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SMOOTH FORMAL EMBEDDINGS
AND THE RESIDUE COMPLEX

AMNON YEKUTIELI

ABSTRACT. Let m: X — S be a finite type morphism of noetherian schemes. A
smooth _formal embedding of X (over S) is a bijective closed immersion X C X, where
X is a noetherian formal scheme, formally smooth over S. An example of such an
embedding is the formal completion ¥ = Y, where X C Y is an algebraic embedding.
Smooth formal embeddings can be used to calculate algebraic De Rham (co)homology.

Our main application is an explicit construction of the Grothendieck residue com-
plex when S is a regular scheme. By definition the residue complex is the Cousin
complex of 7' O, as in [RD]. We start with I-C. Huang’s theory of pseudofunctors on
modules with 0-dimensional support, which provides a graded sheaf (B, K)q( /s We then
q+1
X/S°
We exhibit a canonical isomorphism between the complex (Kj{/s,é) and the residue

use smooth formal embeddings to obtain the coboundary operator ¢: 17()‘1( /s

complex of [RD]. When 7 is equidimensional of dimension » and generically smooth
we show that H™” 7()'(/5 is canonically isomorphic to to the sheaf of regular differentials

of Kunz-Waldi [KW].
Another issue we discuss is Grothendieck Duality on a noetherian formal scheme
X. Our results on duality are used in the construction of Ky /s

0. Introduction. It is sometimes the case in algebraic geometry, that in order to
define an object associated to a singular variety X, one first embeds X into a nonsingular
variety Y. One such instance is algebraic De Rham cohomology Hyy, (X) = H'(Y,Q"),
where Q' is the completion along X of the De Rham complex Q) Ik (relative to a base field

k of characteristic 0; ¢f. [Ha]). Now Q coincides with the complete De Rham complex
SA).% Ik where X is the formal scheme Y)x. It is therefore reasonable to ask what sort of
embedding X C X into a formal scheme would give rise to the same cohomology.

The answer we provide in this paper is that any smooth formal embedding works. Let
us define this notion. Suppose S is a noetherian base scheme and m: X — S'is a finite
type morphism. A smooth formal embedding of X consists of morphisms X — X — §,
where X — X is a closed immersion of X into a noetherian formal scheme X, which is a
homeomorphism of the underlying topological spaces; and X — S is a formally smooth
morphism. A smooth formal embedding X C X = Y x like in the previous paragraph is
said to be algebraizable. But in general X C X will not be algebraizable.

Smooth formal embeddings enjoy a few advantages over algebraic embeddings. First
consider an embedding X C X and an étale morphism U — X. Then it is pretty clear (cf.
Proposition 2.4) that there is an étale morphism of formal schemes I — X and a smooth
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formal embedding U C U, s.t. U =~ U xx X. Next suppose X C X.?) are two smooth
formal embeddings, and we are given either a closed immersion X — ?) or a formally
smooth morphism ) — X, which restrict to the identity on X. Then locally on X,

(0.1) 9 =~ X x SpfZ[[11.. ... 1]

(Theorem 2.6).

As mentioned above, De Rham cohomology can be calculated by smooth formal
embeddings. Indeed, when charS = 0, H{,,(X/S) = Rmf)}‘. /s where X C X is any
smooth formal embedding (Corollary 2.8). Moreover, in [ Ye3] it is proved that De Rham
homology HPR(X) can also be calculated by smooth formal embeddings, when S =
Speck, k afield. According to the preceding paragraph, given an étale morphism g: U —
X there is a homomorphism g*: HPR(X) — HPR(U), and we conclude that homology is
contravariant w.r.t. étale morphisms. See Remark 2.11 for an application to D-modules
on singular varieties.

The main application of smooth formal embeddings in the present paper is for an
explicit construction of the Grothendieck residue complex K, /s when S is any regular
scheme. By definition X, /s is the Cousin complex Ex'Os, in the notation of [RD]
Sections IV.3 and VIL.3.

Recall that Grothendieck Duality, as developed by Hartshorne in [RD], is an abstract
theory, stated in the language of derived categories. Even though this abstraction is
suitable for many important applications, often one wants more explicit information. In
particular a significant amount of work was directed at finding an explicit presentation of
duality in terms of differential forms and residues. Mostly the focus was on the dualizing
sheaf wy, in various circumstances. The structure of wy as a coherent Oy-module and
its variance properties are thoroughly understood by now, thanks to an extended effort
including [KW], [Li], [HK1], [HK2], [LS1] and [HS]. Regarding an explicit presentation
of'the full duality theory of dualizing complexes, there have been some advances in recent
years, notably in the papers [Yel], [SY], [Hu], [Hgl] [Sa] and [Ye3]. The later papers
[Hg2], [Hg3] and [LS2] somewhat overlap our present paper in their results, but their
methods are quite distinct; specifically, they do not use formal schemes.

We base our construction of X, /s on I-C. Huang’s theory of pseudofunctors on
modules with zero dimensional support (see [Hgl]). Suppose ¢: 4 — B is a residually
finitely generated homomorphism between complete noetherian local rings, and M is
a discrete A4-module (i.e. dim supp M = 0). Then according to [Hg1] there is a discrete
B-module ¢4 M, equipped with certain variance properties (cf: Theorem 6.2). In particular
when ¢ is residually finite there is a map Tr,: ¢M — M. Huang’s theory is developed
using only methods of commutative algebra.

Now given a point x € X with s:= m(x) € S, consider the local homomorphism
¢: Osy — (A)X,x. Define Ky/s(x) = ¢>#H‘fns Os, where d := dim Oy, m; is the maximal
ideal and Hﬁls is local cohomology. Then Ky/s(x) is an injective hull of k(x) as Og,-
module. As a graded Oy-module we take 17()'(/5 = @xex Ky/s(x), with the obvious
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grading. Then for any scheme morphism f: X — Y, we deduce from Huang’s theory a

homomorphism of graded sheaves Try: £ K, /s Ky /s
1

5
that the complex we obtain is indeed isomorphic to Ex' Os. For this we use smooth formal
embeddings, as explained below.

In Section 5 we discuss Grothendieck Duality on formal schemes, extending the
theory of [RD]. We propose a definition of dualizing complex &~ on a noetherian formal
scheme (Definition 5.2), and prove its uniqueness (Theorem 5.6). It is important to
note that the cohomology sheaves H?R " are discrete quasi-coherent Ox-modules, and
in general not coherent. We define the Cousin functor E associated to & ', and show
that ERX " =~ R in the derived category, and ER is a residual complex. On a regular
formal scheme X the (surprising) fact is that R[4 O is a dualizing complex, and not
Oz (Theorem 5.14).

Now let U C X be an affine open set and suppose U C U is a smooth formal
embedding. Say n = rank f)lu /s> SO SA).,’EI /s is a locally free Op-module of rank 1,

The problem is to exhibit a coboundary operator ¢: 17()‘? /s 17()‘?; and to determine

and REdich'ﬂ / s[n] is a dualizing complex. Since the Cousin complex is a sum
of local cohomology modules, there is a natural identification of graded Oy-
modules EREdiSCfZ’fI /s[”] ~ K, /s This makes X, /s into a complex. Since X7, /s =
Homy (Oy, Kﬁ/s) we come up with an operator § on K&/s = 17()'(/S|U.

Given another smooth formal embedding U C 3 we have to compare the complexes
Xy /s and K, /s This is rather easy to do using the following trick. Choosing a sequence
a of generators of some defining ideal of U, and letting K__(a) be the associated Koszul
complex, we obtain an explicit presentation of the dualizing complex, namely

R ;s Q] = K (@) © Q) s[n]

(c¢f Lemma 4.5). By the structure of smooth formal embeddings we may assume there
is a morphism f: U — 13 which is either formally smooth or a closed immersion. Then
choosing relative coordinates (¢f. formula 0.1) and using Koszul complexes we produce a
morphism REdiSCQ’fI / o] — REdiSCfZ’;3 / s[m]. Applying the Cousin functor E we recover
Try: K /s Ky /s &S amap of complexes! We conclude that 6 is independent of Ll and
hence it glues to a global operator (Theorem 6.14).

If f:X — Y is a finite morphism, then the trace map Try: £ &K, /s Xy /s which is
provided by Huang’s theory, is actually a homomorphism of complexes (Theorem 7.1).
We show this by employing the same trick as above of going from Koszul complexes
to Cousin complexes, this time inserting a “Tate residue map” into the picture. We use
Theorem 7.1 to prove directly that if 7: X' — §'is equidimensional of dimension 7 and
generically smooth, then H™" &, /s coincides with the sheaf of regular differentials & /s
of Kunz-Waldi [KW] (Theorem 7.10).

Finally in Theorem 8.1 we exhibit a canonical isomorphism (y between the complex
Ky /s constructed here and the complex 7 Os = Ex* Os of [RD]. Given a morphism of
schemes f: X — Y the isomorphisms (y and ¢y send Huang’s trace map Try: fi K, /s
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Ky to the trace Tr": £,Emy Os — Em}, Oy of [RD] Section VI.4. In particular it follows
that for /" proper, Tr; is a homomorphism of complexes (Corollary 8.3).

Sections 1 and 3 of the paper contain the necessary supplements to [EGA]. Perhaps
the most noteworthy result there is Theorem 1.22, which states that formally finite type
morphisms are stable under base change. This was also proved in [AJL2].

ACKNOWLEDGMENTS. The author wishes to thank L. Alonso, I-C. Huang, R. Hiibl,
A. Jeremias, J. Lipman and P. Sastry for helpful discussions, some of which took place
during a meeting in Oberwolfach in May 1996.

1. Formally finite type morphisms. In this section we define formally finite type
morphisms between noetherian formal schemes. This mild generalization of the finite
type morphism of [EGA] I Section 10 has the advantage that it includes the completion
morphism ¥ — X, (¢f Proposition 1.21), and still is preserved under base change
(Theorem 1.22).

We follow the conventions of [EGA] 0; Section 7 on adic rings. Thus an adic ring
is a commutative ring 4 which is complete and separated in the a-adic topology, for
some ideal a C A. As for formal schemes, we follow the conventions of [EGA] I
Section 10. Throughout the paper all formal schemes are by default noetherian (adic)
formal schemes.

We write A[f] = A[t, ..., t,] for the polynomial algebra with variables 71, . . . . #, over
aring A. The easy lemma below is taken from [AJL2].

LEMMA 1.1. Let A — B be a continuous homomorphism between noetherian adic
rings, and let b C B be a defining ideal. Then the following are equivalent:
(i) A— B/ is a finite type homomorphism.
(ii) For some homomorphism f: A[t] — B extending A — B one has b = B - f~1(b)
and A[t] — B/ b is surjective.

PROOF. (i) = (ii): Say by,...,b, generate b as a B-module, and the images of
bmi1. . ... b, generate B/ b as an 4-algebra. Then the homomorphism A[¢f] — B, t; — b;
has the required properties.
(i1) = (i): Trivial. =
DEFINITION 1.2. Let4 — B be a continuous homomorphism between adic noetherian
rings. We say that 4 — B is of formally finite type (f.f.t.) if the equivalent conditions of
Lemma 1.1 hold. We shall also say that B is a formally finite type A-algebra.

EXAMPLE 1.3. Let/ C 4 be any open ideal, and let B := lim._; 4 /I". Then 4 — B is
f.ft

Recall that if 4’ and B are adic 4-algebras, with defining ideals a’ and b, the complete
tensor product A’©4B is the completion of 4’ @4 B w.r.t. the topology defined by the
image of (a’ @4 B) & (4’ @4 b).

PROPOSITION 1.4. Let A, A" and B be noetherian adic rings, A — B a f.f.t. homomor-
phism, and A — A’ any continuous homomorphism. Then B' .= A'& 4B is a noetherian
adic ring, and A’ — B’ is a {.£.t. homomorphism.
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PROOF. Choose a homomorphismf: A[f] — B satisfying condition (ii) of Lemma 1.1.
Let b C Band o’ C A4’ be defining ideals. Write C := 4’ @4 Band¢ :=a’-C+C- b,
so B’ = lim._; C/¢'. Consider the homomorphism f: A'[t] — C, and let ¢’ := 770
and A'[1] = lim_; A'[f]/¢". Since ¢ = C - ¢, it follows from [CA] Section I11.2.11
Proposition 14 that A/’[\g] — B’ is surjective. Hence B’ is a noetherian adic ring with the
b’-adic topology, where b’ = B - ¢. Furthermore A'[t] — B’/b’ is surjective, and we
conclude that 4’ — B’ is f.f.t. "

In the next three examples 4 is an adic ring with defining ideal a.

EXAMPLE 1.5. Recall that for a € 4, the complete ring of fractions Ay, is the com-
pletion of the localized ring A, w.r.t. the a,-adic topology. Then 4 (o) & A®Z[,]Z[t, 1,
which proves that 4 — Ay, is f.f.t.

EXAMPLE 1.6. Given indeterminates #. ... ., the ring of restricted formal power
series A{t} = A{n...., t,} is the completion of the polynomial ring A[f] w.r.t. the
(4[1] - a)-adic topology. Hence 4{t} =~ A%;Z[¢], which demonstrates that 4 — A{z} is
f.f.t.

EXAMPLE 1.7. Consider the adic ring A©7 Z[[¢]], where Z[[£]] = Z[[t1. . .. . 1,]] is the
ring of formal power series, with the (f)-adic topology. Since inverse limits commute,
we see that A®;Z[[t]] = A[[{]], the ring of formal power series over 4, endowed with

the (A4[[7]] - (a + £))-adic topology. By Proposition 1.4, 4 — A[[]] is f.f.t.

Let A — B be a f.f.t homomorphism between adic rings. Choose a defining ideal
b C B, and set B; := B/b"™"!. For n > 0 define

Qp =1limQy > lim B, @5 Q

(cf- [EGA] 01y 20.7.14). Let Qé e ®>0 QZ Ja» which is a topological DGA (differential
graded algebra), with Qg 4= B. This definition is independent of the ideal b. Since Qp /4

is finite over B, it follows that QZ /4 is finite over B.

REMARK 1.8. If 4 — B is f.f.t. then Q;, 4 ngej’, where Q;B'jj’ is the separated
algebra of differentials defined in [Yel] Section 1.5 for semi-topological algebras. Also

Q}g /4 is the universally finite differential algebra in the sense of [Ku].

PROPOSITION 1.9. Let L — A — B be f.f.t. homomorphisms between adic noetherian
rings.
1. A — B is formally smooth relative to L iff the sequence

is split exact.
2. A — B is formally étale relative to L iff B ®4 Q;/L — Q;/L is bijective.
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PROOF. Use the results of [EGA] Oy Section 20.7, together the fact that these are
finite B-modules. n

PROPOSITION 1.10. Letf: A — B be a formally smooth, f.f.t. homomorphism between
noetherian adic rings. Then B is flat over A and Qllg /4 is a projective finitely generated
B-module.

PROOF. For flatness it suffices to show that if n is a maximal ideal of B and m :=
f~'(n), then 4,, — B, is flat (B,, is the completion of B, with the n-adic topology). Now
n is open, and hence so is m. Both 4 — lem and B — 311 are formally étale, therefore
Ay — By is formally smooth. Because 4 — B is f.f.t. it follows that 4/m — B/n is
finite type, and hence finite (and nt is a maximal ideal). By [EGA] Oy Theorem 19.7.1,
311 is flat overflm.

The second assertion follows from [EGA] Oy Theorem 20.4.9. =

PROPOSITION 1.11. Let f:A — B be a f.f.t., formally smooth homomorphism of
noetherian adic rings, and let q € Spf B. Suppose rank Q};q A Then:
1. Forsome b € B — q there is a formally étale homomorphismf:A[g] =
Altr, ... . 1,] — By extending f.

2. Forany q' € Spf By, let =7"1(q"). Then A/[Z]r — By is finite étale.

3. éet b =7"q). Assumezzlp is regular of dimension m, and tr degy,,, k(q) = I. Then
B, is regular of dimension n+m — L.

PROOF. 1. By Proposition 1.10 we can find b s.t. Qll?{b}/A ~ By ©p QE/A is free,
say with basis dby. ..., db,. Then we get a homomorphism A[f] — B{b}, ti — b;. In
order to stay inside the category of adic rings we may replace A[¢] with its completion
A{t} (¢f. Examples 1.5-1.7 for the notation). According to Proposition 1.9 we see that
A[t] — By is formally étale relative to A. But since 4 — By, is formally smooth, this
implies that A[¢] — By, is actually (absolutely) formally ¢tale.

2. Consider the formally étale homomorphism k(r) — Bq// tB,. Since ' is an
open prime ideal it follows that 4 — B/q’ is a finite type homomorphism, so the field
extension k(r) — k(q’) is finitely generated. By [Hgl] Lemma 3.9 we see that in fact
By /tBy = k(q"), so k(r) — k(q') is finite separable. Hence A/[E]r — By is finite étale.

3. Take q’ := q. Under the assumption the ring A/[E]L. is regular, and according to
[Ma] Section 14.c Theorem 23, dimA/[Z]l. =m-+n— [ By part2, l;’q is also regular, and
dim B, = dim A[7],. .

Let us now pass to formal schemes.

Given a noetherian formal scheme X, choose a defining ideal I C Oy, and set

(1.12) X, = (X, 0¢/1"™).

X, is a noetherian (usual) scheme, and X =~ lim,,_, X, in the category of formal schemes.
One possible choice for I is the largest defining ideal, in which case one has Xy = X eq,
the reduced closed subscheme (cf. [EGA] I Section 10.5).
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LEMMA 1.13. Suppose f: X — ) is a morphism between noetherian formal schemes.
There are defining ideals 1 C Ox and J C Oy s.t. /719 O¢ C I. Letting X, and Y,, be
the corresponding schemes (cf- (1.12)), we get morphisms of schemes f,: X, — Y, with

£ =1lim,_f,.

PROOF. See [EGA] I Section 10.6. For instance, one could take I to be the largest
defining ideal and 7 arbitrary. =

DEFINITION 1.14. Let f: ¥ — ) be a morphism of noetherian (adic) formal schemes.
We say that f is of formally finite type (or that X is a formally finite type formal scheme
over ?)) if the morphism f5: Xo — Yy in Lemma 1.13 is finite type, for some choice of
defining ideals of X and ).

Observe that if the morphism f; is finite type then so are all the £, and the definition
doesn’t depend on the defining ideals chosen.

REMARK 1.15. The definition of f.f.t. morphism we gave in an earlier version of the
paper was more cumbersome, though equivalent. The present Definition 1.14 is taken
from [AJL2], where the name is “pseudo-finite type morphism”, and I wish to thank
A. Jeremias for bringing it to my attention.

Here are a couple of examples of f.f.t. morphisms:

EXAMPLE 1.16. A finite type morphism X — ?) (in the sense of [EGA] I Sec-
tion 10.13) is f.f.t.

EXAMPLE 1.17. Let X be a scheme of finite type over a noetherian scheme S, and
let Xo C X be a locally closed subset. Then the completion X = X /x, (see [EGA] 1
Section 10.8) is of f.f.t. over S. Such a formal scheme is called algebraizable.

DEFINITION 1.18. A f.f.t. morphism f: X — ) is called formally finite (resp. formally
proper) if the morphism fy: Xo — Yy in Lemma 1.4 is finite (resp. proper), for some
choice of defining ideals.

EXAMPLE 1.19. If in Example 1.17 the subset Xy C X is closed, then X — X is
formally finite. If Xo — S is proper, then X — S is formally proper.

PROPOSITION 1.20. 1. An immersion X — ?) is f.f.t.

2. If X = and) — 3 arefft., thensois X — 3.

3. Let U = SpfB and 3 = SpfA. Then a morphism U — W is f.Lt. iff the ring
homomorphism A — B is f.f.t.

PROOF. Consider morphisms of schemes Xy — Yj efc. as in Lemma 1.13. For part 3
use condition (i) of Lemma 1.1. =

PROPOSITION 1.21. Let X be a noetherian formal scheme and Z C X a locally closed
subset. Then there is a noetherian formal scheme X /2> With underlying topological space
Z, and the natural morphism 3€/z — X is f.f.t.
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PROOF. Pick an open subset I C X s.t. Z C U is closed, and choose a defining ideal
I of Z. Let Oy := lim; Oy / I'. According to [EGA] I Section 10.6, 36/2 =(Z,0y)isa
noetherian formal scheme. Clearly X ,, — X is f.f.t. "

In [EGA] I Section 10.3 it is shown that finite type morphisms between noetherian
formal schemes are preserved by base change. This is true also for f.f.t. morphisms:

THEOREM 1.22. Suppose X, ¥) and ?) are noetherian formal schemes, X — ¥) is a
f.f.t. morphism, and ) — ?) is an arbitrary morphism. Then X' == X xy ) is also
noetherian, and the morphism X' — ) is f.f.1.

PROOF. First note that the formal scheme X’ = X xy?)’ exists ((EGA] I Section 10.7).
For any affine open sets U = SpfB C X, ¥’ = Spf4d’ C §) and B8 = Spf4 C @) such
that I — 2 and B’ — R, one has I’ = U x4 R’ = Spf B&44’, and I’ C X’ is open.
By Propositions 1.4 and 1.20, U’ is a noetherian formal scheme, and 1’ — W' is f.f.t.
But finitely many such U’ cover X'. "

COROLLARY 1.23. If X, X, and?) are noetherian and X; — ) are f.f.t. morphisms,
then X5 := X1 Xy X, is also noetherian, and X3 — ) is f.f.t.

REMARK 1.24. T do not know an example of a f.f.t. formal scheme X over a scheme
S which is not locally algebraizable. (Locally algebraizable means there is an open
covering X = [J U;, with UI; — S algebraizable, in the sense of Example 1.17.)

DEFINITION 1.25. A morphism of formal schemes X — ) is said to be formally
smooth (resp. formally étale) if, given a (usual) affine scheme Z, a morphism Z — )
and a closed subscheme Zy C Z defined by a nilpotent ideal, the map Homy(Z. X) —
Homy(Zy. X) is surjective (resp. bijective).

This is the definition of formal smoothness used in [EGA] IV Section 17.1. We shall
also require the next notion.

DEFINITION 1.26. A morphism g: X — ?) between noetherian formal schemes is
called étale if it is of finite type (see [EGA] I Section 10.13) and formally étale.

Note that if) is a usual scheme, then so is X, and g is an étale morphism of schemes.
According to [EGA] I Proposition 10.13.5 and by the obvious properties of formally
étale morphisms, if I — X and 23 — X are étale, then so is U xx 28 — X. Hence for
fixed X, the category of all étale morphisms I — X forms a site (¢/. [Mi] Chapter II
Section 1). We call this site the small étale site on X, and denote it by X .

2. Smooth formal embeddings and De Rham cohomology. Fix a noetherian base
scheme S and a finite type S-scheme X.

DEFINITION 2.1. A smooth formal embedding (s.f.e.) of X (over S) is the following
data:
(i) A noetherian formal scheme X.
(ii) A formally finite type, formally smooth morphism X — S.
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(iii) An S-morphism X — X, which is a closed immersion and a homeomorphism
between the underlying topological spaces.
We shall refer to this by writing “X C X isas.f.e.”

EXAMPLE 2.2. Suppose Y is a smooth S-scheme, X C Y a locally closed subset, and
X=Y /x the completion. Then X C X is a smooth formal embedding. Such an embedding
is called an algebraizable embedding (cf- Remark 1.24).

The smooth formal embeddings of X form a category, in which a morphism of em-
beddings is an S-morphism of formal schemes /: X — ?) inducing the identity on X. Note
that any morphism of embeddings /: X — ) is affine (¢f/. [EGA] I Proposition 10.6.12),
and the functor f,: Mod (X) — Mod (¥)) is exact. Let X and ?) be two smooth formal
embeddings of X. Consider the formal scheme X xs?). Then the diagonal A: X — X xs9)
is an immersion (we do not assume our formal schemes are separated!).

PROPOSITION 2.3. The completion (X XsQ))x of X Xs?) along AX) is a smooth
Jormal embedding of X, and moreover it is a product of X and ) in the category of
smooth formal embeddings.

PROOF. By Theorem 1.22 and Proposition 1.21 it follows that (X X)) /x 1s formally
finite type over S, so in particular it is noetherian. Clearly (X xs¥)) /x — S is formally
smooth. ]

The benefit of using formal rather than algebraic embeddings is in:

PROPOSITION 2.4. Let X C X be a smooth formal embedding (over S) and g: U —
X an étale morphism. Then there exists a noetherian formal scheme W1 and an étale
morphism@: 1 — X s.t. U~ UxxX & U — X is unique (up to a unique isomorphism),
and moreover U — W is a smooth formal embedding.

PrROOF. This is essentially the “topological invariance of étale morphisms”, (cf-
[EGA] IV Section 18.1 or [Mi] Chapter I Theorem 3.23). Let I := Ker(Ox — Oy)
and X; = (&, Q:g/[i+l); so X = Xp. For every i there is a unique étale morphism
g Ui — X; s.t. U = U; Xy, X. Identifying the underlying topological spaces of U; and
U we get an inverse system of sheaves { Oy} on U. Setting Oy = lim.; Oy, we get a
noetherian formal scheme U having the proclaimed properties (¢f. [EGA] I Section 10.6).
|

Thus we can consider X as a “smooth formal embedding” of X;. If M is a sheaf on
X and U — X is an étale morphism, we denote by M |u the restriction of M to Ugy,.

COROLLARY 2.5. Let X C X be a smooth formal embedding over S. Then there is
a sheaf of DGAs Q’m /s on X, with the property that for each g: U — X in Xy and
corresponding &: 1 — X in X, one has Q% ‘/SIU o Q'”/S‘
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PROOF. By Proposition 1.9, Q‘;’] /s g*fz’; /5- Now Q’; /s is coherent, so we can use
[Mi] Chapter IT Corollary 1.6 (which applies to our étale site X ). =
For smooth formal embeddings, closed immersions and smooth morphisms are locally
trivial, in the following sense. Recall that for an adic algebra A4, the ring of formal power

series A[[f]] = A[[#1, - . .. #,]] is adic (c¢f. Example 1.7).

THEOREM 2.6. Letf: X — ) be a morphism of smooth formal embeddings of X over
S. Assume [ is a closed immersion (vesp. formally smooth). Then, given a point x € X,
there are affine open sets U C X and W C S, with x € U and U — W, satisfying
condition (x) below.

(*) Let W= SpecL, and let Spf A C ) and Spf B C X be the affine formal schemes
supported on U. Then there is an isomorphism of topological L-algebras A ~ B[[t]]
(resp. B =~ A[[t]]) such that f*: A — B is projection modulo (t) (resp. the inclusion).

PROOF. 1. Assumef is a closed immersion. According to [EGA] Oy Theorem 19.5.3
and Corollary 20.7.9, by choosing U = Spec C small enough, and setting / := Ker(f* :
A — B), we obtain an exact sequence

0—1/P —=B@sQ)), —Qp—0

of free B-modules. Choose aj. ..., an by, ..., bn € A s.t. {a;} is a B-basis of /I, and
{db;} is a B-basis offlllg/L.

By the proof of Proposition 1.11 the homomorphisms L[s] — B, L[s.t] — 4 and
L[s, t] — B[[{]], sending s; — b; and #; — a;, are all formally étale. Take a := Ker(4 —
(), which is a defining ideal of 4, containing 4 - (f) = I. Let b := a - B, which is a defining
ideal of B. Hence the ideal ¢ = BJ[[t]] - (b.?) is a defining ideal of B[[f]]. By formal
étaleness of L[s, t] — A4 and L[s. 1] — B[[t]], the isomorphism A4 /a =~ B[[#]]/¢ =~ C lifts
uniquely to an isomorphism 4 =~ B[[]].

2. Now assume f is formally smooth. Let b := Ker(B — C), which is a defining ideal
of B. Since 4 — B/ b is surjective it follows that (B/b) @3 Qll; /4 is generated by d(b).
By Nakayama’s Lemma we see that Q}g 4= B - d(b). After shrinking U sufficiently we
get Q}f/A = @, B - db; with b; € b, and the homomorphism A[[f]] — B, t; — b;, is
formally étale. Continuing like in part 1 of the proof we conclude that this is actually an
isomorphism. ]

THEOREM 2.7. Suppose S is a noetherian scheme of characteristic 0, and X is a finite
type S-scheme. Let [+ X — ?) be a morphism of smooth formal embeddings of X. Then the
DGA homomorphism f*: QY) /s Q* /s is a quasi-isomorphism. Moreover, if g: X — ?)
is any other morphism, then H(f*) = H(g").

PROOF. The assertions of the theorem are both local, and they will be proved in three
steps.
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STEP 1. Assume f is a closed immersion. By Theorem 2.6 it suffices to check the
case f:SpfB = I — Spfd = 3 with 4 =~ BJ[[7]] as topological L-algebras. We must
show that Q;i L Qé /L is a quasi-isomorphism. But since @ C L, this is the well known
Poincaré Lemma for formal power series (cf. [Ha] Chapter II Proposition 1.1, or [Ye3]

Lemma 7.5).

STEP 2. Suppose fi.f2: X — ?) are two morphisms. We wish to show that H(f{") =
H(fy). First consider
diag pi
)= Q) xiyx—2)
Since the diagonal immersion is closed, we can apply the result of the previous paragraph
to it. We conclude that H(p}) = H(p}), and that these are isomorphisms. But looking at
, diag

. vy X pi
¥ — X X)) = @ x—9
we see that our claim is proved.

STEP 3. Consider an arbitrary morphism f: X — ¥). Take any affine openset U C X,
with corresponding affine formal schemes SpfB = I C X and Spf4 = B C Q).
The definition of formal smoothness implies there is some morphism of embeddings
g: 28 — 1. This morphism will not necessarily be an inverse of /|y, but nonetheless,
according to Step 2, H(g*) and H(f},) will be isomorphisms between HQ’H /s and HQ'B /s
inverse to each other. L]

In [Ha] the relative De Rham cohomology Hpp (X/S) was defined. In the situation of
Example 2.2, where X C Y is a smooth algebraic embedding of S-schemes, X = Y /x and
m: X — S is the structural morphism, the definition is Hy (X/S) = H R, Q% /s Even if
X is not globally embeddable, Hyg (X/S) can still be defined, by taking a system of local
embeddings {U; C ¥;}, X = |J U,, and putting together a “Cech-De Rham” complex (cf.
[Ha] pp. 28-29; it seems one should also assume X separated and the U; are affine).

COROLLARY 2.8. Suppose S has characteristic 0. Let X C X be any smooth formal
embedding (not necessarily algebraizable). Then Hyp (X/S) = H'RTI‘*Q:%- /s as graded
Os-algebras.

PROOF. Assume for simplicity that a global smooth algebraic embedding exists.
The general case, involving a system of embeddings, only requires more bookkeeping.
Say X C Y is the given algebraic embedding, and let ?) := Y. Now the two formal
embeddings X and ?) are comparable: their product (X X)) /x maps to both. By the
theorem we get quasi-isomorphic DGAs on X. =

) REMARK 2.9. From Corollaries 2.5 and 2.8 we see that there is a sheaf ofADGAs
Q;(.a/s on X, with the property that for any U — X étale, Hppr(U/S) = HT(U, Q..?c‘e(/S)'
As will be shown in [Ye4], the DGA fz,c /s has an adelic resolution 4, /s> where -‘Zlf;‘/qs =
Afed(ﬁf; / 5)» Beilinson’s sheaf of adeles. The adeles calculate cohomology: Hpp (X /8) =
H'T(X, Ay / s)- Furthermore the adeles extend to an étale sheaf A /s
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REMARK 2.10. Suppose S = Speck, a field of characteristic 0. In [Ye3] a complex
., called the De Rham-residue complex, is defined. One has H'(X, ;) = HP}(X), the
De Rham homology. Moreover there is a sheaf ,‘F,(t on X, which directly implies that the
De Rham homology is contravariant for étale morphisms. Furthermore ¥ is naturally a
DG A;-module,

REMARK 2.11. Smooth formal embeddings can be also used to define the category
of D-modules on a singular scheme X (in characteristic 0). Say X C X is such an
embedding. Then a formal version of Kashiwara’s Theorem (cf. [Bo] Theorem VI1.7.11)
implies that Mod 4;5c(Dx ), the category of discrete modules over the ring of differential
operators Dy is, as an abelian category, independent of X.

3. Quasi-coherent sheaves on formal schemes. Let X be anoetherian (adic) formal
scheme. By definition, a quasi-coherent sheaf on X is an Ox-module M, such that on
sufficiently small open sets I C X there are exact sequences ijj) — Og) — M|y — 0,
for some indexing sets 1,J (¢f. [EGA] 0; Section 5.1). We shall denote by Mod (X)
(resp. Coh (X), resp. QCo (X)) the category of Ox-modules (resp. the full subcategory of
coherent, resp. quasi-coherent, modules). It seems that the only important quasi-coherent
sheaves are the coherent and the discrete ones (Definition 3.7). Nevertheless we shall
consider all quasi-coherent sheaves, at the price of a little extra effort.

REMARK 3.1. There is some overlap between results in this section and [AJL2].

Let 4 be a noetherian adic ring, and let Il := Spf 4 be the affine formal scheme. Then
there is an exact functor M — M* from the category Mod ((4) of finitely generated
A-modules to Mod (11). It is an equivalence between Mod ¢(4) and Coh (1) (see [EGA] I
Section 10.10).

PROPOSITION 3.2. The functor M — M" extends uniquely to a functor Mod (4) —
Mod (1), which is exact and commutes with direct limits. The Oy-module M™ is quasi-
coherent. For any Oy-module M the following are equivalent:

(i) M =~ M" for some A-module M.

(i) M =~ lim,_, M, for some directed system { My} of coherent Oy-modules.
(iii) For every affine open set 23 = Spf B C U, one has T(¥, M) =~ B @, (11, M).

PROOF. Take any A-module M and write it as M = lim,_, M, with finitely generated
modules M, . Define a presheaf M* on 1l by ['(3, M™) := lim,_ T(%3, M%), for 23 C 1
open. Since 1l is a noetherian topological space it follows that M” is actually a sheaf.
By construction M — M” commutes with direct limits. Since the functor is exact on
Mod ¢(A4), it’s also exact on Mod (4).

The implication (i) = (ii) is because M~ is coherent. (ii) = (iii): for such B one has
(B3, M) =~ B @, T(U. M,); now apply lim,_.. (iii) = (i): set M = T(UI, M). Then
for every affine 23 we have I'(3. M) = B®@, M =T(23. M), so M = M™.

Finally the module M has a presentation A?) — A“) — M — 0. By exactness we get
a presentation for M”. .

It will be convenient to write O ®4 M instead of M~
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REMARK 3.3. I do not know whether Serre’s Theorem holds, namely whether every
quasi-coherent Oj-module M is of the form M =~ O, ©4 M. Thus it may be that
QCo (1) is not closed under direct limits in Mod (1) (¢f’ Lemma 4.1).

COROLLARY 3.4. Let M be a quasi-coherent Ox-module and x € X a point. Then
there is an open neighborhood 1 = Spf A of x s.t. M|y = Oy @4 T(U, M). For such 1
one has H' (1, M) = 0.

PROOF. Choose U affine such that M|, has a presentation Oflj) N Of{) Lo |y — 0.

Define M := Coker(¢: A — AY). Applying the exact functor O, @, to AV L4V —
M — 0 we get M|, =~ Oy ®4 M. By the proposition M =~ T(ll, M). As for H' (U, —),
use the fact that it vanishes on coherent sheaves. ]

PROPOSITION 3.5. Let M be coherent and N, quasi-coherent (resp. coherent). Then
Hom o, (M . N) is quasi-coherent (resp. coherent).

PROOF. For small enough 1l = Spf A we get M| =~ O @4 Mand N|; = Oy @4N.
Now for any 23 = Spf B C U, 4 — B s flat; so
HOl’IlB(B ®A MB ®A N) ~ B ®A HOI’I]A(MN)
Hence

,'7‘[0?110&,(,‘7‘/[. N)h] = Ou &4 HOI’I]A(M,N). u

Recall that a subcategory B of an abelian category A is called a thick abelian subcat-
egory if for any exact sequence M; — M, — N — M3 — M, in A with M; € B, also
N € B.

PROPOSITION 3.6. The category QCo (X) is a thick abelian subcategory of Mod (X).

PROOF. First observe that the kernel and cokernel of a homomorphism M — A
between quasi-coherent sheaves is also quasi-coherent. This is immediate from Corol-
lary 3.4 and Proposition 3.2. So it suffices to prove: 0 — M’ — M — M" — 0 exact,
M', M" quasi-coherent = M quasi-coherent. For a sufficiently small affine open for-
mal subscheme 1l = Spf 4 we will get, by Corollary 3.4, that H'(1I, #") = 0. Hence the
sequence

0— LU, M) — M=TU, M) — (U M")— 0
is exact. This implies that M|, =~ Oy @4 M. "

DEFINITION 3.7. Let M be an Ox-module. Define
EdiSCM = hm .{}{UmO*(O%/I”. M) C M

where I C Og is any defining ideal. M is called discrete if Ty M = M.

PROPOSITION 3.8. Let M be a quasi-coherent Ox-module. Then Ty M is quasi-
coherent, and in fact is a direct limit of discrete coherent Ox-modules.
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PROOF. Let X, be as in formula (1.12) and M, = Hom o,(Ox,, M), so Ly .M =
lim,—, M,. If M is quasi-coherent, then M, is a quasi-coherent Oy, -module (by Propo-
sition 3.5), and hence is a direct limit of coherent modules. =

4. Some derived functors of Ox-modules. Denote by Mod gisc(X) (resp.
QCo gisc (X)) the full subcategory of Mod (X) consisting of discrete modules (resp. dis-
crete quasi-coherent modules). These are thick abelian subcategories. In this section we
study injective objects in the category QCo gisc(X), and introduce the discrete Cousin
functor ERL

isc*
LEMMA 4.1. Mod gisc(X) is a locally noetherian category, with enough injectives.

PROOF. A family of noetherian generators consists of the sheaves Oy, where X C X
is a closed subscheme, U C X is an open set, and Oy is extended by 0 to all of X (¢f-
[RD] Theorem I1.7.8). If € Mod (X) is injective then L. 7 is injective in Mod gise(X).
|

Given a point x € X let J(x) be an injective hull of the residue field k(x) over the
local ring Ok, and let J(x) be the corresponding Ox-module. Then J(x) is a discrete
quasi-coherent sheaf, constant on m, and it is injective in Mod (X).

PROPOSITION 4.2. 1. QCo g4isc(X) is a locally noetherian category with enough injec-
tives.

2. Let J € QCo yi5c(X) be an injective object. Then 7 is injective in Mod gisc(X) and
injective on Coh (X). For any M € Mod gisc(X) or M € Coh (X) the sheaf Hom x(M., )
is flasque.

PROOF. 1. Let Al € QCogis.(X). Choose a defining ideal I of X and let X, be
the scheme (X, Ox / I). Define Ny = #Homx(Ox,, N), which is a quasi-coherent Oy, -
module. Then the injective hull of Af in Mod (Xp) is isomorphic to B, J(x4) for some
Xo € Xp. According to Proposition 3.8, QCo gis.(X) is locally noetherian, and this implies
that @, J(x,) is an injective object in it. Now Ay C A and A C D, J(x,) are essential
submodules, so there is some homomorphism A — @, J(x,), which is necessarily
injective and essential.

2. If AL = 7 is injective in QCo gis.(X), it follows that 7 — @, J(x,) is an isomor-
phism. Since Mod gisc(X) is locally noetherian it follows that 7 is injective in it. Given
M € Mod gis.(X) and open sets 8 C I C X consider the sheaves M|y C M|y C M
(extension by 0). Then Hom x(M |y, J) — Homx(M |y, J) is surjective.

The category Coh (X) is noetherian, and therefore the functor Hom x(—, 7) is exact on
it. Given M € Coh (X) we have Hom x(M. J) = @ Homy (M . ](xa)) which is clearly
flasque. =

COROLLARY 4.3. Let J' € D+(QCO disc(%)) be a complex of injectives. Then for any
M e D_(Mod disc(f&‘)) orM €D~ (Coh (Ef)) one has
Romx (M . T) = Homx(M . T")
RH%m(SM'.]') o~ Hgm(ﬂ\/[',]‘) ~ [(X, Homzx(M". )).
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PROOF. The first equality follows from Proposition 4.2 (cf: [RD] Section 1.6). Since
each sheaf Hom x(MP, 97) is flasque we obtain the second equality. ]
The functor Ly .: Mod (¥) — Mod gis.(X) has a derived functor

RLgc: D (Mod (%)) — D" (Mod gise(%)).

which is calculated by injective resolutions.

There is another way to compute cohomology with supports. Let # be an indeterminate.
Define K'(#) to be the Koszul complex Z[¢] R Z[t], in dimensions 0 and 1, and let
K. (¢) := lim;—, K'(#). Given a sequence = (1, . .. , 1,) define K. (1) = K (1) @ - - @
K. (#,), a complex of flat Z[f]-modules (in fact it’s a commutative DGA). If 4 is a
noetherian commutative ring and a = (ay, . ... a,) € A", then we write K _(a) instead of

K. (?) @714 A. Now suppose a C 4 is an ideal, and g are generators of a. Then for any
M € D*(Mod (A)) there is a natural isomorphism

(4.4) RI.M K (a) @ M
in D(Mod (A)). We refer to [LS1], [Hgl] and [AJLI1] for full details and proofs. For
sheaves one has:

LEMMA 4.5. Supposea € T'(U, Oy)" generates a defining ideal of the formal scheme
U. Then for any M € D+(Mod (ll)) there is a natural isomorphism

REdiscM. = Koo(g) b2y M
PROOF. Let I := Oy -a. Then Ly, =TI, and we may use [AJL1] Lemma 3.1.1. =

PROPOSITION 4.6. Let X be a noetherian scheme, Xy C X a closed subset, X = X /X
and g:X — X the completion morphism. Then for any M~ € Dq+c(Mod (X)) there is
a natural isomorphism g*RLy M~ =~ RLy..g* M. In particular for a single quasi-
coherent sheaf M one has g*Tx M =~ Ly.g* M.

PROOF. Let M — 7 be a resolution by quasi-coherent injectives. Since g is flat we
get
@Ry M =g Ty I — L& I — RLgi &I = RL4i &M .
Locally on any affine open U C X, with Uy = UN Xy and U = U /U,» W can find
a in I(U, Oy) which define Up. It’s known that T'y; (J'|v) — K (@) @ (J'|v) is a
quasi-isomorphism. Since g is flat we obtain quasi-isomorphisms

dlu:gLy, (I |v) — g (Ko@) @ (I |0) 2 K@) © g°(I |v) = RLyig (I |0)-

It follows that ¢ is an isomorphism. ]
Denote by D} (Mod (X )) the subcategory of complexes with discrete cohomologies.

LEMMA 4.7. 1. If M € Dj(Mod (X)) then RL g M — M is an isomorphism.
2. If M" € D}, (Mod (%)) then RLy, M € D}, (Mod gise(X)).
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PROOF. From Lemma 4.5 we see that the functor Ry, has finite cohomological
dimension. By way-out reasons (cf. [RD] Section I.7) we may assume M is a single
discrete (resp. quasi-coherent) sheaf. Then the claims are obvious (use Proposition 3.8
for 2). L]

THEOREM 4.8. The identity functor D (QCO dise (X )) — Dige (Mod (X )) is an equiva-

+

lence of categories. In particular any M~ € Diqe

of injectives J° € D+(QCO gise(X )).

(Mod (Ef)) is isomorphic to a complex

PROOF. According to Lemma 4.7 we see that Dgc(Mod disc(ff)) — ngc(Mod (&'))

is an equivalence with quasi-inverse Rl 4. Next, by Proposition 4.2 and by [RD]
Proposition 1.4.8, the functor D" (QCO disc(%)) — Dgc(Mod disc(%)) is an equivalence. m

REMARK 4.9. In [AJL2] it is proved that D(QCO0 gisc(X)) — Dgge(Mod (X)) is an
equivalence, using the quasi-coherator functor.

Suppose there is a codimension function d: X — Z, i.e. a function satisfying d(y) =
d(x) + 1 whenever (x,y) is an immediate specialization pair. Then there is a filtration

D22 D7 D - of X, with 2 = {F C X | Fclosed,d(F) > p}. Here
d(F) := min{d(x) | x € F}. This filtration determines a Cousin functor

(4.10) E:D"(Ab(X)) — C'(Ab (X))

where C* denotes the abelian category of bounded below complexes (cf [RD] Sec-
tion IV.1).
Given a point x € X and a sheaf M € Ab(X) we let [, M = (L@M)x C M,. The

derived functor RT',: D* (Ab (X )) — D(Ab) is calculated by flasque sheaves. Let us write
HIM = HIRT, M, the local cohomology, and let i: {x} — X be the inclusion.
According to [RD] Section IV.1 Motif F one has a natural isomorphism

M= @ i M

d(x)=p

4.11) M = Zﬁ/zpﬂ
Observe that if M € D"(Mod(X)) then EM" € C"(Mod (X)) and RT,M €
D*(Mod (Ox..))-
Unlike an ordinary scheme, on a formal scheme the topological support of a quasi-

coherent sheaf does not coincide with its algebraic support. But for discrete sheaves
these two notions of support do coincide. This suggests:

DEFINITION 4.12. Given M € D+(Mod (EE')) its discrete Cousin complex is
EREdiscM"

THEOREM 4.13. For any M~ € Dgc(Mod (%)) the complex ERL g, M consists of
discrete quasi-coherent sheaves. So we get a functor

ERL .: D} (Mod (X)) — C*(QCo gise(X)).
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PROOF. According to Theorem 4.8 we may assume A = Ry M is in
D" (QCo disc(%)). On any open formal subscheme Ul = Spf4 we get A = Oy @4 N,
where NY = T'(I1, N?) (cf. Propositions 3.8 and 3.2). Then for x € U,

RILRLy, M = RTAL = RTLN,

where p C 4 is the prime ideal of x. Hence HIRL M~ = H{N, is p-torsion. So the
sheaf corresponding to x in (4.11) is quasi-coherent and discrete. =

5. Dualizing complexes on formal schemes. In this section we propose a theory
of duality on noetherian formal schemes. There is a fundamental difference between this
theory and the duality theory on schemes, as developed in [RD]. A dualizing complex
R on ascheme X has coherent cohomology sheaves; this will not be true on a general
formal scheme X, where HYR " are discrete quasi-coherent sheaves (Definition 5.2). We
prove uniqueness of dualizing complexes (Theorem 5.6), and existence in some cases
(Proposition 5.11 and Theorem 5.14).

Before we begin here is an instructive example due to J. Lipman.

EXAMPLE 5.1. Consider the ring 4 = k[[¢]] of formal power series over a field £.
Let X := SpfA, which has a single point. The modules 4 and J = Hg,)A both have
finite injective dimension and satisfy Hom,(4. 4) = Hom,(J.J) = A. Which one is a
dualizing complex on X? We will see that J is the correct answer (Definition 5.2), and
A is a “fake” dualizing complex (Theorem 5.14). The relevant relation between them is:

J = RTgiscA[1].

Suppose A € D* (Mod (X )). We say A" has finite injective dimension on QCo gis.(X)
if there is an integer ¢ s.t. for all ¢ > go and M € QCo gise(X ), HIR Hom (M, N) = 0.

DEFINITION 5.2. A dualizing complex on X is a complex R~ € ngC(Mod (X )) satis-
fying:
(i) R has finite injective dimension on QCo gjs.(X).
(ii) The adjunction morphism Oy — RHom x(R_ ", ') is an isomorphism.
(iii) For some defining ideal I of X, R#Homx(Ox/I.R ) has coherent cohomology
sheaves.

LEMMA 5.3. Let N € ngC(Mod (&')). Then N has finite injective dimension on
QCo gise(X) iff it is isomorphic to a bounded complex of injectives in QCO gise(X).

PROOF. Because of Theorem 4.8 and Corollary 4.3, the proof is just like [RD]
Proposition 1.7.6. ]

In light of this, we can, when convenient, assume the dualizing complex & is a
bounded complex of discrete quasi-coherent injectives.

PROPOSITION 5.4. Let R be a dualizing complex on X. Then for any M €
D® (Mod (X )) the morphism of adjunction

M — RHomy (Rﬂ-[amgg(ﬂ/[', R)), K)

is an isomorphism.
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PROOF. We can assume X is affine, and so replace M~ with a complex of coherent
sheaves. By “way-out” arguments (cf. [RD] Section I.7) we reduce to the case M~ = Og,
to which property (ii) applies. =

LEMMA 5.5. Suppose R is a dualizing complex on X. Let I be any defining ideal of
X, and let X be the scheme (X, Ox | I). Then RHom x(Ox,. R.") is a dualizing complex
on X.

PROOF. We can assume R~ is a bounded complex of injectives in QCo gisc(X), so
Ry = Homx(Oyx,. R') is a complex of injectives on Xj. Property (iii) implies that &y
has coherent cohomology sheaves. Now

Hom x, (Ry . Ry ) = }[omgc-(ﬂ-[omgg(oxo, R, K) =~ Oy,,
so &, is dualizing. "
THEOREM 5.6 (UNIQUENESS). Suppose R~ and i are dualizing complexes and X

is connected. Then R =~ R @ L[n] in D(Mod (&)) for some invertible sheaf L and
integer n.

PROOF. We can assume both &~ and j{ are bounded complexes of injectives in
QCo gise(X). Choose a defining ideal I and let X,, be the scheme (X, Ox / I""). Define
a complex R, = Homx(Oy, . R ) and likewise R, . These are dualizing complexes on
Xy, so by [RD] Theorem IV.3.1 there is an isomorphism

S Ry @ Lo[ny] — R,

in D(Mod (Xm)), for some invertible sheaf £, and integer n,. Writing M, =
Homy, (R, R,y) we have M, = L,,[n,,] in D(Mod (X,,)). Now

M, =~ Homy, (Homy,. (Ox,» Ryi1): Rps1)) @ Lyne1 [Ami1]

as complexes of Oy ,,-modules, so by the dualizing property of %X,,, we deduce an
isomorphism Mn ~ Oy, @ Lys1[npn] in D(Mod (X,,,+1)). We conclude that #,, = n,,,41
and £,, =~ Oy, ® L. Setn == n,, and L = lim_,, £,,.

Next, since R4 C R, and R, is injective in Mod (X,,+1), we see that M7, | — M4
is surjective for all ¢, m. Furthermore, HYM, ., — HIM, is also surjective, since
HYM, = L,, or 0. Define

M = Homx(R . R) =~ lim 9/,

According to [Ha] Corollary 1.4.3 and Proposition 1.4.4 it follows that HIM =
lim_, HYM,,. This implies that #omx(R' ® L[n], R ")) = O in D(Mod (%)), so by
Corollary 4.3
HHom x(R" ® L[n]. ) 2 [(X. Ox).

Choose a homomorphism of complexes ¢: R~ @ L[n] — R corresponding to 1 €
['(X. Ox). Backtracking we see that for every m, ¢ induces a homomorphism &,, ®
Ln] — ifim which represents ¢, in D(Mod (Xm)). So ¢ = lim,_ ¢, is a quasi-
isomorphism. u
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PROBLEM 5.7. Let R " be a dualizing complex. Is it true that the following conditions
on A € ngc(Mod (X)) are equivalent?

(i) N = Rtom (M. R ") for some M € D(Mod (X)).
(i) Forany M discrete coherent, RHom (M, N') € D8 (Mod (&7)).

Recall that for a point x € X we denote by J(x) an injective hull of k(x) over Ok,
and J(x) is the corresponding quasi-coherent sheaf.

LEMMA 5.8. Suppose R is a dualizing complex on X. For any x € X there is a
unique integer d(x) s.t.
HIR =~ {J(x) if g =d(x)

0 otherwise.

Furthermore d is a codimension function.

PROOF. We can assume & " is a bounded complex of injectives in QCo gisc(X ). Then
as seen before HYR * = H'T', R _". Define schemes X, and complexes &, like in the proof
of Theorem 5.6. Since &, is dualizing it determines a codimension function d,, on X,
(cf: [RD] Chapter V Section 7). But the arguments used before show that d,, = d,;+1.
Finally HT'\ R~ = lim,,, H/T'\ R, and H/I', R,, =~ J,,(x), an injective hull of k(x) over
OX,,,,x‘

DEFINITION 5.9. A residual complex on the noetherian formal scheme X is a dualizing
complex X which is isomorphic, as Ox-module, to @,cx J(x).

PROPOSITION 5.10. Say R is a dualizing complex on X. Let d be the codimen-
sion function above, and let E be the associated Cousin functor. Then R =~ ER in
D(Mod (&)) and ER " is a residual complex.

PROOF. By Lemma 5.8 & is a Cohen-Macaulay complex, in the sense of [RD]
p- 247, Definition. So there exists some isomorphism X °~ — ER " in Db(Mod (%)). =

To conclude this section we consider some situations where a dualizing complex
exists. If /2 X — ?) is a morphism then (), £ Ox) is a ringed space, and]T: X — Q).£:0x)
is a morphism of ringed spaces.

PROPOSITION 5.11. Let f: X — ?) be a formally finite morphism, and assume K is a
residual complex on?). Then f* Homy(f. Ox, K) is a residual complex on X.

PROOF. Let f,:X, — Y, be morphisms as in Lemma 1.13, and let X, :=
Homy(Oy,, K). Since £, is a finite morphism, f; Hom y, (/. Ox,, K,) is aresidual complex
on X,,. As in the proof of Theorem 5.6,

[ Homy(f. Ox. K) = lim f; Homy, (f« Oy, . K;,)

is residual. =
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EXAMPLE 5.12. Suppose Xp C Xis closed, ¥ = Xy, and g: ¥ — Xis the completion
morphism. Let K" be a residual complex on X. In this case g = g, and by Proposition 4.6

g Homx(g: Oz, K) = lim g™ K, = 'Ly, K = Lo K

is a residual complex. We see that if &’ is any dualizing complex on X then ER 4 .g" R’
is dualizing on X.

We call a formal scheme X regular of all its local rings O , are regular.

LEMMA 5.13. Suppose X is a regular formal scheme. Then d(x) = dim Oy is a
bounded codimension function on X.

PROOF. Let I = Spf4 C X be a connected affine open set. If x € 1 is the point
corresponding to an open prime ideal p, then 4 p & Ox .. Therefore A, is a regular local
ring. Now in the adic noetherian ring 4 any maximal ideal m is open. Hence, by [Ma]
Section 18 Lemma 5(III), 4 is a regular ring, of finite global dimension equal to its Krull
dimension.

Now let U := Spec 4, so as a topological space, I C U is the closed set defined by
any defining ideal / C A. Since U is a regular scheme, Oy is a dualizing complex on
it. The codimension function &’ corresponding to Oy satisfies d'(y) = dim Oy,,. Thus
0 < d'(y) < dimU. But clearly d|; = d'|;;. By covering X with finitely many such U
this implies that d is a bounded codimension function. ]

THEOREM 5.14. Suppose X is a regular formal scheme. Then RL ;. O is a dualizing
complex on X.

PROOF. By the proof of Theorem 4.13 and known properties of regular local rings,

forany x € X
P Jx) ifg=d()
HIRL 4. Ox >~ HY Oy, =~
*REisc O i, Ox.x { 0 otherwise
where m, C Oh is the maximal ideal, and J(x) is an injective hull of k(x). Since
d is bounded it follows that K" = ERL . Oz is a bounded complex of injectives in
QCo gisc(X). Like in the proof of Proposition 5.10, R[4, Ox =~ % in D(Mod (éf)).
To complete the proof it suffices to show that for any affine open set Il = Spf4 C X
the complex K| is residual on U. Let U = Spec 4 and let g: LI — U be the canonical
morphism. Let Uy C U be the closed set g(l1), so that U =~ Uy, Define X, := EOy,

which is a residual complex on U. Then according to Proposition 4.6
deisc OLI = g*REUo OU = g*EUo 7CU

As in Example 5.12 this is a dualizing complex, so K| = ERL4,, Oy is a residual
complex. =

REMARK 5.15. According to [RD] Theorem VIL.3.1, if /- X — Y is a finite type mor-
phism between finite dimensional noetherian schemes, and if X" is a residual complex
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on Y, then there is a residual complex /% on X. Now suppose /: X — 9) is a f.f.t.
morphism and f,,: X;, — Y,, are like in Lemma 1.13. In the same fashion as in Proposi-
tion 5.11 we set f~ K := lim,,_, /2 K. This is a residual complex on X. If f is formally
proper then Tr, = lim,,, Tr;, induces a duality

REM" — RHomy (RERHomx(M . f2K). K)

for every M~ € DP (Coh (X )). The proofs are standard, given the results of this section.

6. Construction of the complex X /e In this section we work over a regular
noctherian base scheme S. We construct the relative residue complex X, /s onany finite
type S-scheme X. The construction is explicit and does not rely on [RD].

Let A, B be complete local rings, with maximal ideals m, n. Recall that a local
homomorphism ¢: 4 — B is called residually finitely generated if the field extension
A/m — B/n is finitely generated. Denote by Mod gisc(4) the category of m-torsion
A-modules (equivalently, modules with 0-dimensional support).

Suppose A[f] = A[ty,...,t,] is a polynomial algebra and p C A4[¢] is some maximal
ideal. Then 4 — B = @]D is formally smooth of relative dimension #» and residually
finite. Let b; € B/n be the image of #; and ¢; € (4/m)[b1,...,bi—1][#;] the monic

irreducible polynomial of b;, of degree d;. Choose a monic lifting g; € A[#, . ... #]. Then
for a discrete 4-module M one has

oA til...p;ndll...dtn
Hp('Q‘B/A®AM)g® L "

i i
1<i; 0<j,<d, q) - qn

@M.

As in [Hgl] Section 7 define the Tate residue

(6.1) resy, o5 Hy(Qp 4 ©4 M) — M
by the rule
oo fpdndhy {m ifij=1,j;=d—1
‘1? g 0 otherwise

(cf- [Ta]). Observe that any residually finite homomorphism 4 — C factors into some

A— B=A[1], — C.

THEOREM 6.2 (HUANG). Consider the category Loc of complete noetherian local
rings and residually finitely generated local homomorphisms. Then:
1. For any morphism ¢: A — B in Loc there is a functor

du: Mod gisc(4) — Mod gise(B).

For composable morphisms A 2B s, C there is an isomorphism (Y@)s =~ VYuds, and
(L) = Imod, 4y These data form a pseudofunctor on Loc (cf. [Hgl] Definition 4.1).
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2. If $: A — B is formally smooth of relative dimension q, and n = rank Q}g I then
there is an isomorphism, functorial in M € Mod gs.(4),

$sM 2= HE(Qp @4 M).

3. If : A — B is residually finite then there is an A-linear homomorphism, functorial
in M € Mod 4i5c(4),
Try: puM — M,

which induces an isomorphism ¢ M =~ Hom$™ (B, M). For composable homomorphisms
A5 BS Cone has Tryy = Try, Try under the isomorphism of part 1.
4. If B= A[t], then Try = res,....s,.4.p under the isomorphism of part 2.

PROOF. Parts 1 and 2 are [Hgl] Theorem 6.12. Parts 3 and 4 follow from [Hgl]
Section 7. =

DEFINITION 6.3. Suppose L is a regular local ring of dimension ¢, with maximal ideal
r. Given a homomorphism ¢: L — 4 in Loc, define

K(A/L) = p4HIL.
the dual module of A relative to L.

Since H{L is an injective hull of the field L/ x, it follows that K(4/L) is an injective
hull of 4/ m (¢f. [Hgl1] Corollary 3.10).

COROLLARY 6.4. If : A — B is a residually finite homomorphism, then there is an
A-linear homomorphism

Try = Trg 40 K(B/L) — K(4/L).
Given another such homomorphism B — C, one has Trc; 4 = Trg, Tre)p.

REMARK 6.5. One can show that when L is a perfect field, there is a functorial
isomorphism between X (4 /L) = ¢4L above and the dual module X (4) of [Ye2], which
was defined via Beilinson completion algebras.

Suppose m: X — S is a formally finite type (f.f.t.) formally smooth morphism.
According to Proposition 1.11, X is a regular formal scheme. When we write n =
rank Ql% /s We mean that » is a locally constant function n: ¥ — N.

LEMMA 6.6. Given a f.f.t. morphism w: X — S and a point x € X, let s .= n(x), and
define
ds(x) = dim Os, — tr degy ) k(x).
Then:
1. ds is a codimension function.
2. If wis formally smooth then

ds(x) = dim O;(:‘x — rank ngc /s
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PROOF. We shall prove 2 first. Let L = Ossand 4 == Og‘fx. By Proposition 1.11,
n:= rankQL/L =dim4 —dimL +trdeg; ;. A/m.

We see that ds is the codimension function associated with the dualizing complex
RL 4. Ox[n] (see Theorem 5.14).
As for 1, the property of being a codimension function is local. But locally there is
always a closed immersion X C ) with §) — S formally smooth. "
We shall use the codimension function ds by default.

DEFINITION 6.7. Let m: X — S be a formally finite type morphism. Given a point
x € X, consider ¢: L = AOSﬂ(x) — A= Oh, which is a morphism in Loc. Since L is a
regular local ring, the dual module K (4 /L) is defined. Let K /s5(x) be the quasi-coherent
sheaf which is constant on @ with group of sections K (4 /L), and define

Kijs= D Kas®
ds(x)=q
In Theorem 6.14 we are going to prove that on the graded sheaf X, /s there is a
canonical coboundary operator § which makes it into residual complex.

DEFINITION 6.8. Let f: X — ¥) be a morphism of formal schemes over S. Define a
homomorphism of graded (y)-modules Try: fi K /s ‘](,) /s s follows. If x € X is
closed in its fiber and y = f{(x), then 4 = %y — B= O}"x is a residually finite L-algebra
homomorphism. The homomorphism Trg ,: K(B/L) — K(A4/L) of Corollary 6.4 gives
a map of sheaves

Ty /i Kz ys(x) — Ky s(v)-

If x is not closed in its fiber, we let Tr; vanish on f Kz /5(x).

PROPOSITION 6.9. 1. Try is functorial: if g:3) — 3 is another morphism, then Ttgr =
Trg Try.

2. If f is formally finite (see Definition 1.18), then Tty induces an isomorphism of
graded sheaves

3. If g: I — X is an open immersion, then there is a natural isomorphism K, /s =
& Ka)s

PROOF. Part 3 is trivial. Part 1 is a consequence of Corollary 6.4. As for part 2, f is
an affine morphism, and fibers of /" are all finite, so all points of X are closed in their
fibers. ]

Suppose a = (ay, ..., ay,) is a sequence of elements in the noetherian ring 4. Let us

write K;o(g) for the subcomplex KZ!(a), so we get an exact sequence

(6.10) 0— K. () — K (@) — 4 — 0.
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Forany M € D+(Mod (A)) let M~ be the complex of sheaves Oy @ M on X := Spec 4,
and let U C X be the open set | J{a; # 0}. Then

RI(U. M) = K (@[1] © M

in D(Mod (A)). In fact K. (a) ® Oy is a shift by 1 of the Cech complex corresponding to
the open cover of U.
LEMMA 6.11. Let A be an adic noetherian ring and M € D*(Mod (A)). Define
U :=Spfdand M =0y @ M.
1. Let x € U with corresponding open prime ideal p C A. Suppose the sequence a
generates ). Then
R RL i M = R, M, ~ K (a) ®@ M,
in D*(Mod (4y)).
2. Supposey € U is an immediate specialization of x, and its ideal q has generators
a,b. Then
RIRLy M = K (@) @ KL, (D)[1] @ M,
in D*(Mod (4,)).
3. Assume d is a codimension function on 1. Then in the Cousin complex ERL gii. M

the map
Hf(X)REdiscM - H)(/i(y)REdisc M .

is given by applying HY) to
(Ko(@ @ K (b) — K (a. b)) © M.

PROOF. Part 1 follows immediately from formula (4.4). Parts 2 and 3 are true because

Spec(A4/p)q = {p.q}. "
As a warm up for Theorem 6.14, here is:

PROPOSITION 6.12. If m: X — S is formally smooth, with n = rank fZI,( /s then there is
a canonical isomorphism of graded sheaves

766’/5‘ = EREdichg‘/S[n]'
This makes K, /s into a residual complex.

PROOF. Take any point x, and with the notation of Definition 6.7 let p := dim L and
q = dimA4. Then by Lemma 6.11 part 1 and [Hg!] Proposition 2.6 we have a canonical
isomorphism

HIORT 1 % sln] & HY €, & HP Q) @p HIL) & K(4/L).
According to Theorem 5.14 and Proposition 5.10, EREdichf% / 5[] is aresidual complex.

In particular taking X = S we get K /s~ EOgs.

LEMMA 6.13. Suppose X C X and X C ?) ares.f.e.s andf: X — ) is a morphism of
embeddings. Then Tr;: Ky — ‘](@ is a homomorphism of complexes.
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PROOF. Factoring f through (X Xs9)) /x We can assume that f is either a closed
immersion, or that it is formally smooth. At any rate f is an affine morphism, so we can
take X = SpfB,?) = Spf4 and S = Spec L. By Theorem 2.6 we can suppose one of the
following holds: (i) B =~ A[[{]] for a sequence of indeterminates ¢ = (¢, ....#), and
A — B is the inclusion; or (ii)) 4 =~ B[[f]] and A — B is the projection modulo ¢. We
shall treat each case separately.

(1) Choose generators g for a defining ideal of 4. Let m = rank QL /L and

n = rankﬂll;/p so n = m + [. Define an A4-linear map p: K () ® QZ/A[I] — A by
p(t =1 7Ddf) = 1 and p(£df) = 0if i # (—1....,—1). Extend p linearly to

p K@, 0) @ Q) [n] — Kiy(a) © QF  [m].
This p sheafifies to give a map of complexes in Ab (X)
P K@, 1) © QO sn] — K (@) @ QF [m].

By Lemma 6.11 and [Hgl] Section 5, for any point x € X, H/Y(p) recovers Trs:
K 15(x) — Ky /s5(x). Thus Try = E(p) is a homomorphism of complexes.
(i) Now / = m — n. Take a to be generators of a defining ideal of B. Define a B-linear

K@ @ Q) [n] — Ki(a. ) @ Q) [m].

Again this extends to a map of complexes of sheaves p’in Ab (X), and checking punctually
we see that Try = E(p'). m

THEOREM 6.14. Suppose X — S'is a finite type morphism. There is a unique operator
o: K)q( /s ;J/’ng satisfying the following local condition:

(LE) Suppose U C X is an open subset, and U C U is a smooth formal em-
bedding. By Proposition 6.9 there is an inclusion of graded Oy-modules
Ky slv € K ss T hen b|y is compatible with the coboundary operator
on KL'I/S coming from Proposition 6.12.

Moreover (K, /50 0) is a residual complex on X.

PROOF. Define |y using (LE). According to Lemma 6.13, 6], is independent of 11, so
it glues. We geta bounded complex of quasi-coherent injectives on X. By Proposition 6.12
it follows that it is residual. ]

REMARK 6.15. This construction of K, /s actually allows a computation of the oper-
ator 9, given the data of a local embedding. The formula is in part 3 of Lemma 6.11, with
M = SA)Z / [1]. The formula for changing the embedding can be extracted from the proof

of Lemma 6.13. Of course when rank Q; /s is high these computations can be nasty.
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REMARK 6.16. The recent papers [Hg2], [Hg3] and [LS2] also use the local theory
of [Hgl] as a starting point for explicit constructions of Grothendieck Duality. Their
constructions are more general than ours: Huang constructs /' M~ for a finite type
morphism f: X — Y and a residual complex complex M ; and Lipman-Sastry even
allow M to be any Cousin complex.

7. The trace for finite morphisms. In this section we prove that Tr; is a homo-
morphism of complexes when " is a finite morphism. The proof is by a self contained
calculation involving Koszul complexes and a comparison of global and local Tate
residue maps. In Theorem 7.10 we compare the complex K, /s to the sheaf of regular
differentials of Kunz-Waldi. Throughout S is a regular noetherian scheme.

THEOREM 7.1. Suppose f: X — Y is finite. Then Try: f, KA}/S — K}/s is a homomor-
phism of complexes.

The proof appears after some preparatory work, based on and inspired by [Hgl]
Section 7.

REMARK 7.2. In Section 8 we prove a much stronger result, namely Corollary 8.3,
but its proof'is indirect and relies on the Residue Theorem of [RD] Chapter VII. We have
decided to include Theorem 7.1 because of its direct algebraic proof.

Let 4 be an adic noetherian ring with defining ideal a. Suppose p € A[7] is a monic
polynomial of degree e > 0. Define an A4-algebra

(7.3) B = lim A[1]/A[f] - .

Let b == Ba + Bp; then B =~ lim._; B/b’, so that B is an adic ring with the D-adic

topology. The homomorphism ¢: 4 — B is f.f.t. and formally smooth, and Q}g 4= B-dz.

Furthermore p € B is a non-zero-divisor, and by long division we obtain an isomorphism
. /

(7.4) H,B=H'(K () @B)~ P 4-—.

1<i0<j<e P

Define an 4-linear homomorphism Res 4: H),, QL 14— Aby

zfdt) ::{1 ifi=1,j=e—1

Resg 4~ .
%5/ P 0 otherwise.

We call Resg/ 4 the global Tate residue. 1t gives rise to a map of complexes in Mod (4):
(7.5) Resp/ o K (p)[1] @ Q}?/A — 4.

Note that both the algebra B and the map Resg 4 depend on 7 and p.
Suppose q C B is an open prime ideal and p = ¢~!(q) C 4. Then the local homo-
morphism ¢,: 4, — B, is formally smooth of relative dimension 1 and residually finite.
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Let § := N Ay[7], and denote by q the image of § in k(p)[], so k(»)[7]/q = k(q). For a
polynomial ¢ € ﬁp[t] let ¢ be its image in k(p)[]. Suppose ¢ satisfies:

(7.6) g is monic, and the ideal (¢) C k(p)[] is q-primary.
Then B, - q = \/ZA?Q -(p.q) C By, and
By = 1g?ﬁp[t]/ai ~ IEIil;lp[t]/;lp[t] g

Hence ¢ is a non-zero-divisor in B, and B, /B, - ¢ is a free 4,-module with basis
1.t..... 1", where d = deg g. We see that a decomposition like (7.4) exists for H(lq)f%q.
Suppose we are given a discrete ,?lp—module M. Then one gets
15! 1 Bl 7dt
Hy(Qp 5 @5, M) = (HiyQp )@ M= P — oM
e e 1<i0<j<d 4
(cf- [Hgl] pp. 41-42). Define the local Tate residue map
HlO!
RGSBQ/A“.HQ(QBQ/AV ®’:11' M) — M
by .
ﬂdt®m) _ {m ifi=1,j=d—1
q' " 10 otherwise.

Clearly Res ;5 is functorial in M, and it depends on 7.

LEMMA 7.7. Res Ba /s is independent of q. It coincides with the residue map res,. B, /4,
of (6.1), i.e. of [Hgl] Definition 8.1.

PROOF. Suppose the polynomials ¢1.¢> € A,[f] satisfy (7.6). Then so does g3 =
q19>- Letdeg g, = dj, and let Res Bo /o be the residue map determined by g, Pick any

1 <iand 0 <j < dj, and write g5 = Zﬁf) at', so ajq, = 1. By the rules for manipulating
generalized fractions (cf: [Hgl] Section 1) we have

ddt@my i Hdt @ aym
(7.8) Res; i, (T) = I;)Res&,/av;qa (T)

Ifi>2o0rj <d —2onehas/+; < id; — 2, and therefore each summand of the right
side of (7.8) is 0. When i = 1 and j = d; — 1 the only possible nonzero residue there is
for / = d», and this residue is m. We conclude that Resigq/;lu;q3 = ReSEq/;lu;q]. Clearly also
RS, ivigy = REShjvign-

If we take ¢ such that (¢) = q, this is by definition the residue map of (6.1). ]

LEMMA 7.9. Let F be the set of prime ideals in B/(p) lying over p. Then for any
M & Mod disc(zzlp) one has

(Hi»Qp/0) ©4 M=~ B H;,(fz}?q, 13, @1, M).

q'eF

and w.x.t. this isomorphism,

Resp 4 @1 =" Resy 5 .
Q’EF a P
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PROOF. The isomorphism of modules is not hard to see. Let p = [Iyerpy be the
primary decomposition in k(p)[#] (all the p,» monic). By Hensel’s Lemma this decompo-
sition lifts to p = [[yerpy in A,[1]. Since each polynomial Py satisfies condition (7.6)
for the prime ideal q’, we can use it to calculate Reséq, R n

PROOF OF THEOREM 7.1. This claim is local on ¥, so we may assume X, Y and S are
affine, say X = SpecB, Y = Spec4 and S = Spec L. By the functoriality of Tr we can
assume B = A[b] for some element b € B. It will suffice to find suitable s.f.e.’s X C X and
Y C@)witha morphism 7: ¥ — J) extending f, and to check that Tr_f:ﬂ K.é‘/s — 17(,!5/5
commutes with 6.

Pick any s.f.e. Y C @) = SpfA, so a :=Ker(4 — Z) is a defining ideal. Let A[7] — B
be the homomorphism ¢ — 5. Choose any monic polynomial p(¢) € A4[{] s.t. p(b) = 0,
and define the adic ring B as in formula (7.3). So X := Spf B is the s.f.e. of X we want.

Let (vo,y1) be an immediate specialization pair in Y, and let F; := f~'(y;) C X. Let
Po C p; C A be the prime ideals corresponding to (yo. y1). Pick a sequence of generators
a for po, and generators (a, a’) for p;. Let m := rank QL/L.

Consider the commutative diagram of complexes

Resp) 4 @

N A 1 N A
K@ p)[1] © Ko@) © @1, — Ko@) © Koyl@) © (@),

l l

. / Am+1 Resg) 4 @1 . ’ Am
Koo(gsg ~P)[1] ®(QB/L)01 - KOO(Q,Q)@(QA/L)DI
gotten from tensoring the map Resg 4 of (7.5) with 4,, ® QZ’ L and the various K_ .

Applying H' to this diagram, where i = dimlepl, and using Lemmas 6.11 and 7.9 we
obtain a commutative diagram

Buer HL QL . oHOr ) Z5S pioige
QEF0 a0\ B /4y o Ay, /L Po "4, /L
o H! (Q! QH, O ) 2RSS i Am
q1€F Ha, By, /Ay, P, /L P, L

In this diagram Res = Requ /i, el Using the definitions this is the same as
0 PO

Duer f K js(0) —  Kyys0)
d d
Ox e [+ Kz /s(x1) - Ky s0)-

|
According to [KW], if m: X — §'is equidimensional of dimension » and generically
smooth, and X is integral, then the sheaf of regular differentials LD;’(/S (relative to the

DGA Ogs) exists. It is a coherent subsheaf of QZ(X) JKS)
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THEOREM 7.10. Suppose m: X — Sis equidimensional of dimension n and generically
smooth, and X is integral. Then K, /”S = QZ(X) JKSy and

Gyys = H " Ky/s-
First we need:

LEMMA 7.11. Suppose Ly — Ay — By are finitely generated field extensions,
with Ly — Ao and Ly — By separable, Ay — By finite, and trdegLO Ao = n. Then
K(4o/Lo) = QL K(Bo/Lo) = Q1 and Tig, 4, K(Bo/Lo) — K(Ao/Lo) coin-
cides with Ué([))/AU: ng/Lo — QZO/LD of [Ku] Section 16.

PROOF. Since Ly — Ay is formally smooth, we get K (4o / Lo) = QZO ILy’ The same for
By. Consider the trivial DGA Lg. Then the universal By-extension of 9;40 I is Qéo IRE

Lo

o makes sense. To check that o= = Trp, 4, we may reduce to the cases 49 — Bo

By /A _ By /A .
sef;aroable, or purely inseparable of prime degree, and then use the properties of the trace.

PROOF OF THE THEOREM. Given any pointx € X there is an open neighborhood U of
x which admits a factorization 7|y = hgf, with f: U — Y an open immersion; g: ¥ — Z
finite; and 4: Z — S smooth of relative dimension » (in fact one can take Z open in
A" x S). This follows from quasi-normalization ([Ku] Theorem B20) and Zariski’s Main
Theorem ([EGA] IV 8.12.3; ¢f' [Ku] Theorem B16). We can also assume Y, Z, S are
affine, say Y = Spec B, Z = Spec 4 and S = Spec L. Let us write &Z/L =I(Y, &J'}’,/S) and
17(1;/L =TI(Y, 17({,/8). Also let us write By := k(Y), 4o := k(Z) and L¢ = k(S).

By [KW] Section 4,

Dy =18 € Q5 1, | 0 14,(0B) € Q) forall b € B}.

One has

Ky = K(Bo/Lo) = ) 1,
and the same for 4. According to Proposition 6.12 there is a quasi-isomorphism
Q) / [ — K L From the commutative diagram

- n 5 -
0 — H i7<43/L - i7<43/L B KB/L+1

| | | 7o |

" o 5 .
0 ’ Q) /L K /L K /L+ ]

and the isomorphism

5/ = Hom «(B, K;7;"")
induced by Tr, we conclude that & = H™ XK, nx Since &} /s andH™" K, /s are coherent
sheaves and /: U — Y is an open immersion, this shows that &y g = H" K, /s ]

COROLLARY 7.12. If X is a Cohen-Macaulay scheme then the sequence
0—>L:);'(/S—> K;/WS_)"'_) ‘{K)’?/S_)O

(m = dim S) is exact.
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PROOF. X is Cohen-Macaulay iff any dualizing complex has a single nonzero coho-
mology sheaf. ]

EXAMPLE 7.13. Suppose X is an (n + 1)-dimensional integral scheme and m: X —
Spec Z is a finite type dominant morphism (i.e. X has mixed characteristics). Then 7 is
flat, equidimensional of dimension # and generically smooth. So

@y =H"Ky)2 C Qo

REMARK 7.14. In the situation of Theorem 7.10 there is a homomorphism

Cx: Qs — Kyjs
called the fundamental class of X/S. According to [KW], when 7 is flat one has
CX(Q;’(/S) - L:}SI(/S; so Cy: Q}/S[n] — 17()'(/5 is a homomorphism of complexes.

REMARK 7.15. In [LS2] Theorem 11.2 we find a stronger statement than our Theo-
rem 7.10: Sis only required to be an excellent equidimensional scheme without embedded
points, satisfying Serre’s condition S;; and 7 is finite type, equidimensional and generi-
cally smooth. Moreover, for 7 proper, the trace is compared to the integral of [HS] (cf.
Remark 8.4). The price of this generality is that the proofs in [LS2] are not self-contained
but rely on rather complicated results from other papers.

8. The isomorphism 7()'(/5 =~ 7'Os. In this section we describe the canonical
isomorphism between the complex 17()‘(/5 constructed in Section 6, and the twisted

inverse image 7' Og of [RD]. Recall that for residual complexes there is an inverse image
7, and 12 Ky /s~ E7' Os, where E is the Cousin functor corresponding to the dualizing

complex 7' Os. For an S-morphism f:X — Y denote by TrfRD the homomorphism of
graded sheaves

TP fuml Ks)s ~ fiforf Ks/s — ”?Ks'/s
of [RD] Section V1.4.

THEOREM 8.1. Let m: X — S be a finite type morphism. Then there exists a unique
isomorphism of complexes

g A g
G Kyys = 1 Ky
such that for every morphism > X — Y the diagram

Try

FKys  —— Ky
(8.2) £60) J 1 J
A . TlfD A .
Sy Ky —— 7 Kys
is commutative.

The proof of Theorem 8.1 is given later in this section, after some preparation. Here
is one corollary:
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COROLLARY 8.3. If f: X — Y is proper then Tty is a homomorphism of complexes,
and for any M~ € D(;c(Mod (X)) the induced morphism

feHomx (M, Ky 5) — HomyREM ", Ky /)
is an isomorphism.

PROOF. Use [RD] Theorem VIIL.2.1 and Corollary VIL.3.4. m

REMARK 8.4. In [Hg3] and [LS2] the authors prove that in their respective construc-
tions the trace Try: fif "N — AN is a homomorphism of complexes for any proper
morphism f and residual (resp. Cousin) complex A" (cf: Remark 6.16).

Let ¥ = SpecA be an affine noetherian scheme, X := A” X Y = SpecA[t. ..., 4]

and /1 X — Y the projection. Fix a pointx € X, and let y = f(x), Zy = {x} 4. Assume
Zy — Y is finite.

LEMMA 8.5. There exists an open set U C Y containing y and a flat finite morphism
gV — Us.t.:
(i) g7 '(v) is one point, sayy'.
(ii) Define X' .= A" X Y, and let f": X — Y, h:X — X. Then for every point
x' € h=\(x) there is some section o Y' — X' of f' withx' € a,.(Y").

PROOF. Choose any finite normal field extension K of k(y) containing k(x). Define
recursively open sets U; = Spec4; C Y and finite flat morphisms g;: ¥; = Spec 4 — U;
s.t. g7 '(v) = {y:} and k(y;) C K, as follows. Start with Uy = ¥, := Y and 4} = 4o := A.
If k(y;) # K take some b € K — k(y;) and let p € k(y)[¢] be the monic irreducible
polynomial of 5. Choose a monic polynomial p € Oy,,,[7] lifting p. There is some open
set Uity = SpecAdjr1 C Ui s.t. p € (4] @y, Air1)[1]. Define A, == (4] @4, Ai11)[t]/(p) and
Yir1 = Spec AL,,. For i = r this stops, and k(y,) = K.

For every point x’ € Spec(K ®k(y) k(x)) and1 <i<nleta;y € k(x") = k(y,) be the
image of #;, and let a; v € Oy,,,, be alifting. Take anopenset U = Spec4,+1 C U, s.t. each
aiy € A" = (4] @4, A1), and define Y’ := Spec A’. So for each x’ the homomorphism
B' =A'[f] — A, t; — a; v gives the desired section ,: Y/ — X', "

Let Z; be the i-th infinitesimal neighborhood of Zy in X, so f;:Z; — Y is a finite
morphism. Suppose we are given a quasi-coherent Oy-module M which is supported on
@. One has

}[z’;(gl;'/y Qf M) =~ 11121 Extx(Oz. Qy )y @f M)

and by [RD] Theorem VI1.3.1
Extiy( Oz Qy )y © M) = HOf M.

Note that we can also factor f; through P” X Y, so f; is projectively embeddable, and by
[RD] Theorem II1.10.5 we have a map

(8.6) T;?D:ﬁ}[z’f)(ﬁg(/y®f*M)—> M.
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Now define 4 == AOyAy and B == AOXAX, with n C B the maximal ideal and 10) :f*:fl — B.
Set M = M,, which is a discrete A-module. We then have a natural isomorphism of
A-modules

(8.7) (A5 ©F M) = HL(Q} 3 @3 M) = ¢yM.
LEMMA 8.8. Under the isomorphism (8.7),

Trf = Try: puM — M.

PROOF. The proof'is in two steps.

STEP 1. Assume there is a section o: ¥ — X to f with x € W, = o(Y). The homomor-
phism o*: B = A[t] — A chooses a; = 0*(¢;) € A, so after the linear change of variables
t; — t; — a; we may assume that ¢ is the O-section (i.e. Oy, = Ox/Ox - ). Let W; be
the i-th infinitesimal neighborhood of W}. Since f: W; — Y is projectively embeddable,
there is a trace map

Trj]}D:f*_’I-[VﬁOQ}/Y — Oy.

For any a € 4 one has

(8.9) T;}D(M) _ {a ifi=(1,....1)

z’ll cee 0 otherwise.

This follows from properties R6 (normalization) and R7 (intersection) of the residue
symbol ([RD] Section II1.9). Alternatively this can be checked as follows. Note that
TrfRD factors through Rf*Q’:,ny e Forthe casei=(1...., 1) use [RD] Proposition I11.10.1.

Fori# (1...., 1) consider a change of coordinates # — \;t;, A; € A. By [RD] Corol-

lary 111.10.2, Tr}{D is independent of homogeneous coordinates, so it must be 0.
Now since Wy Nf~!(y) = Zy we have

ZIZ)(Q;(/Y(X\/‘*M)%I V;O(QSI(/Y@]{'*M)

and so the formula for Tr}zD in (8.6) is given by (8.9). But the same formula is used in
[Hgl] to define Tr.

STEP2. The generalsituation: takeg: ' — Yasin Lemma8.5,and setZj, := Zy xyY".
The flatness of g implies there is a natural isomorphism of Oy-modules

SHIGQy )y @ M) = fLH Q) @ 7 M)
(where M’ := g*M) and by [RD] Theorem II1.10.5 property TRA4 we have
(8.10) g (TrfP) = TrgP .
LetA' = f)y/_y/ ~ A4 @44,s0A4— A is finite flat. Therefore

(8.11) A @, H:g(fzg/;1 @, M~ P Hﬁ,(fzgn,/;l, @y M).

! d
n GZO
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Here M’ = .‘My’, ~ 4 ®3 Mand ez B, is the decomposition of 4’ ® 4 B to local rings.
Write q&;,:;l’ — By Direct verification shows that under the isomorphism (8.11),

(8.12) 1Ty = 3 Try, .

! A
nwez

Since 4 — A’ is faithfully flat it follows that M — M’ is injective. In view of the
equalities (8.10) and (8.12), we conclude that it suffices to check for each n’ = x’ € Z,

that Try = Trj;” on Hﬁ,(ﬁg @ M'). But there is a section g: ¥’ — X', so we can

apply Step 1. =
PROOF OF THEOREM 8.1.

STEP 1 (UNIQUENESS). Suppose (y: K /s WAKS /s is another isomorphism sat-
isfying Tr, = TriP ,(C}). Then ¢ = aly for some a € T'(X, O}), and by assumption
for any closed point x € X and o € Ky/s(x) there is equality Trr(o) = Trr(acr). Now
writing s := 7(x), it’s known that

Hom o ( Ky /5(x). Ks)s())

is a free OX.x—module with basis Tr,.. Therefore a = 1 in (A)X,x. Because this is true for all
closed points we see that a = 1.

STEP 2. Assume X = A” X Sand f = 7. In this case there is a canonical isomorphism
of complexes

Ky /s = EQy gln] = Er' O5 = 7° Ky

(¢f. [RD] Theorem VI.3.1 and our Proposition 6.12), which we use to define (y: K, /s
mh 7@/3- Considerx € X, Z = {x_}red, s = 7(x) and assume x is closed in 7~ !(s). By
replacing S with a suitable open neighborhood of s we can assume Z — § is finite. Then
we are allowed to apply Lemma 8.8 with Y = S, M = Ks/s(s). It follows that (8.2)
commutes on 7 Ky s(x) C 7 Ky /s

STEP 3. Let X be any finite type S-scheme. For every affine open subscheme U C X
we can find a closed immersion h: U — A%. Write ¥ := A% and let 7y and 7y be the
structural morphisms. Now Tr;, induces an isomorphism

7({.//5 = ,’7‘[0111)/(0(/. KY/S)
and Tri" induces an isomorphism
0 K5 = Homy(Ou, 73 K-

So the isomorphism (y of Step 2 induces an isomorphism (;: %/s — w% ‘](S'/S, which
satisfies Try, = Tr;"‘f mu«(Cv). According to Step 1 the local isomorphisms (yy can be
glued to a global isomorphism (y.
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STEP4. Letf: X — Y be any S-morphism. To check (8.2) we may assume X and Y are
affine, and in view of Step 3 we may in factassume ¥ = A” x Sand X = A" x Y =~ A" xS,
Now apply Lemma 8.8 with x € X closed in its fiber and M := Ky /5s(0)- ]
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