :
M ®4 N — L is a homomorphism such that for every x € M, y € N
the composed homomorphisms ¢ oA, : N — L and ¢popy, : M — L are
continuous. Then ¢ is continuous relative to the tensor product topology on
M®4 N.

Suppose Ay, ..., A, are semi-topological rings and My, ..., M,, are semi-
topological bimodules such that the tensor product M := Mo®4,---®a4, My
makes sense. Then the tensor product topology on M is independent of the
binary grouping of the factors (associativity of the tensor product topology).
It is described directly as being the finest linear topology such that for every
i, 0 < ¢ < n, and every x; € Mj, j # i, the homomorphism M; — M,
Y= 20 Qxi1 QY xi41 ® -+ @ xp, 18 continuous.

Another observation is that taking tensor products of semi-topological
modules commutes with passing to the associated separated module. To be
precise,

(M ®4 N)*P = (MP @ gsep N*P)5P (1.2.13)

as quotients of M ® 4 N.
Semi-topological modules admit a useful base-change operation.

Proposition 1.2.14 Let A — B be a continuous homomorphism of semi-
topological rings and let M be a semi-topological left A-module. Then the
tensor product topology on B ® 4 M makes it into a semi-topological left
B-module. This topology is characterized by the following properties:

i) The canonical homomorphism of A-modules M — B ® 4 M is contin-
uous.

ii) (Adjunction) For any N € STMod(B) the canonical homomorphism
Hom%™ (B ©4 M, N) — Hom$™" (M, N)
1s bijective.
Proof First we must verify that the maps A,?@M :B®4 M — By M,
be B,and p, : B— B M, u € BR M, are continuous. The continuity of
)\bB®M follows from lemma 1.2.12. As for p,, we may assume that u = bQ® x,

SO Py = Pg © pf, which is continuous by definition. Therefore B ® 4 M is a
semi-topological B-module. Properties i) and ii) are similarly checked.
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Finally, we show that the two properties determine the topology on B® 4
M. Let N; and Ny be two ST B-modules with the same underlying B-
module B ®4 M, and both enjoying properties i) and ii). Then the identity
map Ni — N> is a homeomorphism. O

Corollary 1.2.15 If M has the fine A-module topology then B ® 4 M has
the fine B-module topology.

Remark 1.2.16 The ST A-modules with the fine A-module topologies
are precisely those induced from discrete modules. To see this, let M be
an A-module with the fine topology. Define A4 and M to be A and M,
respectively, with the discrete topologies. Then A ® 4a MY — M is a home-
omorphism.

Definition 1.2.17 Let k be a commutative semi-topological ring. A semi-
topological k-algebra is a semi-topological ring A together with a continuous
centralizing homomorphism k — A.

Given two semi-topological k-algebras A and B their tensor product
A®y, B is again a semi-topological k-algebra. Let us denote by STComAlg(k)
the category of commutative semi-topological k-algebras and continuous k-
algebra homomorphisms. An immediate consequence of prop. 1.2.14 is:

Corollary 1.2.18 Let A and B be commutative ST k-algebras. Then A ®j
B is the fibred coproduct of A and B in the category STComAlg(k).

Discrete rings and modules are semi-topological. A more interesting
example is provided by:

Lemma 1.2.19 Let A be a ST ring and let I C A be an ideal. For eachn >
0 put on A/I"*! the fine A-module topology, and put on A :=lim, ,, A/I"H!
the lim_ topology. Then A is a ST ring.

Proof According to prop. 1.2.9, every A/I" s a ST ring. Let a €
A. Then for every n the homomorphisms A, p, : A/I" — A/I"L are

continuous. Passing to the inverse limit it follows that A4, p, : A — A are
continuous. Therefore A is a ST ring. O
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Of course if A is discrete we recover the I-adic topology on A. In general
A need not be separated nor complete topologically. Extending the standard
result on I-adic completions of finitely generated modules over a noetherian
commutative ring, we have:

Proposition 1.2.20 Let A be a noetherian commutative ST ring and let
I C A be an ideal. Put on A :=lim,,, A/I™Y the topology of the previous
lemma. Let M be a finitely generated A-module. For each n > 0 put on
M/I" M M the fine A-module topology, and put on M = lim., M/ M
the lim_ topology. Then the topology on M is the fine A-module topology.

Proof As in the proof of lemma 1.2.19, M is a ST A-module. By corollary
1.2.8 it suffices to produce a strict epimorphism A”—» M. Choose any exact
sequence of A-modules

0= K — A" % N 0.
For every n we get, in virtue of cor. 1.2.8, an exact sequence in STMod(A)
0= K, — (A/I"TH7 28 M/t — 0,

where K,, := im(f{ — (A/I™1)7) with the subspace topology. By prop.
1.1.6, ¥ = lim,_ 1, is strict. O

Corollary 1.2.21 Suppose M has the fine A-module topology. Then the
natural homomorphism A ® 4 M — M is an isomorphism in STMod(A).

Observe that if I"*'M = 0 for some n > 0, then the fine A-module
topology on M = M and the fine A-module topology on it coincide.

Proposition 1.2.22 Let A be a ST ring, let M and N be ST A-modules
and let ¢ : M — N be a continuous A-linear homomorphism. Suppose that
M = lim, o, M, in STMod(A) for some inverse system (My)acr. Suppose
also that N is finitely generated, separated and semi-simple in STMod(A).
Then ¢ factors through some M.

Proof We have N = 69;:1 N;, where each N; is a separated, simple, ST
A-module. For each j let U; C N; be a proper open subgroup, and define
U := 69;:1 Uj. Then U C N is an open subgroup, but the only A-submodule
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contained in U is 0. For a € I set K, := ker(M — M,). By the definition
of the lim,_ topology there is some g s.t. Koy C ¢~ H(U). So ¢(Ka,) C U,
and being an A-module it must be 0. O

Let A be a ST ring and let Ag C A be a subring. A ST A-module is
said to have an Ag-linear topology if there is a basis of neighborhoods of 0
consisting of Ag-submodules (e.g. take for Ay the image of Z).

Proposition 1.2.23 Let A be a ST ring and let Ag C A be a subring. The
full subcategory of STMod(A) consisting of modules with Ag-linear topolo-
gies is closed under quotients, subobjects, sums, products, direct limits and
inverse limits.

Proof Immediate from lemma 1.1.1, since the maps are Ag-linear. O

1.3 Rings of Laurent Series

An important class of semi-topological rings is that of rings of iterated Lau-
rent series, which we will examine in this section.

Definition 1.3.1 Let A be a commutative semi-topological ring and let t =
(t1,...,tn) be a sequence of indeterminates. We put on the A-algebras
Alt] == Alty, ... ta), At]/(@)F, >0 and A[t, 7] = Alty, ... tu,t] .0,
t-1] the fine A-module topologies. We put on A[[t]] := lim,_; A[t]/(t)"*! the
inwverse limit topology.

Lemma 1.3.2 A[t], A[t]/(t)", A[t,t™'] and A[[t] are all semi-topological
A-algebras.

Proof Immediate from prop. 1.2.9 and lemma 1.2.19. O

Definition 1.3.3 Let A be a commutative ST ring and let t be an indeter-
minate. For every j > 0 put on t=7 A[[t]] the fine A[[t]]-module topology. Put
on A((t)) :== A[[t]][t™"] = lim;j_, t 77 A[[t]] the direct limit topology.

Lemma 1.3.4 The topology on A((t)) is the fine Al[t]]-module topology.
Therefore A((t)) is a semi-topological A-algebra.
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Proof This follows from cor. 1.2.6 and prop. 1.2.9. O

Proposition 1.3.5 The homomorphisms A — A[[t]], A[[t]]>»A and A[[t]]
— A((t)) are all continuous and strict. If A is separated (resp. separated
and complete) then so are A[t], Alt]/(t)", A[t,t71], A[[t] and A((t)).

Proof For every i,h > 0 consider the exact sequence of semi-topological
A-modules

h
0 — A[t]/tHAft] — ¢ At Al - @Dt A— 0
7j=1

with its obvious splitting (in STMod(A)). Passing to the inverse limit in 4
and then to the direct limit in h we get

A((t)) = éfﬂ'A @ A[[t]]. (1.3.6)

=1

Therefore A[[t]] — A((t)) is strict. A similar consideration shows that
A[[t]] = A @ tA[[t]], so the other two homomorphisms are strict.

The statements regarding separatedness and completeness follow from
formula (1.3.6) and prop. 1.1.5. O

The topology on the ring of iterated Laurent series defined below gener-
alizes Parshin’s topology on a local field, see [Pa3] §1 def. 2.

Definition 1.3.7 Let A be a commutative semi-topological ring and let t =
(t1,...,tn) be a sequence of indeterminates. The Laurent series ring in
t over A is the semi-topological A-algebra A((t)) = A((t1,...,t,)) defined
recursively by

A((t1; -+ tn)) = Al(E2, -+ ) (1))

From proposition 1.3.5 it follows that the inclusion A — A((¢)) is a
strict monomorphism. Evidently the operations A — A[t], A — A[t]/(¢)"!,
etc. are functors on the category STComAlg(Z) of commutative ST rings,
sending the full subcategory of separated (resp. separated and complete)
rings into itself.
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Remark 1.3.8 As noticed by Parshin, if k is a discrete field and n > 2,
the field of Laurent series k((t)) = k((t1,...,t,)) is not a topological ring;
i.e., multiplication is not a continuous function k((t)) x k((£)) — k((t)) (see
[Pa3] remark 1). Also, in this case k((t)) is not a metrizeable topological
space.

Lemma 1.3.9 The image of A[t,t7'] in A((t)) is dense.

Proof TLet t' := (t2,...,t,). By induction for every ¢ > 0 the map
Al £ 1[t1] — A(())[t1]/(#11) is dense, so by prop. 1.1.8 b) we have that
A[t’,ﬂ_l][tl] — A((#))[[t1]] is dense. Hence for every j > 0, t; 7 A[t', ¢~ !][t1]
— ;7 A((¢))[[t1]] is dense, and finally by prop. 1.1.8 ¢), A[t,t 1] — A((2))
is dense. O

Suppose A is separated and complete. An element a(t) € A((t)) deter-
mines a function a : Z — A, ¢ — a4, in the usual way. The support of the
function @ : Z — A is bounded below, and a(t) = Y5 a;t’ in the sense
of [GT] ch. IIT §5.1. From the recursive definition of the ring A((t)) one
sees that any a(t) € A((f)) determines a function a : Z" — A, i — a;,
such that a(t) = Y_,.nait’. There are certain conditions on the support
of a : Z™ — A, and in fact one can show that these conditions are precisely
equivalent to the summability of the collection of monomials (a; £4);czn.

Given another sequence s = ($1,...,5,) of indeterminates and a se-
quence e = (ey,..., e,) of positive integers, the homomorphism of ST A-
algebras A((s)) — A((t)), sj — t;j, makes A((¢)) into a free ST A((s))-
module, with basis {#!}, 0 < i; < e;. By abuse of notation we denote the
image of A((s)) by A((29)).

1.4 Preliminaries on Differential Operators

Let k£ be a commutative ring and let A be a commutative k-algebra. Given
A-modules M and N, we use the following notation for the action of A on
Homy (M, N): for a,b € A, ¢ € Homy(M,N) and z € M, we set (apb)(z) =
ap(bz) € N.

Recall the definition of differential operators (DOs) over A from M to
N ([EGA 1V] §16.8). Given D € Homgz(M,N) and a € A, set [D,a] :=
Da — aD € Homy (M, N). We say that D is a differential operator of order
< n over A, and denote this by ord4(D) < n, if for all ag,...,a, € A it
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holds that [...[D,aql,...,an] = 0. (We set ord4(0) := —1.) If D is k-linear,
it is said to be a differential operator relative to k. Set

Diff’; (M, N) :={D € Homy (M, N) | ords(D) < n}
Diff 4, (M, N) := | Diff’} (M, N).

Evidently, for any n > 0, ord4(D) < n iff ord4([D,a]) < n — 1 for every
a € A.

Let I, be the kernel of the multiplication map A®; A — A, a Qb —
ab, and define P} . = A @ AT}, Consider Pl as an A-algebra via

the first factor: a — a ® 1, and set d"(a) == 1 ® a ( mod It*!). d»
defines a right A-module structure on P Ik Given an A-module M set
Php(M) =P}, @4 M. The map djy, : M — P}, (M), z— (1®@1) @z, is
a universal differential operator of order < n; for any A-module N it induces
an isomorphism

Hom 4 (P (M), N) = Diff" ,, (M, N). (1.4.1)

If A = Ek[t] = k[t1,...,tn] is a polynomial ring then I4 is generated as
an A ®p A-module by t;, ® 1 —1®1t;, i = 1,...,m. Therefore

Prig/k = @ E[t] - d™(£) | (1.4.2)

0<i1,esim<n

and this implies

Proposition 1.4.3 If A is a finitely generated k-algebra and M is a finitely
generated A-module, then Pﬁ/k(M) s a finitely generated A-module.

Proposition 1.4.4 Suppose that the k-algebra A admits an augmentation
n:A—k, and let J = ker(n) be the augmentation ideal. Let M and N be
A-modules which are annihilated by J™ ' and J" ! respectively. Then

Diffm"(M, N) = Homy, (M, N).

Proof We have a k-module decomposition A = k @ J induced by n. Write
any a € Aasa=A+z, A€k, x € J. Let D € Homy(M,N). For any
a € A one has

[D,a] =[D,\ + [D,z] = [D, z] € Homy (M, N).
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Choose arbitrary ag,...,amin € A and define Dy := D, D,y := [D;, a4

If we write a; = A\; + z; as above, we also get D;;1 = [D;,z;]. So for
1=m-+n-+1,
Dm+n+1 :---i(xio---miijij+1---xiern):t--- .

But either 5 > n or m +n — 7 — 1 > m. Therefore all the terms in the

sum are 0 and Dpyint1 = 0. Working backwards we see that for all i,
0<i<m+n+1,D;€ Diffm"—Z(M, N) (cf. [EGA 1V] prop. 16.8.8). O

The proposition has a noteworthy corollary:

Corollary 1.4.5 Assume that k is a perfect field and that A is a local k-
algebra. Then any short exact sequence of finite length A-modules can be
split by a differential operator over A relative to k.

Proof Let m be the maximal ideal of A and let K be its residue field. Say
we are given an exact sequence

0->M —->M-—->M"—-0

of finite length A-modules. Then these are A/m‘-modules for sufficiently
large [. Since K is formally smooth over k, there exists a k-algebra lifting
of K into A/m! (see [Ma] theorem 62). Let D : M" — M be any K-
linear splitting of the exact sequence. By the proposition, D is a differential
operator over A relative to K (and hence relative to k). In fact, if m**1M = 0
and m/TM" = 0, then ords(D) < i+ j. i

The next proposition is probably well known, but for lack of suitable
reference we supply a proof here.

Proposition 1.4.6 Let M and N be A-modules, let D € Diffﬁ/k(M, N),
and let J C A be an ideal. Then for every i >0

D(J™*"M) c J'D(M) C N.

Proof It suffices to check the universal DO d" : A — P} Ik We prove by

induction on ¢ that d”(J"*%) C Jin}l/k' For 7 = 0 there is nothing to prove,
so let + > 1. Choose ay,...,a,4+; € J. Since each of its factors is in [ 4 the
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product (1®a; —a1 ®1)--- (1 ® apyi — apy; ®1) =0 in P} /- Expanding
this product we get

dn(a‘l t 'an+i) =1 ®a1 sy - ZJ]d”(J’IZ‘F’Lf‘])
j=1

But by the induction hypothesis d"(J"+7) C Ji*jPX/k for1<j<i. O

Suppose the ring k has characteristic p (a prime number). Let F : k — k
be the absolute Frobenius homomorphism, F(A) = AP. Define

APR) = @, A (1.4.7)

where k acts on the first factor via F; thus 1 ® Aa = \? ® a in AP/5) for all
A € k (see diagram below; cf. [I1] §2.1). Let F 4, : AW/R) 5 A AQa — AaP,
be the relative Frobenius homomorphism. We make A®/%) into a k-algebra
via A = A® 1. Hence F,/; is a k-algebra homomorphism and its image
is the k-subalgebra of A generated by {a? | a € A}. Recursively define
AWTR) = (A@"/R)@/F) - Observe that if k is a perfect field then the
homomorphism W : a — 1 ® a is a ring isomorphism A = A®/k)_ For
k =T, we simply write A®) instead of A®/k),

a4 W e Fam, oy

7

k

k

The next lemma generalizes a result of Chase (see [Ch] lemma 3.3).

Lemma 1.4.8 Suppose k has characteristic p. Let M and N be A-modules
and let D € Homy (M, N).

a) If ord4(D) < p" — 1 for some n > 0 then D is AP"/%) linear.

b) Assume that A is generated by r elements as an AW/R) _glgebra. If D
is AP"/K)_linear for some n then ord4(D) < r(p" — 1).
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Proof a) Set B := A®"/K). For any m > 0 consider the homomorphism of
B-bimodules ™ : Pg/k — ’Pgn/k induced by the k-algebra homomorphism
B — A (the iteration of the relative Frobenius). If ¢™ factors through
Pgyx = B then every D € Diff}), (M, N) has ordg(D) = 0, ie. it is B-
linear.

Set In := ker(A®, A — A) and Ip := ker(B ®; B — B). Now Ip
is generated as a left B-module by {b®1 —1® b | b € B}, and hence by
elements of the form (1®a)®1 —-1® (1 ®a), a € A (write b = D \; ® a;
and factor out \; € k). We get

P"M((10a)®1-19(1®a) =" ®1-10d" =(@®l-1Qa)"

soyp™(Ig) C IﬁnPlT/k (ideal power). Taking m = p™—1 we have IZnP;l”/k =0

and ¢™ factors through 79% Ik

b) Say A is generated as an A®/*)_algebra by ai,. .., a,. Then these elements
also generate A as an A®"/k)_algebra for all n > 0. Choose n. > 1 and set
l:=r(p" —1), B:= AP"/k)_ The ideal J := ker(A @3 A — A) is generated
as a left A-module by {a; ® 1 —1® a;};_;. Since

(@®l-10a6¢) =d" @l-18d" =0

we get JH1 = (0. Therefore PA/B = A®p A and

I

Hompg(M, N) Homy (A ®p M, N)
HomA(Pil/B(M),N)

Dift!y, (M, N).

I

I

As an immediate consequence of the lemma we obtain:

Theorem 1.4.9 Assume that k has characteristic p and that the relative
Frobenius homomorphism F 5y, : AW/K) 5 A is finite. Then for any pair of
A-modules M and N

o
Diff 4/, (M, N) = (] Hom 4/ (M, N).

n=0

This is the so-called p-filtration on Diff 4 (M, N), cf. [Wo], proof of
theorem 1.
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1.5 Differential Properties of Semi-Topological Rings

Throughout this section k is a commutative semi-topological ring and A is a
commutative semi-topological k-algebra. Recall that a derivation of degree
i of a graded ring Q* = @, , Q" is an additive homomorphism d : Q* — Q*
of degree i satisfying d(a8) = d(a)f + (—1)"lad(B) for all o, B € Q* with
« homogeneous of degree |a|.

Definition 1.5.1 A differential graded (DG) semi-topological k-algebra is
a graded k-algebra Q* = @°°, Q" (where k — Q°), together with:

i) A linear topology on each homogeneous component Q", such that 2*
with the direct sum topology is a semi-topological k-algebra.

ii) A continuous k-derivation of degree 1 of Q* satisfying d* = 0.

We denote by STDGA(k) the category of semi-topological differential
graded algebras over k, with the obvious morphisms.

Let T}A = @, TEA be the tensor algebra of A considered as a k-
module. Put on T} A = A®j,---®; A (n times) the tensor product topology
and put on TjA the direct sum topology. The associativity of the tensor
product topology shows that T} A is a semi-topological k-algebra. Therefore
A ®, T;A is a semi-topological A-algebra (the multiplication is (ap ® a1 ®
@ am) by @b @ ®@by) = (aghg @A @ ® am @by R @ by)).
Define a continuous k-linear homomorphism of degree 1, d:ag® - ®ap —
1®ap® - @ ay.

Now let €% e = N 9114 Ik be the algebra of differential forms over A
relative to k, also known as the de Rham complex, and let d be the exterior
derivative. The map A ®; T;A — Q’A/k given by ag ® a1 ® --- @ a,, >
aod(a1) A--- Ad(ay) is a surjective A-algebra homomorphism, sending d to
d. Put on @, the quotient topology. Recall the notation A,, p, used in
§1.2 for left and right multiplication by a € A.

Lemma 1.5.2 Qj‘/k 1s a differential graded semi-topological k-algebra. The
homomorphism A — Q%/k s an 1somorphism of semi-topological k-algebras.

The topology on Q}4/k is the finest linear topology such that for every a € A
the homomorphisms Aq o d, pg(a) : A — Qh/k are continuous.

Proof According to prop. 1.2.9, Qz/k is a semi-topological k-algebra. Since
Qﬁ/k is the quotient of A ®; T} A it follows that Qz/k is the direct sum of

the €7 . in STMod(A). The continuity of d is due to the continuity of d.
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Now let N be the module 9}4 Ik with any linear topology such that the
homomorphisms A, 0 d, pgq) : A — (234 /i are continuous. These homomor-
phisms factor through A ®; A as '’ — a ® d’ and ¢’ — d’ ® a. By lemma
1.2.12 the homomorphism A ®; A — N is continuous relative to the tensor
product topology, so the identity map (234 Ik = N is continuous. O

Definition 1.5.3 The separated algebra of differentials of A relative to k is
the semi-topological differential graded k-algebra

o0

QP 1= (@0 = D

n=0

(We are using the fact that the functor M +— M5P commutes with
infinite direct sums, which is a consequence of prop. 1.1.5 b).)

Proposition 1.5.4 The continuous derivation d : A — Qz’sjcp has the fol-
lowing universal property: given any separated semi-topological A-module
M, the map

Hom ™ (9}4’776", M) — Der{™™ (A4, M)

induced by d is bijective.

Proof The injectivity is true because Qi{ﬁp is generated as an A-module

by d(a), a € A. Given a continuous derivation D : A — M, there is
a corresponding A-linear homomorphism ¢ : Qi‘ s M. For any a € A,
poAgod = AgoD : A — M and ¢popq(q) = pp(a) + A — M are continuous. By
lemmas 1.5.2 and 1.1.1 it follows that ¢ is continuous. But M is separated,

so ¢ factors through Qz’ﬁp. O

By universality, A — Q’Zﬁp is a functor STComAlg(k) — STDGA(k).
Given a homomorphism f: A — B in STComAlg(k) we use the same name
for the induced DGA homomorphism.

For n > 0 the tensor product topology on A ®; A induces a topology on

Pﬁ/k = AQy A/IZH. Set PZ’/SEP = ( ﬁ/k)sep. This is a semi-topological A-
algebra. Given a semi-topological A-module M set PZ’/SZP(M ) == (P} /e ®A

My,
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Proposition 1.5.5 Let M be a semi-topological A-module and let n > 0.
The continuous differential operator of order < n, d%, : M — ’PZ;SEP(M)
has the following universal property: given any separated semi-topological
A-module N the map

Hom %™ (PZ’/S,fp(M), N) — Diffﬁ’;,‘c’m (M, N)

induced by d', is bijective.

Proof This is a consequence of the universal property of P’ /k(M ) and
lemma 1.2.12 (cf. previous proposition). O

For n = 1 we get an isomorphism of semi-topological A-algebras

1, ~ 1,
Piid = AP @ Q5P (1.5.6)

the latter being a quotient of QZ’;ZP. The formula is d*(a) = 1®a +— a+d(a).

Definition 1.5.7 Letu: A — B be a homomorphism in STComAlg(k). We
say that B is topologically smooth (resp. topologically étale) over A relative
to k (or equivalently, u is topologically smooth relative to k, or u is smooth
in STComAlg(k), etc.) if, given any commutative diagram in STComAlg(A)

Co

with C and Cy separated and 7 a surjection such that ker(m)? = 0, the
homomorphism g : B — Cy can be lifted (resp. lifted uniquely) to a ho-
momorphism g : B — C in STComAlg(A) whenever it can be lifted to a
homomorphism g : B — C in STComAlg(k).

When these algebras have discrete topologies this definition coincides

with that of formally smooth and formally étale algebras relative to & (cf.
[Ma] §30.A). Moreover, we have:
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Proposition 1.5.8 If B has the fine A-module topology and is formally
smooth (resp. formally étale) over A relative to k for the discrete topologies,
then it is also topologically smooth (resp. topologically étale).

Proof Any A-algebra homomorphism g : B — C' is automatically continu-
ous (see prop. 1.2.4). O

Proposition 1.5.9  a) (Transitivity of topological smoothness) Let A =
B % C be homomorphisms in STComAlg(k). If u and v are smooth
(resp. étale) in STComAlg(k), then so isvou: A — C.

b) (Base change) Let A — B and A — A’ be homomorphisms in
STComAlg(k). If A — A’ is smooth (resp. étale) in STComAlg(k),
then so is B — B ®4 A'.

Proof Just like the proofs for formally smooth and formally étale homo-
morphisms (see [Ma] §28.E - 28.G) plus, in part b), the universal property
of base change (cor. 1.2.18). O

Lemma 1.5.10 Letu: A — B be a homomorphism in STComAlg(k). Then
w is smooth (resp. étale) in STComAlg(k) iff the conditions of definition 1.5.7
are satisfied for all diagrams with kex(m) nilpotent (not necessarily of square

0).

Proof One direction is trivial. For the other direction, suppose that u
is smooth (resp. étale) and that we are given a diagram of continuous ho-
momorphisms with N"*! = 0, where N = ker(w). For 1 < i < n define
C; = (C/N*1)P (so C,, = C). The intermediate diagrams involving
7; : Cit1 — C; have ker(m;)? = 0, so g can be lifted (resp. uniquely lifted)
step by step. O

The following theorem is an adaptation of well known results to the
context of semi-topological rings.

Theorem 1.5.11 Given a homomorphism A — B in STComAlg(k) the
following are equivalent:
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i) B is topologically smooth (resp. topologically étale) over A relative to
k.

ii) For every separated semi-topological B-module N the natural map Derf
(B,N) — Der§™ (A, N) is surjective (resp. bijective).

iii) The natural homomorphism (B ® g Qz’j‘;p)sep - Q}éﬁp in STMod(B)
has a left inverse (resp. is an isomorphism).

iv) For every separated semi-topological B-module N, for every semi-topo-
logical A-module M and for every n > 0 the natural map Diff™cont

B/k
(B®a M,N) — Diffﬁ’/cgm(M, N) is surjective (resp. bijective).

n,sep

v) For every n > 0 the natural homomorphism (B ® 4 'PZ’/SEP)SQP = Py

in STMod(B) has a left inverse (resp. is an isomorphism).

Proof

ii) = 1): Say we are given the data of definition 1.5.7 and a continuous k-
algebra lifting h : B — C of g. Then 6 := f—h: A - N = ker(n) is
a continuous k-derivation. Let § : B — N be an extension of . Define
G:=h+6: B — C; this is a continuous A-algebra lifting of g. The
uniqueness of § comes from the uniqueness of 4.

iii) = ii): We first observe that (B® 4 Qz’ﬁp)sep represents Der§" (A, N) for
separated semi-topological B-modules N. So an isomorphism in iii) implies
a bijection in ii), and a left inverse allows the extension of any continuous
k-derivation & : A — N to a derivation 6 : B — N.

iv) = ii): Trivial, take n = 1 and M = A, and make use of the canonical
splitting of Der®™ — Djff!-cont,

v) = iii): Trivial, take n = 1 and use the splitting (1.5.6).

v) = iv): Use prop. 1.5.5 and formula (1.2.13).

i) = v): See [Sw], proof of theorem 13.12. In [Sw] the assumption is that B is
a finite separable A-algebra, and there is no topology involved. However the
same arguments can be applied to our more general and topologized setup,

because the bimodules Pf’/sip have the appropriate universal properties. O

Condition iii) implies that when A — B is smooth in STComAlg(k), the
canonical sequence

0= (B@a QPP = Q5P - Q77 =0 (1.5.12)
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is split-exact in STMod(B).

Corollary 1.5.13 If B is topologically étale over A relative to k then the
natural homomorphism of semi-topological B-algebras (B ®4 QZjip)sep —

Q’gﬁp s an isomorphism.

Proof By the theorem we have an isomorphism in degrees < 1. The

homomorphism is surjective because Qgﬁp is generated as a B®®P-algebra

by Q}_D;jzp. Since Q7 Ik is an exterior algebra the B-linear homomorphism

Q /k—»ngekp = (B®a Qi{ﬁp)s"p induces a graded B-algebra homomor-
phism Q’]‘g/k — (B®a QZ;Zp)sep. By lemma 1.2.12 this homomorphism is
continuous, so it passes to Q};jekp, providing a continuous left inverse to the

natural homomorphism. O

Corollary 1.5.14 (Cancellation) Let A = B = C be homomorphisms in
STComAlg(k). If u and vowu are étale then so is v.

Proof Use condition iii) of the theorem and the fact that C®p B = C. O

If B happens to be separated and Q’Zﬁp happens to be a free ST A-
module, we have the simple formula:

(B®a Qj;jjcp)sep ~ B®y Qj;jif (1.5.15)

and the same for ’PZ’/SEP.

Definition 1.5.16 Let A be a ST k-algebra. If Qi{ﬁp is a finitely generated
A-module with the fine A-module topology, we say that A is differentially of
finite type over k. If moreover Qz’ﬁp is free over A, its rank is called the

differential degree of A over k.
Here are a few examples of topological smoothness.

Example 1.5.17 Let A € STComAlg(k) and let t = (¢t1,...,t,) be a se-
quence of indeterminates. Put on A[t] and on A[t,27!] the fine A-module
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topologies. Then A[t] — A[t,t '] is étale and A — A[t] is smooth in
STComAlg(k). In fact,

n
1’ ~ 1’ sep
= () o ().
i=1
(Of course k is unimportant here.)

A useful result is:

Theorem 1.5.18 Let A € STComAlg(k). Assume that A is noetherian
and differentially of finite type over k. Given an ideal I C A, put on

A = lim,,, A/I" the topology of lemma 1.2.19. Then A — A is étale in
STComAlg(k).

Proof Let N be a separated ST A-module and let § : A — N be a continu-
ous k-derivation. Then J factors through some finitely generated A-module
M which we may assume has the fine A-module topology.

By prop. 1.4.6, for every n > 0 we get a derivation 6, : A/I"t! —
M/I"M. Since the projection A—»A/I™t! is strict, 6, is continuous. Pass-
ing to the inverse limit there is a continuous derivation b A > M~
A®4 M — N (see cor. 1.2.21). Since N is separated and A C A is dense
(prop. 1.1.8), this § is unique. O

Corollary 1.5.19 Let A be as in the theorem and let t = (t1,...,tn) be a
sequence of indeterminates. Then A[t] — A[[t]] and A[t] — A((t)) are étale
in STComAlg(k).

Proof The ST k-algebra A[t] also satisfies the assumptions of the theorem,
so A[t] — A[[t]] is étale. Now take n = 1. By prop. 1.5.8 and lemma 1.3.4,
A[[t]] = A((2)) is étale, so by transitivity (prop. 1.5.9) A[t] = A((t)) is also
étale in STComAlg(k).

Therefore for every 1 < i < n the homomorphism

A((tigrs -5 t))[ti] = A((Fig1s -5 t0)) ((8:)) = A((tis - - - 5 )
is étale. By base change

A((ti-i-la <. atn))[tla <. at’L]
= A((tis -+ t0) @A((tisrstu))ts] Ali 1,5 t0)) [ty - L]
— A((t1y e b [Ers e tn]
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is étale, and finally by transitivity A[t] — A((¢)) is also étale in
STComAlg(k). O

A fact to be used later is:

Proposition 1.5.20 Let u : A — B and f : B — C be homomorphisms
in STComAlg(k), with u étale. Suppose C is separated, and consider it as
a ST B-module via f. Let g : B — C be a continuous DO over B relative
to k, s.t. gou : A — C is a ring homomorphism. Then g is also a ring
homomorphism.

Proof For any a,b € B set Dy(b) := g(ab) — g(a)g(b). We must show that
D,(b) = 0. Now for any a € B, D, : B — C is a continuous DO over B.
First fix some a € A. Then D, ,)ou = 0, and by the uniqueness of extension
of DOs, Dy, = 0. Next fix some b € B. By symmetry Dy ou = 0, and
again by invoking uniqueness we get Dy = 0. O
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2 Topological Local Fields

2.1 Definitions and Basic Properties

In this section we define topological local fields and examine their structure.
The definition below is due to Parshin (see [Pal] p. 697, [Pa3] §1 def. 1 and
also [Ka| part II §3.1).

Definition 2.1.1 An n-dimensional local field is a field K, together with
complete discrete valuation rings (DVRs) O1,...,Oy, such that:

i) Fori=1,...,n—1, the residue field of O; equals the fraction field of
Oit1.

ii) The fraction field of O1 equals K.

The fraction field (resp. residue field) of O; is denoted by k;_; (resp. &;).
The number n is called the dimension of K and is denoted by dim(K). For
1 <4 < n the fibred product Oy x,, --- X, , O; is the largest subring of
K on which the projection to x; is defined. Let O := Oy Xy, -+ X4, ; Op.
When dealing with a few local fields K, L, ... we will write O1(K), O1(L), ...
etc.

Remark 2.1.2 The ring O, being a valuation ring, is integrally closed, but
unless n = 1 it is not noetherian (see [CA] ch. VI §1.4 cor. 1 and §3.6 prop.
9).

Example 2.1.3 Let F be a field and let K := F((t)) be the field of Laurent
series over F' in the sequence of indeterminates t = (¢1,...,%,) (see §1.3).
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Then K is an n-dimensional local field with
O; = F((tig1,- - tn))[[ti]]

ki = F((tit1:- -, tn)).

By the Cohen structure theorem ([Ma] thm. 60), this is the general
situation in the equal characteristics case, i.e. when char K = char k; =
... = char k, (or equivalently, when O contains a field).

Example 2.1.4 Let p be a prime number and consider the complete DVR
with p-adic valuation A := lim, ;(Z/(p"))((t)). Let K be the fraction field
of A. Then K is a 2-dimensional local field with O;(K) = A and k;(K) =
Fy((t)) (where F, :=Z/(p)).

Definition 2.1.5 Let K be an n-dimensional local field. A sequence a =
(a1,...,ay) of elements of O is called a system of parameters (resp. a reqular
system of parameters) in K if for all i the image of a; in O; is a parameter
(resp. a regular parameter) in this DVR. A subsequence (ai,...,a;) of a
system of parameters (ay,...,ay,) is called an initial system of parameters
of length j.

Choose a regular system of parameters ¢ in K. Every a € K* (units of

K) can be written uniquely as

a=ual:= uoﬂi1 -al
with ¢ = (41,...,4,) € Z™ and u € O*. Thus a gives rise to an isomorphism
of ordered groups K*/O* = (Z", lex).

Let L/K be a finite extension of fields. Then any structure of n-dimen-
sional local field on K extends uniquely to one on L. Conversely, any n-
dimensional local field structure on L restricts to one on K. These state-
ments follow from repeated applications of [CA] ch. VI §8.5 cor. 2, and §8.1
lemma 2 (cf. [Lo] §1.2).

Definition 2.1.6 A finite homomorphism of local fields between the n-di-

mensional local fields K and L is a ring homomorphism f : K — L such
that [L : K] < oo and f respects the local field structures.
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Let f : K — L be a finite homomorphism of n-dimensional local fields.
Then for every 1 <14 <n, O;(L) is a free O;(K)-module of finite rank. One
has the following identity:

L : K] = [kn(L) : kn(K)] e(L/K) (2.1.7)

where

e(L/K) :=[(L*/O(L)*) : (K*/O(K)")]
is the ramification index.
Definition 2.1.8 Let K and L be local fields of dimensions m and n, re-
spectively (m < n). A homomorphism of local fields f : K — L is a ring
homomorphism such that f(K) C O1(L) X, (1) ** X g1 (L) On—m(L) and

such that the induced homomorphism K — kyn_m(L) in a finite homomor-

phism of local fields. Define dim(f) = dim(L/K) :=n —m.

Example 2.1.9 Let F' be any field and let ¢ be an indeterminate. Then
the inclusion F' — F((t)) is a homomorphism of dimension 1. Let K be the
local field of example 2.1.4. Then the natural homomorphism Q, — K is
not a homomorphism of local fields, because Q, ¢ A = O;(K).

We shall only be concerned with local fields of equal characteristics. Fix
for the remainder of this section a perfect field £ with the discrete topology.

Definition 2.1.10 A topological local field (TLF) over k is a field K, to-
gether with the following structures on it:

i) A structure of an n-dimensional local field, for some n > 0.
ii) A ring homomorphism k — O(K).
iii) A structure of a semi-topological ring.
The two conditions below must be satisfied:

a) If n =0 the topology on K is discrete and ranky Q}(/k < 0.

b) Ifn > 0, then there is a topological local field over k of dimension 0, F,
and an isomorphism K = F((t1,...,t,)) which respects the structures
i),4i) and iii) above. Here F((t1,...,t,)) has the topology of definition
1.3.7 and the local field structure of example 2.1.3.
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A morphism of topological local fields f : K — L is a continuous k-
algebra homomorphism which is also a homomorphism of local fields.

An isomorphism K = F((t1,...,t,)) as in condition b) is called a para-
metrization of K. The condition rank; QL i < 00 (finiteness of differential
degree) is equivalent to tr.deg, F' < oo if chark = 0. If chark =p > 0
then it is equivalent to [F' : F(P)] < co. Note that given a parametrization
K = F((t)) the topology on K is F[t]-linear (see prop. 1.2.23). A finite
morphism of TLFs is a morphism K — L s.t. [L : K] < oco. Denote the
category of topological local fields by TLF(k).

Example 2.1.11 Let K be a TLF and let t = (¢1,...,%,) be a sequence
of indeterminates. Then K((t)) is a topological local field (of dimension
dim(K) 4+ n) and K — K((t)) is a morphism in TLF(k).

Let K be a topological local field over k. Put topologies on O; and k; such
that the canonical homomorphisms O; — k;_1 and O;—»k; become strict.
Thusif K =2 F((t1,...,ty)) is a parametrization, then O; = F((tjy1,...,ts))
[[ti]] and ki = F((tit1,...,t,)) are homeomorphisms. By prop. 1.3.5 all
these ST k-algebras are separated and complete.

Assume that chark = p. Let K be an n-dimensional local field over k,
and let K = F((t1,...,t,)) be a parametrization. Let d := rankp Q}?/k. The

field K(P/k) maps isomorphically to the subfield F®/K)((tP)) := F®/F) (),
...,th)) € K. (See §1.4 for the definition of K®/%))) Choose a p-basis
u = (u1,...,uq) for F. Looking at the definition of the topology on F'((t))
we see that
D FOM((#) utd = F((2)) (2.1.12)
01 yensid s yeeesin <D
is a homeomorphism. If we let K®/k) = p(p/k)((tP)) be a parametrization,

then the relative Frobenius Fp/ : K (P/k) 5 K becomes a finite morphism
of TLFs. Iteration gives:

Proposition 2.1.13 Let chark = p and let K € TLF(k). Then for any
m > 0, the field K®"/K) admits a unique structure of TLF over k s.t.

the iterated relative Frobenius map KP™/%) — K is a finite morphism in
TLF(k), and s.t. K has the fine K*"'/%)_module topology.

Theorem 2.1.14 Let chark = p and let K € TLF(k). Suppose M and N
are semi-topological K-modules, with M having the fine K-module topology.
Then any differential operator over K, D : M — N 1is continuous.
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Proof According to thm. 1.4.9 applied to A = K, D is K®™)-linear for
some m > 0. Since k?™) =k, D is even K®"/k)-linear. Now by prop. 1.2.9
¢), M has the fine K@ /k)_module topology, so D is continuous. O

Corollary 2.1.15 If chark = p then Q;S;;Cp has the fine K-module topology,

the differential d is K®/%)_linear, and

*,5€D ~u ()* ~ OFf o~ OF
Qe =V kwm = Qg = Uk

(the last denoting absolute differentials).

Proof Put on Q*K/K(p

ST K-module and d is continuous, so €2

/i the fine K@/k)_module topology. It is a separated

* _ Q*asep
K/K@/k) = UK/ K@®/k)"

1.4.8 a) every derivation of K is K (/) linear. O

But by lemma

Corollary 2.1.16 Suppose chark = p. Let K,L € TLF(k) and let K — L
be a continuous k-algebra homomorphism. Then L is topologically smooth
over K relative to k iff L is a separable K -algebra.

(See [Ma] §27.D for a definition of separability.)

Proof By the previous corollary we can erase the superscript “sep” in
condition iii) of thm. 1.5.11. Now use [Ma] theorems 66 and 62. O

The next theorem is the key to the structure of topological local fields.

Theorem 2.1.17 Let L be an n-dimensional local field, let K € TLF(k) be
n-dimensional, and let K — L be a finite homomorphism of local fields. Put
on L the fine K-module topology. Let A € STComAlg(k) be noetherian and
differentially of finite type over k, and let s = (s1,...,8m) be a sequence
of indeterminates (m < n). Suppose g : A[s] — L is a homomorphism
in STComAlg(k) such that g(A) € O1(L) Xy (1) """ Xn,_1(x) Om(L) and
(9(s1),---,9(sm)) is an initial system of parameters in L. Then g has a
unique extension to a homomorphism g : A((s)) = L in STComAlg(k).

Proof We use induction on m which we assume is at least 1. Choose a
parametrization K = F((t)) = F((t1,...,tn)), and a regular parameter r;
of the DVR O (L). Define sequences of indeterminates t' := (ta,...,t,) and
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s' = (s9,...,5m) and ST k-algebras B := A[s] and B := A((s'))[[s1]]. For
every i > 0 set B; := B/(s"™") and B; := B/(s™). Put on Oy(L)/(ri™") the
fine F((¢'))-module topology. Since O;(L) has the fine F((¢'))[[t1]]-module
topology, there is an isomorphism of ST k-algebras O;(L) = lim, ; O1(L)/
(ri™1) (see prop. 1.2.20). We get induced continuous k-algebra homomor-
phisms g; : B; — Oy(L)/(rtth).

Now fix 7 > 0. The Eo—linear map

~

%
®: (Bo)™ S By, @(bo,...,bi) = Y bush
n=0

and its inverse are continuous DOs over B, by prop. 1.4.4. Similarly for
L: if chark = 0 (resp. chark = p), let o : k1(L) — O1(L)/(r"!) be any
F((t'))-algebra (resp. k-algebra) lifting. The k1 (L)-linear map, with respect
to o,
i
Uk (L) S 00(L) /(1)) lco, ... e) =D ale)rt
v=0

and its inverse are continuous DOs over O;(L). In characteristic 0 the
continuity follows from the F'((t'))-linearity. In characteristic p we are using
the fact that ¥ is a DO over F((t')) (of order < 7) and thm. 2.1.14. In
particular o is continuous.

By induction on m, g extends (uniquely) to a homomorphism gy : By —
#1(L) in STComAlg(k). Define f : B—By % k(L) 2 Oy(L)/(ri*1), and
consider O;(L)/(r*!) as a ST B-module via f. Then ¥ is B-linear. On
the other hand g; is a DO over B of order <4, since [...[g;, ao); ..., ai](b) =
9i(b) IT},=(gi(ay) — f(ay)) = 0 for any ag,...,a; € B, b € B;.

For every 0 < p,v <4 there is a DO over B relative to k, D, , : By —
k1(L), such that

[Dy] =0 togio®: Bitt — gy (L)}

in matrix notation. Since B — B is étale in STComAlg(k), D, extends to
a continuous DO D, , : By — k1(L) over B. Putting the D, , together we
get a continuous DO over B

Gi=Vo[D,,]o® " B = O1(L)/(ri*)

extending g;. By prop. 1.5.20, g; is a k-algebra homomorphism. The g; form
an inverse system. Passing to the inverse limit we get g : B — O1(L), and by
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lemma 1.3.4 it extends to a homomorphism g : A((s)) — L in STComAlg(k).
The uniqueness of § is obvious. O

Corollary 2.1.18 Let K — L be a finite morphism in TLF(k). Then the
topology on L is the fine K-module topology.

Proof Let L' be the field L with the fine K-module topology. Then the
identity map h : L' — L is continuous. Let L = F((t)) be a parametrization
of L, and let g : F[t] — L' be the inclusion. By the theorem there is
a continuous homomorphism ¢ : L = F((t)) — L' extending g. Since
hog:L — L is continuous and h o §| Flt] = h o g, uniqueness implies that g
is the identity map. Therefore the two topologies on L are equal. O

Corollary 2.1.19 Let f : K — L be a morphism in TLF(k) of dimension
n, let a = (aq,...,ay) be an initial system of parameters in L and let s =
(81,.-.,8n) be a sequence of indeterminates. Then f extends uniquely to a

finite morphism f : K((s)) = L in TLF(k) with f(s;) = a,.

Proof To get f apply the theorem to f : K[s] — L. Let ¢; be the order of
a; in O;(L). From [CA] ch. III §2.11 prop. 14, used repeatedly, we get

[L:K((s))]=e1--enltn(L) : K] < occ.
O

We see that every morphism in TLF(k) factors as a Laurent series mor-
phism (i.e. K — K((s))) followed by a finite morphism. This implies that
a morphism is, topologically, a strict monomorphism.

Corollary 2.1.20 Let K be a TLF and let f : K — L be a finite field
extension. Then L admits a unique structure of TLF such that f becomes a
morphism in TLF(k).

Proof Say K has dimension n; then L has a unique structure of n-
dimensional local field extending that of K. Put on L the fine K-module
topology. We must exhibit a parametrization of L. Choose a k-algebra lift-
ing F' = k,(L) — O(L) and a regular system of parameters ¢ in it. By thm.
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2.1.17 we get a continuous k-algebra homomorphism g : F((¢)) — L, which
is in fact bijective (cf. previous cor.). Choose a parametrization K = E((s))
and let h : K — F((t)) be the finite morphism extending g~! o flEgs)- Since
goh : K — L is continuous we have go h = f, so in fact ¢ is a homeomor-
phism, and it is the desired parametrization. O

Let LF(k) be the category of local fields over k, i.e. the objects have
the structures i) and ii) of def. 2.1.10 and the morphisms are the homomor-
phisms which respect those structures. Let unt : TLF(k) — LF(k) be the
functor which forgets the topology. The behavior of this functor changes
dramatically between characteristic 0 and positive characteristics.

Proposition 2.1.21 Suppose chark = p. Then the functor unt induces an
equivalence between TLF(k) and the full subcategory of LF(k) consisting of
the fields K such that rankKQ}(/k < Q.

Proof Clearly every such field K € LF(k) lifts to some K € TLF(k) (use
the Cohen structure theorem). It suffices to show that unt is a full functor.
So let K, L € TLF(k) and let f : unt(K) — unt(L) be a morphism in LF(k).
We must show that f is continuous.

First assume that dim(K) < dim(L) and L = E((s)) for some TLF
E. Let f; : K — E[s]/(s'"!) be the induced homomorphism. By induc-
tion on the dimension we know that fo : K — FE is continuous, so F is
a ST K-module (via fy). Choose i > 0 and let ¥ : E“t1 5 E[s]/(s'T1),
V(ag,...,a;) = Y, ays", which is an isomorphism of ST E-modules. The
map D; := U~ lo f; : K — E"*! is a differential operator over K (of order
< i), so by thm. 2.1.14 it is continuous. Hence f; is continuous. Now pass
to the inverse limit to conclude that f is continuous.

If dim(K) = dim(L) write K = F((t)). Then by the discussion above
the maps f; : F[t]/(t"1) — E[s]/(s"t!) are continuous, and by passing to
limits so if f. O

This is not the case in characteristic 0. If char £ = 0 and K is a local field
over k of dimension > 2, then K admits different topologies. Equivalently,
given K € TLF(k), there exist automorphisms of unt(K) in LF(k) which
aren’t continuous. Note that this contradicts the assertions in [Lo] pp. 501-
502 regarding the uniqueness of the topology.
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Example 2.1.22 Suppose chark = 0. Let K := Ek((t1,t2)) € TLF(k),
and let {u,} be a transcendency basis for k((t2)) over k(t2), so k((t2)) is
separably algebraic over k(t2,{us}). Choose arbitrary v, € k((t2))[[t1]]-
Then there exists a unique k(t2)-algebra lifting o : k((t2)) — k((t2))[[t1]]
such that o(uq) = uq + t1v,. Extend it to an automorphism o of K such
that o(t1) = ¢1. o is an automorphism of unt(K), but it is continuous
precisely when all the v, are 0.

To conclude this section we will show that the topology on a topological
local field determines its local structure. Given K € TLF(k), let 7; : O(K) —
ki(K) be the canonical continuous maps (O(K) has the topology induced
from K).

Lemma 2.1.23 Let K € TLF(k) be n-dimensional.

a) Let s be an indeterminate and put on Z the discrete topology. If f :
Z[[s]] = K is a continuous ring homomorphism, then f(s) € O(K)
and m, o f(s) = 0.

b) Let u and s be indeterminates and put on Z[u,u '] the discrete topol-
ogy. Let f : Zlu,u"[[s]] = K be a continuous ring homomorphism,
with f(u) € O(K). Then for everyi, 0 <i<n-—1, either mjof(s) =0
or miy1 0 f(u) #0.

Proof a) We prove by induction on 7, i < n — 1, that m; 0 f(s) € Oj41(K).
Since lim;_,o0 87 = 0 in Z[[s]], we get lim;_,o0(m; 0 f(s))7 = 0 in x;(K). Now
ki(K) = L((t)) for some TLF L, so by the decomposition (1.3.6) and prop.
1.1.5 ¢) it follows that m; o f(s) € O;41(K) = LI[[t]]. Since k,(K) is discrete
it must be that m, o f(s) =

b) Seta:_ﬂzof() nd b := 7o f(u). If a # 0 and w410 f(u) =0
then b "a € K;(K) — Oi1 (K) or h >> 0. Now lim;_,o0(u"s)? = 0 in
Z[u, u=Y[[s]], s0 limj_,0e(b™"a)? = 0 in r;(K), which is impossible by prop.
1.1.5 c). O

Proposition 2.1.24 Let K € TLF(k) be n-dimensional and let a = (a1, .. .,
ap) be a sequence of elements of K. Then a is a system of parameters in
K iff there exists a continuous ring homomorphism Z((t)) = Z((t1, ..., tn))
— K, t; — a;.
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Proof Suppose a is a system of parameters. By thm. 2.1.17 there is a
continuous ring homomorphism Z((t)) — K sending t; — a;.

Conversely, suppose such a homomorphism f : Z((t)) — K exists. Take
i, 1 <4 < n, and consider the continuous ring homomorphism Z[[s]] —
Z((t)), s — t;. By lemma 2.1.23 a), a; € O(K) and m,(a;) = 0. Define
l; to be the smallest number such that 7, (a;) = 0. Now take i < n — 1,
and consider the continuous ring homomorphism Z[u,u " [[s]] — Z((2)),
s+ t;, u +— ti11. By lemma 2.1.23 b), it follows that ;41 > [; + 1.
Therefore I; = 1 and g is a system of parameters. O

2.2 Clusters of TLFs and Base Change

As before k is a fixed perfect field. In this section we define a category of
algebras CTLF(k), which contains TLF(k) as a full subcategory. In this new
category there is a convenient base change operation. Given an artinian
k-algebra A let A,eq := A/(radical). Since k is perfect, there exist k-algebra
liftings Aeq — A.

Definition 2.2.1 A cluster of topological local fields over k is an artinian,
commutative semi-topological k-algebra A, together with a structure of a
topological local field over k on each of its residue fields A/p, p € Spec A.
We require that there will exist some k-algebra lifting Areq — A, relative to
which A has the fine Aeq-module topology.

A is called equidimensional if the TLFs A/p, p € Spec A, all have equal
dimensions and equal differential degrees.

A morphism f : A — B of clusters of TLFs is a continuous k-algebra
homomorphism such that for every q € Spec B lying over some p € Spec A,
the induced map on residue fields A/p — B/q is a morphism in TLF(k).

Denote the category of clusters of TLFs by CTLF(k). The topology on
a cluster of TLFs A is local with respect to Spec 4, i.e. A = ]_[pespecAA,g
as ST rings. This is because the spectral decomposition is multiplication
by idempotents, a continuous operation. Since A;qq is a complete separated
k-algebra, so is A.

The next proposition shows that the topology on A is independent of the
lifting A;eq — A (provided this lifting is continuous). Given a morphism f :
A — B and a maximal ideal q € Spec B, let dimg(f) := dim(A/p — B/q),
where p := f~1(q). We say that f is finite if dim,(f) = 0 for all q.
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Proposition 2.2.2  a) Let 7: Areq — A be a morphism in CTLF(k) (i.e.
a continuous lifting). Then A has the fine Ajeq-module topology (via

T).

b) Let A — B be a finite morphism in CTLF(k). Then the topology on B
15 the fine A-module topology.

c) Let A € CTLF(k) and let B be a finite A-algebra. Then there exists a
unique structure of cluster of TLFs on B which makes A — B into a
morphism in CTLF(k).

Proof These questions are local on Spec B, so we may assume that Spec B =
{q} and Spec A = {p}.

a) Set K := A/p and let K = F((t)) be a parametrization. Let A’ be the
algebra A with the fine K-module topology via 7, and let h : A’ — A be the
identity map. We must prove that h is a homeomorphism. Say ¢ : K — A
is a lifting which determines the topology. Then it suffices to prove that
h™'oo : K — A'is continuous. Now g := h™'oo|py : F[t] - A’ is a
DO over F[t] (cf. proof of thm. 2.1.17) so it extends to a continuous DO
G: K — A'. But ho g is continuous, so ho § = o and hence h™' o0 = § is
continuous.

b) (Cf. proof of cor. 2.1.18.) Let 0 : K = A/p — A be a lifting which
determines the topology. Let B’ be the algebra B with the fine K-module
topology and let h : B’ — B be the identity map. As in the proof of thm.
2.1.17 there exists some continuous k-algebra lifting 7 : L = B/q — B'.
Now h o7 : L — B is a morphism, so by part a), B has the fine L-module
topology via h o 7. This implies that h is a homeomorphism.

c¢) Denote the homomorphism A — B by f. Let 0 : K = A/p — A be a
lifting which defines the topology. Put on B the fine K-module topology,
and put on L = B/q the unique structure of TLF such that K — L is a
finite morphism in TLF(k). It remains to exhibit a lifting 7 : L — B such
that B has the fine L-module topology.

Choose a continuous k-algebra lifting 7 : L — B as before. Let B’ be the
algebra B with the fine L-module topology, so B’ is a cluster of TLFs. Let
h : B" — B be the identity map. Choose a parametrization K = F((¢)). The
DO g:=h"lto olpp : Flt] — B’ extends to a continuous DO §: K — B/,
and ho§= foo: K — B. Thus g is a morphism, and by part b) h is a
homeomorphism. O

48



Let &’ be another perfect field, with discrete topology, and suppose there
is a homomorphism k& — k'. Thus any ST k'-algebra is also a ST k-algebra.

Definition 2.2.3 Let A € CTLF(k) and let A" € CTLF(K'). A finitely rami-
fied homomorphism A — A’ is a continuous k-algebra homomorphism, such
that for every p’ € Spec A" lying over some p € Spec A, the image of (A/p)*
in the canonical valuation group (A'/p’")* JO(A’/p")* is a subgroup of finite
index.

Theorem 2.2.4 (Finitely Ramified Base Change) Let f : A — B be a
morphism in CTLF(k), let A’ € CTLF(K') and let u: A — A’ be a finitely
ramified homomorphism. Then there exists an algebra B' € CTLF(k'), a
morphism f': A" — B’ in CTLF(K') and a finitely ramified homomorphism
v: B — B, satisfying:

i) dimg (f) = dimg(f) for every ' € SpecB’ lying over some q €
Spec B, and the diagram below is commutative:

B Y. p

A

A 4. q

ii) Suppose ¢' : A — C' is a morphism in CTLF(K') and w : B — C'
is a finitely ramified homomorphism, such that wo f = ¢’ o u and
dimgy (¢') = dimg(f) for every q' € SpecC’ lying over some q € Spec B.
Then there exists a unique finite morphism h' : B' — C" in CTLF(k")
such that ¢ = h' o f' and w = h' owv.

Proof We can assume that Spec A = {p}, Spec A’ = {p’} and Spec B = {q}.
Choose a lifting 0 : A/p — A. Say dim(f) = m and pick by,...,b, € B
such that their images form an initial system of parameters b = (b1,...,by)
in B/q. Let s = (s1,...,8,) be a sequence of indeterminates. As in the
proof of prop. 2.2.2, we get a finite morphism (A/p)((s)) — B, extending
f oo and sending s; — b;. Now A((s)) = A®,/, (A/p)((s)), giving rise
to a finite morphism A((s)) — B extending f. There is also a continuous
homomorphism @ : A((s)) — A’((s)), which is finitely ramified. Define

B':= B®4(s) A'((s))
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with the unique structure of CTLF to make A’((s)) — B’ a finite morphism
in CTLF(£'). The maps f’ and v are the obvious ones.

Suppose that an algebra C' and maps ¢', w are given as in ii). Let
q' € SpecC’ be arbitrary, and set p’ := ¢ '(¢') and q := w (q'). Let
b be as before. We claim that (w(by),...,w(by)) is an initial system of
parameters in C'/q’. If dim(C") = m this follows directly from prop. 2.1.24.
Otherwise, recall that « is finitely ramified, so there is an element a € A
with u(a) a parameter of the DVR O(A’/p’). From lemma 2.1.23 b) it

follows that ((w(by),...,w(by),¢" o u(a)) is an initial system of parameters
in C'/q’. As before we get a finite morphism A'((s)) — Cy, si = w(bi).
Thus a morphism B’ — Cél, exists, and it is clearly unique. O

Example 2.2.5 Take A := k(t2), B := k(t2)((t1)) and A’ := k((t2)) with
the standard homomorphisms. Then B’ = k((t2))((t1)) = k((t1,11))-

2.3 Differential Forms and Traces

As before k is a fixed perfect field with discrete topology. In this section
we show that to each finite morphism K — L in TLF(k) there is attached a
canonical trace map Trp/x : QZ’?ZP — Q’;f/ekp.

Lemma 2.3.1 Let K be a TLF over k. Then Q;kap 15 a free ST K-module
of finite rank.

Proof Let K = F((t1,...,t,)) = F((t)) be a parametrization of K. By
cor. 1.5.19, F[t] — K is topologically étale relative to k. By condition a)
of def. 2.1.10, Q). is a finitely generated free F[t]-module. Since K is

*,5€P ~

separated, and using cor. 1.5.13, we get QK/k = K Qppy Q*F[t]/k' O
Recall that if char k = p then Q*If‘/ip = Q% ), = Q¢ (cor. 2.1.15).
Given a TLF K define the differential logarithm map dlog : K* — Q}és/zp,
dlog(a) := a 'da. This is a homomorphism of abelian groups, functorial
with respect to continuous k-algebra homomorphisms.

Proposition 2.3.2 There exists a unique functorial trace map, assigning

to each finite morphism K — L in TLF(k) a map Trp k : QZ’?ZP — Q’;;s/(;cp,
satisfying the following axioms:

50



T1 Trp i s a homomorphism of semi-topological differential graded left
Q;S;;cp—modules, of degree 0.

T2 Try i coincides with the field trace on L = QOL’;ZP.

T3 Trp i odlog = dlogo Ny : L™ — Q}és/zp, where Ny, is the field

norm.

(Cf. [Lo] props. 2 and 4, and [Kul] §2.3 Satz 1.)

Proof 1) Assume k has characteristic 0. According to cor. 2.1.18 and
prop. 1.5.8 any finite morphism K — L is topologically étale relative to k.
Therefore Qz,;zp = Q;S;;Cp ®K L. Let Trp )k : Qz,;zp — Q;S;;Cp be the Q;S;;Cp—
linear extension of the field trace Trz g : L — K. Because it is K-linear,
Trp,/x is continuous. The functoriality follows from the same property of
the field trace.

Choose any finite Galois extension g : K — M containing L, and let
H := Hompgg)(L,M). By cor. 2.1.20 we may assume that g is a finite
morphism in TLF(k). Then g : Q75" — Q77 is injective, and

K/k M/k
goTryc =) h: QP - Q. (2.3.3)
heH

Since hod = doh and go Ny /i = [[cygh + L™ — M*, it follows that
Tr7,/x commutes with d and that axiom T3 is satisfied.

2) Now assume that £ has characteristic p. By [Kul] §2.3 Satz 1 there is
a functorial trace map Try i : 07 — QF for any finite extension K — L.
It is a homomorphism of DG },-modules; hence it is continuous. Axiom
T2 follows from [Kul] (2.3.6) property d). In order to verify axiom T3 we
may assume (by transitivity) that L is either separable over K, or purely
inseparable of degree p. In the first case formula (2.3.3) holds. In the second
case it suffices to consider ¢ € L* — K*, and by [Kul] (2.3.6) property e)

Try g odlog(a) = aprrL/K(apflda) =a "d(a’) = dlogoNp, g (a) . (2.3.4)

O

Remark 2.3.5 In [Kul] E. Kunz proves the existence of a canonical trace
map Trr /g : Q*L/k — Q*K/k for any finite extension of fields K — L relative
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to any base field k. In characteristic 0 the proof is like part 1) of prop.
2.3.2, whereas in characteristic p it uses Tate’s trace map, see [Tal] p. 401.
For TLFs the two trace maps Try ; are compatible with the projections

0= Qi’ﬁp. (The author thanks R. Hiibl for referring him to [Kul].)

Remark 2.3.6 The multiplicative group K* is considered here to be a
discrete group, and the same holds for the Milnor ring K*K; see remark
1.3.8 and digression 2.4.25. When dealing with local class field theory one
does topologize these groups appropriately; the reader is referred to [Pa3]
§2, [Ka] part I §7.1 and [Kh] §2.3.

Definition 2.3.7 Let K € TLF(k) with rank Q}és/e;cp =d. The dual module
of K 1is the free semi-topological K-module of rank 1, wg = Q;lés/ip.
The name is explained by the next proposition. First we define the trace
pairing
mult Trp /i
<—, _>L/K L X wy, > W], WK . (238)

Proposition 2.3.9 The trace pairing is a perfect pairing of semi-topological
K-modules, i.e. it induces isomorphisms wy;, = Hom%" (L, wk) and vice-

versa.

Proof It suffices to show that Try, i is non-zero, and we may assume
K — L is either separable or inseparable of degree p. In the separable case
this is well known. If L = KJa] with a inseparable over K of degree p, then
choose by,...,b5_1 € K* such that a,by,...,bs_1 is a p-basis of L. Then

Trpk (dlog(br) A -+ A dlog(ba—1) A dlog(a))
= dlog(by) A --- A dlog(bg_1) A dlog(aP) # 0
in wg. (Cf. [Kul] (2.3.5)). O
Let CTLFyeq(k) be the full subcategory of CTLF (k) consisting of reduced

algebras. It is an easy matter to extend the trace functor to CTLF eq(k).
For A € CTLFq(k), we have Q75P = HpespecA Q7P Given a finite

) Alk (A/p)/k
morphism A — B, the trace map is defined locally on Spec B:
Trpa =) Trsmyam : L = i (2.3.10)

qlp
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Set wy = @pespecA wa/p, a free ST A-module of rank 1. Then the trace
pairing (—, —)p/a : B X wp — wa is a perfect pairing of ST A-modules.

The next proposition shows that the trace pairing commutes with finitely
ramified base change (cf. [Lo| lemma 5 iii) ).

Proposition 2.3.11 Let the data of theorem 2.2.4 be given, and assume
that f is a finite morphism and the algebras A, A’ and B are reduced. For
every q € Spec B' denote the length of the artinian local ring Ba, by l(Ba,)
and denote by vy the induced map B — B'/q = (Bj.q)q- Then

wo Ty = Trg o | 1By vy | 9550 — L.
q/

Proof We may assume that A, A’, B are fields. Now B’ = B®4 A'. If
A — B is separable then so is A’ = B’ and I(B,,) = 1 for all q'. All traces
appearing are gotten by base change from the field trace Trz/4 : B — A, so
equality holds.

Next, assume that B = A[b] with b inseparable of degree p over A.
Then Spec B = {¢'}, and either u(b?) ¢ A'®), in which case [(B') = 1,
B" = A'lv(b)] and Trp/ /4 (dlog o v(b)) = u o dlog(b?); or u(b?) € A'®P) | in
which case I(B') = p, B4 = A" and v o dlog(b”) = 0. Again equality holds.

The general situation now follows by transitivity. O

2.4 Residues in Topological Local Fields; Topological Dual-
ity

As before k is a fixed perfect field. Given K € TLF(k), let K.K = @;° K;K

be its Milnor ring (see [Mi]). As mentioned earlier (remark 2.3.6), K, K has

the discrete topology. For any a1,...,a; € K*, we denote the corresponding

element (symbol) in K;K by (aj,...,a;). Let n := dim(K). For every

1 <4 < n there is a homomorphism of abelian groups

ordy :=9o---08: K;K — Kok (K) = Z (2.4.1)
i
where 0 : KiK — K. 1s1(K) is the map of [BT| prop. 4.5. If v =

(v1,...,0p) : K* = (Z,lex) is a surjective valuation, one has ord (a1, . .. , a;)
(—=1)@) det[v,(a,)] (cf. [Lo] p. 501).
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Remark 2.4.2 The original definition of 9, namely the one in [Mi], differs
from that of [BT] by a sign. We chose the latter since it permits O to act
from the left.

There is a canonical homomorphism of graded rings (called the Tate map

on [Pa3] p. 166) dlog : K. K — Q*If‘/ip, extending the differential logarithm

dlog : K* — Q}és/e;cp. Thus dlog(ai, . .. ,an) = ay *day A -+ A a,, *day.

The following important theorem is due to Lomadze ([Lo] thm. 1). It
generalizes the well known 1-dimensional case (see [Se| ch. II no. 11) and
Parshin’s result for 2-dimensional fields ([Pal] §1 prop. 1). We present an

improved version, in the framework of topological local fields.

Theorem 2.4.3 Let k be a perfect field. There exists a unique functor
Res : TLF(k)° — Ab, such that Res K = Q*Iés/zp for all K € TLF(k), and
satisfying the following axioms:

R1 Given a morphism K — L in TLF(k), the map Resp i := Res(K —

L): Q*L’jzp — Q*If/zp is a homomorphism of semi-topological differential

graded left Q’;és/ekp—modules of degree —dim(L/K).

R2 If K — L is a finite morphism then Resp i = Trp k.

R3 If K — L is a morphism of dimension n > 1, then for any ai1,...,a, €
L* it holds that

Resy /g o dlog(ay,...,an) = [kn(L) : K]ord] (a1,...,an).

The proof is postponed till later in this section.
Observe that for L = K((t1,...,t,)), axiom R3 yields

Resy (t, ' dtn A+ AtT dt) =1 .
Remark 2.4.4 Our residue map Resy i differs from the one defined on
[Lo] p. 509 by a factor of (—1)&), where n = dim(L/K).

Let K — L be a morphism in TLF(k). We call K — L smooth (resp.
étale) if it is so in STComAlg(k). A Laurent series morphism K — K((t))
is smooth. Thus if chark = 0, any morphism K — L is smooth, since
it factors as K — K((f)) — L with K((¢)) — L finite separable. On

o4



the other hand, if chark = p, K — L is a smooth morphism iff L is a
separable K-algebra (see cor. 2.1.16). (One can actually show that any
smooth morphism factors as K — K((t)) — L with K((t)) — L finite
separable.) Given a smooth morphism K — L of dimension n, any splitting

Qlsep o lsep o (Ql’sep QK L) defines an isomorphism of left ST graded

L/k L/K K/k
Q;S/‘;cp—modules
*,5€P AL (yF,5€ *,5€
Q5 = QP @ Q)5 (2.4.5)

This induces a canonical homomorphism of left ST graded Q;S;;Cp—modules

Q*,sep

QeseP L/k =~ 5P @ HMOQHSP | (2.4.6)
L/k * - _ K/k L/K
iy (2 )
*,5ep

Hence any map 2 — Q’;f/ekp satisfying axioms R1 - R3 factors through

L/k
the module on the right hand side of (2.4.6), and thus is completely deter-

mined by its restriction to Qz,/szp (if K — L is smooth !).
Note that by formula (2.4.6), Q*If‘;}cp ®K H”Q*Lj;’? is a DG Q}sﬁcp—module.
Taking L = K((t1,...,tn)), the action of the exterior derivative d on Q;S;;CP@)K

H”Q}S&%) /K is given by:
d(8 @ ¢ dlog(t)) = d(8) ® ¢ dlog(t) , (2.4.7)

for g € Q}S/f;p and ¢ € Z". Define a K-linear map

@)/ K

QUi = K (248
> iezn a; t-dlog(t) — a,...0)- o

An elementary calculation (say, using prop. 1.3.5 and lemma 1.3.9) shows

that this map vanishes on d(Q%z(lt’)S;’/I’K), inducing a map HHQ}S(EE?))/K K.
Extend it to a homomorphism of left Q’;f/ekp-modules
Resk(w)y/me - Xy = Yk (2.4.9)

using (2.4.6).

Definition 2.4.10 Let K — L be a morphism of dimension n in TLF(k)

and let a = (ay,...,ay) be an initial system of parameters in L. Define
Resyx.a '= Resg(()/K.0 © Trryr() * U — Lin -
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*,8ep ~  (*Sep

Suppose K — E is a finite morphism. Then Q} )k = QE/k QK

v s&p))/K, implying that

Res e (w)/x.6 © )k () = Tre/K © Resp(@)/b,1- (2.4.11)

It immediate from the definition that

Res k¢ ((1,9))/K,(t.s) = ReS k()15 © ReSke((1,8)) /1 ((9)) 2 (2.4.12)

where (t,s) := (t1,...,51,...) is the concatenated sequence.
If char k = p we have K((£))?/K) = K((t?)) = K((¢},...,th)), so

Tr i (1) k¢ ((tr)) (dlog(t)) = dlog(t?)

and ‘
Tr (1)K () (£ dlog(2)) = 0
if 0 <i; <pbutiz(0,...,0). Therefore we get an equality
Resp ko = Resp /i ap (2.4.13)

for every initial system of parameters g in L.

Lemma 2.4.14 The map Resy i , commutes with finitely ramified base ch-
ange: given K' € TLF(K') and a finitely ramified homomorphism v : K —
K', let K' — L' be the resulting morphism in CTLF(K'). Then in the notation
of thm. 2.2.4 and prop. 2.3.11 one has

uoResy, /K= Zl DReS (1 /gy /K7 a © Vgt 'Q*L?Zp — Q’;(S,ji, )

Proof In view of prop. 2.3.11 it suffices to show that

ue Resk () K0 = ReSk((@)/Ka 0V

which is immediate from the definitions. O

A homomorphism of fields K — L induces a homomorphism of graded
rings K, K — K, L, and this makes K, L into a left K, K-module. If K — L
is finite, there is a canonical transfer map Ny /x : KiL — K,K, which
satisfies:

N7,k is KiK-linear of degree 0,

Nz k(1) =[L: K] and Ny /g |k, 1, is the field norm. (2.4.15)
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(see [BT] p. 386 and [Ka] §1.7 prop. 5).
Now suppose that K — L is a finite morphism in TLF(k). Then accord-
ing to [Lo] propositions 5 and 6 respectively we have

Trp o dlog = dlog o Ny : KoL — Q%P (2.4.16)
and ‘ ‘
ordi o Ny /g = [ri(L) : ki(K)]ordy, : K; L — Z. (2.4.17)

(Cf. also our digression 2.4.25.) According to [Lo] lemma 6 vii) b), it holds
that
Res((a))/ ka0 © dlog = ord((q)) : KnK((a)) — K. (2.4.18)

Lemma 2.4.19 The map Resy , satisfies azioms R1, R2 and R3.

Proof Axiom R2 holds by definition. To verify axiom R1 we may assume

that L = K((¢)) and a = t; this is because of proposition 2.3.2. The Q’;}sﬁcp—

linearity is built into the definition. As for continuity, according to formula
(2.4.12) we may assume that L = K((¢)). Now use prop. 1.3.5. To see that
Resyk, commutes with d, it suffices to look at the forms BAttdlog(t), with
B e Q’;f/ekp. For them we can use formula (2.4.7).

Finally, to prove axiom R3 we consider the diagram

S
dlog Tro/k (@)
Ko LA, ((a)) e i (ay)
ord} ord (@) Resg ((a))/K.a
y [kn(L) : K] ; K

Looking at formulas (2.4.16), (2.4.17) and (2.4.18) we see that the three
small diagrams commute. But the axiom is equivalent to the commutativity
of the outer diagram. O
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Proof (of thm. 2.4.3) First we show the uniqueness of the residue func-
tor. Let K — L be a morphism of dimension n in TLF(k) and let a
be an initial system of parameters in L of length n. We will show that
Resr/xk = Resp k4 By functoriality and axiom R2 we may assume that
L = K((a)). Using the factorization (2.4.6) and axiom R1 it suffices to
show that ResL/K(Qidlog(g)) = 0j0,..,0) for all 2 € Z". For i = (0,...,0)
this is axiom R3. If chark = 0 we are done, since we may “integrate”
atdlog(a) if i # (0,...,0), showing it is a cocycle. If chark = p we get
T‘I'L/L(pj/K) (a*dlog(a)) = 0 when j is large enough (take j s.t. i & p/Z").

Now apply functoriality and axiom R2 to K — L®/K) — L.

To prove existence it suffices to show that Resy k. = Resy /gy for any
two initial systems of parameters ¢ and b. Functoriality is then a conse-
quence of formulas (2.4.11) and (2.4.12), and we already checked that the
axioms are satisfied. The initial system of parameters a¢ may be taken to be
regular. Let us consider three cases:

case 1 The map K — kp(L) is an isomorphism. Then L = K ((a)). Since the
map Resp i satisfies the axioms, the uniqueness proof above (and using
formula (2.4.13) in characteristic p) tells us that Resy/x , = Resp/p-

case 2 The map K — k,(L) is separable. Then there is a factorization

K — E — L with E 5 k,(L). Therefore L = E((a)) and formula (2.4.11)
reduces this to case 1.

case 3 The map K — k,(L) is purely inseparable (and chark = p). (Cf.
[Lo] lemma 8.) First note that formula (2.4.13) allows us to assume that
K — L is smooth: simply replace L with K ((a))[b"] for j sufficiently large.
Therefore we need only compare the two maps restricted to QTLl’/szp.

Let K be the field K made into a 0-dimensional field in TLF(k) (so it has
the discrete topology) and let L be the field L with the TLF structure such
that K((a)) — L is a finite morphism. Note that the original morphism
K — L is then the finitely ramified base change obtained from K — L and
K — K. By lemma 2.4.14 we can assume that dim K = 0.

Now let K’ be an algebraic closure of K, considered as a 0-dimensional
field in TLF(k), and let K’ — B’ be the morphism in CTLF(k) obtained by
finitely ramified base change from K — L and K — K'. Again appealing
to lemma 2.4.14 it suffices to check that Resp//q)/x7,a = Respr gy K p for
every q' € Spec B’. Since K' is algebraically closed we are back to case 1.
O
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Corollary 2.4.20 There exists a unique functor Res : CTLFq(k)° — Ab
extending Res : TLF(k)° — Ab, s.t. for any morphism A — B, the residue

map Resp 4 ngekp — Q’A’ﬁp is (left) QZjip—linear.

Proof Define Resp/4 1= Zq“, Res(B/q)/(A/p)- H

Definition 2.4.21 Let A — B be a morphism in CTLF eq(k). The residue
pairing s the map

mult Resp/a
<—,—>B/ABXU)B 7 WRB 7 WA .

We can now state our main result on clusters of TLF's:

Theorem 2.4.22 (Topological Duality) Let A — B be a morphism in
CTLF,eq(k). The residue pairing is a perfect pairing of semi-topological A-
modules.

Proof We may assume that A and B are fields. Moreover, in view of prop.
2.3.9 we may assume that B = A((¢)) = A((t1,...,t,)) with n > 1. Set
t' = (to,...,t,). Given ¢ € Hom$™(B,wa) define, for every i € Z, ¢; :
A((t) — wa, ¢i(a) := ¢(at;"). By induction on n there exists a unique «; €
wA(()) representing ¢; with respect to the pairing (—, —>A((;'))/A- According
to prop. 1.2.22, o; = 0 for i << 0. Then a := ) ., a; A tidlog(t:) € wp
represents ¢, and it is unique. O

Another important result is: (cf. [Lo] thm. 1 iv))

Theorem 2.4.23 (Smooth Finitely Ramified Base Change) Let f : A — B
be a morphism in CTLFeq(k), let A" € CTLF,eq(k) and let u: A — A’ be a
finitely ramified homomorphism, topologically smooth relative to k. Let f':
A" — B’ be the morphism in CTLF(k) gotten by finitely ramified base change
and let v : B — B' be the corresponding finitely ramified homomorphism
(see thm. 2.2.4). Then B’ is reduced, u : Q75" — Qz,sfk is injective and the

Ak
diagram below commutes:

%
*,8€p *,8€p
QB/k QB’/k’
RGSB/A ResB//A/
U
*,8€p *,8€p
QA/Ic QA’/lc’
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Proof We may assume that A, B and A" are fields. From formula (1.5.12)
it follows that QZ’;S;’IS = QZ’;S;’E ®a Qjﬁl’ﬁp, so u is injective.

Recall the proof of thm. 2.2.4. Since u : A — A’ is smooth in
STComAlg(k), so are A[s] — A'[s] = A'((s)) (prop. 1.5.9 b) and cor. 1.5.19).
But A[s] — A((s)) is étale, so by diagram chasing in def. 1.5.7 we see that
A((s)) = A'((s)) is smooth in STComAlg(k). By cor. 2.1.16, if chark = p,
this implies that A’((s)) is a separable A((s))-algebra. In characteristic 0
separability is automatic. Therefore B’ = B® 4((5))4'((s)) is reduced, which
means that [(B;,) = 1 for all ¢ € Spec B'. By lemma 2.4.14 the diagram
commutes. O

We saw that in characteristic p the topology on local fields is superflu-
ous (prop. 2.1.21). The next example shows that in characteristic 0 and
dimension > 2, not only are there many topologies on a local field, there
also are many residue maps, since these depend on the topology. Fix a
field K € TLF(k) and a morphism f : unt(K) — L in LF(k), and let
{f*: K — L%} be the morphisms in TLF(k) in the fibre over f relative to

ReSLa/K

*,5€ep Q

Lok

*,5ep

the functor unt. Then the maps Qz/k—»Q Kk

as « varies.

may change

Example 2.4.24 Suppose chark = 0. Let L := k((t1,t2)) € TLF(k)
and let o : k((t2)) — L7 be the standard morphism. Denote by L the
untopologized local field unt(L?). Choose a transcendency basis {uq} for
k((t2)) over k(t2) and fix some uy € {uq}. Let 7 : k((t2)) — k((t2))[[t1]] be
the unique k(ty)-algebra lifting such that 7(ug) = ug + 1 and 7(uy) = uq,
a # 0. Extend it to an isomorphism k((t1,2)) = L of local fields by sending
t1 — t1, and let L™ be this new TLF. The map 7 : k((t2)) — L7 is then a
morphism in TLF(k).

Consider the form § := #; 'd(ug + t1) Aty 'dty € Qj ), (the discrete,
infinite dimensional space). Since we have a morphism 7 : k((t2)) — L7, it
follows that d(ug + t1) A dte = 7(dug A dt2) = 0 in Q*L’fﬁ Therefore 8 =0
and Resy- /i (8) = 0.

On the other hand, in Q*Lijl;g we have dug A dty = o(dug A dtg) = 0, so
B =ty dty Aty dty and Resgo 4 (8) = —1.

Digression 2.4.25 It is possible to define a residue map in Milnor K-theory.
First one has the following result: Let K — L be a finite homomorphism of
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n-dimensional local fields (def. 2.1.8). Then for all 1 <i <n,
Noi(L) /i) © 0f, = 0% o Ny 1 KoL — Ko_iki(K). (2.4.26)

Here 0% = do---00, so di|k,x = ord’. The proof uses the same ideas
found in [BT] ch. I §5.9 and [Ka] §1.7. This generalizes prop. 3.1 of [Kh].
Given a morphism K — L in LF(k), define

Resy! o i= Ny, 1)/ © 0 : KoL = Ko, K (2.4.27)

where n = dim (L/K). Formula (2.4.26) implies that Res™ := (K,(-),
Resli/[F) is a functor LF(k)° — Ab. It is not hard to verify that dlog :
ResM o unt — Res is a natural transformation of functors on TLF(k)°. This
is of particular interest in characteristic 0, when one takes into account
example 2.4.24 and the preceding discussion.

Digression 2.4.28 We may define a version of de Rham cohomology in
TLF(k) and get a Poincaré duality. Let us consider the easier case of a
morphism K — L = K((t)) = K((t1,...,tn)). Set 2 e = ker(d)

and B*Qp o = im(d). If chark = p there is a relative Cartier opera-
tion, an L(p/K)—algebra epimorphism Cyp /g : Z*Q *L/K—»Qz(p/K)/K with ker-
nel B*0; (see [I1] §2.1). Define 2180, i =270 g BIQ e = BYOY g

and by recursion
:—1—1 z—i—IQE/K - CZ/K(Z QL(p/K)/K)

;:Ll z+1QL/K - CL/K(B QL(p/K)/K)

Then Bf C B C ... C Bf C Zf C ... C Z5 C Z}. Set Z}, := (Z} and
B, := closure of |JB} in Q*L?;’? Having done so, we define

H*Q7P if chark = 0
*sep(L/K) { - L/K

B%

if chark =p

Then one can show that

HERP(L/K) = K @, N\, lék : dlogti]

i=1
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and that the residue map induces a perfect pairing

Resr )k

HISP(L/K) x H PP (L/K) — HP(L/K) — K.
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3 The Beilinson Completion Functors

3.1 Definition of the Completions

Let X be a noetherian scheme. In [Be] A. Beilinson defines sheaves of
adeles on X with values in any quasi-coherent sheaf. The “local factors” of
the adeles are the completions discussed in this section.

Given a subset S C X we denote its closure by S7. If z,y € X are
points s.t. y is a specialization of z, i.e. y € {z}~, we shall indicate this by
writing = > y.

Definition 3.1.1 Let n be a natural number. A chain of length n in X is a
sequence & = (g, ..., xy) of points of X with x; > x4 for alli. If for every
i, Tit+1 18 an immediate specialization of z; (i.e. codim({z;41} ,{z;i} ) = 1),
we call € a saturated chain.

Let £ = (zg,...,x,) be a chain. A face of £ is any subchain 7. For any

integer ¢ = 0,...,n, the i-th face of ¢ is the chain d;¢ := (xo, ..., Ti—1, %1
,-+yTpn). We say that & begins with z¢ and ends with z,. Formally we
introduce a chain 1 of length —1, and set dg(zp) := 1. By convention

whenever we write & = (z,...) etc. or specify that a chain ¢ is saturated,
it is implied that & # 1. If & = (xg,...,2n) and 7 = (Yo,...,Yym) are
chains s.t. z,, > yo, their concatenation is defined to be the chain ¢ V 7 :=
(Zoy -3 Tpy Y0y -+ Ym). For any chain € define EV1=1VE:=¢.

Let M be an Ox-module. Its stalk at the point x € X is denoted by
M. Let m; € Ox, be the maximal ideal. If M is quasi-coherent then for
any ¢ > 0, M, /mé“./\/lx is a skyscraper quasi-coherent sheaf supported on

{z}~.
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Definition 3.1.2 To each chain & in X we associate an additive functor
(=)e : M = Mg from the category QCoh(X) of quasi-coherent sheaves on
X to the category Ab of abelian groups, called the Beilinson completion along
&. The definition is by recursion on the length of £.

a) For any quasi-coherent sheaf M set M; :=I'(X, M).
b) Suppose & = (z,...) has length > 0.

i) Given a coherent sheaf M set Mg = lim,;( My /mLI M) g.e.

ii) Let M be a quasi-coherent sheaf and let (M) be the direct system
of its coherent subsheaves. Set Mg := limg_,(Mqy)e.

Let ¢ = (zg,...,2zp). For every i = 0,...,n there is a natural trans-
formation J; : Mg,e — Mg, called the i-th face map. These satisfy the
simplicial relations 0;0; = 0;_10; for all © > j. Thus for any face n of
¢ there is a well defined face transformation 0 : (=), = (—)¢. If n =0
and M is coherent then M, ) is nothing but the my-adic completion of
My, When M, has finite length over the local ring Ox 4, the face map
do : Mgye — Mg is bijective. For the structure sheaf we abbreviate and
write Ox ¢ instead of (Ox)e.

The group M, is only an auxiliary device introduced to simplify defi-
nitions and proofs. Completion along an actual chain { = (zg,...,z,) (as
opposed to £ = 1) is a local process - it depends only on the stalks at =, € X.
Thus we can replace X with any open subscheme U C X which contains z,,.

When convenient we shall consider the completion M, . ;,) as a sky-
scraper sheaf supported on the closed set {z,,} . (It is seldom quasi-coherent
') Doing so the completion becomes a functor (—)¢ : QCoh(X) — Mod(X)
and the face maps 9; become O x-linear.

Consider the prototypical example:

Example 3.1.3 Let X := AZ = Speck[s, t], the affine plane over a field .
Take z := (0), y := (¢) and z := (s,t) in X, so £ := (z,y, 2) is a saturated
chain of length 2. We then have

OX,(:::) k(S,t) > OX,(J:,y) k(s)((t)) )
Ox,yy = k()] , Ox,y) = k()]
Ox:) = Klls 1], Ox (wyz = Kk(3))((1))
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Proposition 3.1.4 For any chain & (of length > 0) the functor (—)¢ :
QCoh(X) — Ab is exact and commutes with direct limits.

Proof The proof is by induction on the length of ¢ = (z,...) and is divided
into steps. We may assume that X is affine, so the functor (—); is exact.

1) Consider the functor (—)¢ : Coh(X) — Ab. To prove its exactness we
modify the the proof for the usual adic completion over a noetherian ring.
Given an exact sequence

M=0->M—->M-—->M"—=0)

in Coh(X), define an inverse system (M?);cn, where M; := M, /mii M,
M= ME/miFIM!Y and M) = im(M), — M;). Since (—)qp¢ is exact
by induction, we get an inverse system of exact sequences ((M)d,¢ )ien in
Ab, and since (M )dape — (M])ape is surjective for all 4, we get an exact
sequence

0— ILI?(M;')doé — Mg — Mg —0.

But by the Artin-Rees lemma the filtration ( M/, N mit M, )jen on MY s

~ /

cofinal with the m,-adic filtration on it. Therefore lim, ;(M;})a,e = M.

2) Now suppose lim,—, M, = N in Coh(X). Define M/ := ker(M, —
N) and M’ := im(M, — N). Then lim,, M!, = 0; since the category
Coh(X) is noetherian, for each «p there exists some a; > g such that
im(M,, — M, ) = 0. This implies that lim,_,(M},)¢ = 0 too. Because
(—)¢ and lim_, are exact functors we have lim,,(My)e = limg_, (M2);.
Now there exists some ag s.t. My, 5 MY 5 N for all @ > ap; therefore
(Mig)e = limay (M) = N.

3) Suppose we are given a direct system (Mg )qcs in QCoh(X), with lim,_,
M, = N. Each M, is itself a direct limit of coherent sheaves; since direct
limits commute we may assume that all M, are coherent. Let (N3)ges be
the direct system of coherent subsheaves of N. For each (a, ) € I x J let
Lo = Ma xx Np, a coherent sheaf. The direct system (La,5)(a,p)crx. 1
a common refinement of (Mg )qer and (Ng)ges, and by step 2)

Lm(Mgy)e = lim (Lg5)e = Lm(Ng)e = Ne .
Hm(Ma)e = lim (La,p)e = Hm(Ns)e = Ne

4) Finally any exact sequence M* in QCoh(X) is a limit of some direct sys-
tem of exact sequences M}, of coherent sheaves. Since (M*)¢ = lim,—, (M};)¢
it is exact. O
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Just like for the adic completion of a noetherian ring we have:

Corollary 3.1.5 For any chain & in X (of length > 0) there is a natural
isomorphism of Ox-modules M¢ = M @0, Ox¢. The Ox-module Ox ¢ is
flat.

Proposition 3.1.6 Let ¢ be a chain in X (of length > 0). Then the comple-
tion Ox ¢ is a commutative Ox-algebra. Given a quasi-coherent Ox-algebra
B, the completion B¢ is an Ox ¢-algebra. If B is coherent then B¢ is a
noetherian ring.

Proof We may assume that X is affine, so Ox 1 = I'(X, Ox) is a noetherian
ring. The proof is by induction on the length of £ = (z,...).

1) For any i > 0 set B; :== Ox 4 /mitl. This is a quasi-coherent O x-algebra.
By induction (B;)g,¢ is an Ox 4,¢-algebra. Moreover, since (B;)a,¢ = Bi ®0
Ox do¢ is a localization of a quotient of the noetherian ring Ox go¢, it is
noetherian too. Passing to the inverse limit we conclude that Ox . =
lime ;(B;)qo¢ is an Ox go¢-algebra. According to [CA] ch. III §2.10 cor. 5,
this is a noetherian ring.

2) Let B be any quasi-coherent Ox-algebra. By corollary 3.1.5 we have
B = B®oy Ox,¢. The right hand side exhibits B, as an Ox ¢-algebra. If B
is coherent then B¢ is finite over Ox ¢, so it is noetherian. O

Given a chain { = (z,...) we shall write k(&) := k(z)¢ and m¢ := (my)e.
Thus m¢ C Ox ¢ is an ideal and Ox ¢/mg = k(§).

Let f: X — Y be a finite morphism of noetherian schemes. If y € Y
and z € f!(y), that is if z lies over y, we shall write x|y. This standard
notation can be extended to chains: given chains = (yo,...,¥y,) in Y and
& = (zg,...,xy) in X s.t. z;|y; for all 7, we shall write £|7.

Proposition 3.1.7 Let f : X = Y be a finite morphism of noetherian sche-
mes, let M € QCoh(X) and let n) be a chain in Y. Then there is a natural
isomorphism (f. M)y = @Dy, Me.

Proof The proof is by induction on the length of 1. To start the induction
note that (f,M); = M;. Say n = (y,...). First assume that M is coher-
ent. Then f.M is also coherent and the two inverse systems in QCoh(Y):
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(@x‘y f*(MI/mi"'le))ieN and ((f*/\/l)y/1‘(1‘2'/"'1(f*/\/l)y)ieN are equivalent.
By induction we have for all ¢ > 0 and all z|y:

f*(Mw/mi:HMx)don = @ (Mx/mgzﬂMw)é’ :

§'|don
Therefore

(f+ M)y :limei((f*M)y/m?—l(f*M)y)doﬂ
= lime i (@, fo(Me/mi M)
. 0
= @w\y @{ﬂd(ﬂ] hm‘_l (Mft/mér+1M$)fl
= Dy Me -
Now let M be quasi-coherent. Then every coherent subsheaf N/ C f, M

is contained in f,Nj3 for some coherent N3y C M. According to prop. 3.1.4
we have (fiM)y = Dg, Me. O

From here to the end of §3.1 we assume that X is a scheme of finite
type over some noetherian ring k. Let M and N be Ox-modules and let
D : M — N be a k-linear sheaf homomorphism. D is called a differential
operator (DO) of order < d (relative to k) if the following holds: for every
open set U C X the homomorphism D : I'(U, M) — I'(U, ) is a differential
operator of order < d over the k-algebra I'(U, Ox ). The set of all operators
of order < d is denoted by Diffgl{ Ik (M, N), and taking the union over all
d > 0 we get Diff y/; (M,N). The composition of differential operators
is again a differential operator, of a higher order. Differential operators
of order < d are represented by the sheaf of principal parts of order d,
Pd Ik (M) =Pd /i, ®0x M that is to say, there is a canonical isomorphism

Diff (M, N) = Homx (P§ (M), N) .
(For more details see [EGA IV] §16.8 and §1.4 here.)
Definition 3.1.8  a) Let A be a commutative k-algebra and let M and N
be A-modules. A locally differential operator over A, relative to k, is

a k-linear homomorphism D : M — N s.t. for every finitely generated
A-submodule M' C M, D]y is a differential operator over A.

b) Let M and N be Ox-modules and let D : M — N be a k-linear sheaf
homomorphism. We call D a locally differential operator (relative to
k) if for every open subset U C X the homomorphism D : T'(U, M) —
T(U,N) is a locally differential operator over T'(U, Ox).
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If M is coherent then any locally differential operator is actually a differ-
ential operator (because X is noetherian). The usage of the adverb “locally”
is confusing, since it has nothing to do with the topology of X; however this
usage is common in representation theory.

Lemma 3.1.9 a) Let M a coherent sheaf, let N be a quasi-coherent
sheaf and let D € Diff (M, N). Then im(D) is contained in some
coherent subsheaf of N.

b) The composition of two locally differential operators is again a locally
differential operator.

Proof a) Since X is of finite type over k the sheaf P}i(/k (M) is coherent (cf.
[EGA 1V] prop. 16.8.6). If ¢ : Pg(/k (M) — N represents D then im(D) C
im(¢). (In fact im(¢) is the Ox-submodule of N generated by im(D).)

b) Given quasi-coherent sheaves £, M and N, and locally differential op-
erators £ 3 M 2 N we have to show that Eo D is a locally differential
operator as well. Let £’ C £ be a coherent subsheaf. Then D], is a differ-
ential operator. By the preceding lemma, im(D) C M’ for some coherent
M’ € M. Since E|pyp is a differential operator, so is EoD|z = E|yy0D| .
O

Proposition 3.1.10 Let M and N be quasi-coherent sheaves on X and let
¢ be a chain in X. Any locally differential operator (relative to k) D : M —
N extends to a locally differential operator over Ox ¢, De : Mg — Ng. If D
is has order < d, then so does D¢. The assignment D — D¢ is functorial.

Proof The proof is by induction on the length of £ = (z,...). For £ =1
the statement is trivial.

1) Assume M is coherent. According to lemma 3.1.9 a) there is a coherent
subsheaf N/ C N such that D factors through N’. Thus we may assume
N to be coherent too. Let d be the order of D. According to prop. 1.4.6,
for any integer i > 0 we have D(mit4tIM,) C mitIA,, so there are well
defined differential operators
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Upon applying (—)q,¢ we get:
(Di)doe (Mw/m?dHMw)doé - (Nw/m?cHNx)doé

which has order < d too. Passing to the inverse limit in ¢ we obtain Dy :
Mg = Ng. If E: N — L is another locally DO then these considerations
show that (E o D){ = E{ o Dg

2) Next assume M is quasi-coherent, and let (M) be the collection of its
coherent subsheaves. The functoriality of D¢ on coherent sheaves shows
that the differential operators D¢ : (M) — N patch together to a locally
differential operator D¢ : Mg — N. O

3.2 Topologizing the Completions

In this section X is a scheme of finite type over a noetherian ring k. We
introduce a canonical linear topology on the Beilinson completions M.
Recall that the category TopAb of linearly topologized abelian groups is
additive and has direct and inverse limits (see §1.1). Repeating definition
3.1.2, but this time with TopAb instead of Ab, we get

Definition 3.2.1 7o each chain & in X, we associate an additive functor
(—)¢ : QCoh(X) — TopAb. The definition is by recursion on the length of §.

a) For any quasi-coherent sheaf M set My := I'(X, M) with the discrete
topology.

b) Suppose & = (z,...) has length > 0.

i) Given a coherent sheaf M, set Mg := lim;(My/miTI M) goe in
TopAb.

ii) Let M be a quasi-coherent sheaf and let (M) be the direct system
of its coherent subsheaves. Set Mg := lim,_,(Mg)¢ in TopAb.

Forgetting the topology we recover definition 3.1.2. Thus the comple-
tion M, has many facets: a discrete abelian group, a linearly topologized
abelian group, or an Ox-module. There will be even more facets to M, all
depending on context.

Say ¢ has length n > 0. The face maps 0; : Mgq,;e —+ Mg, 0 <1 < n, are
continuous. Later in this section we shall see that for ¢ = n, J; is a dense
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map, and for 7 = 0 it is strict. A special instance of this is k(t) — k((¢))
(dense) and k[[t]] — k((t)) (strict).

The next two propositions are proved just like their counterparts in §3.1,
using the recursive definition of the topology.

Proposition 3.2.2 Let M and N be quasi-coherent sheaves and let D :
M = N be a locally differential operator. Then the induced operator De of
prop. 8.1.10 is continuous.

Proposition 3.2.3 Let f : X — Y be a finite morphism, let M be a quasi-
coherent sheaf on X and let n be a chain in Y. Then the isomorphism
(fs M)y = @y, Me of prop. 3.1.7 is a homeomorphism.

Recall the definition of semi-topological (ST) rings and modules from
§1.2. We put on the base ring k the discrete topology.

Proposition 3.2.4 Let £ be a chain in X. The completion Ox ¢ is a semi-
topological k-algebra. Given a quasi-coherent Ox-module M, the completion
M is a semi-topological Ox ¢-module. Given a quasi-coherent Ox-algebra
B, the completion B is a semi-topological Ox ¢-algebra.

Proof The proposition amounts to the following statement: given an Ox-
bilinear pairing (—, —) : £ x M — N of quasi-coherent sheaves, the pairing
(= —)e : L¢ x Mg — N¢ obtained by tensoring with Ox ¢ has the property
that (a,—) : Mg = N¢ is continuous for all a € L¢. The statement is trivial
for £ =1, so we can use induction on length.

By the definition of the topology one may assume that all three sheaves
are coherent. Say & = (z,...). For every 7 > 0 there is a pairing

(ﬁx/mijlﬁx)do& X (Mft/mi:Jrle)do{ — (Nw/m.iHNx)do{ :
By induction for every a € L¢ the homomorphism
(a,—): (Mw/miﬂMw)doﬁ - (Nm/m?l-/\/m)doﬁ

is continuous, and passing to the inverse limit shows that (a, —) : Mg — N¢
is continuous too. O

In this way we get a functor (—)¢ : QCoh(X) — STMod(Ox ¢), the latter
being the category of ST Ox ¢-modules and continuous homomorphisms.
The topology on the completion M is described below.
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In §1.2 it was shown that a module M over a ST ring A has a finest
topology with respect to which it becomes a ST module. This topology was
called the fine A-module topology. Suppose Ay C A is a subring s.t. M has
a basis of neighborhoods of 0 consisting of Ag-submodules; then we say that
M has an Ag-linear topology.

Proposition 3.2.5 Let & be a chain in X and let M be a quasi-coherent
sheaf.

a) The topology on Mg is the fine Ox ¢-module topology.

b) Suppose & = (...,y); then the topology on Mg is Ox (,)-linear, and
hence also k-linear.

Proof a) The proof is by induction on the length of £&. The statement
is trivial for & = 1 since the discrete topology is the fine topology over a
discrete ring. Say ¢ = (z,...). First assume M is coherent. Replace X
with a small enough neighborhood of £ to get a surjection O%—»M. For
every i > 0 we have a surjection (OX,J;/W?IOX,:B)QOg—»(Mz/m?—lM:c)dog
in STMod(Ox q,¢). By induction both modules have the fine Ox g,¢-module
topology, so by cor. 1.2.8 this is a strict epimorphism. Passing to the inverse
limit in ¢ and using prop. 1.1.6 (cf. also the proof of prop. 3.1.4) we see that
O (—»M¢ is strict, so Mg has the fine Ox ¢-module topology.

Next let M be quasi-coherent and let (M, ) be the direct system of its
coherent subsheaves. By definition M, = lim,_,(Mgy)¢ in STMod(Ox ¢), so
by cor. 1.2.6 it has the fine Ox ¢-module topology.

b) All the limiting processes occurring in def. 3.2.1 involve Ox (,)-modules
with Oy (y)-linear topologies and therefore remain within this subcategory
of TopAb (cf. prop. 1.2.23). O

The tensor product of ST A-modules admits a canonical topology (see
def. 1.2.11). By prop. 3.2.5 and cor. 1.2.15 we have:

Corollary 3.2.6  a) If X is affine then for any quasi-coherent sheaf M
and any chain §, M¢ = Ox ¢ ®0x, M1 as ST Ox ¢-modules.

b) If n is a face of & of length > 0 then M¢ = Ox ¢ ®oy, My as ST
Ox ¢-modules.

Recall the notion of a topologically étale homomorphism relative to k,
introduced in §1.5.
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Proposition 3.2.7 Assume X = Spec A is affine and let & be a chain in
it. Then Ox ¢ is topologically étale over Ox 1 = A, relative to k.

Proof The proof is by induction on the length of ¢; if £ = 1 the statement
is trivial. Say { = (z,...). Define B := (Ox,)doe = Ox,c ®4 Ox do¢ and let
I := (my)qp¢ C B. Then for all i > 0 we have B/I'T! = (Ox , /mi) 4 ¢ as
ST Ox q,¢-algebras (all have the fine Oy 4,¢-module topologies), so lim,_; B/IZ.Jrl
= Ox,¢. Now B is noetherian. By induction A — Ox q.¢ is topologically
étale rel. to k, so by prop. 1.5.8 and prop. 1.5.9 a), A — B is also topolog-

sep
ically étale. Thus by thm. 15.11 we have Q% = (B, QY )" which
is finitely generated over B and has the fine B-module topology. Since B
is noetherian, thm. 1.5.18 implies that B — Ox ¢ is topologically étale, and

hence so is A — Ox . O

Corollary 3.2.8 Let & be a chain in X and let n be a face of & of length
> 0. Then the face map Ox, — Ox ¢ is topologically étale relative to k.

Proof One can assume that X is affine and then use prop. 3.2.7 and the
cancellation property of étale homomorphisms (cor. 1.5.14). O

Let Q}/k be the de Rham complex on X relative to k, with its differ-
ential d. By propositions 3.2.4 and 3.2.2 the completion (Q}/k)g with the
differential d¢ is a differential graded ST k-algebra (see def. 1.5.1).

Corollary 3.2.9 Let & be a chain in X of length > 0. The k-algebra ho-
momorphism Ox ¢ — (Ox ¢)*%P induces a canonical isomorphism of DG ST

*,S€ep E) (Q* )sep

k-algebras Q(D’X@/k X/n)e

Proof We may assume that X = Spec A. By cor. 3.2.6 a) there is an
isomorphism of ST Ox ¢-algebras (Q}/k)g = Oxe®a QZ/k- Now use prop.
3.2.7 and cor. 1.5.13. O

We shall abbreviate (€% /k)zep to Q}S/Zpg

Definition 3.2.10 A commutative noetherian ST ring A is called a Zariski
ST ring if the following conditions hold:
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i) Every finitely generated ST A-module with the fine A-module topology
1s separated.

ii) Every homomorphism M — N of finitely generated ST A-modules with
the fine A-module topologies is strict.

Condition ii) need only be checked for monomorphisms (cf. proof of prop.
3.2.5). Theorem 3.3.8 gives a sufficient condition for the completion Ox ¢ of
the structure sheaf along a saturated chain £ to be Zariski .

For any ST ring A the category STMod(A) is exact; a short exact se-
quence in it is a sequence of strict homomorphisms which is exact in the
untopologized category Mod(A). Evidently, if Ox ¢ is a Zariski ST ring then
the functor (—)¢ : Coh(X) — STMod(Ox ) is exact.

Assume Ox ¢ is a Zariski ST ring. Then (Qfg(/k)g is separated, so 2

*,85¢p
X/kE
(95% /k)ﬁ' Another conclusion is the following. Let M and N be (/luzisi—
coherent sheaves and let D : M — N be a differential operator. Suppose
that £ = (z,...) and N, is a finitely generated Ox jz-module. Then the
differential operator D¢ : Mg — N¢ of prop. 3.1.10 is the unique extension
of D to a continuous differential operator. This is because N is separated
and Ox , — Ox ¢ is topologically étale (see thm. 1.5.11).

Let ¢ : M — N be a homomorphism in TopAb. We say that ¢ is dense
if im(¢) is (everywhere) dense in N.

Theorem 3.2.11 (Approximation) Assume X is a separated excellent no-
etherian scheme. Let M be a quasi-coherent sheaf on X. Let S C X be
a finite subset and let & = (...,x) be a chain s.t. for all y € S, (x,y) is
a saturated chain. Assume that the completions Ox ;) are all Zariski ST
rings. Then the face map 0 : M¢ — @yes Mey(y) is dense.

Proof We break up the proof into 4 steps.

1) First suppose ¢ = (z) and M, = k(z). For every y € S the comple-
tion M,y = k(z)(,) which is a finite product of fields, the completions of
k(z) with respect to the discrete valuations with center y on the integral
scheme {z} 4 (cf. thm. 3.3.2). If y;,y, € S are distinct points, then the
valuations centered on them are distinct, because X is separated. Thus if
Hyes k(x)ey) = [1;=; Li, the valuations of Ly, ..., L, are pairwise indepen-
dent. Since our topology on [],cq k(z)(,) coincides in this case with the
usual valuative topology, the Artin-Whaples approximation theorem tells us
that 9 : M) — ®y€S M z)v(y) 1s dense.
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2) Again let ¢ = (z) and now assume that M, has finite length over Ox .
By induction on the length of M,, by the exactness of completion and by
prop. 1.1.8 a) we reduce the problem to a module of length 1, which is
treated in step 1.

3) Now let £ = (w,...,z) be an arbitrary chain (possibly of length 0, i.e.
with w = z) and assume that M is coherent. By induction (or by step 2 if
w = z) the homomorphisms

(M /M Mop)age = @D (Mu/mi Mu)ageviy)
yeS

are dense for all ¢ € N, hence by prop. 1.1.8 b) so is the inverse limit
0: Mg — @yes M&v(y)-

4) Let M be a quasi-coherent sheaf and let (M) be its coherent subsheaves.
By step 3 we have a direct system of dense homomorphisms (Mg)e — @;,e S
(Ma)ev(y) so by prop. 1.1.8 ¢) the limit homomorphism 9 is dense. O

Corollary 3.2.12 Let G C X be a finite subset and let S = |J,cq Sz be a
finite set of saturated chains s.t. each & € Sy begins with x. Assume that no
chain in S is a face of any other chain. Assume also that Ox, is a Zariski
ST ring for all saturated chains 1 of length < 1. Then for any quasi-coherent

sheaf M, the face map 0 : @, M(z) = Drec Decs, Me is dense.

Proof We may assume that G = {z}. The proof is by induction on the
maximal length of chains in S, using the transitivity of dense maps. O

Completion along saturated chains behaves very much like adic comple-
tion on a curve. The next lemma puts this into concrete terms. Given a
point z € X and a germ t of Ox at x we write t(z) for the image of ¢ in the
residue field k(z). For a module M we denote its localization with respect
tot by Mt-

Lemma 3.2.13 Let y € X be a point and let S C X be a finite subset such
that for all z € S, (z,y) is a saturated chain. Let M be a finitely generated
Ox y-module supported on the closed subset S~ C SpecOx . Suppose t €
Ox,y satisfies: t(y) =0 but t(x) # 0 for all x € S. Then the canonical map
My — @, g My is bijective.
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Proof Let I C Ox,y be a defining ideal of S~ C SpecOx,. For suffi-
ciently large n, M is an Ox,/I"-module. The scheme Spec(Ox,,/I") is
a 1-dimensional noetherian scheme with only one closed point, namely y.

Therefore (Ox/I")¢ = [[,c5(Oxy/1")s- O

Theorem 3.2.14 Let M be a coherent sheaf on X, let n = (y,...) be a
chain and let S C X be a finite subset s.t. for all x € S, (z,y) is a saturated
chain. Suppose the completion Ox ;) is a Zariski ST ring. Then the face map
0: My = Drcs Mzyvy is a strict homomorphism of ST Ox ,-modules.

Proof Forevery i > 0 define U; := @, ¢ Mg /mEH My and V; = im(My —
U;). We shall prove the following statements:

¢ : M, — lim(V;),, is a strict epimorphism. (3.2.15)
1

P l(l_IIZI(‘/Z)n — l(i_Hil(Ui)n = %M(m)w is a strict monomorphism. (3.2.16)
The composition @ = 1) o ¢ is then strict.

1) Choose t € Ox, as in lemma 3.2.13. Then for fixed i« > 0 we have
U, = UlZO t~'V;. Since Ox,y is a Zariski ST ring, for every [, (t*lVZ-)n s
(t~(41V;), is a strict monomorphism. According to prop. 1.1.7, (Vi), <
(Ui)y = limy, (¢t 'V;), is also a strict monomorphism, and by prop. 1.1.6

statement (3.2.16) holds.

2) For each i,j > 0 define W;; := V;/m}*'V;. Fixing j, the length of
the Ox ,-modules W; ; is bounded (by the length of My/mgﬂ./\/ly), so the
inverse system (W; ;)ien is constant for ¢« >> 0. There is some i; s.t. i >
i; implies W; ; = W, ;,. Moreover, we can assume that the sequence (i5)
is increasing. Thus (W;; j)jen is an inverse system. Since inverse limits
commute we have isomorphisms in STMod(Ox ):

Hm(Wi, ;) = Imlim(W; ), = imlim(Wi;)y = Lm(V;), . (3.2.17)

—j —j i i i

Define K := ker(My/mgﬂMy—»Wij,j). We claim that for all j, K1 —

K is surjective. In fact, since W;, , j = W;, ;, both K and K are quo-
tients of ker(M, — V;.,,). Therefore upon applying the completion (),
we get an inverse system of exact sequences

0 — (Kj)y = (My/mlTI M)y = (Wi, 5)n — 0 (3.2.18)
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in STMod(Ox ;) which satisfies the hypotheses of prop. 1.1.6. Passing to
the inverse limit in j and using (3.2.17) we deduce statement (3.2.15). O

3.3 The Geometry of Completion

In this section we shall give two geometric ways of looking at the Beilinson
completion of the structure sheaf of a scheme X along a saturated chain ¢ =
(zo,...,zyn). We are following Parshin’s description as found in [Pa2] §1.1,
although with new notation. Throughout most of the section the topology
on the completion will not play any part. We assume X is an excellent
noetherian scheme (e.g. a scheme of finite type over a field, over Z, or over
a complete semi-local noetherian ring; see [Ma] §34 and [EGA 1V] §7.8).

Given a scheme Z we shall denote by k(Z) its total ring of fractions (the
global sections of the sheaf of total rings of fractions, see [Ha] p. 141). If Z
is a reduced noetherian scheme with generic points z1,...,z, then k(Z) =
k(z1) X -+ X k(z)-

Recall the definition of an n-dimensional local field (def. 2.1.1). Suppose
A is a artinian ring s.t. for each m € Spec A, A/m is an n-dimensional
local field. Then for ¢ = 0,...,n define O;(A4) := [[hegpec 4 Oi(A/m) and
similarly define x;(A) and O(A). Observe that rg(A) is simply the ring
Areq = A/rad(A).

Definition 3.3.1 Let B be an artinian ring and suppose that for each n €
Spec B, B/n is an n-dimensional local field. Let A be an artinian ring and
let f: A— B be a ring homomorphism. For each n € Spec B lying over
some m € Spec A, there is an induced valuation on the field A/m into the
ordered group (B/n)*/O(B/n)* = (Z",lex). We say that f is unramified at
nif n = By f(m), and if the the ramification index and the residue degree of
the (possibly infinite) field extension A/m — B/n are both 1. We say that
f is unramified if it is unramified at all n € Spec B.

Let € be a chain in X. We shall define, by recursion on the length of
¢, a scheme X¢ together with a morphism 7¢ : X¢ — X. Let X! be the
normalization of X,¢q in its total ring of fractions k(X eq), and let 71 : X1 —
X be the canonical morphism. Next let £ = (..., y) have length n > 0 and
suppose that 797¢ : X9»¢ 5 X has been defined. Let ¥ := {W}ea C X,
define X¢ := (X9 x xY)L, and let 7€ : X¢ — X be the canonical morphism.
(See figure 1.)
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Figure 1: The morphism 7¢ : X¢ = X

Thus the scheme X¢ is a disjoint union of normal excellent integral
schemes, and the morphism n¢ is finite. If £ = (...,y) then X¢ is equidi-
mensional and 7¢(X¢) = {y}~. Given another chain n = (y,...), we have
X¢&vdon ~ ]_[ﬁm(Xf)ﬁ as schemes over X, where 7j|n means 7) is a chain in
X¢ lying over 7.

The theorem below is essentially due to Beilinson; part a) of the theorem
appears (without proof) in [Be]. See also [Pa2] prop. 1.

Theorem 3.3.2 Let X be an integral excellent noetherian scheme and let
& = (zo,...,xy) be a saturated chain in X, with zy being the generic point.
Then:

a) The completion k(X)¢ = k(§) is an artinian ring, and for each m €
Speck(X)e, the field k(X)¢/m has a canonical structure of an n-
dimensional local field.

b) The homomorphism k(X) — k(X)¢ is unramified; in particular k(X)¢
15 reduced.

c) For every i =0,...,n there is a canonical isomorphism of rings

k(X(CBO,...,CUi))( E) Fo'z(k(X)&) :

TiseesTn)
d) For every i = 1,...,n the ring O;(k(X)¢) is the integral closure of

OX (2i,an) 1 Ki-1(k(X)¢). In particular, each O;(k(X)¢) is an Ox-
algebra (supported on {x,} ).
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Observe that taking i = n in part c) we get a bijection between the
factors of the artinian ring k(X)¢ and the irreducible components of X¢.
We first need a lemma.

Lemma 3.3.3 Let A be a ring and let t € A be an element satisfying the
following conditions: A = lim, ; A/(t)"t'; A/(t) is a reduced artinian ring;
and t is a non-zero-divisor on A. Then A is a finite product of complete
DVRs with regular parameter t. To be precise, say Z = SpecA/(t) C
Spec A, so that A/(t) = [],c,k(2). Then A = [[,.,A., each A, is a
complete DVR, and A,/(t) = k(z).

Proof The ideal (t) C A is its Jacobson radical rad(A): since for any a € (%)
we have 1 —a € A (units), it follows that (¢) C rad(A). On the other hand
A/(t) is semi-simple, so rad(A) C (¢). Therefore A is a complete semi-local
ring, and by [CA] ch. III §2.13 cor. to prop. 19 we get the decomposition
A= HzGZ AZ

In order to show that A, is a DVR we can assume that A = A, is local.
Since ;e (t)” = 0 every nonzero a € A has the form a = ut’, u € AX, i € N.
But ¢ is a non-zero-divisor, so u and 7 are uniquely determined. Therefore
A is an integral domain, and in fact a DVR with regular parameter ¢t. O

Proof (of the theorem) The theorem is trivially true for n = 0, so assume
n > 1. By our hypothesis the normalization X = X1 — X is a finite
morphism. We have k(X) = k(X), so according to prop. 3.1.7, E(X)e =
k(X)e = Hg\g k(f()g, where £|¢ means ¢ is a chain in X lying over ¢.

Fix some chain & = (Zg,...,%,) lying over £ = (xo,...,%,). The local
ring O ; is a DVR of k(X); choose a regular parameter ¢ in it. Since the
sequence

0= O N Oz, = k(1) =0

is exact, so is
t .
0= 0% g0 = Ox a6 = k(1) g6 = 0.

Directly from the definition one has O ; - = lim; O d05/(25)“'1. By in-

duction on n, k(Z1)4 ¢ = E(dof) is a finite product of (n — 1)-dimensional
local fields. Lemma 3.3.3 says that O dof is a finite product of complete

DVRs, each with parameter ¢. Upon inverting ¢ we see that k(X )g" =
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E(X) ®0y ., (@) X doé 18 a product of n-dimensional local fields. This proves
part a). Now ¢ € k(X) and by induction k(Z1) — k(Z1)4¢ is unramified,
hence k(X) — k(X); is also unramified, and part b) is verified.

The arguments presented above show that in fact

k1(k(X)e) = 11 F(31) 31, ) = BX@O) 0y
(10T |(T1,0,Tn)
By induction, for every component Z of X (#%1) and every chain (i1, ..., &,)

in Z lying over (z1,...,x,), it holds

Ki—1(K(Z) (@1, 50)) = k(Z(il""’ji))(:zi,...,ﬁ;n) :
Taking the product over all such Z and (Z1,...,%,) we end up with
K'ifl(k(X(wo,wl))(:cl,...,a:n)) = k(X(IO’m’Ii))(a:i,...,:cn) .

But kij—1(k1) = Kj, so part ¢) is proved.

Since Oy (k(X)¢) = Hﬁl& % .do£ 18 afinite Ox qq¢-algebra, it is its integral
closure in k(X)¢. In order to prove part d) for ¢ > 1 use induction and the
fact that w(#o:#1) ; X(@0:71) 4 X ig a finite morphism.

O

Corollary 3.3.4 Let X be an excellent noetherian scheme and let (xo, ...
,Zp) be a saturated chain in X. Then for alli = 0,...,n there is a canonical
isomorphism of Ox-algebras

5 (K(20) (w0, ... (1) — 5 (K(20) (o, om)) -

Corollary 3.3.5 Let X be an excellent noetherian scheme and let & =
(x,...) be a saturated chain in it. Then the completion Ox ¢ of Ox along
§ 1s a complete noetherian semi-local ring with Jacobson radical mg¢. In
particular Ox ¢ is an excellent ring, and a faithfully flat Ox ,-algebra.

Proof By definition Ox ¢ = lim,; Ox,g/m?'l, and by the theorem k(§) =
Ox ¢/m¢ is a semi-simple artinian ring. O

From now till further announcement we shall assume X is a scheme of
finite type over a perfect field k. Given a chain £ = (zg,...,2,) in X,
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a linearization of { is by definition a finite A-morphism f : X — A" s.t.
f(&) = ((f(zo),---, f(zy)) ) is a linear chain in X (i.e. each {f(z;)}~ is a
linear subspace of Aj"). By the strong form of Noether normalization (see
[CA] ch. V §3.1 thm. 1) any chain has a linearization.

Let A be a semi-topological ring. In §1.3 a topology was introduced on
the ring of Laurent series A((t1,...,tn)) == A((tn)) - ((t1)). Consider the
affine space A7" = Speck[ti,...,t,] and the linear chain n = (yo,...,yn),
where y; is the prime ideal (¢1,...,t;). The completion of the function field
k(t1,...,tn) along n is a field of Laurent series k(t,41,...,tm)((t1,...,tn)),
and its topology as a ring of Laurent series coincides with the topology
specified in def. 3.2.1.

Recall the definitions of a topological local field (TLF) and of a cluster
of TLFs (definitions 2.1.10 and 2.2.1).

Proposition 3.3.6 Let X be a scheme of finite type over a perfect field k
and let £ be a saturated chain of length n in it. Then the ST k-algebra k()
1§ an equidimensional, n-dimensional reduced cluster of TLFs over k.

Proof Say ¢ = (z,...). We may assume that X is integral with generic
point z. Fix some m € Speck({) and set L := k(£)/m. We have to show
that L is a TLF over k. Choose a linearization f : X — A" of £, with
f¢&)=n=1(y,...,2). Then K :=k(n) = k(2)((t1,...,tn)) is a TLF over k.
By prop. 3.2.3

k(z) ®ngy) k(n) = (fo(2))y = [[ k(@)e
&'ln
giving rise to a finite homomorphism K — L, and L has the fine K-module

topology. From the proof of thm. 3.3.2 we see that the valuation on L
extends the valuation on K. According to cor. 2.1.20, L is a TLF. O

Combining the last proposition with cor. 3.2.8 and thm. 3.3.2 we have

Corollary 3.3.7 Let £ = (z,...) be a saturated chain in X. Then the face
map 0 : k(z) = k(z)e = k(&) is a topologically étale (relative to k), dense,
unramified homomorphism of clusters of TLFs over k.

Conveniently, in working over a perfect field one can use coefficient fields.
The next theorem uses them, and the fact that the ring £(&), for £ saturated,
is semi-simple artinian.
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Theorem 3.3.8 Let X be a scheme of finite type over a perfect field k and
let £ be a saturated chain in it. Then the completion Ox ¢ of the structure
sheaf along & is a Zariski ST ring. Moreover, every finitely generated ST
Ox ¢-module with the fine Ox ¢-module topology is complete.

Lemma 3.3.9 Let £ = (z,...) be a saturated chain in X and let o : k(z) —
Ox («) be a coefficient field, i.e. a k-algebra lifting. Suppose the ST k-algebras
Oxyg/m?'l are separated for all © > 0. Then o extends uniquely to a contin-
uous k-algebra lifting o¢ : k(&) — Ox .

Proof Fix i € N. The homomorphism o; : k(z) — Ox ,/mi! is a DO of
order < ¢ over Ox relative to k. By prop. 3.2.2 it extends to a continuous
DO ()¢ : k(&) — Oxig/m?l over Oy ¢. Because Ox ; — Ox ¢ is topologi-
cally étale relative to &, and because Ox ¢ /mé"’1 is separated, (o;)¢ is a ring
homomorphism (prop. 1.5.20) and is unique. Passing to the inverse limit we

get o¢ : k(f) — OX,{- O

Assume the hypotheses of the lemma. Let D : k(z)” = Ox,/mit! be
any k(z)-linear isomorphism. Then D is a DO, and D; : k(&))" = Oxig/m?l
is an isomorphism of ST k(§)-modules (cf. proof of prop. 1.5.20). In par-
ticular Oxig/m?l has the fine £(¢)-module topology. Since k() is a semi-
simple artinian ring, it follows that any finite length Ox ¢-module with the
fine Ox ¢-module topology is a free ST k(£)-module (via o¢).

Proof (of the theorem) The proof is by induction on the length of &. If
¢ = (z) this is a standard fact, since Ox (,) has the m(,)-adic topology. So
we may assume & = (z,y,...) has length > 1.

1) First let us prove that for any finite length Ox ,-module M, M is a
complete separated module. Choose ¢t € Ox 4 as in lemma 3.2.13, so M =
Uisot~'V, where V := im(Ox, — M). Applying the completion (—)q,¢ We
get_an isomorphism of ST Ox q,¢-modules M = limy_, t_lVdog. Since Ox qq¢
is a Zariski ST ring the homomorphisms t*lVdog — t*lflVdog are strict and
these modules are separated. According to prop. 1.1.7, M; is separated.
Now let us prove completeness. Choose a coefficient field 7 : k(y) —
Ox,y)- By lemma 3.3.9 it extends to 7qy¢ : k(dof) — Oxqpe- As men-
tioned above, (V/tV)q.¢ is a free ST k(dp{)-module. Thus we obtain an

isomorphism of ST k(dog)-modules Mg = Vage @ |@y50 ¢ (V/tV )aue] -
By assumption the summands are separated and complete, being finitely
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generated Ox q,¢-modules. According to prop. 1.1.5, M; is also separated
and complete.

2) By step 1 we are in a position to use lemma 3.3.9. Choose a coefficient
field o : k(z) — Ox (), and consider Ox ¢ as an augmented ST k(&)-algebra
via o¢. Let M be a finite length Ox ¢-module M with the fine Ox ¢-module
topology. Then M 2 k(&)™ for some n, so it is complete and separated.
If $ : M — N is any injection of finite length Ox ¢-modules with the fine
Ox ¢-module topologies, then ¢ splits continuously over £({) and hence is
strict.

3) Let M be a finitely generated Ox ¢-module with the fine Ox ¢c-module
topology. For each ¢ > 0 put on M/m?'lM the fine Ox ¢-module topology,
which makes it separated and complete. Since Oy ¢ is noetherian and mg-
adically complete, according to prop. 1.2.20 the map M — lim,; M /m?’lM
is a homeomorphism. By prop. 1.1.5 a) it follows that M is separated and
complete.

Now let ¢ : M — N be an injection of finitely generated ST Ox ¢-
modules with fine topologies. For ¢ > 0 set N; := N/m?'lN and M; =
M/M N m?’lN. By step 2, ¢; : M; — N; is a strict monomorphism, so by
prop. 1.1.6 so is ¢ : M = lim.; M; — N. O

Remark 3.3.10 It seems plausible that the theorem is true for any noethe-
rian scheme X; it certainly should hold for excellent schemes. However we
could not find a proof which does not resort to splitting. The difficulty lies
in showing that a direct limit of strict monomorphisms is strict.

We move on to the second geometric interpretation of completion, and
once more X is any excellent noetherian scheme. Given a chain £ = (zo, ...
,xp) in X set X¢ := SpecOx ¢ and let i¢ : X¢ — X be the morphism
corresponding to the ring homomorphism Ox ,, — Ox¢. Define X; :=
X and 4; := identity morphism. (See figure 2.) Note that X is also a
noetherian excellent scheme (cor. 3.3.5).

For a quasi-coherent sheaf M on X we may identify the completion M,
with F(Xg,z'z./\/l). The morphism ¢ is flat; it is also “quasi-finite”, in the
following restricted sense. Given points z € X and & € X, we say that Z is
minimal over z if {#}~ is an irreducible component of the fibre zgl({x}*)
Then the set {# € X | 2 is minimal over z} is finite. Note that if{ = (z,...)
is a saturated chain then every Z € i;olg(a:) is minimal, because Spec k(x)q,¢
is O-dimensional.
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Figure 2: The morphism ¢ : X; — X

Remark 3.3.11 We may think of minimal points as “algebraic”, as the
following example suggests. Take X := A? = Speck[s,t], z := (0) € X,
z = (s,t) € X and & := (z), so X¢ = Speck[[s,t]]. Choose any element
f € k[[t]-t transcendental over k[t]. Then the point § := k[[s, ]]-(f—s) € X¢
is in zgl(x) but is not minimal. The fibre 25_1(:1:) consists of the generic point
7 of X, and infinitely many “transcendental” points of codimension 1, such
as 9.

Theorem 3.3.12 Let X be an excellent noetherian scheme and let & =
(z,...) be a saturated chain in it. Then there is a canonical isomorphism
Xe = [;1.(Xdoe)a) of schemes over X, where &z stands for & € igolg(a:).

Proof Set X := Xdo¢ and i = idee. For m > 0let A, := Ox,/mi*l. By
definition we have Oy ¢ = lim,, I’ (X ,%*An). Adjunction gives for every

n > 0 a homomorphism u, : 1*A4, — H:@|x (’)X@/m%hLl of quasi-coherent
sheaves on X: -

Since I'(X, 1*k(z)) = k(2)go¢ = k(&) is a reduced artinian ring (cf. thm.
3.3.2), for n = 0 we have an isomorphism ug : i*k(z) = [13, 5(2). Thus i is
unramified at all points |z and in particular (2*m); = m;. For each n >0
consider the exact sequence on X

n+1

0—my

—+Ox4 —+ A, — 0.

Upon applying 7* and taking stalks at any #|z one sees that (u,)z : (1*4,)z
= 0%, /mg"'1 is bijective. Therefore u,, itself is bijective, and in the inverse
limit so is lim p, uy, : Ox ¢ — Hfi\w OX( ) O

T

83



Corollary 3.3.13 Let £ = (...,y) and n = (y,...) be saturated chains in
X. Then there is an isomorphism Xeyq,n = H£|§(Xn)£ of schemes over X,

where £|§ means é is a chain in X, lying over &.

Proof Use induction on the length of { = (z,...,y), noting that X, =
1y (Xn)ea):

Xevaon = [ [ (KXaoevaon)@ = [T TT (X))@ = TT(Xn)e -
&|a 2z £|do& 3

Corollary 3.3.14 If X is normal then so is X¢.

Proof By the theorem and induction it suffices to consider ¢ = (x). Now
Ox, is a normal excellent integral noetherian local ring, so by analytic
normality ([Ma] thm. 79) so is its m;-adic completion Ox (). O

Lemma 3.3.15 Let X be a normal scheme of finite type over a perfect field
k and let £ = (...,y) and n = (y,...) be saturated chains in it. Then the
face map 0 : Ox; — Ox gvdon 15 a strict monomorphism.

Proof By induction on the length of £ it suffices to consider ¢ = (z,y). Set
X := X,). For every g|y the homomorphism Ox, — Oy g is faithfully flat,

so there exists some Z € X with Z > ¢ and #|z. Since Oy ; is a noetherian
)
integral domain we have injections

OX,U = HOX’?) — HOX,J“: — HOX,(QE) = OX,§Vd077 .

gly &z &l
Now use thm. 3.2.14 and thm. 3.3.8. O

In general we have:

Theorem 3.3.16 Let X be a reduced scheme of finite type over a perfect
field k and let n = (y,...) be a saturated chain in it. Then there exists a
finite set S of chains in X satisfying:
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i) Every & € S is saturated, begins with the generic point of some irre-
ducible component of X and ends with y.

ii) The face map 0 : Oxy — ngs Ox evdgn 5 a strict monomorphism of
ST k-algebras.

Note that the trivial case when y itself is a generic point is included,
taking S = {(y)}.

Proof Let m: X — X be the normalization (71 : X1 — X in the previous
notation) and let 7,...,7, be the distinct chains in X lying over 7. Since
Ox — mOy is injective it follows that Ox; = (m.O0x)y = [[iz; Ox ; s a
strict monomorphism (remember that Ox , is a Zariski ST ring).

For each 7; = (9j,...) choose a saturated chain & = (Ziy...,9:) in X,
with Z; being the generic point of the component of X containing §;. By
lemma 3.3.15, OX i Oz £ vdoi ({l V dy7);) is a strict monomorphism.

Let S be any ﬁnlte set of chalns in X as described in i) which contains
all the chains 7r(§z), i = 1,...,7. Since m is a birational morphism one
gets [[eeg (€ Vdon) = [ecs [evay, #(C); and [T k(& V do7) is a direct
factor of this ring. Therefore [T;_; Ox = = [lees Igevaon k(C) is a strict
monomorphism. Putting it all together we see that 9 : Oxn = [[ecg k(€ V
don) is a strict monomorphism. O
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4 Residues on Schemes

4.1 The Parshin Residue Map

Parshin found a definition of a residue map that generalizes the residue map
for curves used by Serre in [Se] ch. II no. 7. We present a variant of this
residue map, which depends on geometric data (a chain in X') and algebraic
data (a pseudo-coefficient field). The main result of this section is cor.
4.1.16, which establishes the transitivity of the residue maps with respect
to compatible coefficient-fields. In this section X is a scheme of finite type
over a perfect field k.

Definition 4.1.1 Let (A,m) be a local k-algebra. A pseudo-coefficient field
(resp. quasi-coefficient field, resp. coefficient field) for A is a k-algebra ho-
momorphism o : K — A where K is a field and the extension g : K — A/m
is finite (resp. finite separable, resp. bijective). If A = Ox ;) = @X,:c for
some point x € X, we say that o is a pseudo-coefficient field (resp. quasi-
coefficient field, resp. coefficient field) for x.

By Hensel’s lemma every quasi-coefficient field gives rise to a unique co-
efficient field. Thus if K C k(z) is a subfield s.t. K — k(x) is finite separable
there is a bijection o — o[k between the sets Hompg 1) (k(7), Ox (5)) and
Hompg() (K, Ox,(z))- In particular a closed point z has a unique coefficient
field. If X is reduced and z is the generic point of an irreducible component
then 2 has a unique coefficient field, since Ox_, = k(z).

Let ¢ = (z,...,y) be a saturated chain of length n in X and let o :
K — Ox ) be a pseudo-coefficient field. Let o be the composed k-algebra
homomorphism

o: K i) OX,(y) i OX,g—»k(f)
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where 0 is the face map. According to prop. 3.3.6 and thm. 3.3.2 ¢), 5 is a
morphism in CTLF,eq(k) of dimension n. Recall that given any morphism
f:A— Bin CTLF,eq(k) there is a canonical residue map

Resy = Resp)4 Q’gﬁp — Qz’ﬁp . (4.1.2)

It is a homomorphism of differential graded ST QZ;Zp—modules (see §2.4).

The next definition is taken from [Lo] p. 516.

Definition 4.1.3 (Parshin’s Residue Map) Let & = (z,...,y) be a saturated
chain in X and let 0 : K — Ox (y) be a pseudo-coefficient field. Parshin’s
residue map s the composition

R
*,8ep OBk (&)/ K *,8ep

* 7]
Res¢ , = Res¢ i : Qk(:c)/k — Qk(f)/k — Q-

The residue map Res¢, is a homomorphism of differential graded k-
modules of degree —n, where n is the length of &.

Proposition 4.1.4 Let £ = (z,...,y) be a saturated chain in X and let o
be a coefficient field for y. Then the residue map Resg, : Q,’;(x)/k — QZ(y)/k
1s a locally differential operator over Ox relative to k.

Proof Since these are skyscraper sheaves it suffices to check stalks at y.
Given a form o € Q;;(a:)/k we will show that Resf,g|(9x’y.a is a differential
operator. Consider the k-linear homomorphism ¢ : Ox , — Q;;(y) Ik P(a) =
Res¢ s (acr). It factors through the continuous k(y)-linear homomorphisms

Ress

1s) . * *
Ox,(y) = Ox k(&) 3 Qe — e/ -

The module Q,’;(y)/k is discrete, so gb(mé;)l) = 0 for4 >> 0. Hence Res¢ 5|0y, a
factors k(y)-linearly through the finite length Oy (,)-module (OX,(y) -a) /

(mé;)l -a). According to prop. 1.4.4 it is a differential operator of order
<i. O

Definition 4.1.5 Let & = (z,...,y) be a saturated chain in X and let o and
T be coefficient fields for x and y respectively. We say that o /T are compatible
coefficient fields for & if o¢ : k() — Ox¢ is a k(y)-algebra homomorphism;
i.e. if the diagram below commutes:
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Suppose ¢ = (z,...,y) and n = (y,...,2) are saturated chains and
suppose o is a coefficient field for y. Consider the continuous k-algebra
homomorphism

_ o a
oy : k(n) = OX,n — OX,&vdon—»k(g Vv d077) .

Say ¢ has length n. According to cor. 3.3.4 one has [k, (k({Vdon)) : k(n)] =
[kn(Kk(&)) : k(y)] < oo. Therefore 7, : k(n) — k(£ V don) is a morphism in
CTLF,eq(k) of dimension n.

The next lemma shows that compatibility of coefficient fields is transi-
tive.

Lemma 4.1.6 Let £ = (z,...,y) and n = (y,...,z) be saturated chains.
Let p,o and T be coefficient fields for x,y and z respectively, s.t. p/o and o /T
are compatible for & and n respectively. Then p/T are compatible coefficient

fields for £V don = (z,...,y,...,2).

Proof It suffices to show that the diagram

J57) /Pg(vdon \ (4.1.7)

is commutative. By assumption if we replace 1 with (y) everywhere in the
diagram it becomes commutative. Hence pgyq,, © 0y and oy, are k(y)-algebra
homomorphisms. But k(y) — k(n) is topologically étale, so by uniqueness
for every i > 0

Pevden © Ty = on k() — OX,deO”/m?\;(lion )

Now pass to the inverse limit in 1. O
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Proposition 4.1.8 Let £ = (xg,...,2y) be a saturated chain in X. There
exist compatible coefficient fields o; : k(x;) — Ox (4;) 8.t each pair o;/oj,
i < j, is compatible for (z;,...,x; ).

In characteristic 0 this is an immediate consequence of Noether normal-
ization. In general we reduce this to a problem in linear algebra:

Proof It suffices to find quasi-coefficient fields K; which fit into a diagram

]Tl . 71_1 . .. . [T
O)]mn —_ OX’T"I e O)Tmo
k(zy) k(zp—1) k(zo)

(cf. proof of lemma 4.1.6). To do so we find k-vector spaces V,, C --- C V C
Ox s, s.t. for all i,

is bijective. Then tr.deg, k(z;) = ranky V; and the polynomial ring k[V;]
embeds into k(z;). Letting K; be the fraction field of k[V;] we see that
K; — Ox 4, is a quasi-coefficient field.

Suppose we succeeded in finding k-vector spaces V) C V! _, C ... CV/ C
Ox 4, satisfying (4.1.9). The Ox ,,-module Qk/k@i is spanned by d(V/)
and d(p;), where p; C Ox 4, is the prime ideal of z;. Hence d(V;) + d(p;)
span Q}C(Iiil)/k. We can modify Vj', 1 < j < n, to some subspace V; C
Vj' ®pi C Oxy, st. Vj = Vj’ (mod p;), ranky V; = rank Vj’ and 1 ®d :
k(zi1) @, V; — Q}c(m )k is injective. Next extend V; to an appropriate

i—1

subspace Vi—1 C Ox (g,)- O

Let 0 : K — Ox, ;) be a pseudo-coefficient field for z € X and let
¢ = (z,...) be a saturated chain. Assume that ¢ : K — k(x) is purely
inseparable. If & is bijective set K¢ := k({), and let v := 0 : K — Kq.
Otherwise chark = p and we define K¢ below, using “purely inseparable
descent”.

Suppose k has characteristic p. Given a k-algebra A let A®/F) be the
k-algebra defined in (1.4.7) and let F 4y, : A®/k) 5 A be the relative Frobe-
nius homomorphism. The map Fy/p - k(€)®/k) - k(€) is a finite mor-
phism in CTLFq(k) of degree equal to the differential degree of k(&) i.e.
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ranky, )Q k(e )/k (cf. prop. 2.1.13). Since k(z) — k(&) is topologically étale
and unramified, the same is true of k(z)®/%) — k(
grees one finds that k(z) ®pym/m k(&) (p/k) 5 k(¢
clusters of TLFs.

In our situation we get k(z)® /%) C K for j >> 0 and we define

€)®/k) . Comparing de-
) is an isomorphism of

K¢ i= K @, iy KT (4.1.10)

a cluster of TLFs. The homomorphism u : K — K¢ is also topologically étale
and unramified, and k(z) @ K¢ S k(£). Because there exists some con-

tinuous k-algebra homomorphism K¢ — Ox ¢ (e.g. take K¢ — k(&) 3 Ox ¢
arising from some coefficient field 7 : k(z) — Ox (), o extends uniquely to
a homomorphism

O¢ : Kﬁ — OX7§ . (4.1.11)

In §2.2 we find the notion of finitely ramified base change. It is a universal
construction in the category of clusters of TLFs, generalizing the tensor
product.

Theorem 4.1.12 Let & = (z,...,y) and 1= (y,...,2) be saturated chains
in X and let o : K — Ox () be a pseudo-cocfficient field s.t. o : K — k(y) is
purely inseparable. Let u : K — K, be the finitely ramified homomorphism
defined above. Then the diagram

k(&) —%~ k(e v don)

}5 ‘@

u
K ‘- K,

s a finitely ramified base change.

Proof Let K, — B’ be the morphism gotten by the finitely ramified base
change K — K,,. By universality there is a finite morphism B’ — k(£ V don)
in CTLF(k). The ring B’ is reduced, because K — K, is topologically étale
relative to k (cf. proof of thm. 2.4.23). For each n € Speck(£ V dgn) lying
over some m’ € Spec B’, the finite morphism of TLFs B'/m’ — k(¢ V don)/n
is an isomorphism since k(z) — k(& V don) is unramified. Thus it remains
to show that the map of sets Spec k(¢ V dgn) — Spec B’ is bijective. Taking
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n-th residue fields, where n is the length of &, we reduce to showing that
kn(B') = kn( k(€ V dgn)) is bijective. It is known (cor. 3.3.4) that

rn(k(€)) @K Ky = kn(k(E)) Qrey) k(n) = £n(k(E) )y = mn(k(EV don))

is bijective. By the following lemma the same holds for B’ (using the fact
that in characteristic p any topologically étale homomorphism is separable,
cf. cor. 2.1.16). O

Lemma 4.1.13 Let K, K’ and L be TLFs over k, let f : K — L be a mor-
phism of dimension n, and let u: K — K’ be a finitely ramified, separable
homomorphism. Let f' : K' — L' be the morphism gotten by finitely ram-
ified base change, and let v : L — L’ be the corresponding finitely ramified
homomorphism. Then the canonical homomorphism

bin(L) @ K' = k(L) (4.1.14)

s an isomorphism.

Proof Let F be the separable closure of K in k,(L). Then one can lift F
into L and get f : K — F — L. Correspondingly we get f': K' — F' — L',
where F' := F Qi K'. But k,(L) @ F' = k,(L) g K', so we may assume
that K — Kk, (L) is purely inseparable. Let (t1,...,%,) be an initial system
of regular parameters in L. Counting degrees we have

[kn(L) @k K': K ]:[ WD) K] =[L: K((ts, ..., tn))]
=[L': K'((t1,--,tp))] > [kn(L') : K'], (4.1.15)

the gap going towards ramification in K'((¢1,...,t,)) — L'. However in our
case rn(L) @ K' is a field so (4.1.14) is a bijection (and there is equality
n (4.1.15) ). O

Corollary 4.1.16 (Transitivity) Let & = (z,...,y) and n = (y,...,2) be
saturated chains in X and let o /T be compatible coefficient fields for n. Then

Res§\/d0m7 = Resnﬂ- o ReS&G . QZ(QZ)//C — QZ(Z)/]C
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Proof Apply the preceding theorem and thm. 2.4.23 to the diagram
k(z) —— k(&) — k(¢ Vdon)

g On

kly) —— k)

4.2 Poles of Meromorphic Differential Forms

In this section we consider a high dimensional version of a pole of a differ-
ential form. Even though the residue map depends on a choice of coefficient
field, the order of pole of a form along a chain is independent of this choice.
The key result is:

Lemma 4.2.1 Let £ = (z,...,y) be a saturated chain in X and let M C

QZ’(S;)I},C be a left QP -submodule. Then the following conditions on M are

equivalent: Ak
i) For any pseudo-cocfficient field o : K — Ox (4, Resye) k(M) = 0.
ii) For any coefficient field o : k(y) — Ox ), Resy(g)/r(y),0 (M) = 0.
iii) For any saturated chainn = (y,...,z) with z a closed point, Resyevdqn)/k

(M) = 0.

Proof i) = ii): Trivial.

ii) = iii): As in the proof of cor. 4.1.16.

iii) = i): Let L be the separable closure of K in k(y). Then o factors through
L, so we can assume that K — k(y) is purely inseparable. Choose a chain

7 as in iii). Now Resy(evagy)/k is continuous, k is separated and Q% , =~ —
Q}T}En is dense. Condition iii) implies that Resy(gvdyy) /k(Q}T}En M) =0,
*,5ep

so we can assume that M is an Q73

X/k’n—module.
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Suppose for some a € M the form § := Resy¢) () € Q*K/k is non-zero.

Define o) : K; — Ox, like in (4.1.11). Then the image of £ in Q) =

K, ®k Q’;(/k is also non-zero. Because the residue pairing (—, —)f, /i is
perfect (see thm. 2.4.22) there is some v € Q}S:/F;C s.t. Resge, k(Y A B) # 0.
But then o,(v) € Q;j‘;f:n, so ay(y) N € M with
Resyevdon)/k (T () A )
= Resg, /k © Resg(evdyn) /K, (04(7) A a) = Resg, (Y AB) # 0,

a contradiction. O

Definition 4.2.2  a) Let K be a TLF over k of differential degree d. De-

fine wy = Q‘;ésﬁcp.
b) Let A = []espec a A/m be a reduced cluster of TLFs over k. Define

wA = Dmespec 4 Wa/m; a free ST A-module of rank 1.

c) Let & be a saturated chain in X. Define w(§) := wy(e)-

For ¢ = (z) we shall write w(z) instead of w( (z)); thus w(z) = Qg(m)/k,
where d = tr.deg; k(z) = dim{z}~. Recall that given a saturated chain
¢ = (x,...) the face map 0 : k(z) — k(&) is topologically étale relative to
k, 50 w(§) = k(§) ®p(y) w(z). If X is integral with generic point z then the

elements of Qz(sg; p = Q}ﬁ% are called the meromorphic forms on X along

¢.

Definition 4.2.3 (Holomorphic Forms) Let £ = (z,...,y) be a saturated
chain i X.

a) A form a € w(€) is said to be holomorphic if the equivalent conditions
of lemma 4.2.1 hold for the module Ox - o C w(§). Define

w(&)not := {a € w(¢) | « is holomorphic } .

b) A form a € w(x) is said to be holomorphic along & if its image in w(§)
1s holomorphic. Define

w(Z)hot:¢ := {& € w(z) | a is holomorphic along £} = w(z) N w(&)nol -
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Let A — B be a morphism in CTLFeq(k). In §2.4 the residue pairing

mult Resp/a
(=, —)Bja:BXwp wB wA (4.2.4)

is defined. It is a perfect pairing of ST A-modules. Now let ¢ = (z,...,y)
be a saturated chain and let o : K — Ox (,) be a pseudo-coefficient field.
Then the K-module w(§)no C w(§) is precisely the perpendicular space to
Ox,y under the pairing (—, —)x(¢)/k -

Lemma 4.2.5 Given saturated chains & = (z,...,y) and n = (y,...,2),
the face map w(§) — w(& V don) sends w(&)nor into w(&V don)nor- Therefore
W(Z)hol:e C W(T)hol:evdon -

Proof Choose compatible coefficient fields o /7 for 7 and use lemma 4.2.1.
|

Lemma 4.2.6 Let £ = (z,...,y) be a saturated chain of length > 1 and let
o: K = Ox ) be a pseudo-coefficient field. Then Resk(f)/K(Qgiii(g))/k) =

0. Therefore the image of the canonical homomorphism ngﬁ%dog — QZ’(S;)% =

w(&) is inside w(&)poi; here d is the differential degree of k(&).

Proof By lemma 4.2.1 we can assume that y is a closed point and that
K =Fk. Let m € Speck(§) and let L := k(§)/m. Then L = F((t1,...,tq))
and O1(L) = F((ta,...,tq))[[t1]], with [F : k] < co. Since F[ty,...,tq] —
F((tg,...,tq))[[t1]] is topologically étale relative to k we get Q%T?L’)/k =
F((t2,...,ta))[[t1]] - dt1 A--- Adtg, so by definition the residue map vanishes
on it. O

Theorem 4.2.7 Given a saturated chain & in X, the k-submodule of holo-
morphic forms w(€)no C w(§) is open.

Proof The proof is by induction on the length of £. For £ = (z) the module
w(x) is discrete so w(z)pe = 0 is open. Suppose that ¢ = (z,y,...,2) is of
length > 1 (so possibly y = z) and that w(doé)per C w(deé) is open. Choose
compatible coefficient fields o /7 for do§. Let 7 = G4,¢ : k(doé) — k(§) and
T : k(z) = k(do&) be the induced morphisms in CTLFeq(k). We claim that

W(&)not = {a € w(§) | Va € Ox;, Resg(aa) € w(doé)nal} - (4.2.8)
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This follows from condition ii) of lemma 4.2.1, since Reszo; = Res; o Res;.

Choose elements ay,...,a, € m(;) C Ox ;) which span m(z)/m%z). Then
the continuous k(z)-algebra homomorphism k(z)[[a1,...,a;]] = Ox ) ex-
tending 7 is surjective. Let A be the polynomial ring k(z)[ai,...,a,]. An
open subgroup U C w(§) is also closed, so such U is an Ox ,-module iff it
is an Ox (;)-module, iff it is an A-module. In particular, w(doé)por 1s an
A-submodule of w(d¢€). By continuity of the residue map,

w(&)nol = {a € w(§) | Resz(A - a) Cw(dod)nol} -

Let M := Q%Téi({))/k C w(&). Tt is a free ST O1(k(§))-module of rank 1,

and k(£)-M = w(£). By lemma 4.2.6 we get Res; (M) = 0. Choose a regular

parameter ¢ in O1(k(¢) ), so w(&) = U;»g t=7=1M. Since mg,e C tO1(k(E)),

for every 7 > 0 we have mﬂ;}lt—j_lM C M. According to prop. 1.4.4, the

k(do&)-linear homomorphism Resg |41, is a DO of order < j over Ox gy¢-
From formula (1.4.2) we see that for any fixed o € =771 M,

Resz (Aa) C Z A -Resz(al! -~ ala)
(117717')61(])
where I(j) is the finite set {(i1,...,4,) € N | iy +--- + i, < j}. Therefore
WOt M ={aet7'M| > Ress(al---alr @) € w(dod)nar}
(i1,0emsir )EI(J)

is open in w(¢). By definition of the direct limit topology, w(&)ne C w(&) is
open. O

Corollary 4.2.9 Let £ = (z,...,y) be a saturated chain. The canonical

map
w(z) w(é)
wW(T)hote  W(&)nol

1s bijective.

Proof By definition the map is injective and according to cor. 3.2.12 it is
dense. But by the theorem the module w(&)/w()ne is discrete. O

From prop. 4.1.4 and prop. 1.4.6 it follows that w(z)/w(x)ne¢ is an
artinian Ox y-module.
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Definition 4.2.10 (Poles of Meromorphic Forms) Let £ = (z,...,y) be a
saturated chain in X.

a) Given a differential form o € w(x), let I be the length of the Ox -
module (Ox y - o + w(T)hol:¢) /w(T)not:e. Then « is said to have a pole
of order | along &.

b) If1 <1 then « is said to have a simple pole along &. Define

w(%)sim:¢ 1= {@ € w(z) | a has a simple pole along £} .

For any Ox y-module M denote its socle Homo  (k(y), M) by socoy
M. Then one has

W(Z)sim:¢/wW(T)note = socoy , (W(T)/w(T)nol:e) - (4.2.11)

Proposition 4.2.12 Let ¢ = (z,...,y) and n = (y,...,z) be saturated
chains in X, let o : k(y) = Ox ) be a cocfficient field and let 7 : K —
Ox () be a pesudo-coefficient field. Then for any form a € w(Z)sime one
has

Resgvdgn,r (@) = Res;r o Resg o () .

Proof We can assume that K — k(z) is purely inseparable. Choose a
saturated chain ( = (z,...,w) with w a closed point and define K¢ as in thm.
4.1.12. Define 31 := Res¢vdgn,r (@) and (o := Res, ; o Res¢ o (a). If B # B2
there exists some ¢ € K s.t. Resg, /. (c(82 — f1)) # 0. Let 7: K — k() be
the morphism induced by 7, and let oy, : k(1) = Ox 4, be the lifting extending
o. Define ¢ := 0,0 7(c) € Ox . Then Resyevagy)/K,0,07(C) = cfa. We
claim that Resy(gvdon)/k,-(Ca) = ¢f1. This leads to a contradiction, since
by theorems 2.4.23 and 4.1.12, one has

Rech/k (CBQ) = ReSk(gvdondeO/k(éa) = Rech/k(cﬂl) .

In order to prove the claim, note that 7(c) — ¢ € m, C Ox,. The
submodule w(& V dgn)nor C w(€ V dgn) is closed, and it contains w(&)ye (by
lemma 4.2.5). On the other hand m, C m, is dense. Since m, - & C wW(&)nol,
the continuity of multiplication implies that m, -« C w(£Vdon)ne. Therefore

Resg(evdon)/ 1,7 (€) = Respevagn) /i, (T(c)a) = b -
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Corollary 4.2.13 Let £ = (x,...,y) be a saturated chain in X. There is a
canonical Ox y-linear homomorphism Res¢ : w(%)sime — w(y). If o is any
coefficient field for y, then Resg = Resf,0|w(x)sim:§.
Proof Taking n = (y) in the proposition it follows that for any two coeffi-
cient fields 0,0’ and all & € w(z)sim:¢, one has Resg ,(a) = Resg o (a). The
Ox y-linearity follows from equation (4.2.11). O

Proposition 4.2.14 Let a € w(zx) be a form. Then « is holomorphic along
all but finitely many saturated chains & = (z,...).

Proof Because X is quasi-compact we can assume that X = Spec A. The
proof is by induction on the length of £. First consider chains of length 1,
¢ = (z,y). For all but finitely many points y € {2}~ of codimension 1, « is
in the image of Q% , : by lemma 4.2.6 « is holomorphic along such (z,y).
Now fix (z,y) and consider chains ¢ = (z,y,...,2) of length n > 2.
Write £ = (z,y) V don with n = (y, ..., 2) a chain of length n — 1. Choose a
coefficient field o : k(y) — Ox (y). Since Res(, ) o|a.q is a DO over A (prop.
4.1.4), there are forms f1,..., 5 € w(y) s.t. Resz ) o(A-a) CYi_ A B
By induction each f; is holomorphic along all but finitely many chains 7. For
each n, Res(; ) o(Ox . @) C Y Ox .- f; because A — Ox . is formally étale.
Using lemma 4.2.1, if all §; are holomorphic along 7, then « is holomorphic
along (z,y) V do7. O

The following important theorem is due to Parshin. For surfaces see
[Pal] and for schemes of higher dimensions see [Lo]; cf. also [Be]. By prop.
4.2.14 it makes sense to consider, for fixed z > y and for a pseudo-coefficient
field o : K = Ox,(y), the sum 35, Res¢o:w(z) = wi.

Theorem 4.2.15 (Parshin-Lomadze) Let X be a scheme of finite type over
a perfect field k.

a) Let& = (...,z) and n = (y,...,z) be saturated chains in X s.t. x >y
and codim({y}~,{z}") = 2, and let 0 : K — Ox ;) be a pseudo-
coefficient field. Then

Z ReS@/(w)\/n’U =0.
weX,x>w>y
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b) Suppose X is proper over k, and let £ = (...,x) be a saturated chain
in X s.t. dim{z}~ = 1. Then

Z ReSiV(w)’k =0.

weX,z>w

Proof By lemma 4.2.1 we can assume that in part a), z is a closed point
and K = k. Then this is an instance of [Lo] thm. 3. O

4.3 The Residue Complex K - Construction

In [RD] ch. VI §1 we find the following definitions. Let X be a locally
noetherian scheme. For a point z € X let I be an injective hull of k(z)
as an Oy ,-module, and let J(z) be the skyscraper sheaf which is I on the
closed set {z}~ and 0 elsewhere. Then J(z) is a quasi-coherent, injective
Ox-module.

Definition 4.3.1 A residual complex on X is a complex R" of quasi-coherent,
injective Ox -modules, bounded below, with coherent cohomology sheaves, and
such that there is an isomorphism of Ox-modules

Prr=P I .

PEL zeX

Now suppose X is a reduced scheme of finite type over a perfect field k.
In this section we will construct a complex Ky on X. We will show that it
has all the properties of a residual complex, apart from having coherent co-
homology sheaves. This last property shall be verified in §4.5. The complex
K is called the Grothendieck residue complex of X (relative to k).

Definition 4.3.2 Let x € X be a point and let 0 : K — Ox () be a pseudo-
coefficient field. Define

K(o) := Hom‘j?nt(OX,(m),wK) ,

considered as a skyscraper sheaf supported on the closed set {z} . K(o) is
called the dual module of the local ring Ox , (relative to k) determined by
.
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K(o) is a quasi-coherent sheaf. By Matlis duality it is an injective hull
of k(x) over the local ring Ox ,. Thus K(o) = J(z) in the notation used
above. In [Gr]| these dual modules are the building blocks of the residue
complex, and the same is true here. The main effort will be to identify the
various /C(o) to a single module K(z).

Lemma 4.3.3 Let £ = (z,...,y) be a saturated chain in X and let o/T
be compatible coefficient fields for {. Denote by loc : Ox, — Ox, the
localization homomorphism. Given any ¢ € K(o) put

5(¢) = d¢,0/r(¢) := Resg ;0 poloc: Oxy — w(y)
(see diagram). Then

a) The k-linear homomorphism §(¢) is continuous for the my-adic topol-
0gy.

b) The continuous homomorphism §($) ) : Ox ) — w(y) extending 0(¢)
is k(y)-linear (via 7).

OX,::: - w(x)
‘loc JReS&T (4.3.4)
Oxy 5(e), w(y)

Proof a) Since ¢ is continuous, ¢(mi!) =0 for i >> 0, so it is a DO over
Ox. By prop. 4.1.4, Res¢ ; is a locally DO. Thus the composition §(¢) is a
DO over Ox,y (see lemma 3.1.9) and 5(¢)(m§+1) =0 for 7 >> 0.

b) Let ¢¢ : Oxe = Oxe/mg = (Oxo/mi™)e = w(€) be the k(&)-linear
map obtained by applying the completion (—)¢ to ¢. Then by definition of
Res¢ » we get

() (y) = Resy(e)/k(y).r © e 0 9 : Ox () = w(y)

where 0 : Oy y) = Ox is the face map. Since o/T are compatible for ¢ it
follows that ¢, is k(y)-linear, and hence so is §(¢),)- O

Remark 4.3.5 We adopt the following convention: operators denoted by
the symbol “0” are Ox-linear, whereas operators denoted by the symbol
“Res” are locally differential operators.
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The crucial ingredient of our construction is the coboundary map § be-
tween dual modules.

Definition 4.3.6 Let £ = (z,...,y) be a saturated chain and let o/T be
compatible coefficient fields for §. The coboundary map 0¢ o/ + K(0) — K(T)
is by definition the Ox -linear homomorphism ¢ v 0¢ /- (¢) of lemma 4.5.3.
Also define d¢r : w(x) — K(7) by d¢,(a)(a) := Resg,(aq), o € w(z),
ac OX,(y)-

The map J(,),, is a canonical isomorphism w(z) = socoy , K(o), and
under isomorphism we have

O¢ /7 © O(@),0 = Oe.r 2 w(x) = K(7) . (4.3.7)

Note also that ker(d¢ ) = w(Z)not:¢-

Suppose ¢ = (z,...,y) and n = (y,..., z) are saturated chains and p, o, 7
are coefficient fields for z,y, z respectively, s.t. p/o and o/7 are compatible
for ¢ and 7 respectively. Then by lemma 4.1.6 and cor. 4.1.16 one has

devdon,r = On,7 ©0¢,0 - (4.3.8)

Recall that a module M over a noetherian local ring (A4, m) is called
cofinite if M = Hom4(N,I) for some finitely generated A-module N and
for some injective hull I of A/m.

Proposition 4.3.9 Let & = (z,...,y) be saturated chain. Then w(z)/
w(x)h01:§ is a cofinite Ox y-module. As such it can be regarded as a skyscraper
quasi-coherent Ox -module, supported on {y}~. The map Res¢ of cor. 4.2.13
induces a canonical isomorphism of O x -modules Resg : w(%)sim:¢ /w (2 )hol:¢ 5
w(y).

Proof Choosing a coefficient field 7 for y one gets an injection d¢ - : (w(z)/
w(@)hol:¢) — K(1). By Matlis duality submodules of K(7) are duals of
quotients of Ox () with respect to the duality Homo, ,(—,K(7)). Since the

residue map
Res(¢)/k(y),r 18 nonzero, and since the socle of K(7) is simple, it follows
that d¢ ; induces an isomorphism on socles. O

Definition 4.3.10 A system of residue data on X consists of the data
({K(.T)}, {55}7{(1)0}); where:
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a) For everyx € X, K(z) is a quasi-coherent sheaf, called the dual module
of the local ring Ox 4 (relative to k).

b) For every saturated chain § = (x,...,y), d¢ : K(z) = K(y) is an
Ox -linear homomorphism, called the coboundary map along &.

c) For every x € X and every coefficient field o : k(z) — Ox (2), @0 :
K(0) = K(z) is an isomorphism of Ox-modules.

The following condition must be satisfied:

(t) For every saturated chain & = (x,...,y) and all compatible coefficient
fields o /T for &, the diagram below commutes:

K(o) 204 K(2)
{%a/r \55

Before stating the next result we have to broaden our definitions regard-
ing differential forms and coboundary maps.

Definition 4.3.11  a) Let S be a finite set of saturated chains in X. De-
fine k(S) = [l¢es k(&) and w(S) == wi(s) = Deegw(§). If G C X is
a finite subset, define k(G) and w(G) by replacing G with the set of
chains {(z) | z € G}.

b) Let y € X be a point and let 0 : K — Ox,(y) be a pseudo-coefficient
field. Suppose G C X is a finite subset and S = |, Sz is a finite
set of chains, s.t. each £ € Sy begins with x and ends with y. Define

55,0 : W(G) — K(U) by 65;0 = ZCBEG Z{ESz 557”'

c) Let Xgen be the set of generic points of irreducible components of X.
If X is a reduced scheme define w(X) := w(Xgen) = ®xeXgen w(zx).

Recall that the total ring of fractions of X is denoted by k(X). Thus
for X reduced we have k(X) = k(Xgen) and w(X) is a free k(X )-module of
rank 1. In part b) of the definition we don’t require that z > y for all x € G;
if  # y then S; = and dg,, still makes sense.
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Lemma 4.3.12 Let S and o be as in def. 4.3.11 b). Then the k-submodule
W(G)nol:s 1= ker(ds») C w(G) is independent of o.

Proof Copy the proof of lemma 4.2.1. O
The main result of this article is:

Theorem 4.3.13 (Internal Residue Isomorphism) Let X be a reduced sch-
eme of finite type over a perfect field k. Let y € X be a point and let
o: K = Ox y) be any pseudo-coefficient field. Then:

a) There exists a finite set of chains S = J,cq Se as in definition 4.5.11
b) s.t.
dso : w(G) = K(0) is surjective. (4.3.14)

One may choose G = Xgen.
b) Let o' : K' — Ox ) be another pseudo-coefficient field and let S =
Useq Sz and 8" = Uy e Shy be sets of chains as in def. 4.3.11 b), with

05, surjective. Let @, . be the map which makes the lower triangle
in the the diagram

65170./
w(G
w(G’()ho)l:S’ ,C(UI)
55” o & 55,0’
65,0
w(G
IC(O—) W(G()ho)l:s

commute. Then ®, 5 is an isomorphism and the upper triangle com-
mutes too.

Proof a) By thm. 3.3.16 there exists a set of chains § = Ua:eXgen Sy s.t. the
face map 0 : Ox () = [lges Ox,¢ = k(S) is a strict monomorphism. Since
the topology on k(S) is K-linear (prop. 3.2.5), any continuous K-linear
homomorphism ¢ : Oy ) — wk extends (not uniquely) to a continuous
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K-linear homomorphism ¢ : k(S) — wg. The residue pairing (4.2.4) is a
perfect pairing of ST K-modules (thm. 2.4.22); there exists a form 8 € w(S)
st ¢ = (=, Br(s) k-

Let w(S)ho C w(S) be the perpendicular space to Oy, under the pair-
ing (—, =)k(s)/x- Since Pgegw(Enol C w(S)nol, and by thm. 4.2.7, it fol-
lows that w(S)ne is an open submodule of w(S). According to cor. 3.2.12,
w(X) C w(S) is dense; so we can assume that § € w(X). Doing so we get

¢ = 55,0(/5)'

b) First note that the surjectivity of ds, implies that Ox () — k(S) is a
strict monomorphism. This is because Ox (,) is a separated ST K-module
with a topology generated by K-subspaces of finite codimension. Hence dg ,
is surjective too.

To show that the upper triangle is commutative amounts to proving
the following statement: if o« = ) s, € w(G) and o = ) ol €
w(G") are forms s.t. dg,5(c) = dg/ » (), then also dg o () = dgr o (a'). Now
0s,0(0) = dgr () iff

for all a € Oxy, Z Z Res¢ o (ac,) = Z Z Resgr o ( actl,

z€G £ES, 'eG’ 5’65;
(4.3.15)
But just like in the proof of lemma 4.2.1, if n = (y,...,2) is any saturated
chain with z a closed point, condition (4.3.15) is equivalent to

for all a € Ox,y, Z Z Resgvdon,k (acy) Z Z Res¢rydon,k acy)
T€EGEES, ' e’ g’eSL

which is independent of o. O

Let ({K(@)}, {0} {20}) and ({K/(2)}, {3}, {@}}) be two systems of
residue data. An isomorphism between them is a family of isomorphisms
T, K(z) = K'(z) st Uy 00 = d¢ o ¥y and ¥y 0 @, = @, for all chains
¢ =(z,...,y) and all coefficient fields o for z.

Corollary 4.3.16 There exists a system of residue data on X, unique up
to a unique isomorphism.

Proof If z € Xgen, set K(z) := w(z). For any y € X we identify the
Ox-modules (o), where o ranges over the coefficient fields for y, via the
isomorphisms ®, .. Let K(y) be this identified module. The coboundary
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map 0, : K(y) = K(z) attached to a saturated chain n = (y,...,2) is
represented by 6, ,/- : K(0) — K(7), where o /7 are compatible coefficient
fields for 7. Suppose o’ /7" are other compatible coefficient fields for 7. Let
S be a set of chains as in part a) of the theorem, so 65, : w(G) = K(0)
is surjective. Setting SV don = {{ Vdon | £ € S} we get dsvagn,r =
Opo/r © 08,0 Let M = im(dsvdyy,r) C K(7). By the theorem @ /[y =
(55\/01077,7-1 o (55\/01077,7-)_1. Hence

577,0’/7" ° (I)a,a’ = 577,0’/7-’ © 55,0’ © (55,0)71
= 65\/(?107],7" © ((5Svd077,7')71 © (5n,a/7— © 65,0) © (65,0)
= (I)T,T’ 04

1
n,0/T

so 0, : K(y) = K(z) is well-defined.
Given another system of residue data ({K'(z)}, {0z}, {®}), for every

-1 /
y € X and every coefficient field o the map U, : K(y) RN K(o) % K'(y) is
an isomorphism of Oy-modules. Using compatible coefficient fields one has
Uy 00 = 5'5 o ¥, for any saturated chain ¢ = (z,...,y). Thus {U;} is the
unique isomorphism between the two systems. O

Remark 4.3.17 Theorem 4.3.13 actually implies more: there is a canonical
isomorphism ®, : (o) = K(z) for any pseudo-coefficient field o : K —

Corollary 4.3.18 Given y € X there is a canonical isomorphism of Ox -
modules ) : w(y) = socoy , K(y). If o is a coefficient field for y then one
has 6(y) = @5 0 d(y) 0

Proof We must show that if o’ : k(y) — Ox () is any other coefficient field
then ®; 51 0§,y » = 0(),0- Choose any saturated chain £ = (z,...,y) with
7 € Xgen. According to the theorem @, ,/|soc k(s) can be computed using
d¢,0- Let B € w(y); by prop. 4.3.9 we can find a € w(Z)sim: s.t. Res¢ () = B.
Then using prop. 4.2.12

Dy,01 0 0(y),0(B) = Py 0 g0 () = Og 07 (@) = ) 0 (B) -
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Lemma 4.3.19 a) Let £ = (z,...,y) and n = (y,...,2) be saturated
chains. Then 0¢ydon = Oy © O¢.

b) Lety € X and let ¢ € K(y). Then for all but finitely many saturated
chains 1 = (y,...) one has é,(¢) = 0.

c) Let (z,2) be a chain in X with codim({z}~,{z}~) =2. Then

D g 00y =0

yeX,x>y>z

Proof a) Choose coefficient fields p, o, 7 for z,y, z respectively s.t. p/o and
o/T are compatible for ¢ snd 7 respectively. Use formula (4.3.8) and the
isomorphisms ®,, ®,, ;.

b) Choose a set of saturated chains S = Uxexgen Sy as in thm. 4.3.13 a),
and let dg = Y .0 @ w(z) — K(y) be the corresponding surjection.
Then ¢ = d5(a) for some a € w(zx) and 6,(¢) = dsvdey(a) by part a)
of the lemma. By prop. 4.2.14, for all but finitely many such chains 7,
a € ﬂgesw(X)holzgvdom and for those 7 one has §,(¢) = 0.

¢) By part a) this sum equals } v <.~ O(sy,z)- Choose coefficient fields
as in a). For any ¢ € K(p) and any a € Ox , we have by definition

Z 6(&3,y,2’),7(¢) (a) = Z Res(x,y,z),7(¢(a))

yeX,x>y>z2 yeX,x>y>z2

which is zero by theorem 4.2.15. O

The stage is set to present the residue complex. For every natural number
g let X, C X be the subset {z € X | dim{z}~ = ¢}.

Theorem 4.3.20 Let X be a reduced scheme of finite type over a perfect
field k and let ({K(x)}, {0}, {®s}) be the unique system of residue data on
X. There exists a complex (K,d0x) of Ox-modules, together with homo-
morphisms of Ox-modules ¥, : K(z) = Ky for all € X, s.t. for every
integer q the homomorphism

> T P K(z) - K (4.3.21)

reEXy T€Xy
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1s an isomorphism. The coboundary map dx satisfies the formula

Sxo > W= Ty od,, : PK) —Ky . (4.3.22)

zeX (z,y) zeX

The complex (K, dx) is unique up to a unique isomorphism, and is called
the Grothendieck residue complex of X (relative to k).

Proof Use formulas (4.3.21) and (4.3.22) to define the complex K. From
lemma 4.3.19 b) it follows that >°, »0(zy) : Drex K(@) = Byex K(y) is

well-defined, and from part c) of the same lemma it follows that ¢35 = 0. O

4.4 Functorial Properties of the Complex K

Let X be a reduced scheme of finite type over a perfect field k, with struc-
tural morphism 7. In this section we will examine the behavior of the
residue complex Ky with respect to finite morphisms and open immersions.
We will also show that when 7 is proper there is a canonical nonzero trace
map Tr, : H'm. Ky — k.

Proposition 4.4.1 Let f : X — Y be an open immersion of reduced k-
schemes of finite type. There is a canonical isomorphism of complexes of
Ox -modules ’)/;Z Ky = [*Ky. If g: Y — Z is another such open immer-
sion then

Yor = () 0f : Kx = [f9"Ky = (9f)' Ky -

Proof f induces an isomorphism between the system of residue data on
X and the restriction to f(X) of the residue data on Y. Since Ky is a
sum of skyscraper sheaves K(y), f*Ky is the sum of the sheaves f*K(y) for

y € f(X). O

Remark 4.4.2 In prop. 4.4.1, “open immersion” can be replaced with
“étale”. Indeed, suppose f : X — Y is étale. Given y € Y, f*K(y) =
®x|y f*K(y)z, since f is quasi-finite. For any coefficient field o : k(y) —
Oy,(y) and any |y, we have an induced coefficient field o, : k(7) — Ox (,

s

and Ox (5) = k(1) ®p(y) Oy,(y)- This induces an isomorphism f*Ky (o)
Kx (o) which is compatible with the coboundaries.
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Let f : X — Y be a finite morphism of noetherian schemes. Follow-
ing [RD] ch. III §6 we let f : (X,0x) — (Y, fiOx) be the corresponding
morphism of ringed spaces, and we denote by Mod(Y, f.Ox) the category of
sheaves of f,Ox-modules on Y. The functor f* : Mod(Y, f.Ox) — Mod(X)
is exact.

Definition 4.4.3 Given a finite morphism f : X — Y define a functor
f?: Mod(Y) — Mod(X) by

f7 = FHomy (£.0x,—) .

If U = SpecB and V = Spec A are affine open subsets in X and Y
respectively s.t. U = f~1(V), and if M is a quasi-coherent Oy-module, then

L(U, f*M) = Homa(B,D(V, M)). £ X £ Y % Z are finite morphisms then
(9f)" = f’¢" naturally.

Remark 4.4.4 In [RD] the functor f’ is a derived functor, defined using
RHom instead of Hom. However we shall only apply f’ to injective Oy-
modules, making this discrepancy disappear.

Theorem 4.4.5 Let f : X — Y be a finite morphism of reduced k-schemes
of finite type. There is a canonical isomorphism of complezes of Ox -modules
'y; Ky 5 beC'Y, If g: Y — Z is another such finite morphism then

V=) o Ky S '’y = (9)'K; -

Before proving the theorem we need to establish some more notation.
Suppose G, H C X are finite subsets and suppose S = J,,cq Sw = Ueny S°
is a finite set of chains in X s.t. each ¢ € S, N S? begins with w and
ends with z. Suppose also for that every z € H we are given a pseudo-
coefficient field o, : Ky — Ox ;). Define o = [[,cy o0, and K(o) =
P, K(og). Let ds, : w(G) — K(o) be the Ox-module homomorphism
6570— = Z’WEG ZQ?GH de‘SwﬁSz (5570'E'

Now let f : X — Y be a finite morphism, let y € f(X) be a point
and let H C f(X) be a finite subset. Suppose T' = |J,,cyy Tw is a finite
set of chains in Y, s.t. each n € T}, begins with w and ends with y. Let
G := f~Y(H) and write z|y for z € f~'(y). Then S := f~}(T) decomposes
into S = Uyeq Sw = Uy, S* as above. Given a pseudo-coefficient field 7 :
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K — Oy,y), the local homomorphisms f* : Oy,,) = Ox ;) induce pseudo-
coefficient fields f*7, : K — Ox y). Set f*7 := Hw‘y f*1p. As explained
above, there is an Ox-linear homomorphism dg «, : w(G) — K(f*7). Define

w(G)hOI:S = ker((SS’f*T),
Let
01:w(G) S flw(H) = Homy, 7y (k(G), w(H)) (4.4.6)

be the isomorphism induced by the trace map Try(qy/km) : w(G) = w(H),
and let

=P L) = FE(r) = @ Homo,, (Ox 4, K(7)) (4.4.7)

zly zly

be the isomorphism of adjunction.
Lemma 4.4.8 The diagram of Ox-modules below is commutative:
(@) e pulH)
{55,#7 {fb(‘sT,T) (4.4.9)
k() 2w pK(n)

Proof We can localize at any z € f~!(y). Choose a € w(G)z, a € Ox
and b € Oy,,. Then

(" (01,7) 0 1) () (@) (b) = > Resp i 0 Try(qy () (bac) € wi -
neT’

On the other hand

(62 0 05, p+r) (@) (a)(b) = D Resg i (baar) € wy .
£es

According to prop. 3.2.3, k(S) = k(G) ®pm) k(T') as reduced clusters of
TLFs. Since k(H) — k(T') is topologically étale relative to k, we know by
thm. 2.4.23 (cf. proof of cor. 4.1.16) that

ZResnKOTrk G)/k(H ZRes§K w(G) = wk .
neT ¢es
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Proof (of the theorem) Fix y € Y and z € f !(y). It suffices to give an
isomorphism K(z) = f°K(y), which is compatible with the coboundaries
dx and dy. Let o : k(z) — Ox ) and 7 : k(y) — Oy, be coefficient
fields, and let f*7, : k(y) — Ox () be the induced pseudo-coefficient field.
The isomorphism @, s« of thm. 4.3.13 is an isomorphism of O x-modules
K(o) = K(f*7,). By adjunction we get an isomorphism K(f*7,) = f*K(7)s
(called 0y in lemma 4.4.8), and the composition is by definition 71}7077 :
K(o) S fPK(1)s.

Suppose o’ and 7' are other coefficient fields for z and y respectively. By
thm. 4.3.13

(I)U’,f*Ta’D o (I)U,U’ = (i'f*Tz,f*Ta’C ° (I)U,f*TI .

It remains to show that
020 ®per, fort = [ (Drrr) 000 s K(f*7) > fP(T)s - (4.4.10)

Then the isomorphism 'y; : K(z) = f°K(y)s. represented by fyl}’(m is well
defined. 3 . )
Choose a finite set of chains S = UweXgen Sy in X s.t. each £ € S, begins

with w and ends with z, and s.t. the face map Ox ) — k(S) is a strict
monomorphism. Define H := f(Xgen) CY, T := f(S), G := f~'(H) C X
and S := f~1(T). Then S C 8, so k(S) = k(S)xk(S—S) and Ox(z) — k(95)
is a strict monomorphism. The isomorphism @, s+, can be computed
using S:

Dpor, prry =05, po7r © (Bs,po7,) 1 1 K(f*70) = K(f*72)

By thm. 4.3.13 the isomorphism ®, . on Y, restricted to im(dr,) C K(7),
equals 07, o (67,-)7!. According to the previous lemma we have

07 0 f2(1.,) 00y = (5. p-7) L K(F*7) S w(G) /w(Ghors

and the same for 7/, together yielding formula (4.4.10). Similar arguments
show that ')/I} commutes with the coboundaries. The transitivity of the trace

on differential forms implies that fyz =1 b(fyZ) o 'yl}. O

Definition 4.4.11 (Traces)
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a) Let f: X = Y be a finite morphism of reduced k-schemes of finite
type. Define a homomorphism of complezes of Ox-modules

by taking the composition of f*('y?c) s iy 5 f*fblCi, with the ho-
momorphism f*fblCi/ = Homy (f.Ox,Ky) — Ky given locally by
¢ — ¢(1).

b) Given x € Xo (a closed point) let o : k(z) — Ox () be the unique
coefficient field. Then there is a canonical isomorphism @, : K(o) =
Homz‘zgg(ox,(m),k(x)) = K(x). Define

Res(g)r : K(z) = k
by Res(yy g (#) := Trygy i 0 (B,1(4))(1), ¢ € K(x).
c) Let m: X — Speck be the structural morphism. Define

Tr, : m K% = @ K(z) =k

x€Xo

by TI'W = ZxGXo ReS(w)’k.

Corollary 4.4.12  a) Let X i) Y % Z be finite morphisms of reduced
k-schemes of finite type. Then

Trgp = Trg o g(Try) : (9f):Kx — K7 .

b) Let f : X — Y be a finite morphisms of reduced k-schemes of finite
type and let p : Y — Speck be the structural morphism. Then
Trr = Trp 0 pi(Try) : m K% — k.

Proof Both assertions are consequences of thm. 4.4.5 and some diagram
chasing. O

Corollary 4.4.13 The homomorphism Tr, : T'(X,K%) — k is nonzero.
Moreover, given any nonzero element a € I'(X,Ox), there exists some a €
(X, K%) s.t. Try(aa) # 0.
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Proof Since X is reduced, there is some closed point z € X s.t. a(z) € k(x)
is nonzero. If p : Speck(z) — Speck is the structural morphism, then
Tr, = Try(g)k- Consider the finite morphism f : Speck(z) — X. By the
corollary, Try; o m«(Try) = Tr,. Choose any b € k(z) s.t. Try(,)/x(ab) # 0
and set o := m,(Try)(b). O

Theorem 4.4.14 Suppose m : X — Speck is proper. Then Tr; o m.(dx)
(W*’C;(l) =0, so Try : m/y — k is a homomophism of complexes of k-
modules.

Proof We have 1.k, = D.cx, K(z). Choose x € Xy, let o : k(z) —
Ox (z) be a coefficient field and let ¢ € K(o). For any y € Xo N {z}~ we
have Res(y) 1 0 0(z4) © Do (@) = Res(gy) 1 © ¢(1), s0

Try o me(dx) 0 @5() = Z Res(x,y),k(¢(1)) =0

y€Xo,x>y

by the classical residue formula (cf. thm. 4.2.15 b)). O

Definition 4.4.15 Suppose X is an n-dimensional, equidimensional sch-
eme. Define wx to be the sheaf HT"K'.

Observe that @y is a subsheaf of £|" = w(X) = Q) (x)/x- Now suppose
X is integral. In [Ku2] E. Kunz introduced the sheaf of regular differential
Jorms W% (cf. [Lil] §0). It is a subsheaf of w(X), coherent, and coincides
with QnX/k if X is smooth.

Theorem 4.4.16 Let X be an integral scheme of finite type over a perfect
field k. Then wx is the sheaf of reqular differential forms.

Proof Say X has dimension n and generic point v. We claim that for
any open set U C X, I'(U,0x) = MNyex,_,nv @(X)nol:(ve)- This is be-
cause I'(U, IC;("H) = @.cx, ,nv K(z) and for each such z, w(X)yol:(v,e) =
ker(d(y,q))- If X is smooth over k then w(X)yol:(v,e) = Q"X/k’w since Ox , is
a DVR formally smooth over k (cf. proof of lemma 4.2.6). Hence for any

y € X we have by, =) Q =Qn

n
xeanlamZy X/k,I X/kay
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It remains to show that given a finite surjective morphism f : X =
Spec B — Y = Spec A with X integral and Y smooth over k, then

I'(X,ox) ={a cw(X) | Try(B-a) C O}, } -

Since Try sends f.wx into wy = Qg/k, the inclusion “C” is trivial. Let us
prove the other inclusion. Fix o € w(X) s.t. Trp(B - ) C Q) Let v and
w be the generic points of X and Y respectively. It suffices to show that for
every 7 € Xn-1, @ € W(X)poli(v,0)- Fix such z and let y := f(z).

Define K := k(Y)(,) = k((w,y)) and L := k(X)) = k(X) @y K =
1oy B( (v, z')). Since Try is Oy-linear we get upon completion along (y):

Trp i ((feOx)y) @) € Q0 = w((w,y) hor -

Let e € (f:Ox)(y) = Hw,‘y Ox,(2) be the idempotent which projects onto
Ox(z)- Choose a coefficient field o : k(y) — Ox (). Then

Resy( (0,2))/k(1),0 (Ox(2) - @) = Res )0 ((f+Ox)(y) - €q)
= Resgpy),o © Trryx (f+Ox)y) - ea) =

s0 @ € w( (v, ) )nol (cf. lemma 4.2.1). O

Remark 4.4.17 When X is integral of dimension n and 7 is proper we get
a canonical k-linear homomorphism

. HO(Trr)
Ox : H'(X,0x) — H(X,Ky) ——— k . (4.4.18)

It follows from thm. 1 of the appendix that the pair (@x, éX) is a dualizing
pair in the sense of [Lil] §0. A separate local calculation is needed to check
that fx equals Lipman’s map, up to a sign (cf. [Lil] thm. 0.6 (d), and [SY]).

4.5 Exactness for Smooth Schemes; More Functorial Pro-
perties

In this section X is a reduced scheme of finite type over a perfect field k.
We shall exhibit a canonical quasi-isomorphism Cy : Q' /k[n] — K for

X smooth of dimension n over k. Using the variance of Ky with respect
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to finite morphisms we will prove that it is a residual complex for any X.
Finally, we shall show that when 7 : X — Speck is proper (and some extra
hypothesis) the pair (K, Trr) represents the functor 7' — Homy (Rm.F", k)
on the category D .(X).

Suppose X is integral, of dimension n. Following [EZ] ch. III §3.1 we
call the canonical homomorphism of O x-modules Q' e QZ( X)/k = KY"
the fundamental class and denote it by Cx. According to lemma 4.2.6,
d0x o Cx = 0. The augmented residue complex on X is the complex

---—>0—>Q”X/k(2§IC}”BIC}"“B---BIC&%O%---.

Remark 4.5.1 The fundamental class Cx is defined on any reduced scheme
X. It is a global section of the double complex K" := Homx (% Ik Ky),
and d’y (Cx) = 0 (Cx) = 0; see [EZ] ch. III §3.1 and our digression 4.5.13.

Theorem 4.5.2 Let X be a smooth irreducible scheme over k. Then the
augmented residue complex on X 1is exact.

First let us set up some notation. Suppose X is an irreducible smooth n-
dimensional scheme over k, z € X is a point and p is an integer in the range
[0,1]. The stalk of K" at z, IC;(];Z, can be identified with @memeZZ K(z);
it is a direct summand of the group of global sections I'(X, K ") = @, X,
K(z). Any section o € I'(X,K{’) is a sum o = > zex, Y, and o is
identified with the germ of a at . The module K(z) is an artinian Ox 4-
module, so the cyclic submodule Ox ; - o, has finite length. We shall call a
point x € X bad if it is not contained in any smooth hypersurface Y C X.

Given v =3 oy oy € I'(X, K{') define:

= {zeX,|z>2 a,#0}

= erAssz(oa) lengthox,z (OX,CB : aa:)

= n—p

number of bad points in Ass,(«)

:= (codim(a), badness, (), length,(a)) € N .

o

e}

o9

=
/-\/-\E —_~
\_/\_/8/ ~— —

I

We say that o € IC;({’Z is a cocycle if 6x . () = 0, and that is a cobound-
ary if @ = 0x () for some 8 € IC)_(”;_I (or o = Cx ,(B) for some § € Q’;(/k .
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if p = n). Note that for o € K ¥, C T'(X, L"), the support of « is precisely
the closure of Ass,(«). 7

Suppose Y C X is a smooth hypersurface, with ideal sheaf 7, and inclu-
sion morphism ¢. The canonical isomorphism €', Ik RTI '®0y = Qgﬁj gives
rise to a surjection of Ox-modules, the Poincaré residue map, Res xy) :

% Ik ®I*1—»Q?/7kl (we are omitting the functor i,). There is also a canon-
ical injection Q’)l(/k RI ! — QZ(X)/]C = KY", which identifies QnX/k RI!
with the sheaf of meromorphic forms with simple poles along Y. The trace
map Tr; : £ — K is an injection of complexes; for any z € X, im(Tr;),
consists of those germs «, € ’C}(,x annihilated by Z,.

Lemma 4.5.3 The diagram of Ox-module homomorphisms below is com-
mutative

QnX/k ® I—l C K;{n (5X K;{nJrl

wS(X’y) Tr;

n—1 C —n+1
Qv Ky

Proof Let z and y be the generic points of X and Y respectively. For
any y' € X,_1 other than y, both paths are 0, since (Q’;(/k ® Iil)y, C
W(Z)pol:(x,y)- Therefore we can localize at y. Then Z, = m, = (t) for some
t € Ox,y, and (Q’;(/,C I, =t1: 0%/, which equals W(Z)sim:(a,y) (cf.

proof of lemma 4.2.6). Since Res(x yy(aAt™'dt) = a(y) € QZ@%M forall o €

Q”Xﬁy we get Res(xy) = Res(gy) (Q"X/k ®Z 1), = w(y) (see prop. 4.3.9).
Now (Tr;), : Ky (y) = w(y) = Kx(y) is given by (77), = dX () © Resay)

(cf. proof of thm. 4.4.5), so the diagram commutes. O

Proof (of theorem) Using induction on weight in the well-ordered set
(N3, lex), it suffices to prove the following claim:

(f) Let X be an irreducible smooth scheme over k, let z € X be a point,
let p be an integer in the range [0,dim X] and let a € K”, be a co-
cycle. Suppose that for all quadruples (X',2',p',d’) as above with
weight (') < weight,(«), ¢/ is a coboundary. Then « is a cobound-
ary.
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The claim is proved case by case. We may assume that o # 0 and
dim{z}~
< p. Let n:=dim X.

case 1  codim(a) =0, so a € K" = w(X). Apply thm. 4.4.16.

case 2 codim(a) > 1 and « € HomoX,Z(Oyiz,lC;{f’z) for some smooth
hypersurface Y C X. Denoting the inclusion morphism of Y by ¢ we have
a € (K2 so a = Tr(B) for some 3 € K;ﬁ. Since Tr; : Ky — K is an
injection of complexes, (3 is a cocycle. We have codim(f3) = codim(a) — 1,
so by the hypothesis 5 = dy ,(y) for some v € K;g_l, or # = Cy,(v) for

n—1
Y/k,z

we can lift v to some ¥ € (Q’;(/k ® I 1),, where Z is the ideal sheaf of Y.
According to lemma 4.5.3, dx .(}) = a.

some y € ) ifp=mn. Ifp<nweget a=4dx,o(Tr),(y). fp=n

case 3  codim(a) > 1 and there is some z € Ass,(«) which is not bad. So
z € Y where Y C X is a smooth hypersurface. Let U = Spec A C X be
an open affine neighborhood of z s.t. U NY = Spec A/(t) for some ¢t € A,
and let 7 : U — X be the inclusion morphism. Applying the isomorphism
v Ky = 1*K'y, and observing that weight,, being defined locally at z,
remains unchanged, we see that it is possible to assume that X = Spec A.

Since the class t(z) of ¢ in the residue field k() is zero, it follows that
lengthy,  (Oxg - ta) <lengthy, (Oxg - @), and hence also weight, (ta) <
weight, (o). By hypothesis ta is a coboundary: ta = dx ,(8) for some €
IC;(]’J ;1. Since t is a non-zero-divisor on Ox , and since IC;(]’J ;1 is an injective
Ox,,-module, there is some 7 € IC)_(pz_l s.t. ty = 8. Thus t(dx () —a) =0
and we reduce the problem to case 2.

case 4  codim(a) > 1 and all points in Ass,(a) are bad. Choose some
x € Ass,(«) and let f: X — Y = A} be a finite surjective morphism which
linearizes (z). Since X and Y are regular schemes f is a flat morphism (cf.
[AK] ch. V cor. 3.6). By choosing a small enough affine neighborhood of
v:= f(z) in Y we can assume that X = Spec B, Y = Spec A and B is a free
A-module of rank N = deg f.

Choose an A-basis €,...,ey for Homy (B, A). We get an isomorphism
of complexes of Oy-modules

£ (1)

N
Ky —= £ f° Ky = Homy (£,.0x,K3) 2P Oy -6 @Ky (4.5.4)
=1
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s.t. f(0x) (D€ ® Bi) =D € ® 0y () for all global sections §; € T'(Y, Ky ).
There is an exact sequence of complexes of Ox-modules

0T = 'y, 5 Ky, =0 (4.5.5)

where ¢ is localization at z and J" = @ycp-1(5) 022 K(z"). For every
g € I'(X,J") the support of § does not contain z; therefore there is some
t € B s.t. tf=0Dbut t(z) #0.

The sequence (4.5.5) is naturally split as a sequence of Ox-modules,
although not as complexes. Applying f.(—), to this sequence and recalling
that dx (@) = 0 we get f.(0x)o(@) = fuf’(Oya)(a) € fu Ty = T(X,T).
Let t € B be s.t. tf.(dx),(@) = 0 but #(z) # 0. Write ta = N & ® 6,
Gi € IC;Z. Then ) € @ vy, (6i) = fo(0x)v(ta) = 0, so each §; is a cocycle.
Since Ass,(3;) C f(Ass,(ta)) C f(Ass,(«)) and since {f(z)}~ CY = A} is
a linear subspace, we see that badness,(3;) < badness,(a) = #Ass,(a). The
codimension hasn’t changed, so weight,(3;) < weight,(a). By hypothesis
Bi = dyu(vi) for some v; € IC;ﬁfl. But ¢t € O)XQZ (a unit at z), so we
conclude that a = dx ,(t71 Y. & ® ). O

Corollary 4.5.6 For any reduced scheme X of finite type over k, Ky is a
residual complex.

Proof We have to show that Ky has coherent cohomology sheaves. Since
this is a local question we may assume that X is a closed subscheme of Y =
A} for some n. Then for all p the Ox-module HP Ky = HPHomy (Ox, Ky ) =
Ext? (Ox, ;) is coherent. O

Corollary 4.5.7 Suppose X is a Cohen-Macaulay, n-dimensional, equidi-
mensional, reduced scheme. Let @x[n] be the complex consisting of the sheaf
wx in dimension —n. Then the homomorphism of complezes wx[n] — K
1S a quasi-isomorphism.

Proof The question is local so we may assume X is a closed subscheme of
Y = AJ". Then HPK = Ea:tg’jm(OX,Q?/k) is 0 for p # —n (cf. proof of
[Ha] ch. III thm. 7.6). O
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Let D(X) be the derived category of complexes of O x-modules, localized
with respect to quasi-isomorphisms. Let DI (X) be its full subcategory con-
sisting of bounded below complexes with coherent cohomology sheaves. Con-
sider the category FT/k of schemes of finite type over k and k-morphisms.
From [RD] ch. VII cor. 3.4 it follows that there is a contravariant pseud-
ofunctor ! on FT/k. To every morphism f : X — Y in FT/k it assigns a
functor f': DF(Y) — DF(X), with the following properties:

1) For two morphisms X i) Y % Z there is an isomorphism c%]; :
(9N = f''.

2) For a finite morphism f : X — Y there is an isomorphism dJP}D S
1.

3) For a smooth morphism f : X — Y of relative dimension n, there is an
isomorphism ejf}D S wx/y[n]®oy f*; where wy/y is the invertible
sheaf Q}/Y.
4) For a proper morphism f : X — Y there is a trace morphism Trjfc{D :

Rf.f' — 1in DF(Y). It induces a functorial isomorphism
0P : R RHomx (F', 'G) = RHomy (Rf.F,G)
for all 7" € D(X) and G € DS (Y).
In particular, taking the structural morphism 7 : X — Speck and the
complex k € DF (Spec k), we get an object 7'k € DF (X). The next corollary

says that in many instances there is an isomorphism 7'k 2 K, in D(X) (e.g.
when X is quasi-projective).

Corollary 4.5.8 Suppose the structural morphism © : X — Speck factors
as = pf with f : X =Y finite and p: Y — Speck smooth. Then there is
an isomorphism ¢ : Ky — 7'k in D(X).

Proof Say Y has dimension n. By thm. 4.5.2 one has isomorphisms
Cyo eED kS wy/k[n] = wy[n] = Qy;[n] S Ky

in D (Y), and by thm. 4.4.5 one has

() o dfP o f1(Cy 0 efP) o D ik S fpk S P S PRy S Ky
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O

Now assume that 7 is proper. In thm. 4.4.14 we produced a morphism
Ty : K — k in D(k).

Theorem 4.5.9 Assume that m : X — Speck is proper and that there is
some isomorphism Ky = 7'k in D(X). Then there is a unique isomorphism

(x: Ky = 7'k in D(X) s.t.

Tr, = TrfP o R, (Cx) : mKy — K .

Proof Say we are given an isomorphism ¢ : K S 7'k in DF(X). Then
Tr®P induces an isomorphism of I'(X, Ox)-modules

0 . HORm.(Q) 0 , oRD
H'm .y —— H'Rmum bk —— Homy (7w, Ox ., k) .

Now I'(X,Ox) is a finite reduced k-algebra, hence a semi-simple artinian
ring. It follows that HO(X, K ) is a free ['(X, Ox)-module of rank 1. By
cor. 4.4.13 the trace H(Tr,) is nondegenerate, so H’(Tr;) = H(TrkP) o
HOR,(¢) o a for some global unit a € I'(X,0x)*. Then (yx := (oa™ ! is
the desired isomorphism. O

Observe that thm. 4.5.9 applies when X is projective over k - this follows
from cor. 4.5.8.

Remark 4.5.10 In the appendix (thm. 1) it is shown that there exists a
canonical isomorphism (x : K S 7'k in D(X), as in thm. 4.5.9, on any
proper reduced scheme X. Moreover, the exercise at the end of the appendix
shows that there is a canonical isomorphism of complexes (x : K S nlk
on any reduced scheme X. Here 72 is the pseudo-functor of [RD] ch. VI.

Remark 4.5.11 Suppose X is both smooth and proper over k. Are the
isomorphisms ¢ and (yx of cor. 4.5.8 and thm. 4.5.9, respectively, equal? In
other words, what is the unit a € I'(X, Oyx) occurring in the proof of thm.
4.5.97 In [SY] it is proved that a = £1.

To conclude the paper, let us indicate some applications of our construc-
tion. These shall appear in detail in a future publication [Ye2].
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Digression 4.5.12 Let K be a TLF over k. Denote by Dk the ring
K) of continuous differential operators over K. We can show that there
is a canonical right Dy action on wg. This action gives an isomorphism of
filtered k-algebras
Di = Diff @/ (wi, w)

where Dj, is the opposite ring. A topologically étale homomorphism (rela-
tive to k) K — K' extends to a k-algebra homomorphism Dg — D, and
with respect to it the map wx — wgs becomes a homomorphism of right
D -modules.

On the other hand, if k¥ — K is itself a morphism in TLF(k), the residue
pairing (—, —) g/x induces an adjoint action of Dk on wk. A calculation
shows that this adjoint action coincides with the canonical right action.

Now let x € X be a point. For any coherent sheaf M define Mz/x) =
Homx (M, K(z)), the “canonical Matlis dual” of M at z. Using the results
on D-modules over TLFs mentioned above we prove that any DO D : M —

N between Ox-modules induces a DO (of equal order) D(Vx) : N&) — M(Vx).

The assignment D > DE/a:) is functorial. Moreover, given a saturated chain

¢ = (z,...,y), the natural transformation ¢ : (—)(Vx) — (_)E/y) induced by
the coboundary d¢ : K(z) — K(y) respects DOs.

Consider the sheaf of DOs on X, Dx := Dif fx/;(Ox,0x). An im-
mediate consequence is that Ky = @, X(OX)E/z) is a complex of right
D x-modules. One checks that if X is smooth of dimension n and the char-
acteristic is 0, then the induced action on Q' e = H™ K is by the Lie
derivative (cf. [Bo] ch. VI §3.2). For any left (resp. right) Dx-module M,
Mz/x) is a right (resp. left) Dx-module. So M’ +— Hom'y(M',KY) is a
functor D(Dx)° <> D(D%), inducing an equivalence D¢ (Dx)° «» D2(D%)

(where “c” means coherent over Ox).

Digression 4.5.13 In [EZ] ch. II §2.1 the bigraded Ox-module K" is
defined. For any p,q set KR! := HomX(Qg(/k,ngf). Using our construc-

tion we get a canonical structure of double complex on IC')’{* (independent
of embedding and for arbitrary characteristic; cf. [EZ] §2.1.3). The first dif-
ferential ¢’ is simply ¢ — 0x o ¢. The second differential d’y is a DO of
order < 1, defined using the results sketched in digression 4.5.12. We have
Ky = @IGX(Q}/,C)E/I) and we may set dy == > ¢ dz/w). Then (d%)? =0
and d’y o 0, = ¢ od’. Given a finite morphism f : X — Y there is a
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canonical trace map Try : [T — Ky, When X is smooth of dimension
n the isomorphism K7 = O, ®ox wy' ®oy Ky sends d;y to Hz "(d) for
x € X, which is the differential used in [EZ].
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Abstract

Let X be a scheme of finite type over a field &k, with structural morphism
m. The residue complex Ky on X is the Cousin complex associated to
7'k, as in “Residues and Duality”. We give an explicit construction of this
complex when X is reduced and k is perfect. We begin with the theory
of semi-topological rings. These rings admit many operations (e.g. limits,
base change) and there is a differential calculus over them. This theory is
used to treat topological local fields (TLFs), which are the high dimensional
local fields of Parshin, endowed with suitable topologies. We investigate the
structure of TLFs, and give an improved version of the Parshin-Lomadze
residue functor on the category TLF(k). Next we turn to the Beilinson
completion functors, which we also topologize. These provide a link between
the geometry of X and TLFs. The Parshin residue map Res¢, depends
on a saturated chain & = (z,...,y) in X and a coefficient field 7 for y.
Define K(7) := Homi?zg((ﬁx,y,w(y)). The residue map Resg . gives rise to
a coboundary homomorphism 6 5/, : K(o) — K(7). Using base change
arguments we remove the dependence of J¢ on coefficient fields. Summing
over all z € X we get our complex (K'y,dx). We then proceed to show
that this complex has the correct properties. In the appendix the canonical
isomorphism Ky = 7'k is exhibited.
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Resumé

Soit X un schéma de type fini sur un corps k, avec morphisme struc-
tural m. Le complexe residuel K de X est le complexe de Cousin associé a
7'k, comme dans “Residues and Duality”. Nous donnons une construction
explicite de ce complexe lorsque X est réduit et k est parfait. Nous com-
mengons avec la theorie des anneaux semi-topologiques. Ces anneaux ad-
mettent beaucoup d’operations (par exemple limites, changements de base)
et ils autorisent un calcul differentiel. Cette theorie est utilisée pour les corps
locaux topologiques (TLF) qui sont les corps locaux de grande dimension
en sense de Parshin, munis de topologies convenables. Nous recherchons la
structure des TLF, et donnons une version ameliorée du foncteur de residus
de Parshin-Lomadze sur la catégorie TLF(k). Nous passons ensuite aux
foncteurs de completion de Beilinson, que nous munissons également d’une
topologie. Cela nous fournit avec un lien entre la geometrie de X et les
TLF. L’application de residus de Parshin Res¢ ; est donnée par une chaine
saturée £ = (z,...,y) dans X et par un corps de coeflicients 7 pour y. Soit
K(r) == Hom}é‘é%(@x,y,w(y)). L’application de residus Res¢ ; donne lieu
a un homomorphisme cobordant é; 5/, : K(o) — K(7). En utilisant un
changement de base nous levons la dependance de d¢ en les corps des coef-
ficients. En faisant la somme sur tous les z € X nous obtenons le complexe
(K,0x). Nous demontrons ensuite que ce complexe a les propriétés atten-
dues. Dans l'appendice I'isomorphisme canonique Ky = 7'k est décrit.
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