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SMOOTH FORMAL EMBEDDINGS
AND THE RESIDUE COMPLEX

AMNON YEKUTIELI

ABSTRACT. Let ô:X ! S be a finite type morphism of noetherian schemes. A
smooth formal embedding of X (over S) is a bijective closed immersion X ² ÿ, where
ÿ is a noetherian formal scheme, formally smooth over S. An example of such an
embedding is the formal completion ÿ = Y

ÛX where X ² Y is an algebraic embedding.
Smooth formal embeddings can be used to calculate algebraic De Rham (co)homology.

Our main application is an explicit construction of the Grothendieck residue com-
plex when S is a regular scheme. By definition the residue complex is the Cousin
complex of ô!OS, as in [RD]. We start with I-C. Huang’s theory of pseudofunctors on
modules with 0-dimensional support, which provides a graded sheaf

L

q K q

XÛS
.We then

use smooth formal embeddings to obtain the coboundary operator é:K q

XÛS
! K q+1

XÛS
.

We exhibit a canonical isomorphism between the complex (K Ð

XÛS
Ò é) and the residue

complex of [RD]. When ô is equidimensional of dimension n and generically smooth
we show that H!nK Ð

XÛS
is canonically isomorphic to to the sheaf of regular differentials

of Kunz-Waldi [KW].
Another issue we discuss is Grothendieck Duality on a noetherian formal scheme

ÿ. Our results on duality are used in the construction of K Ð

XÛS
.

0. Introduction. It is sometimes the case in algebraic geometry, that in order to

define an object associated to a singular variety X, one first embeds X into a nonsingular

variety Y. One such instance is algebraic De Rham cohomology HÐ

DR(X) = HÐ(YÒ Ω̂
Ð),

where Ω̂
Ð is the completion alongX of theDe RhamcomplexΩ

Ð

YÛk
(relative to a base field

k of characteristic 0; cf. [Ha]). Now Ω̂
Ð coincides with the complete De Rham complex

Ω̂
Ð

ÿÛk
, where ÿ is the formal scheme Y

ÛX. It is therefore reasonable to ask what sort of

embedding X ² ÿ into a formal scheme would give rise to the same cohomology.

The answer we provide in this paper is that any smooth formal embeddingworks. Let

us define this notion. Suppose S is a noetherian base scheme and ô:X ! S is a finite

type morphism. A smooth formal embedding of X consists of morphisms X ! ÿ ! S,

where X ! ÿ is a closed immersion of X into a noetherian formal schemeÿ, which is a

homeomorphism of the underlying topological spaces; and ÿ ! S is a formally smooth

morphism. A smooth formal embedding X ² ÿ = Y
ÛX like in the previous paragraph is

said to be algebraizable. But in general X ² ÿ will not be algebraizable.

Smooth formal embeddings enjoy a few advantages over algebraic embeddings. First

consider an embedding X ² ÿ and an étale morphismU ! X. Then it is pretty clear (cf.

Proposition 2.4) that there is an étale morphism of formal schemes· ! ÿ and a smooth
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formal embedding U ² ·, st U ≤ ·ð
ÿ

X. Next suppose X ² ÿÒ„ are two smooth

formal embeddings, and we are given either a closed immersion ÿ ! „ or a formally

smooth morphism „ ! ÿ, which restrict to the identity on X. Then locally on X,

„ ≤ ÿð Spf Z[[t1Ò    Ò tn]](0.1)

(Theorem 2.6).

As mentioned above, De Rham cohomology can be calculated by smooth formal

embeddings. Indeed, when char S = 0, Hq
DR(XÛS) = Rô

Ł

Ω̂
Ð

ÿÛS
, where X ² ÿ is any

smooth formal embedding (Corollary 2.8). Moreover, in [Ye3] it is proved that De Rham

homology HDR
Ð

(X) can also be calculated by smooth formal embeddings, when S =

Spec k, k a field. According to the preceding paragraph, given an étale morphism g:U !

X there is a homomorphism gŁ: HDR
Ð

(X) ! HDR
Ð

(U), and we conclude that homology is

contravariant wrt étale morphisms. See Remark 2.11 for an application to D-modules

on singular varieties.

The main application of smooth formal embeddings in the present paper is for an

explicit construction of the Grothendieck residue complex K Ð
XÛS

, when S is any regular

scheme. By definition K Ð
XÛS

is the Cousin complex Eô!OS, in the notation of [RD]

Sections IV.3 and VII.3.

Recall that Grothendieck Duality, as developed by Hartshorne in [RD], is an abstract

theory, stated in the language of derived categories. Even though this abstraction is

suitable for many important applications, often one wants more explicit information. In

particular a significant amount of work was directed at finding an explicit presentation of

duality in terms of differential forms and residues.Mostly the focus was on the dualizing

sheaf °X, in various circumstances. The structure of °X as a coherent OX-module and

its variance properties are thoroughly understood by now, thanks to an extended effort

including [KW], [Li], [HK1], [HK2], [LS1] and [HS]. Regarding an explicit presentation

of the full duality theory of dualizing complexes, there have been some advances in recent

years, notably in the papers [Ye1], [SY], [Hu], [Hg1] [Sa] and [Ye3]. The later papers

[Hg2], [Hg3] and [LS2] somewhat overlap our present paper in their results, but their

methods are quite distinct; specifically, they do not use formal schemes.

We base our construction of K Ð
XÛS

on I-C. Huang’s theory of pseudofunctors on

modules with zero dimensional support (see [Hg1]). Suppose û:A ! B is a residually

finitely generated homomorphism between complete noetherian local rings, and M is

a discrete A-module (i.e. dim suppM = 0). Then according to [Hg1] there is a discrete

B-moduleû#M, equippedwith certain variance properties (cf. Theorem6.2). In particular

when û is residually finite there is a map Tr
û

:û#M ! M. Huang’s theory is developed

using only methods of commutative algebra.

Now given a point x 2 X with s: = ô(x) 2 S, consider the local homomorphism

û: ÔSÒs ! ÔXÒx. Define KXÛS(x) := û#H
d
¡s

ÔSÒs, where d := dim ÔSÒs, ¡s is the maximal

ideal and Hd
¡s

is local cohomology. Then KXÛS(x) is an injective hull of k(x) as OXÒx-

module. As a graded OX-module we take K Ð
XÛS

:=
L

x2X KXÛS(x), with the obvious
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grading. Then for any scheme morphism f :X ! Y, we deduce from Huang’s theory a

homomorphism of graded sheaves Trf : fŁK
Ð

XÛS
! K Ð

YÛS
.

The problem is to exhibit a coboundary operator é:K q

XÛS
! K q+1

XÛS
, and to determine

that the complexwe obtain is indeed isomorphic to Eô!OS. For this we use smooth formal

embeddings, as explained below.

In Section 5 we discuss Grothendieck Duality on formal schemes, extending the

theory of [RD]. We propose a definition of dualizing complexR Ð on a noetherian formal

scheme (Definition 5.2), and prove its uniqueness (Theorem 5.6). It is important to

note that the cohomology sheaves HqR Ð are discrete quasi-coherent O
ÿ

-modules, and

in general not coherent. We define the Cousin functor E associated to R Ð, and show

that ER Ð ≤ R Ð in the derived category, and ER Ð is a residual complex. On a regular

formal scheme ÿ the (surprising) fact is that RΓdiscOÿ

is a dualizing complex, and not

O
ÿ

(Theorem 5.14).

Now let U ² X be an affine open set and suppose U ² · is a smooth formal

embedding. Say n := rank Ω̂
1
·ÛS

, so Ω̂
n
·ÛS

is a locally free O
·

-module of rank 1,

and RΓdiscΩ̂
n
·ÛS

[n] is a dualizing complex. Since the Cousin complex is a sum

of local cohomology modules, there is a natural identification of graded O
·

-

modules ERΓdiscΩ̂
n
·ÛS

[n] ≤ K Ð
·ÛS

. This makes K Ð
·ÛS

into a complex. Since K Ð
UÛS
≤

Hom
·

(OUÒK Ð
·ÛS

) we come up with an operator é on K Ð
UÛS

= K Ð
XÛS
jU.

Given another smooth formal embeddingU ² ⁄ we have to compare the complexes

K Ð
·ÛS

andK Ð
⁄ÛS

. This is rather easy to do using the following trick. Choosing a sequence

a of generators of some defining ideal of·, and letting KÐ
1

(a) be the associated Koszul

complex, we obtain an explicit presentation of the dualizing complex, namely

RΓdiscΩ̂
n
·ÛS[n] ≤ KÐ

1

(a)
 Ω̂
n
·ÛS[n]

(cf. Lemma 4.5). By the structure of smooth formal embeddings we may assume there

is a morphism f :· ! ⁄ which is either formally smooth or a closed immersion. Then

choosing relative coordinates (cf. formula 0.1) and usingKoszul complexeswe produce a

morphism RΓdiscΩ̂
n
·ÛS

[n]! RΓdiscΩ̂
m
⁄ÛS

[m]. Applying the Cousin functor E we recover

Trf :K
Ð

·ÛS
! K Ð

⁄ÛS
as a map of complexes! We conclude that é is independent of· and

hence it glues to a global operator (Theorem 6.14).

If f :X ! Y is a finite morphism, then the trace map Trf : fŁK
Ð

XÛS
! K Ð

YÛS
, which is

provided by Huang’s theory, is actually a homomorphism of complexes (Theorem 7.1).

We show this by employing the same trick as above of going from Koszul complexes

to Cousin complexes, this time inserting a “Tate residue map” into the picture. We use

Theorem 7.1 to prove directly that if ô:X ! S is equidimensional of dimension n and

generically smooth, then H&nK Ð
XÛS

coincides with the sheaf of regular differentials °̃n
XÛS

of Kunz-Waldi [KW] (Theorem 7.10).

Finally in Theorem 8.1 we exhibit a canonical isomorphism êX between the complex

K Ð
XÛS

constructed here and the complex ô4OS = Eô!OS of [RD]. Given a morphism of

schemes f :X ! Y the isomorphisms êX and êY send Huang’s trace map Trf : fŁK
Ð

XÛS
!
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K Ð

YÛS
to the trace TrRDf : f

Ł

Eô

!
XOS ! Eô

!
YOS of [RD] Section VI.4. In particular it follows

that for f proper, Trf is a homomorphism of complexes (Corollary 8.3).

Sections 1 and 3 of the paper contain the necessary supplements to [EGA]. Perhaps

the most noteworthy result there is Theorem 1.22, which states that formally finite type

morphisms are stable under base change. This was also proved in [AJL2].

ACKNOWLEDGMENTS. The author wishes to thank L. Alonso, I-C. Huang, R. Hübl,

A. Jeremı́as, J. Lipman and P. Sastry for helpful discussions, some of which took place

during a meeting in Oberwolfach in May 1996.

1. Formally finite type morphisms. In this section we define formally finite type

morphisms between noetherian formal schemes. This mild generalization of the finite

type morphism of [EGA] I Section 10 has the advantage that it includes the completion

morphism ÿ ! ÿ

ÛZ (cf. Proposition 1.21), and still is preserved under base change

(Theorem 1.22).

We follow the conventions of [EGA] 0I Section 7 on adic rings. Thus an adic ring

is a commutative ring A which is complete and separated in the µ-adic topology, for

some ideal µ ² A. As for formal schemes, we follow the conventions of [EGA] I

Section 10. Throughout the paper all formal schemes are by default noetherian (adic)

formal schemes.

We write A[t] = A[t1Ò    Ò tn] for the polynomial algebra with variables t1Ò    Ò tn over

a ring A. The easy lemma below is taken from [AJL2].

LEMMA 1.1. Let A ! B be a continuous homomorphism between noetherian adic

rings, and let ∂ ² B be a defining ideal. Then the following are equivalent:

(i) A ! BÛ∂ is a finite type homomorphism.

(ii) For some homomorphism f :A[t] ! B extending A ! B one has ∂ = B Ð f"1(∂)

and A[t] ! BÛ∂ is surjective.

PROOF. (i) ) (ii): Say b1Ò    Ò bm generate ∂ as a B-module, and the images of

bm+1Ò    Ò bn generate BÛ∂ as an A-algebra. Then the homomorphism A[t] ! B, ti ! bi
has the required properties.

(ii) ) (i): Trivial.

DEFINITION 1.2. LetA ! B be a continuous homomorphismbetween adic noetherian

rings. We say that A ! B is of formally finite type (fft) if the equivalent conditions of

Lemma 1.1 hold. We shall also say that B is a formally finite type A-algebra.

EXAMPLE 1.3. Let I ² A be any open ideal, and let B := lim
 i AÛIi. Then A ! B is

fft

Recall that if A0 and B are adic A-algebras, with defining ideals µ

0 and ∂, the complete

tensor product A0
̂AB is the completion of A0 
A B wrt the topology defined by the

image of (µ0 
A B) ý (A0 
A ∂).

PROPOSITION 1.4. Let AÒA0 and B be noetherian adic rings, A ! B a fft homomor-

phism, and A ! A0 any continuous homomorphism. Then B0 := A0
̂AB is a noetherian

adic ring, and A0 ! B0 is a fft homomorphism.
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PROOF. Choose a homomorphism f :A[t]! B satisfying condition (ii) of Lemma 1.1.

Let ∂ ² B and µ0 ² A0 be defining ideals. Write C := A0 
A B and ∑ := µ0 Ð C + C Ð ∂,

so B0 = lim
 i CÛ∑

i. Consider the homomorphism f 0:A0[t] ! C, and let ∑0 := f 0
"1
(∑)

and dA0[t] := lim
 i A

0[t]Û∑0
i
. Since ∑ = C Ð ∑0, it follows from [CA] Section III.2.11

Proposition 14 that dA0[t]! B0 is surjective. Hence B0 is a noetherian adic ring with the

∂

0-adic topology, where ∂0 = B0 Ð ∑. Furthermore A0[t] ! B0Û∂0 is surjective, and we

conclude that A0 ! B0 is fft

In the next three examples A is an adic ring with defining ideal µ.

EXAMPLE 1.5. Recall that for a 2 A, the complete ring of fractions A
fag is the com-

pletion of the localized ring Aa wrt the µa-adic topology. Then A
fag ≤ A
̂

Z[t]Z[tÒ t
"1],

which proves that A! A
fag is fft

EXAMPLE 1.6. Given indeterminates t1Ò    Ò tn, the ring of restricted formal power

series Aftg = Aft1Ò    Ò tng is the completion of the polynomial ring A[t] wrt the

(A[t] Ð µ)-adic topology. Hence Aftg ≤ A
̂
Z

Z[t], which demonstrates that A ! Aftg is

fft

EXAMPLE 1.7. Consider the adic ring A
̂
Z

Z[[t]], where Z[[t]] = Z[[t1Ò    Ò tn]] is the

ring of formal power series, with the (t)-adic topology. Since inverse limits commute,

we see that A
̂
Z

Z[[t]] ≤ A[[t]], the ring of formal power series over A, endowed with

the
�

A[[t]] Ð (µ + t)
�

-adic topology. By Proposition 1.4, A! A[[t]] is fft

Let A ! B be a f.f.t homomorphism between adic rings. Choose a defining ideal

∂ ² B, and set Bi := BÛ∂i+1. For n ½ 0 define

Ω̂
n
BÛA := lim

 i
Ω

n
BiÛA
≤ lim
 i

Bi 
B Ω
n
BÛA

(cf. [EGA]0IV 20.7.14). Let Ω̂
Ð

BÛA
:=
L

n½0 Ω̂
n
BÛA

, which is a topologicalDGA(differential

graded algebra), with Ω̂
0
BÛA

= B. This definition is independent of the ideal ∂. SinceΩ
n
BiÛA

is finite over Bi it follows that Ω̂
n
BÛA

is finite over B.

REMARK 1.8. If A ! B is fft then Ω̂
Ð

BÛA
≤ Ω
ÐÒsep
BÛA

, where Ω
ÐÒsep
BÛA

is the separated

algebra of differentials defined in [Ye1] Section 1.5 for semi-topological algebras. Also

Ω̂
Ð

BÛA
is the universally finite differential algebra in the sense of [Ku].

PROPOSITION 1.9. Let L! A! B be fft homomorphismsbetween adic noetherian

rings.

1. A! B is formally smooth relative to L iff the sequence

0! B 
A Ω̂
1
AÛL

v
! Ω̂

1
BÛL

u
! Ω̂

1
BÛA ! 0

is split exact.

2. A! B is formally étale relative to L iff B
A Ω̂
1
AÛL
! Ω̂

1
BÛL

is bijective.
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PROOF. Use the results of [EGA] 0IV Section 20.7, together the fact that these are

finite B-modules.

PROPOSITION 1.10. Let f :A! B be a formally smooth, fft homomorphismbetween

noetherian adic rings. Then B is flat over A and Ω̂
1
BÛA

is a projective finitely generated

B-module.

PROOF. For flatness it suffices to show that if ¬ is a maximal ideal of B and ¡ :=

f!1(¬), then Â
¡

! B̂
¬

is flat (B̂
¬

is the completion of B
¬

with the¬-adic topology). Now

¬ is open, and hence so is ¡. Both A ! Â
¡

and B ! B̂
¬

are formally étale, therefore

Â
¡

! B̂
¬

is formally smooth. Because A ! B is fft it follows that AÛ¡ ! BÛ¬ is

finite type, and hence finite (and¡ is a maximal ideal). By [EGA] 0IV Theorem 19.7.1,

B̂
¬

is flat over Â
¡

.

The second assertion follows from [EGA] 0IV Theorem 20.4.9.

PROPOSITION 1.11. Let f :A ! B be a fft, formally smooth homomorphism of

noetherian adic rings, and let ≈ 2 Spf B. Suppose rank Ω̂
1
B̂
≈

ÛA
= n. Then:

1. For some b 2 B' ≈ there is a formally étale homomorphism f̃ :A[t] =

A[t1Ò    Ò tn]! B
fbg extending f .

2. For any ≈0 2 Spf B
fbg let ∆ := f̃!1(≈0). Then dA[t]

∆

! B̂
≈

0 is finite étale.

3. Let ƒ := f!1(≈). Assume Â
ƒ

is regular of dimension m, and tr degk(ƒ) k(≈) = l. Then

B̂
≈

is regular of dimension n +m' l.

PROOF. 1. By Proposition 1.10 we can find b st Ω̂
1
B
fbgÛA

≤ B
fbg 
B Ω̂

1
BÛA

is free,

say with basis db1Ò    Ò dbn. Then we get a homomorphism A[t] ! B
fbg, ti 7! bi. In

order to stay inside the category of adic rings we may replace A[t] with its completion

Aftg (cf. Examples 1.5–1.7 for the notation). According to Proposition 1.9 we see that

A[t]! B
fbg is formally étale relative to A. But since A! B

fbg is formally smooth, this

implies that A[t]! B
fbg is actually (absolutely) formally étale.

2. Consider the formally étale homomorphism k(∆) ! B̂
≈

0

Û∆B̂
≈

0 . Since ≈0 is an

open prime ideal it follows that A ! BÛ≈0 is a finite type homomorphism, so the field

extension k(∆) ! k(≈0) is finitely generated. By [Hg1] Lemma 3.9 we see that in fact

B̂
≈

0

Û∆B̂
≈

0 = k(≈0), so k(∆)! k(≈0) is finite separable. Hence dA[t]
∆

! B̂
≈

0 is finite étale.

3. Take ≈0 := ≈. Under the assumption the ring dA[t]
∆

is regular, and according to

[Ma] Section 14.c Theorem 23, dim dA[t]
∆

= m + n' l. By part 2, B̂
≈

is also regular, and

dim B̂
≈

= dim dA[t]
∆

.

Let us now pass to formal schemes.

Given a noetherian formal scheme ÿ, choose a defining ideal I ² O
ÿ

, and set

Xn := (ÿÒO
ÿ

ÛI n+1)(1.12)

Xn is a noetherian (usual) scheme, and ÿ ≤ limn! Xn in the category of formal schemes.

One possible choice for I is the largest defining ideal, in which case one has X0 = ÿred,

the reduced closed subscheme (cf. [EGA] I Section 10.5).
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LEMMA 1.13. Suppose f :ÿ ! „ is a morphism between noetherian formal schemes.

There are defining ideals I ² O
ÿ

and J ² O
„

st f"1J Ð O
ÿ

² I . Letting Xn and Yn be

the corresponding schemes (cf. (1.12)), we get morphisms of schemes fn:Xn ! Yn, with

f = limn! fn.

PROOF. See [EGA] I Section 10.6. For instance, one could take I to be the largest

defining ideal and J arbitrary.

DEFINITION 1.14. Let f :ÿ ! „ be a morphism of noetherian (adic) formal schemes.

We say that f is of formally finite type (or that ÿ is a formally finite type formal scheme

over „) if the morphism f0:X0 ! Y0 in Lemma 1.13 is finite type, for some choice of

defining ideals of ÿ and „.

Observe that if the morphism f0 is finite type then so are all the fn, and the definition

doesn’t depend on the defining ideals chosen.

REMARK 1.15. The definition of fft morphism we gave in an earlier version of the

paper was more cumbersome, though equivalent. The present Definition 1.14 is taken

from [AJL2], where the name is “pseudo-finite type morphism”, and I wish to thank

A. Jeremı́as for bringing it to my attention.

Here are a couple of examples of fft morphisms:

EXAMPLE 1.16. A finite type morphism ÿ ! „ (in the sense of [EGA] I Sec-

tion 10.13) is fft

EXAMPLE 1.17. Let X be a scheme of finite type over a noetherian scheme S, and

let X0 ² X be a locally closed subset. Then the completion ÿ = X
ÛX0

(see [EGA] I

Section 10.8) is of fft over S. Such a formal scheme is called algebraizable.

DEFINITION 1.18. A fft morphism f :ÿ ! „ is called formally finite (resp. formally

proper) if the morphism f0:X0 ! Y0 in Lemma 1.4 is finite (resp. proper), for some

choice of defining ideals.

EXAMPLE 1.19. If in Example 1.17 the subset X0 ² X is closed, then ÿ ! X is

formally finite. If X0 ! S is proper, then ÿ ! S is formally proper.

PROPOSITION 1.20. 1. An immersion ÿ ! „ is fft

2. If ÿ ! „ and „ ! ‰ are fft, then so is ÿ ! ‰.

3. Let · = Spf B and ⁄ = Spf A. Then a morphism · ! ⁄ is fft iff the ring

homomorphism A! B is fft

PROOF. Consider morphisms of schemes X0 ! Y0 etc. as in Lemma 1.13. For part 3

use condition (i) of Lemma 1.1.

PROPOSITION 1.21. Letÿ be a noetherian formal scheme and Z ² ÿ a locally closed

subset. Then there is a noetherian formal schemeÿ
ÛZ, with underlying topological space

Z, and the natural morphismÿ
ÛZ ! ÿ is fft
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PROOF. Pick an open subset· ² ÿ st Z ² · is closed, and choose a defining ideal

I of Z. Let O
‰

:= lim
 i O

·

ÛI i. According to [EGA] I Section 10.6,ÿ
ÛZ := (ZÒO

‰

) is a

noetherian formal scheme. Clearly ÿ
ÛZ ! ÿ is fft

In [EGA] I Section 10.3 it is shown that finite type morphisms between noetherian

formal schemes are preserved by base change. This is true also for fft morphisms:

THEOREM 1.22. Suppose ÿ, „ and „0 are noetherian formal schemes, ÿ ! „ is a

fft morphism, and „0 ! „ is an arbitrary morphism. Then ÿ0 := ÿ ð
„

„

0 is also

noetherian, and the morphismÿ0 ! „

0 is fft

PROOF. First note that the formal schemeÿ0 = ÿð
„

„

0 exists ([EGA] I Section 10.7).

For any affine open sets · = Spf B ² ÿ, ⁄0 = Spf A0 ² „0 and ⁄ = Spf A ² „ such

that · ! ⁄ and ⁄0

! ⁄, one has ·0 = ·ð
⁄

⁄

0 = Spf B
̂AA
0, and ·0

² ÿ

0 is open.

By Propositions 1.4 and 1.20, ·0 is a noetherian formal scheme, and ·0

! ⁄

0 is fft

But finitely many such ·0 cover ÿ0.

COROLLARY 1.23. If ÿ1, ÿ2 and „ are noetherian and ÿi ! „ are fft morphisms,

then ÿ3 := ÿ1 ð
„

ÿ2 is also noetherian, and ÿ3 ! „ is fft

REMARK 1.24. I do not know an example of a fft formal scheme ÿ over a scheme

S which is not locally algebraizable. (Locally algebraizable means there is an open

coveringÿ =
S

·i, with ·i ! S algebraizable, in the sense of Example 1.17.)

DEFINITION 1.25. A morphism of formal schemes ÿ ! „ is said to be formally

smooth (resp. formally étale) if, given a (usual) affine scheme Z, a morphism Z ! „

and a closed subscheme Z0 ² Z defined by a nilpotent ideal, the map Hom
„

(ZÒ ÿ) !

Hom
„

(Z0Ò ÿ) is surjective (resp. bijective).

This is the definition of formal smoothness used in [EGA] IV Section 17.1. We shall

also require the next notion.

DEFINITION 1.26. A morphism g:ÿ ! „ between noetherian formal schemes is

called étale if it is of finite type (see [EGA] I Section 10.13) and formally étale.

Note that if „ is a usual scheme, then so is ÿ, and g is an étale morphism of schemes.

According to [EGA] I Proposition 10.13.5 and by the obvious properties of formally

étale morphisms, if · ! ÿ and ⁄ ! ÿ are étale, then so is ·ð
ÿ

⁄ ! ÿ. Hence for

fixed ÿ, the category of all étale morphisms · ! ÿ forms a site (cf. [Mi] Chapter II

Section 1). We call this site the small étale site on ÿ, and denote it by ÿet.

2. Smooth formal embeddings and De Rham cohomology. Fix a noetherian base

scheme S and a finite type S-scheme X.

DEFINITION 2.1. A smooth formal embedding (s.f.e.) of X (over S) is the following

data:

(i) A noetherian formal scheme ÿ.

(ii) A formally finite type, formally smooth morphism ÿ ! S.
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(iii) An S-morphism X ! ÿ, which is a closed immersion and a homeomorphism

between the underlying topological spaces.

We shall refer to this by writing “X ² ÿ is a sfe”

EXAMPLE 2.2. Suppose Y is a smooth S-scheme, X ² Y a locally closed subset, and

ÿ = Y
ÛX the completion. ThenX ² ÿ is a smooth formal embedding.Such an embedding

is called an algebraizable embedding (cf. Remark 1.24).

The smooth formal embeddings of X form a category, in which a morphism of em-

beddings is an S-morphism of formal schemes f :ÿ ! „ inducing the identity on X. Note

that any morphism of embeddings f :ÿ ! „ is affine (cf. [EGA] I Proposition 10.6.12),

and the functor f
Ł

:Mod (ÿ) ! Mod („) is exact. Let ÿ and „ be two smooth formal

embeddings of X. Consider the formal schemeÿðS„. Then the diagonal∆:X ! ÿðS„

is an immersion (we do not assume our formal schemes are separated!).

PROPOSITION 2.3. The completion (ÿ ðS „)
ÛX of ÿ ðS „ along ∆(X) is a smooth

formal embedding of X, and moreover it is a product of ÿ and „ in the category of

smooth formal embeddings.

PROOF. By Theorem 1.22 and Proposition 1.21 it follows that (ÿðS „)
ÛX is formally

finite type over S, so in particular it is noetherian. Clearly (ÿ ðS „)
ÛX ! S is formally

smooth.

The benefit of using formal rather than algebraic embeddings is in:

PROPOSITION 2.4. Let X ² ÿ be a smooth formal embedding (over S) and g:U !

X an étale morphism. Then there exists a noetherian formal scheme · and an étale

morphism ĝ:· ! ÿ stU ≤ ·ð
ÿ

X. ĝ:· ! ÿ is unique (up to a unique isomorphism),

and moreover U! · is a smooth formal embedding.

PROOF. This is essentially the “topological invariance of étale morphisms”, (cf.

[EGA] IV Section 18.1 or [Mi] Chapter I Theorem 3.23). Let I := Ker(O
ÿ

! OX)

and Xi := (ÿÒO
ÿ

ÛI i+1); so X = X0. For every i there is a unique étale morphism

gi:Ui ! Xi st U ≤ Ui ðXi
X. Identifying the underlying topological spaces of Ui and

U we get an inverse system of sheaves fOUi
g on U. Setting O

·

:= lim
 i OUi

we get a

noetherian formal scheme· having the proclaimed properties (cf. [EGA] I Section 10.6).

Thus we can considerÿet as a “smooth formal embedding” of Xet. If M is a sheaf on

Xet and U ! X is an étale morphism, we denote by M jU the restriction of M to UZar.

COROLLARY 2.5. Let X ² ÿ be a smooth formal embedding over S. Then there is

a sheaf of DGAs Ω̂
Ð

ÿetÛS
on Xet, with the property that for each g:U ! X in Xet and

corresponding ĝ:· ! ÿ in ÿet, one has Ω̂
Ð

ÿetÛS
jU ≤ Ω̂

Ð

·ÛS
.
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PROOF. By Proposition 1.9, Ω̂
p

·ÛS
≤ ĝŁΩ̂

p

ÿÛS
. Now Ω̂

p

ÿÛS
is coherent, so we can use

[Mi] Chapter II Corollary 1.6 (which applies to our étale site ÿet).

For smooth formal embeddings, closed immersions and smoothmorphisms are locally

trivial, in the following sense. Recall that for an adic algebra A, the ring of formal power

series A[[t]] = A[[t1Ò    Ò tn]] is adic (cf. Example 1.7).

THEOREM 2.6. Let f :ÿ ! „ be a morphism of smooth formal embeddings of X over

S. Assume f is a closed immersion (resp. formally smooth). Then, given a point x 2 X,

there are affine open sets U ² X and W ² S, with x 2 U and U ! W, satisfying

condition (Ł) below.

(*) Let W = SpecL, and let Spf A ² „ and Spf B ² ÿ be the affine formal schemes

supported on U. Then there is an isomorphism of topological L-algebras A ≤ B[[t]]

(resp. B ≤ A[[t]]) such that f Ł:A! B is projection modulo (t) (resp. the inclusion).

PROOF. 1. Assume f is a closed immersion. According to [EGA] 0IV Theorem 19.5.3

and Corollary 20.7.9, by choosing U = SpecC small enough, and setting I := Ker(f Ł :

A! B), we obtain an exact sequence

0! IÛI2 ! B 
A Ω̂
1
AÛL ! Ω̂

1
BÛL ! 0

of free B-modules. Choose a1Ò    Ò anÒ b1Ò    Ò bm 2 A st faig is a B-basis of IÛI
2, and

fdbig is a B-basis of Ω̂
1
BÛL

.

By the proof of Proposition 1.11 the homomorphisms L[s] ! B, L[sÒ t] ! A and

L[sÒ t]! B[[t]], sending si 7! bi and ti 7! ai, are all formally étale. Take µ := Ker(A!

C), which is a defining ideal of A, containing A Ð (t) = I. Let ∂ := µ ÐB, which is a defining

ideal of B. Hence the ideal ∑ = B[[t]] Ð (∂Ò t) is a defining ideal of B[[t]]. By formal

étaleness of L[sÒ t]! A and L[sÒ t]! B[[t]], the isomorphism AÛµ ≤ B[[t]]Û∑ ≤ C lifts

uniquely to an isomorphism A ≤ B[[t]].

2. Now assume f is formally smooth. Let ∂ := Ker(B! C), which is a defining ideal

of B. Since A ! BÛ∂ is surjective it follows that (BÛ∂) 
B Ω̂
1
BÛA

is generated by d(∂).

By Nakayama’s Lemma we see that Ω̂
1
BÛA

= B Ð d(∂). After shrinking U sufficiently we

get Ω̂
1
BÛA

=
Ln

i=1 B Ð dbi with bi 2 ∂, and the homomorphism A[[t]] ! B, ti 7! bi, is

formally étale. Continuing like in part 1 of the proof we conclude that this is actually an

isomorphism.

THEOREM 2.7. Suppose S is a noetherian scheme of characteristic 0, and X is a finite

type S-scheme. Let f :ÿ ! „ be a morphism of smooth formal embeddings of X. Then the

DGA homomorphism f Ł: Ω̂Ð
„ÛS
! Ω̂

Ð

ÿÛS
is a quasi-isomorphism. Moreover, if g:ÿ ! „

is any other morphism, then H(f Ł) = H(gŁ).

PROOF. The assertions of the theorem are both local, and they will be proved in three

steps.
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STEP 1. Assume f is a closed immersion. By Theorem 2.6 it suffices to check the

case f : Spf B = · ! Spf A = ⁄ with A ≤ B[[t]] as topological L-algebras. We must

show that Ω̂
Ð

AÛL
! Ω̂

Ð

BÛL
is a quasi-isomorphism. But sinceQ ² L, this is the well known

Poincaré Lemma for formal power series (cf. [Ha] Chapter II Proposition 1.1, or [Ye3]

Lemma 7.5).

STEP 2. Suppose f1Ò f2:ÿ ! „ are two morphisms. We wish to show that H(f Ł1 ) =

H(f Ł2 ). First consider

„

diag
! („ ðk „)

ÛX

pi
! „

Since the diagonal immersion is closed, we can apply the result of the previous paragraph

to it. We conclude that H(pŁ1) = H(pŁ2), and that these are isomorphisms. But looking at

ÿ

diag
! (ÿðk ÿ)

ÛX

f1ðf2
! („ ðk „)

ÛX

pi
! „

we see that our claim is proved.

STEP 3. Consider an arbitrary morphism f :ÿ ! „. Take any affine open set U ² X,

with corresponding affine formal schemes SpfB = · ² ÿ and Spf A = ⁄ ² „.

The definition of formal smoothness implies there is some morphism of embeddings

g:⁄ ! ·. This morphism will not necessarily be an inverse of f j
·

, but nonetheless,

according to Step 2, H(gŁ) andH(f jŁ
·

) will be isomorphisms betweenHΩ̂
Ð

·ÛS
andHΩ̂

Ð

⁄ÛS
,

inverse to each other.

In [Ha] the relative De Rham cohomology HÐDR(XÛS) was defined. In the situation of

Example 2.2, where X ² Y is a smooth algebraic embedding of S-schemes,ÿ = Y
ÛX and

ô:ÿ ! S is the structural morphism, the definition is HÐDR(XÛS) = HÐRô
Ł

Ω̂
Ð

ÿÛS
. Even if

X is not globally embeddable, HÐDR(XÛS) can still be defined, by taking a system of local

embeddings fUi ² Vig, X =
S

Ui, and putting together a “Čech-De Rham” complex (cf.

[Ha] pp. 28–29; it seems one should also assume X separated and the Ui are affine).

COROLLARY 2.8. Suppose S has characteristic 0. Let X ² ÿ be any smooth formal

embedding (not necessarily algebraizable). Then HÐDR(XÛS) = HÐRô
Ł

Ω̂
Ð

ÿÛS
as graded

OS-algebras.

PROOF. Assume for simplicity that a global smooth algebraic embedding exists.

The general case, involving a system of embeddings, only requires more bookkeeping.

Say X ² Y is the given algebraic embedding, and let „ := Y
ÛX. Now the two formal

embeddings ÿ and „ are comparable: their product (ÿ ðS „)
ÛX maps to both. By the

theorem we get quasi-isomorphic DGAs on X.

REMARK 2.9. From Corollaries 2.5 and 2.8 we see that there is a sheaf of DGAs

Ω̂
Ð

ÿetÛS
on Xet, with the property that for any U ! X étale, HÐDR(UÛS) = HÐΓ(UÒ Ω̂Ð

ÿetÛS
).

As will be shown in [Ye4], the DGA Ω̂
Ð

ÿÛS
has an adelic resolution A Ð

ÿÛS
, where ApÒq

ÿÛS
=

A

q
red(Ω̂

p

ÿÛS
), Beilinson’s sheaf of adeles. The adeles calculate cohomology: HÐDR(XÛS) =

HÐΓ(XÒAÐ
ÿÛS

). Furthermore the adeles extend to an étale sheaf A Ð
ÿetÛS

.
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REMARK 2.10. Suppose S = Spec k, a field of characteristic 0. In [Ye3] a complex

F Ð

ÿ

, called the De Rham-residue complex, is defined. One has Hi(XÒ F Ð

ÿ

) = HDR
!i (X), the

De Rhamhomology.Moreover there is a sheafF Ð

ÿet
onXet, which directly implies that the

De Rham homology is contravariant for étale morphisms. Furthermore F Ð

ÿ

is naturally a

DG A Ð

ÿ

-module,

REMARK 2.11. Smooth formal embeddings can be also used to define the category

of D-modules on a singular scheme X (in characteristic 0). Say X ² ÿ is such an

embedding. Then a formal version of Kashiwara’s Theorem (cf. [Bo] Theorem VI.7.11)

implies that Mod disc(D
ÿ

), the category of discrete modules over the ring of differential

operators D
ÿ

is, as an abelian category, independent of ÿ.

3. Quasi-coherent sheaves on formal schemes. Letÿbe a noetherian (adic) formal

scheme. By definition, a quasi-coherent sheaf on ÿ is an O
ÿ

-module M , such that on

sufficiently small open sets· ² ÿ there are exact sequencesO (J)
·

! O(I)
·

! M j

·

! 0,

for some indexing sets IÒ J (cf. [EGA] 0I Section 5.1). We shall denote by Mod (ÿ)

(resp. Coh (ÿ), resp.QCo (ÿ)) the category of O
ÿ

-modules (resp. the full subcategory of

coherent, resp. quasi-coherent, modules). It seems that the only important quasi-coherent

sheaves are the coherent and the discrete ones (Definition 3.7). Nevertheless we shall

consider all quasi-coherent sheaves, at the price of a little extra effort.

REMARK 3.1. There is some overlap between results in this section and [AJL2].

Let A be a noetherian adic ring, and let · := Spf A be the affine formal scheme. Then

there is an exact functor M 7! M4 from the category Mod f(A) of finitely generated

A-modules to Mod (·). It is an equivalence betweenMod f(A) and Coh (·) (see [EGA] I

Section 10.10).

PROPOSITION 3.2. The functor M 7! M4 extends uniquely to a functor Mod (A) !

Mod (·), which is exact and commutes with direct limits. The O
·

-module M4 is quasi-

coherent. For any O
·

-module M the following are equivalent:

(i) M ≤ M4 for some A-module M.

(ii) M ≤ lim
ã!

M
ã

for some directed system fM
ã

g of coherentO
·

-modules.

(iii) For every affine open set ⁄ = Spf B ² ·, one has Γ(⁄Ò M ) ≤ B 
A Γ(·Ò M ).

PROOF. Take any A-moduleM and write it asM = lim
ã!

M
ã

with finitely generated

modulesM
ã

. Define a presheafM4 on · by Γ(⁄ÒM4) := lim
ã!

Γ(⁄ÒM4

ã

), for ⁄ ² ·

open. Since · is a noetherian topological space it follows that M4 is actually a sheaf.

By construction M 7! M4 commutes with direct limits. Since the functor is exact on

Mod f(A), it’s also exact on Mod (A).

The implication (i) ) (ii) is becauseM4

ã

is coherent. (ii) ) (iii): for such B one has

Γ(⁄Ò M
ã

) ≤ B 
A Γ(·Ò M
ã

); now apply lim
ã!

. (iii) ) (i): set M := Γ(·Ò M ). Then

for every affine ⁄ we have Γ(⁄Ò M ) = B 
A M = Γ(⁄ÒM4), so M = M4.

Finally the moduleM has a presentation A(I)
! A(J) ! M ! 0. By exactness we get

a presentation forM4.

It will be convenient to write O
·


A M instead ofM4.
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REMARK 3.3. I do not know whether Serre’s Theorem holds, namely whether every

quasi-coherent O
·

-module M is of the form M ≤ O
·


A M. Thus it may be that

QCo (·) is not closed under direct limits in Mod (·) (cf. Lemma 4.1).

COROLLARY 3.4. Let M be a quasi-coherent O
ÿ

-module and x 2 ÿ a point. Then

there is an open neighborhood· = Spf A of x stM j

·

≤ O
·


A Γ(·ÒM ). For such·

one has H1(·ÒM ) = 0.

PROOF. Choose·affine such thatM j

·

has a presentationO (J)
·

û

! O(I)
·

†

! M j

·

! 0.

DefineM := Coker(û:A(I) ! A(J)). Applying the exact functor O
·


A to A(I) û

! A(J) !

M ! 0 we get M j

·

≤ O
·


A M. By the propositionM ≤ Γ(·ÒM ). As for H1(·Ò*),

use the fact that it vanishes on coherent sheaves.

PROPOSITION 3.5. Let M be coherent and N quasi-coherent (resp. coherent). Then

Hom O
ÿ

(M ÒN ) is quasi-coherent (resp. coherent).

PROOF. For small enough· = Spf Awe getM j

·

≤ O
·


AM andN j

·

≤ O
·


AN.

Now for any⁄ = Spf B ² ·, A! B is flat; so

Hom B(B 
A MÒB 
A N) ≤ B
A Hom A(MÒN)

Hence

Hom O
ÿ

(M ÒN )j
·

≤ O
·


A Hom A(MÒN)

Recall that a subcategory B of an abelian category A is called a thick abelian subcat-

egory if for any exact sequenceM1 ! M2 ! N ! M3 ! M4 in A with Mi 2 B, also

N 2 B.

PROPOSITION 3.6. The categoryQCo (ÿ) is a thick abelian subcategory of Mod (ÿ).

PROOF. First observe that the kernel and cokernel of a homomorphism M ! N

between quasi-coherent sheaves is also quasi-coherent. This is immediate from Corol-

lary 3.4 and Proposition 3.2. So it suffices to prove: 0! M 0

! M ! M 00

! 0 exact,

M 0

ÒM 00 quasi-coherent) M quasi-coherent. For a sufficiently small affine open for-

mal subscheme· = Spf A we will get, by Corollary 3.4, that H1(·ÒM 0) = 0. Hence the

sequence

0! Γ(·ÒM 0)! M = Γ(·ÒM )! Γ(·ÒM 00)! 0

is exact. This implies that M j

·

≤ O
·


A M.

DEFINITION 3.7. Let M be an O
ÿ

-module. Define

ΓdiscM := lim
n!

Hom O
ÿ

(O
ÿ

ÛI n
ÒM ) ² M

where I ² O
ÿ

is any defining ideal. M is called discrete if ΓdiscM = M .

PROPOSITION 3.8. Let M be a quasi-coherent O
ÿ

-module. Then ΓdiscM is quasi-

coherent, and in fact is a direct limit of discrete coherent O
ÿ

-modules.
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PROOF. Let Xn be as in formula (1.12) and Mn := Hom O
ÿ

(OXn
Ò M ), so ΓdiscM =

limn!Mn. If M is quasi-coherent, then Mn is a quasi-coherent OXn
-module (by Propo-

sition 3.5), and hence is a direct limit of coherent modules.

4. Some derived functors of O
ÿ

-modules. Denote by Mod disc(ÿ) (resp.

QCo disc(ÿ)) the full subcategory of Mod (ÿ) consisting of discrete modules (resp. dis-

crete quasi-coherent modules). These are thick abelian subcategories. In this section we

study injective objects in the category QCo disc(ÿ), and introduce the discrete Cousin

functor ERΓdisc.

LEMMA 4.1. Mod disc(ÿ) is a locally noetherian category, with enough injectives.

PROOF. A family of noetherian generators consists of the sheavesOU, where X ² ÿ

is a closed subscheme, U ² X is an open set, and OU is extended by 0 to all of X (cf.

[RD] Theorem II.7.8). If J 2 Mod (ÿ) is injective then ΓdiscJ is injective in Mod disc(ÿ).

Given a point x 2 ÿ let J(x) be an injective hull of the residue field k(x) over the

local ring O
ÿÒx, and let J (x) be the corresponding O

ÿ

-module. Then J (x) is a discrete

quasi-coherent sheaf, constant on fxg, and it is injective in Mod (ÿ).

PROPOSITION 4.2. 1. QCo disc(ÿ) is a locally noetherian category with enough injec-

tives.

2. Let J 2 QCo disc(ÿ) be an injective object. Then J is injective in Mod disc(ÿ) and

injective on Coh (ÿ). For any M 2 Mod disc(ÿ) orM 2 Coh (ÿ) the sheafHom
ÿ

(M Ò J )

is flasque.

PROOF. 1. Let N 2 QCo disc(ÿ). Choose a defining ideal I of ÿ and let X0 be

the scheme (ÿÒ O
ÿ

ÛI ). Define N0 := Hom
ÿ

(OX0 Ò N ), which is a quasi-coherent OX0-

module. Then the injective hull of N0 in Mod (X0) is isomorphic to
L

ã

J0(xã) for some
x
ã

2 X0. According to Proposition 3.8,QCo disc(ÿ) is locally noetherian, and this implies

that
L

ã

J (x
ã

) is an injective object in it. NowN0 ² N andN0 ²

L

ã

J (x
ã

) are essential

submodules, so there is some homomorphism N !

L

ã

J (x
ã

), which is necessarily

injective and essential.

2. If N = J is injective in QCo disc(ÿ), it follows that J !

L

ã

J (x
ã

) is an isomor-

phism. Since Mod disc(ÿ) is locally noetherian it follows that J is injective in it. Given

M 2 Mod disc(ÿ) and open sets ⁄ ² · ² ÿ consider the sheaves M j

⁄

² M j

·

² M
(extension by 0). Then Hom

ÿ

(M j

·

Ò J ) ! Hom
ÿ

(M j

⁄

Ò J ) is surjective.

The category Coh (ÿ) is noetherian, and therefore the functorHom
ÿ

()Ò J ) is exact on

it. Given M 2 Coh (ÿ) we have Hom
ÿ

(M Ò J ) ≤

L

Hom
ÿ

�

M Ò J (x
ã

)
�

which is clearly

flasque.

COROLLARY 4.3. Let J Ð

2 D
+
�

QCo disc(ÿ)
�

be a complex of injectives. Then for any

M Ð

2 D
$

�

Mod disc(ÿ)
�

or M Ð

2 D
$

�

Coh (ÿ)
�

one has

RHom
ÿ

(M Ð

Ò J Ð) ≤ Hom
ÿ

(M Ð

Ò J Ð)

RHom
ÿ

(M Ð

Ò J Ð) ≤ Hom
ÿ

(M Ð

Ò J Ð) ≤ Γ

�

ÿÒ Hom
ÿ

(M Ð

Ò J Ð)
�
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PROOF. The first equality follows from Proposition 4.2 (cf. [RD] Section I.6). Since

each sheaf Hom
ÿ

(M p
Ò J q) is flasque we obtain the second equality.

The functor Γdisc:Mod (ÿ) ! Mod disc(ÿ) has a derived functor

RΓdisc:D
+
�

Mod (ÿ)
�

! D
+
�

Mod disc(ÿ)
�

Ò

which is calculated by injective resolutions.

There is anotherway to compute cohomologywith supports. Let t be an indeterminate.

Define KÐ(t) to be the Koszul complex Z[t]
Ðt

! Z[t], in dimensions 0 and 1, and let

KÐ

1

(t) := limi!KÐ(ti). Given a sequence t = (t1Ò    Ò tn) defineK
Ð

1

(t) := KÐ

1

(t1)
 Ð Ð Ð 


KÐ

1

(tn), a complex of flat Z[t]-modules (in fact it’s a commutative DGA). If A is a

noetherian commutative ring and a = (a1Ò    Ò an) 2 An, then we write KÐ

1

(a) instead of

KÐ

1

(t) 


Z[t] A. Now suppose µ ² A is an ideal, and a are generators of µ. Then for any

MÐ

2 D
+
�

Mod (A)
�

there is a natural isomorphism

RΓ
µ

MÐ

≤ KÐ

1

(a)
 MÐ(4.4)

in D
�

Mod (A)
�

. We refer to [LS1], [Hg1] and [AJL1] for full details and proofs. For

sheaves one has:

LEMMA 4.5. Suppose a 2 Γ(·Ò O
·

)n generates a defining ideal of the formal scheme

·. Then for any M Ð

2 D
+
�

Mod (·)
�

there is a natural isomorphism

RΓdiscM
Ð

≤ KÐ

1

(a) 
 M Ð



PROOF. Let I := O
·

Ð a. Then Γdisc = ΓI , and we may use [AJL1] Lemma 3.1.1.

PROPOSITION 4.6. Let X be a noetherian scheme, X0 ² X a closed subset, ÿ = X
ÛX0

and g:ÿ ! X the completion morphism. Then for any M Ð

2 D
+
qc

�

Mod (X)
�

there is

a natural isomorphism gŁRΓX0
M Ð

≤ RΓdiscg
ŁM Ð. In particular for a single quasi-

coherent sheaf M one has gŁΓX0
M ≤ Γdiscg

ŁM .

PROOF. Let M Ð

! J Ð be a resolution by quasi-coherent injectives. Since g is flat we

get

û: gŁRΓX0
M Ð = gŁΓX0

J Ð

! Γdiscg
ŁJ Ð

! RΓdiscg
ŁJ Ð = RΓdiscg

ŁM Ð



Locally on any affine open U ² X, with U0 = U \ X0 and · = U
ÛU0

, we can find

a in Γ(UÒ OU ) which define U0. It’s known that ΓU0
(J Ð

jU) ! KÐ

1

(a) 
 (J Ð

jU) is a

quasi-isomorphism. Since g is flat we obtain quasi-isomorphisms

ûj

·

: gŁΓU0
(J Ð

jU) ! gŁ
�

KÐ

1

(a) 
 (J Ð

jU)
�

≤ KÐ

1

(a) 
 gŁ(J Ð

jU) = RΓdiscg
Ł(J Ð

jU)

It follows that û is an isomorphism.

Denote by D+d
�

Mod (ÿ)
�

the subcategory of complexes with discrete cohomologies.

LEMMA 4.7. 1. If M Ð

2 D
+
d

�

Mod (ÿ)
�

then RΓdiscM ! M is an isomorphism.

2. If M Ð

2 D
+
qc

�

Mod (ÿ)
�

then RΓdiscM 2 D
+
qc

�

Mod disc(ÿ)
�

.
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PROOF. From Lemma 4.5 we see that the functor RΓdisc has finite cohomological

dimension. By way-out reasons (cf. [RD] Section I.7) we may assume M Ð is a single

discrete (resp. quasi-coherent) sheaf. Then the claims are obvious (use Proposition 3.8

for 2).

THEOREM 4.8. The identity functor D+
�

QCo disc(ÿ)
�

! D
+
dqc

�

Mod (ÿ)
�

is an equiva-

lence of categories. In particular any M Ð

2 D
+
dqc

�

Mod (ÿ)
�

is isomorphic to a complex

of injectives J Ð

2 D
+
�

QCo disc(ÿ)
�

.

PROOF. According to Lemma 4.7 we see that D+qc
�

Mod disc(ÿ)
�

! D
+
dqc

�

Mod (ÿ)
�

is an equivalence with quasi-inverse RΓdisc. Next, by Proposition 4.2 and by [RD]

Proposition I.4.8, the functor D+
�

QCo disc(ÿ)
�

! D
+
qc

�

Mod disc(ÿ)
�

is an equivalence.

REMARK 4.9. In [AJL2] it is proved that D
�

QCo disc(ÿ)
�

! Ddqc

�

Mod (ÿ)
�

is an

equivalence, using the quasi-coherator functor.

Suppose there is a codimension function d:ÿ ! Z, i.e. a function satisfying d(y) =

d(x) + 1 whenever (xÒ y) is an immediate specialization pair. Then there is a filtration

Ð Ð Ð ¦ Zp ¦ Zp+1
¦ Ð Ð Ð of ÿ, with Zp := fF ² ÿ j F closedÒ d(F) ½ pg. Here

d(F) := minfd(x) j x 2 Fg. This filtration determines a Cousin functor

E:D+
�

Ab (ÿ)
�

! C
+
�

Ab (ÿ)
�

(4.10)

where C+ denotes the abelian category of bounded below complexes (cf. [RD] Sec-

tion IV.1).

Given a point x 2 ÿ and a sheaf M 2 Ab (ÿ) we let ΓxM := (Γ
fxg

M )x ² Mx. The

derived functor RΓx:D
+
�

Ab (ÿ)
�

! D(Ab ) is calculated by flasque sheaves. Let us write

Hq
xM := HqRΓxM , the local cohomology, and let ix: fxg ! ÿ be the inclusion.

According to [RD] Section IV.1 Motif F one has a natural isomorphism

EpM Ð = H p

Zp
ÛZp+1M

Ð

≤

M

d(x)=p

ixŁH
p
xM

Ð

(4.11)

Observe that if M 2 D
+
�

Mod (ÿ)
�

then EM Ð

2 C
+
�

Mod (ÿ)
�

and RΓxM 2

D
+
�

Mod (O
ÿÒx)

�

.

Unlike an ordinary scheme, on a formal scheme the topological support of a quasi-

coherent sheaf does not coincide with its algebraic support. But for discrete sheaves

these two notions of support do coincide. This suggests:

DEFINITION 4.12. Given M 2 D
+
�

Mod (ÿ)
�

its discrete Cousin complex is

ERΓdiscM
Ð.

THEOREM 4.13. For any M Ð

2 D
+
qc

�

Mod (ÿ)
�

the complex ERΓdiscM
Ð consists of

discrete quasi-coherent sheaves. So we get a functor

ERΓdisc:D
+
qc

�

Mod (ÿ)
�

! C
+
�

QCo disc(ÿ)
�
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PROOF. According to Theorem 4.8 we may assume N Ð = RΓdiscM
Ð is in

D
+
�

QCo disc(ÿ)
�

. On any open formal subscheme · = Spf A we get N Ð = O
·


A NÐ,

where Nq = Γ(·ÒNq) (cf. Propositions 3.8 and 3.2). Then for x 2 ·,

RΓxRΓdiscM
Ð = RΓxN

Ð = RΓ
ƒ

NÐ

ƒ

where ƒ ² A is the prime ideal of x. Hence Hq
xRΓdiscM

Ð = Hq
ƒ

NÐ

ƒ

is ƒ-torsion. So the

sheaf corresponding to x in (4.11) is quasi-coherent and discrete.

5. Dualizing complexes on formal schemes. In this section we propose a theory

of duality on noetherian formal schemes. There is a fundamental difference between this

theory and the duality theory on schemes, as developed in [RD]. A dualizing complex

R Ð on a scheme X has coherent cohomology sheaves; this will not be true on a general

formal schemeÿ, where HqR Ð are discrete quasi-coherent sheaves (Definition 5.2). We

prove uniqueness of dualizing complexes (Theorem 5.6), and existence in some cases

(Proposition 5.11 and Theorem 5.14).

Before we begin here is an instructive example due to J. Lipman.

EXAMPLE 5.1. Consider the ring A = k[[t]] of formal power series over a field k.

Let ÿ := Spf A, which has a single point. The modules A and J = H1
(t)A both have

finite injective dimension and satisfy HomA(AÒA) = HomA(JÒ J) = A. Which one is a

dualizing complex on ÿ? We will see that J is the correct answer (Definition 5.2), and

A is a “fake” dualizing complex (Theorem 5.14). The relevant relation between them is:

J = RΓdiscA[1].

SupposeN Ð

2 D
+
�

Mod (ÿ)
�

.We sayN Ð has finite injective dimension onQCodisc(ÿ)

if there is an integer q0 st for all q Ù q0 andM 2 QCo disc(ÿ), H
qRHom

ÿ

(M Ò N Ð) = 0.

DEFINITION 5.2. A dualizing complex on ÿ is a complex R Ð

2 D
b
dqc

�

Mod (ÿ)
�

satis-

fying:

(i) R Ð has finite injective dimension on QCo disc(ÿ).

(ii) The adjunction morphism O
ÿ

! RHom
ÿ

(R Ð

Ò R Ð) is an isomorphism.

(iii) For some defining ideal I of ÿ, RHom
ÿ

(O
ÿ

ÛI Ò R Ð) has coherent cohomology

sheaves.

LEMMA 5.3. Let N Ð

2 D
+
dqc

�

Mod (ÿ)
�

. Then N Ð has finite injective dimension on

QCo disc(ÿ) iff it is isomorphic to a bounded complex of injectives in QCo disc(ÿ).

PROOF. Because of Theorem 4.8 and Corollary 4.3, the proof is just like [RD]

Proposition I.7.6.

In light of this, we can, when convenient, assume the dualizing complex R Ð is a

bounded complex of discrete quasi-coherent injectives.

PROPOSITION 5.4. Let R Ð be a dualizing complex on ÿ. Then for any M Ð

2

D
b
c

�

Mod (ÿ)
�

the morphism of adjunction

M Ð

! RHom
ÿ

�

RHom
ÿ

(M Ð

Ò R Ð)Ò R Ð

�

is an isomorphism.
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PROOF. We can assume ÿ is affine, and so replace M Ð with a complex of coherent

sheaves.By “way-out” arguments (cf. [RD] Section I.7) we reduce to the caseM Ð = O
ÿ

,

to which property (ii) applies.

LEMMA 5.5. SupposeR Ð is a dualizing complex on ÿ. Let I be any defining ideal of

ÿ, and let X0 be the scheme (ÿÒO
ÿ

ÛI ). Then RHom
ÿ

(OX0 ÒR
Ð) is a dualizing complex

on X0.

PROOF. We can assume R Ð is a bounded complex of injectives in QCo disc(ÿ), so

R Ð

0 := Hom
ÿ

(OX0 ÒR
Ð) is a complex of injectives on X0. Property (iii) implies that R Ð

0

has coherent cohomology sheaves. Now

Hom X0(R
Ð

0 ÒR
Ð

0 ) ≤ Hom
ÿ

�

Hom
ÿ

(OX0 ÒR
Ð)ÒR Ð

�

≤ OX0 Ò

so R Ð

0 is dualizing.

THEOREM 5.6 (UNIQUENESS). Suppose R Ð and R̃ Ð are dualizing complexes and ÿ

is connected. Then R̃ Ð

≤ R Ð 
 L[n] in D
�

Mod (ÿ)
�

, for some invertible sheaf L and

integer n.

PROOF. We can assume both R Ð and R̃ Ð are bounded complexes of injectives in

QCo disc(ÿ). Choose a defining ideal I and let Xm be the scheme (ÿÒO
ÿ

ÛIm+1). Define

a complex R Ð

m := Hom
ÿ

(OXm
ÒR Ð) and likewise R̃ Ð

m . These are dualizing complexes on

Xm, so by [RD] Theorem IV.3.1 there is an isomorphism

ûm:R
Ð

m 
 Lm[nm]! R̃ Ð

m

in D

�

Mod (Xm)
�

, for some invertible sheaf Lm and integer nm. Writing M Ð

m :=

Hom Xm
(R Ð

m Ò R̃
Ð

m ) we have M Ð

m ≤ Lm[nm] in D
�

Mod (Xm)
�

. Now

M Ð

m ≤ Hom Xm+1
(Hom Xm+1

(OXm
ÒR Ð

m+1)ÒR
Ð

m+1))
 Lm+1[nm+1]

as complexes of OXm+1
-modules, so by the dualizing property of R Ð

m+1 we deduce an

isomorphism M Ð

m ≤ OXm

 Lm+1[nm+1] in D

�

Mod (Xm+1)
�

. We conclude that nm = nm+1
and Lm ≤ OXm


 Lm+1. Set n := nm and L := lim
 m Lm.

Next, sinceR q
m ² R q

m+1 and R̃ q
m+1 is injective inMod (Xm+1), we see thatM

q
m+1 ! M q

m

is surjective for all qÒm. Furthermore, HqM Ð

m+1 ! HqM Ð

m is also surjective, since

HqM Ð

m = Lm or 0. Define

M Ð := Hom
ÿ

(R Ð

Ò R̃ Ð) ≤ lim
 m

M Ð

m

According to [Ha] Corollary I.4.3 and Proposition I.4.4 it follows that HqM Ð =

lim
 m H

qM Ð

m. This implies that Hom
ÿ

(R Ð


 L[n]Ò R̃ Ð)) ≤ O
ÿ

in D
�

Mod (ÿ)
�

, so by

Corollary 4.3

H0Hom
ÿ

(R Ð


 L[n]Ò R̃ Ð) ≤ Γ(ÿÒO
ÿ

)

Choose a homomorphism of complexes û:R Ð


 L[n] ! R̃ Ð corresponding to 1 2

Γ(ÿÒO
ÿ

). Backtracking we see that for every m, û induces a homomorphism R Ð

m 


L[n] ! R̃ Ð

m which represents ûm in D
�

Mod (Xm)
�

. So û = limm! ûm is a quasi-

isomorphism.
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PROBLEM 5.7. LetR Ð be a dualizing complex. Is it true that the following conditions

on N Ð

2 D
b
dqc

�

Mod (ÿ)
�

are equivalent?

(i) N Ð

≤ RHom Ð

ÿ

(M Ð

Ò R Ð) for some M Ð

2 D
b
c

�

Mod (ÿ)
�

.

(ii) For any M discrete coherent, RHom Ð

ÿ

(M Ò N Ð) 2 D
b
c

�

Mod (ÿ)
�

.

Recall that for a point x 2 ÿ we denote by J(x) an injective hull of k(x) over O
ÿÒx,

and J (x) is the corresponding quasi-coherent sheaf.

LEMMA 5.8. Suppose R Ð is a dualizing complex on ÿ. For any x 2 ÿ there is a

unique integer d(x) st

Hq
xR

Ð

≤

²

J(x) if q = d(x)
0 otherwise.

Furthermore d is a codimension function.

PROOF. We can assume R Ð is a bounded complex of injectives in QCo disc(ÿ). Then

as seen before Hq
xR

Ð = Hq
ΓxR Ð. Define schemesXm and complexesR Ð

m like in the proof

of Theorem 5.6. Since R Ð

m is dualizing it determines a codimension function dm on Xm

(cf. [RD] Chapter V Section 7). But the arguments used before show that dm = dm+1.

Finally Hq
ΓxR Ð = limm! Hq

ΓxR Ð

m , and H
q
ΓxR Ð

m ≤ Jm(x), an injective hull of k(x) over

OXmÒx.

DEFINITION 5.9. A residual complex on the noetherian formal schemeÿ is a dualizing

complex K Ð which is isomorphic, as O
ÿ

-module, to
L

x2ÿ J (x).

PROPOSITION 5.10. Say R Ð is a dualizing complex on ÿ. Let d be the codimen-

sion function above, and let E be the associated Cousin functor. Then R Ð

≤ ER Ð in

D

�

Mod (ÿ)
�

, and ER Ð is a residual complex.

PROOF. By Lemma 5.8 R Ð is a Cohen-Macaulay complex, in the sense of [RD]

p. 247, Definition. So there exists some isomorphism R Ð

! ER Ð in Db
�

Mod (ÿ)
�

.

To conclude this section we consider some situations where a dualizing complex

exists. If f :ÿ ! „ is a morphism then („Ò f
Ł

O
ÿ

) is a ringed space, and f̄ :ÿ ! („Ò f
Ł

O
ÿ

)

is a morphism of ringed spaces.

PROPOSITION 5.11. Let f :ÿ ! „ be a formally finite morphism, and assume K Ð is a

residual complex on „. Then f̄ ŁHom
„

(f
Ł

O
ÿ

Ò K Ð) is a residual complex on ÿ.

PROOF. Let fn:Xn ! Yn be morphisms as in Lemma 1.13, and let K Ð

n :=

Hom
„

(OYn Ò K Ð). Since fn is a finite morphism, f̄
Ł

n Hom Yn(fnŁOXn
Ò K Ð

n ) is a residual complex

on Xn. As in the proof of Theorem 5.6,

f̄ ŁHom
„

(f
Ł

O
ÿ

Ò K Ð) ≤ lim
n!

f̄ Łn Hom Yn(fnŁOXn
Ò K Ð

n )

is residual.
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EXAMPLE 5.12. Suppose X0 ² X is closed,ÿ = X
ÛX0

and g:ÿ ! X is the completion

morphism. Let K Ð be a residual complex on X. In this case g = ḡ, and by Proposition 4.6

gŁHom X(gŁO
ÿ

ÒK Ð) ≤ lim
n!

gŁK Ðn ≤ gŁΓX0
K Ð ≤ Γdiscg

ŁK Ð

is a residual complex.We see that if R Ð is any dualizing complex onX then ERΓdiscg
ŁR Ð

is dualizing on ÿ.

We call a formal schemeÿ regular of all its local rings O
ÿÒx are regular.

LEMMA 5.13. Suppose ÿ is a regular formal scheme. Then d(x) := dimO
ÿÒx is a

bounded codimension function on ÿ.

PROOF. Let · = Spf A ² ÿ be a connected affine open set. If x 2 · is the point

corresponding to an open prime ideal ƒ, then Â
ƒ

≤ Ô
ÿÒx. Therefore Aƒ is a regular local

ring. Now in the adic noetherian ring A any maximal ideal ¡ is open. Hence, by [Ma]

Section 18 Lemma 5(III), A is a regular ring, of finite global dimension equal to its Krull

dimension.

Now let U := SpecA, so as a topological space,· ² U is the closed set defined by

any defining ideal I ² A. Since U is a regular scheme, OU is a dualizing complex on

it. The codimension function d0 corresponding to OU satisfies d0(y) = dimOUÒy. Thus

0 � d0(y) � dimU. But clearly dj
·

= d0j
·

. By covering ÿ with finitely many such ·

this implies that d is a bounded codimension function.

THEOREM 5.14. Supposeÿ is a regular formal scheme. Then RΓdiscOÿ

is a dualizing

complex on ÿ.

PROOF. By the proof of Theorem 4.13 and known properties of regular local rings,

for any x 2 ÿ

Hq
xRΓdiscOÿ

≤ Hq
¡x

Ô
ÿÒx ≤

²

J(x) if q = d(x)
0 otherwise

where ¡x ² Ô
ÿÒx is the maximal ideal, and J(x) is an injective hull of k(x). Since

d is bounded it follows that K Ð := ERΓdiscOÿ

is a bounded complex of injectives in

QCo disc(ÿ). Like in the proof of Proposition 5.10, RΓdiscOÿ

≤ K Ð in D
�

Mod (ÿ)
�

.

To complete the proof it suffices to show that for any affine open set · = Spf A ² ÿ

the complex K Ðj
·

is residual on·. Let U := SpecA and let g:· ! U be the canonical

morphism. Let U0 ² U be the closed set g(·), so that · ≤ U
ÛU0

. Define K ÐU := EOU,

which is a residual complex on U. Then according to Proposition 4.6

RΓdiscO·

≤ gŁRΓU0
OU ≤ gŁΓU0

K ÐU

As in Example 5.12 this is a dualizing complex, so K Ðj
·

≤ ERΓdiscO·

is a residual

complex.

REMARK 5.15. According to [RD] Theorem VI.3.1, if f :X ! Y is a finite type mor-

phism between finite dimensional noetherian schemes, and if K Ð is a residual complex
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on Y, then there is a residual complex f4K Ð on X. Now suppose f :ÿ ! „ is a fft

morphism and fn:Xn ! Yn are like in Lemma 1.13. In the same fashion as in Proposi-

tion 5.11 we set f4K Ð := limn! f4n K Ð

n . This is a residual complex on ÿ. If f is formally

proper then Trf = limn! Trfn induces a duality

Rf
Ł

M Ð

! RHom
„

�

Rf
Ł

RHom
ÿ

(M Ð

Ò f4K Ð)Ò K Ð

�

for every M Ð

2 D
b
�

Coh (ÿ)
�

. The proofs are standard, given the results of this section.

6. Construction of the complex K Ð

XÛS
. In this section we work over a regular

noetherian base scheme S. We construct the relative residue complex K Ð

XÛS
on any finite

type S-scheme X. The construction is explicit and does not rely on [RD].

Let AÒB be complete local rings, with maximal ideals ¡Ò ¬. Recall that a local

homomorphism û:A ! B is called residually finitely generated if the field extension

AÛ¡ ! BÛ¬ is finitely generated. Denote by Mod disc(A) the category of ¡-torsion

A-modules (equivalently, modules with 0-dimensional support).

Suppose A[t] = A[t1Ò    Ò tn] is a polynomial algebra and ƒ ² A[t] is some maximal

ideal. Then A ! B = dA[t]
ƒ

is formally smooth of relative dimension n and residually

finite. Let bi 2 BÛ¬ be the image of ti and q̄i 2 (AÛ¡)[b1Ò    Ò bi'1][ti] the monic

irreducible polynomial of bi, of degree di. Choose a monic lifting qi 2 A[t1Ò    Ò ti]. Then

for a discrete A-moduleM one has

Hn
ƒ

(Ω̂n
BÛA 
A M) ≤

M

1�il

M

0�jlÚdl

t
j1
1 Ð Ð Ð tjnn dt1 Ð Ð Ð dtn

qi11 Ð Ð Ð qinn

 M

As in [Hg1] Section 7 define the Tate residue

rest1ÒÒtn;AÒB: H
n
ƒ

(Ω̂n
BÛA 
A M) ! M(6.1)

by the rule

tj11 Ð Ð Ð tjnn dt1 Ð Ð Ð dtn

qi11 Ð Ð Ð qinn

 m 7!

²

m if il = 1, jl = dl 0 1
0 otherwise

(cf. [Ta]). Observe that any residually finite homomorphism A ! C factors into some

A ! B = dA[t]
ƒ

! C.

THEOREM 6.2 (HUANG). Consider the category Loc of complete noetherian local

rings and residually finitely generated local homomorphisms. Then:

1. For any morphism û:A ! B in Loc there is a functor

û#:Mod disc(A) ! Mod disc(B)

For composable morphisms A
û

! B
†

! C there is an isomorphism (†û)# ≤ †#û#, and

(1A)# ≤ 1Mod disc(A)
. These data form a pseudofunctor on Loc (cf. [Hg1] Definition 4.1).
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2. If û:A ! B is formally smooth of relative dimension q, and n = rank Ω̂
1
BÛA

, then

there is an isomorphism, functorial in M 2 Mod disc(A),

û#M ≤ Hq
¬

(Ω̂n
BÛA 
A M)

3. If û:A ! B is residually finite then there is an A-linear homomorphism, functorial

in M 2 Mod disc(A),

Tr
û

:û#M ! MÒ

which induces an isomorphismû#M ≤ Homcont
A (BÒM). For composablehomomorphisms

A
û

! B
†

! C one has Tr
†û

= Tr
û

Tr
†

under the isomorphism of part 1.

4. If B = dA[t]
ƒ

then Tr
û

= rest1ÒÒtn;AÒB under the isomorphism of part 2.

PROOF. Parts 1 and 2 are [Hg1] Theorem 6.12. Parts 3 and 4 follow from [Hg1]

Section 7.

DEFINITION 6.3. Suppose L is a regular local ring of dimension q, with maximal ideal

∆. Given a homomorphism û:L! A in Loc , define

K (AÛL) := û#H
q
∆

LÒ

the dual module of A relative to L.

Since Hq
∆

L is an injective hull of the field LÛ∆, it follows that K (AÛL) is an injective

hull of AÛ¡ (cf. [Hg1] Corollary 3.10).

COROLLARY 6.4. If †:A ! B is a residually finite homomorphism, then there is an

A-linear homomorphism

Tr
†

= TrBÛA:K (BÛL)! K (AÛL)

Given another such homomorphism B! C, one has TrCÛA = TrBÛA TrCÛB.

REMARK 6.5. One can show that when L is a perfect field, there is a functorial

isomorphism betweenK (AÛL) = û#L above and the dual module K (A) of [Ye2], which

was defined via Beilinson completion algebras.

Suppose ô:ÿ ! S is a formally finite type (fft) formally smooth morphism.

According to Proposition 1.11, ÿ is a regular formal scheme. When we write n =

rank Ω̂
1
ÿÛS

we mean that n is a locally constant function n:ÿ ! N.

LEMMA 6.6. Given a fft morphism ô:ÿ ! S and a point x 2 ÿ, let s := ô(x), and

define

dS(x) := dim ÔSÒs . tr degk(s) k(x)

Then:

1. dS is a codimension function.

2. If ô is formally smooth then

dS(x) = dim Ô
ÿÒx . rank Ω̂

1
ÿÛS
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PROOF. We shall prove 2 first. Let L := ÔSÒs and A := Ô
ÿÒx. By Proposition 1.11,

n := rank Ω̂
1
AÛL = dimA dim L + tr degLÛ∆

AÛ¡

We see that dS is the codimension function associated with the dualizing complex

RΓdiscOÿ

[n] (see Theorem 5.14).

As for 1, the property of being a codimension function is local. But locally there is

always a closed immersion ÿ ² „ with „ ! S formally smooth.

We shall use the codimension function dS by default.

DEFINITION 6.7. Let ô:ÿ ! S be a formally finite type morphism. Given a point

x 2 ÿ, consider û:L = ÔSÒô(x) ! A = Ô
ÿÒx, which is a morphism in Loc . Since L is a

regular local ring, the dualmoduleK (AÛL) is defined. LetK
ÿÛS(x) be the quasi-coherent

sheaf which is constant on fxg with group of sections K (AÛL), and define

K q

ÿÛS
:=
M

dS(x)=q

K
ÿÛS(x)

In Theorem 6.14 we are going to prove that on the graded sheaf K Ð
XÛS

there is a

canonical coboundary operator é which makes it into residual complex.

DEFINITION 6.8. Let f :ÿ ! „ be a morphism of formal schemes over S. Define a

homomorphism of graded O
„

-modules Trf : fŁK Ð
ÿÛS

! K Ð
„ÛS

as follows. If x 2 ÿ is

closed in its fiber and y = f (x), then A = Ô
„Òy ! B = Ô

ÿÒx is a residually finite L-algebra

homomorphism. The homomorphismTrBÛA:K (BÛL)! K (AÛL) of Corollary 6.4 gives

a map of sheaves

Trf : fŁK
ÿÛS(x)! K

„ÛS(y)

If x is not closed in its fiber, we let Trf vanish on fŁK
ÿÛS(x).

PROPOSITION 6.9. 1. Trf is functorial: if g:„ ! ‰ is another morphism, then Trgf =

Trg Trf .

2. If f is formally finite (see Definition 1.18), then Trf induces an isomorphism of

graded sheaves

f
Ł

K Ð
ÿÛS ≤ Hom

„

(f
Ł

O
ÿ

ÒK Ð
„ÛS)

3. If g:· ! ÿ is an open immersion, then there is a natural isomorphism K Ð
·ÛS

≤

gŁK Ð
ÿÛS

.

PROOF. Part 3 is trivial. Part 1 is a consequence of Corollary 6.4. As for part 2, f is

an affine morphism, and fibers of f are all finite, so all points of X are closed in their

fibers.

Suppose a = (a1Ò    Ò an) is a sequence of elements in the noetherian ring A. Let us

write K̃Ð
1

(a) for the subcomplexK½1
1

(a), so we get an exact sequence

0! K̃Ð
1

(a)! KÐ
1

(a)! A! 0(6.10)
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For anyMÐ

2 D
+
�

Mod (A)
�

let M Ð be the complex of sheavesOX 
 MÐ on X := SpecA,

and let U ² X be the open set
S

fai 6= 0g. Then

RΓ(UÒ M Ð) ≤ K̃Ð

1

(a)[1] 
 MÐ

in D
�

Mod (A)
�

. In fact K̃Ð

1

(a)
 OX is a shift by 1 of the Čech complex corresponding to

the open cover of U.

LEMMA 6.11. Let A be an adic noetherian ring and MÐ

2 D
+
�

Mod (A)
�

. Define

· := Spf A and M Ð := O
·


 MÐ.

1. Let x 2 · with corresponding open prime ideal ƒ ² A. Suppose the sequence a

generates ƒ. Then

RΓxRΓdiscM
Ð

≤ RΓ
ƒ

MÐ

ƒ

≤ KÐ

1

(a) 
 MÐ

ƒ

in D+
�

Mod (A
ƒ

)
�

.

2. Suppose y 2 · is an immediate specialization of x, and its ideal ≈ has generators

aÒ b. Then

RΓxRΓdiscM
Ð

≤ KÐ

1

(a) 
 K̃Ð

1

(b)[1] 
 MÐ

≈

in D+
�

Mod (A
≈

)
�

.

3. Assume d is a codimension function on ·. Then in the Cousin complexERΓdiscM
Ð

the map

Hd(x)
x RΓdiscM

Ð

! Hd(y)
y RΓdiscM

Ð

is given by applying Hd(y) to
�

KÐ

1

(a) 
 K̃Ð

1

(b) ! KÐ

1

(aÒ b)
�


 MÐ

≈



PROOF. Part 1 follows immediately from formula (4.4). Parts 2 and 3 are true because

Spec(AÛƒ)
≈

= fƒÒ ≈g.

As a warm up for Theorem 6.14, here is:

PROPOSITION 6.12. If ô:ÿ ! S is formally smooth, with n = rank Ω̂
1
ÿÛS

, then there is

a canonical isomorphism of graded sheaves

K Ð

ÿÛS ≤ ERΓdiscΩ̂
n
ÿÛS[n]

This makes K Ð

ÿÛS
into a residual complex.

PROOF. Take any point x, and with the notation of Definition 6.7 let p := dimL and

q := dimA. Then by Lemma 6.11 part 1 and [Hg1] Proposition 2.6 we have a canonical

isomorphism

Hd(x)
x RΓdiscΩ̂

n
ÿÛS[n] ≤ Hq

¡

Ω̂
n
AÛL ≤ Hq'p

¡

(Ω̂n
AÛL 
L H

p
∆

L) ≤ K (AÛL)

According to Theorem 5.14 and Proposition 5.10, ERΓdiscΩ̂
n
ÿÛS

[n] is a residual complex.

In particular taking ÿ = S we get K Ð

SÛS
= EOS.

LEMMA 6.13. Suppose X ² ÿ and X ² „ are sfe’s and f :ÿ ! „ is a morphism of

embeddings. Then Trf :K
Ð

ÿ

! K Ð

„

is a homomorphism of complexes.
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PROOF. Factoring f through (ÿ ðS „)
ÛX we can assume that f is either a closed

immersion, or that it is formally smooth. At any rate f is an affine morphism, so we can

take ÿ = Spf B, „ = Spf A and S = SpecL. By Theorem 2.6 we can suppose one of the

following holds: (i) B ≤ A[[t]] for a sequence of indeterminates t = (t1Ò    Ò tl), and

A ! B is the inclusion; or (ii) A ≤ B[[t]] and A ! B is the projection modulo t. We

shall treat each case separately.

(i) Choose generators a for a defining ideal of A. Let m := rank Ω̂
1
AÛL

and

n := rank Ω̂
1
BÛL

, so n = m + l. Define an A-linear map ö:KÐ
1

(t) 
 Ω̂
l
BÛA

[l] ! A by

ö(t("1ÒÒ"1)dt) = 1 and ö(tidt) = 0 if i 6= (+1Ò    Ò +1). Extend ö linearly to

ö:KÐ
1

(aÒ t)
 Ω̂
n
BÛL[n]! KÐ

1

(a)
 Ω̂
m
AÛL[m]

This ö sheafifies to give a map of complexes in Ab (X)

ö̃:KÐ
1

(aÒ t)
 Ω̂
n
ÿÛS[n]! KÐ

1

(a)
 Ω̂
m
„ÛS[m]

By Lemma 6.11 and [Hg1] Section 5, for any point x 2 X, Hd(x)
x (ö̃) recovers Trf :

K
ÿÛS(x)! K

„ÛS(x). Thus Trf = E(ö̃) is a homomorphism of complexes.

(ii) Now l = m+ n. Take a to be generators of a defining ideal of B. Define a B-linear

map ö0:B! KÐ
1

(t)
 Ω̂
l
AÛL

[l] by ö0(1) = t("1ÒÒ"1)dt. Extend ö linearly to

ö

0:KÐ
1

(a)
 Ω̂
n
BÛL[n]! KÐ

1

(aÒ t)
 Ω̂
m
AÛL[m]

Again this extends to amap of complexes of sheaves ö̃0 inAb (X), and checking punctually

we see that Trf = E(ö̃0).

THEOREM 6.14. Suppose X ! S is a finite type morphism. There is a unique operator

é:K q

XÛS
! K q+1

XÛS
, satisfying the following local condition:

(LE) Suppose U ² X is an open subset, and U ² · is a smooth formal em-

bedding. By Proposition 6.9 there is an inclusion of graded OU-modules

K Ð

XÛS
jU ² K Ð

·ÛS
. Then éjU is compatible with the coboundary operator

on K Ð

·ÛS
coming from Proposition 6.12.

Moreover (K Ð

XÛS
Ò é) is a residual complex on X.

PROOF. Define éjU using (LE). According to Lemma 6.13, éjU is independentof·, so

it glues.We get a bounded complex of quasi-coherent injectives onX. ByProposition 6.12

it follows that it is residual.

REMARK 6.15. This construction of K Ð

XÛS
actually allows a computation of the oper-

ator é, given the data of a local embedding. The formula is in part 3 of Lemma 6.11, with

MÐ = Ω̂
n
AÛL

[n]. The formula for changing the embedding can be extracted from the proof

of Lemma 6.13. Of course when rank Ω̂
1
ÿÛS

is high these computations can be nasty.
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REMARK 6.16. The recent papers [Hg2], [Hg3] and [LS2] also use the local theory

of [Hg1] as a starting point for explicit constructions of Grothendieck Duality. Their

constructions are more general than ours: Huang constructs f !M Ð for a finite type

morphism f :X ! Y and a residual complex complex M Ð; and Lipman-Sastry even

allow M Ð to be any Cousin complex.

7. The trace for finite morphisms. In this section we prove that Trf is a homo-

morphism of complexes when f is a finite morphism. The proof is by a self contained

calculation involving Koszul complexes and a comparison of global and local Tate

residue maps. In Theorem 7.10 we compare the complex K Ð

XÛS
to the sheaf of regular

differentials of Kunz-Waldi. Throughout S is a regular noetherian scheme.

THEOREM 7.1. Suppose f :X ! Y is finite. Then Trf : fŁK
Ð

XÛS
! K Ð

YÛS
is a homomor-

phism of complexes.

The proof appears after some preparatory work, based on and inspired by [Hg1]

Section 7.

REMARK 7.2. In Section 8 we prove a much stronger result, namely Corollary 8.3,

but its proof is indirect and relies on the Residue Theorem of [RD] Chapter VII. We have

decided to include Theorem 7.1 because of its direct algebraic proof.

Let A be an adic noetherian ring with defining ideal µ. Suppose p 2 A[t] is a monic

polynomial of degree e Ù 0. Define an A-algebra

B := lim
 i

A[t]ÛA[t] Ð pi(7.3)

Let ∂ := Bµ + Bp; then B ≤ lim
 i BÛ∂

i, so that B is an adic ring with the ∂-adic

topology. The homomorphismû:A ! B is fft and formally smooth, and Ω̂
1
BÛA

= B Ðdt.

Furthermore p 2 B is a non-zero-divisor, and by long division we obtain an isomorphism

H1
(p)B = H1

�

KÐ

1

(p) 
 B
�

≤

M

1�i

M

0� jÚe

A Ð

tj

pi
(7.4)

Define an A-linear homomorphism ResBÛA: H
1
(p)Ω̂

1
BÛA

! A by

ResBÛA

� tjdt

pi

�

:=
²

1 if i = 1, j = e + 1
0 otherwise.

We call ResBÛA the global Tate residue. It gives rise to a map of complexes in Mod (A):

ResBÛA:K
Ð

1

(p)[1] 
 Ω̂
1
BÛA ! A(7.5)

Note that both the algebra B and the map ResBÛA depend on t and p.

Suppose ≈ ² B is an open prime ideal and ƒ = û

&1(≈) ² A. Then the local homo-

morphism û

≈

: Â
ƒ

! B̂
≈

is formally smooth of relative dimension 1 and residually finite.
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Let ≈̃ := ≈ \ Â
ƒ

[t], and denote by ≈̄ the image of ≈̃ in k(ƒ)[t], so k(ƒ)[t]Û≈̄ = k(≈). For a

polynomial q 2 Â
ƒ

[t] let q̄ be its image in k(ƒ)[t]. Suppose q satisfies:

q is monic, and the ideal (q̄) ² k(ƒ)[t] is ≈̄-primary.(7.6)

Then B̂
≈

Ð ≈ =
q

B̂
≈

Ð (ƒÒ q) ² B̂
≈

, and

B̂
≈

≤ lim
 i

Â
ƒ

[t]Û≈̃i ≤ lim
 i

Â
ƒ

[t]ÛÂ
ƒ

[t] Ð qi

Hence q is a non-zero-divisor in B̂
≈

and B̂
≈

ÛB̂
≈

Ð q is a free Â
ƒ

-module with basis

1Ò tÒ    Ò td#1, where d = degq. We see that a decomposition like (7.4) exists for H1
(q)B̂≈.

Suppose we are given a discrete Â
ƒ

-moduleM. Then one gets

H1
≈

(Ω̂1
B̂
≈

ÛÂ
ƒ


Â
ƒ

M) ≤ (H1
(q)Ω̂

1
B̂
≈

ÛÂ
ƒ

)
Â
ƒ

M ≤

M

1�i

M

0� jÚd

tjdt

qi

M

(cf. [Hg1] pp. 41–42). Define the local Tate residue map

ResB̂
≈

ÛÂ
ƒ

: H1
≈

(Ω̂1
B̂
≈

ÛÂ
ƒ


Â
ƒ

M) ! M

by

ResB̂
≈

ÛÂ
ƒ

� tjdt
m

qi

�

:=
²

m if i = 1, j = d , 1
0 otherwise.

Clearly ResB̂
≈

ÛÂ
ƒ

is functorial in M, and it depends on t.

LEMMA 7.7. ResB̂
≈

ÛÂ
ƒ

is independent of q. It coincides with the residue map rest;B̂
≈

ÛÂ
ƒ

of (6.1), i.e. of [Hg1] Definition 8.1.

PROOF. Suppose the polynomials q1Ò q2 2 Â
ƒ

[t] satisfy (7.6). Then so does q3 :=

q1q2. Let deg qh = dh, and let ResB̂
≈

ÛÂ
ƒ

;qh
be the residue map determined by qh. Pick any

1 � i and 0 � j Ú d1, and write q
i
2 =
Pid2

l=0 alt
l, so aid2 = 1. By the rules for manipulating

generalized fractions (cf. [Hg1] Section 1) we have

ResB̂
≈

ÛÂ
ƒ

;q3

� tjdt
m

qi1

�

=
id2
X

l=0

ResB̂
≈

ÛÂ
ƒ

;q3

� tl+jdt
 alm

qi3

�

(7.8)

If i ½ 2 or j � d1 , 2 one has l + j � id3 , 2, and therefore each summand of the right

side of (7.8) is 0. When i = 1 and j = d1 , 1 the only possible nonzero residue there is

for l = d2, and this residue is m. We conclude that ResB̂
≈

ÛÂ
ƒ

;q3
= ResB̂

≈

ÛÂ
ƒ

;q1
. Clearly also

ResB̂
≈

ÛÂ
ƒ

;q3
= ResB̂

≈

ÛÂ
ƒ

;q2
.

If we take q such that (q̄) = ≈̄, this is by definition the residue map of (6.1).

LEMMA 7.9. Let F be the set of prime ideals in BÛ(p) lying over ƒ. Then for any

M 2 Mod disc(Âƒ) one has

(H1
(p)Ω̂

1
BÛA)
A M ≤

M

≈

0

2F

H1
≈

0

(Ω̂1
B̂
≈

0

ÛÂ
ƒ


Â
ƒ

M)Ò

and wrt this isomorphism,

ResBÛA
1 =
X

≈

0

2F

ResB̂
≈

0

ÛÂ
ƒ
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PROOF. The isomorphism of modules is not hard to see. Let p̄ =
Q

≈

0

2F p̄≈0 be the

primary decomposition in k(ƒ)[t] (all the p̄
≈

0 monic). By Hensel’s Lemma this decompo-

sition lifts to p =
Q

≈

0

2F p≈0 in Â
ƒ

[t]. Since each polynomial p
≈

0 satisfies condition (7.6)

for the prime ideal ≈0, we can use it to calculate ResB̂
≈

0

ÛÂ
ƒ

.

PROOF OF THEOREM 7.1. This claim is local on Y, so we may assume X, Y and S are

affine, say X = Spec B̄, Y = Spec Ā and S = SpecL. By the functoriality of Tr we can

assume B̄ = Ā[b] for some element b 2 B̄. It will suffice to find suitable sfe’sX ² ÿ and

Y ² „ with a morphism f̂ :ÿ ! „ extending f , and to check that Trf̂ : f̂ŁK
Ð

ÿÛS
! K Ð

„ÛS

commutes with é.

Pick any sfe Y ² „ = Spf A, so µ := Ker(A ! Ā) is a defining ideal. Let A[t] ! B̄

be the homomorphism t 7! b. Choose any monic polynomial p(t) 2 A[t] st p(b) = 0,

and define the adic ring B as in formula (7.3). So ÿ := Spf B is the sfe of X we want.

Let (y0Ò y1) be an immediate specialization pair in Y, and let Fi := f(1(yi) ² X. Let

ƒ0 ² ƒ1 ² A be the prime ideals corresponding to (y0Ò y1). Pick a sequence of generators

a for ƒ0, and generators (aÒ a
0) for ƒ1. Let m := rank Ω̂

1
AÛL

.

Consider the commutative diagram of complexes

KÐ
1

(aÒ p)[1] 
 K̃Ð
1

(a0)
 (Ω̂m+1
BÛL

)
ƒ1

ResBÛA
1
..! KÐ

1

(a)
 K̃Ð
1

(a0)
 (Ω̂m
AÛL

)
ƒ1

?

?

?

y

?

?

?

y

KÐ
1

(aÒ a0Ò p)[1]
 (Ω̂m+1
BÛL

)
ƒ1

ResBÛA
1
..! KÐ

1

(aÒ a0)
 (Ω̂m
AÛL

)
ƒ1

gotten from tensoring the map ResBÛA of (7.5) with A
ƒ1

 Ω̂

m
AÛL

and the various KÐ
1

.

Applying Hi to this diagram, where i := dim Â
ƒ1
, and using Lemmas 6.11 and 7.9 we

obtain a commutative diagram

L

≈02F0 H
1
≈0
(Ω̂1

B̂
≈0
ÛÂ

ƒ0


 Hi(1
ƒ0

Ω̂
m
Â

ƒ0
ÛL
)

P

Res
..! Hi(1

ƒ0
Ω̂

m
Â

ƒ0
ÛL

?

?

?

y

?

?

?

y

L

≈12F1 H
1
≈1
(Ω̂1

B̂
≈1
ÛÂ

ƒ1


 Hi
ƒ1

Ω̂
m
Â

ƒ1
ÛL
)

P

Res
..! Hi

ƒ1
Ω̂

m
Â

ƒ1
ÛL


In this diagram Res = ResB̂
≈0
ÛÂ

ƒ0
etc. Using the definitions this is the same as

L

x02F0 fŁKÿÛS(x0)
Trf

..! K
„ÛS(y0)

é

?

?

?

y

é

?

?

?

y

L

x12F1 fŁKÿÛS(x1)
Trf

..! K
„ÛS(y1)

According to [KW], if ô:X ! S is equidimensional of dimension n and generically

smooth, and X is integral, then the sheaf of regular differentials °̃n
XÛS

(relative to the

DGA OS) exists. It is a coherent subsheaf of Ω
n
k(X)Ûk(S)

.
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THEOREM 7.10. Supposeô:X ! S is equidimensionalof dimension n andgenerically

smooth, and X is integral. Then K  n
XÛS

= Ω
n
k(X)Ûk(S)

, and

°̃

n
XÛS = H nK Ð

XÛS

First we need:

LEMMA 7.11. Suppose L0 ! A0 ! B0 are finitely generated field extensions,

with L0 ! A0 and L0 ! B0 separable, A0 ! B0 finite, and tr degL0 A0 = n. Then

K (A0ÛL0) = Ω
n
A0ÛL0

, K (B0ÛL0) = Ω
n
B0ÛL0

, and TrB0ÛA0 :K (B0ÛL0) ! K (A0ÛL0) coin-

cides with õL0
B0ÛA0

:Ωn
B0ÛL0

! Ω
n
A0ÛL0

of [Ku] Section 16.

PROOF. Since L0 ! A0 is formally smooth, we getK (A0ÛL0) = Ω
n
A0ÛL0

. The same for

B0. Consider the trivial DGA L0. Then the universal B0-extension of Ω
Ð

A0ÛL0
is Ω

Ð

B0ÛL0
, so

õ

L0
B0ÛA0

makes sense. To check that õL0
B0ÛA0

= TrB0ÛA0 we may reduce to the cases A0 ! B0
separable, or purely inseparable of prime degree, and then use the properties of the trace.

PROOF OF THE THEOREM. Given any point x 2 X there is an open neighborhoodU of

x which admits a factorization ôjU = hgf , with f :U ! Y an open immersion; g:Y ! Z

finite; and h:Z ! S smooth of relative dimension n (in fact one can take Z open in

An
ðS). This follows from quasi-normalization ([Ku] Theorem B20) and Zariski’s Main

Theorem ([EGA] IV 8.12.3; cf. [Ku] Theorem B16). We can also assume YÒZÒ S are

affine, say Y = SpecB, Z = SpecA and S = SpecL. Let us write °̃n
BÛL

:= Γ(YÒ °̃n
YÛS

) and

K Ð

BÛL
:= Γ(YÒK Ð

YÛS
). Also let us write B0 := k(Y), A0 := k(Z) and L0 := k(S).

By [KW] Section 4,

°̃

n
BÛL = få 2 Ω

n
B0ÛL0

j õ

L0
B0ÛA0

(bå) 2 Ω
n
AÛL for all b 2 Bg

One has

K  n
BÛL = K (B0ÛL0) = Ω

n
A0ÛL0

and the same for A. According to Proposition 6.12 there is a quasi-isomorphism

Ω
n
AÛL

[n]! K Ð

AÛL
. From the commutative diagram

0 ..! H nK Ð

BÛL
..! K  n

BÛL

é

..! K  n+1
BÛL

?

?

?

y

?

?

?

y

?

?

?

y

Trg

?

?

?

y

Trg

0 ..! Ω
n
AÛL

..! K  n
AÛL

é

..! K  n+1
AÛL

and the isomorphism

K  n+1
BÛL ≤ Hom A(BÒK

 n+1
AÛL )

induced by Trgwe conclude that °̃
n
BÛL

= H nK Ð

BÛL
. Since °̃n

YÛS
andH nK Ð

YÛS
are coherent

sheaves and f :U ! Y is an open immersion, this shows that °̃UÛS = H nK Ð

UÛS
.

COROLLARY 7.12. If X is a Cohen-Macaulay scheme then the sequence

0! °̃

n
XÛS ! K  n

XÛS ! Ð Ð Ð ! K m
XÛS ! 0

(m = dim S) is exact.
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PROOF. X is Cohen-Macaulay iff any dualizing complex has a single nonzero coho-

mology sheaf.

EXAMPLE 7.13. Suppose X is an (n + 1)-dimensional integral scheme and ô:X !

SpecZ is a finite type dominant morphism (i.e. X has mixed characteristics). Then ô is

flat, equidimensional of dimension n and generically smooth. So

°̃

n
XÛZ = H"nK Ð

XÛZ ² Ω
n
k(X)ÛQ

REMARK 7.14. In the situation of Theorem 7.10 there is a homomorphism

CX:Ω
n
XÛS ! K "n

XÛS

called the fundamental class of XÛS. According to [KW], when ô is flat one has

CX(Ω
n
XÛS

) ² °̃

n
XÛS

; so CX:Ω
n
XÛS

[n]! K Ð

XÛS
is a homomorphism of complexes.

REMARK 7.15. In [LS2] Theorem 11.2 we find a stronger statement than our Theo-

rem7.10: S is only required to be an excellent equidimensional schemewithout embedded

points, satisfying Serre’s condition S2; and ô is finite type, equidimensional and generi-

cally smooth. Moreover, for ô proper, the trace is compared to the integral of [HS] (cf.

Remark 8.4). The price of this generality is that the proofs in [LS2] are not self-contained

but rely on rather complicated results from other papers.

8. The isomorphism K Ð

XÛS
≤ ô

!OS. In this section we describe the canonical

isomorphism between the complex K Ð

XÛS
constructed in Section 6, and the twisted

inverse image ô!OS of [RD]. Recall that for residual complexes there is an inverse image

ô

4, and ô4K Ð

SÛS
= Eô!OS, where E is the Cousin functor corresponding to the dualizing

complex ô

!OS. For an S-morphism f :X ! Y denote by TrRDf the homomorphism of

graded sheaves

TrRDf : f
Ł

ô

4

X K Ð

SÛS ≤ f
Ł

f4ô4Y K Ð

SÛS ! ô

4

Y K Ð

SÛS

of [RD] Section VI.4.

THEOREM 8.1. Let ô:X ! S be a finite type morphism. Then there exists a unique

isomorphism of complexes

êX:K
Ð

XÛS ! ô

4K Ð

SÛS

such that for every morphism f :X ! Y the diagram

f
Ł

K Ð

XÛS

Trf
**! K Ð

YÛS

f
Ł

(êX )

?

?

?

y

êY

?

?

?

y

f
Ł

ô

4

X K Ð

SÛS

TrRDf
**! ô

4

Y K Ð

SÛS

(8.2)

is commutative.

The proof of Theorem 8.1 is given later in this section, after some preparation. Here

is one corollary:
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COROLLARY 8.3. If f :X ! Y is proper then Trf is a homomorphism of complexes,

and for any M Ð 2 D qc
�

Mod (X)
�

the induced morphism

f
Ł

Hom X(M
Ð

ÒK ÐXÛS)! Hom Y(RfŁM
Ð

ÒK ÐYÛS)

is an isomorphism.

PROOF. Use [RD] Theorem VII.2.1 and Corollary VII.3.4.

REMARK 8.4. In [Hg3] and [LS2] the authors prove that in their respective construc-

tions the trace Trf : fŁf
!N Ð ! N Ð is a homomorphism of complexes for any proper

morphism f and residual (resp. Cousin) complex N Ð (cf. Remark 6.16).

Let Y = SpecA be an affine noetherian scheme, X := An
ð Y = SpecA[t1Ò    Ò tn]

and f :X ! Y the projection. Fix a point x 2 X, and let y := f (x), Z0 := fxgred. Assume

Z0 ! Y is finite.

LEMMA 8.5. There exists an open set U ² Y containing y and a flat finite morphism

g:Y0 ! U st:

(i) g 1(y) is one point, say y0.

(ii) Define X0 := An
ð Y0, and let f 0:X0 ! Y0, h:X0 ! X. Then for every point

x0 2 h 1(x) there is some section õx0 :Y0 ! X0 of f 0 with x0 2 õx0 (Y0).

PROOF. Choose any finite normal field extension K of k(y) containing k(x). Define

recursively open sets Ui = SpecAi ² Y and finite flat morphisms gi:Yi = SpecA0i ! Ui

st g 1i (y) = fyig and k(yi) ² K, as follows. Start with U0 = Y0 := Y and A00 = A0 := A.

If k(yi) 6= K take some b̄ 2 K + k(yi) and let p̄ 2 k(yi)[t] be the monic irreducible

polynomial of b̄. Choose a monic polynomial p 2 OYiÒyi[t] lifting p̄. There is some open

setUi+1 = SpecAi+1 ² Ui st p 2 (A
0

i
Ai
Ai+1)[t]. Define A

0

i+1 := (A0i
Ai
Ai+1)[t]Û(p) and

Yi+1 = SpecA
0

i+1. For i = r this stops, and k(yr) = K.

For every point x0 2 Spec
�

K 
k(y) k(x)
�

and 1 � i � n let āiÒx0

2 k(x0) ≤ k(yr) be the

image of ti, and let aiÒx0

2 OYrÒyr be a lifting. Take an open setU = SpecAr+1 ² Ur st each

aiÒx0

2 A0 = (A0r 
Ar
Ar+1), and define Y

0 := SpecA0. So for each x0 the homomorphism

B0 = A0[t]! A0, ti 7! aiÒx0 gives the desired section õx0 :Y0 ! X0.

Let Zi be the i-th infinitesimal neighborhood of Z0 in X, so fi:Zi ! Y is a finite

morphism. Suppose we are given a quasi-coherentOY-module M which is supported on

fyg. One has

H n
Z0
(Ωn

XÛY 
 f ŁM ) ≤ lim
i!

ExtnX(OZi ÒΩ
n
XÛY 
 f ŁM )

and by [RD] Theorem VI.3.1

ExtnX(OZi ÒΩ
n
XÛY 
 f ŁM ) = H 0f !i M 

Note that we can also factor fi through P
n
ð Y, so fi is projectively embeddable, and by

[RD] Theorem III.10.5 we have a map

TrRDf : f
Ł

H n
Z0
(Ωn

XÛY 
 f ŁM )!M (8.6)
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Nowdefine Â := ÔYÒy and B̂ := ÔXÒx, with¬ ² B̂ themaximal ideal andû = f Ł: Â ! B̂.

Set M := My, which is a discrete Â-module. We then have a natural isomorphism of

Â-modules
�

f
Ł

H n
Z0
(Ωn

XÛY 
 f ŁM )
�

y
≤ Hn

¬

(Ω̂n
B̂ÛÂ


Â M) ≤ û#M(8.7)

LEMMA 8.8. Under the isomorphism (8.7),

TrRDf = Tr
û

:û#M ! M

PROOF. The proof is in two steps.

STEP 1. Assume there is a section õ:Y ! X to f with x 2 W0 = õ(Y). The homomor-

phism õ

Ł:B = A[t]! A chooses ai = õ
Ł(ti) 2 A, so after the linear change of variables

ti 7! ti * ai we may assume that õ is the 0-section (i.e. OW0
= OXÛOX Ð t). Let Wi be

the i-th infinitesimal neighborhood of W0. Since f :Wi ! Y is projectively embeddable,

there is a trace map

TrRDf : f
Ł

H n
W0

Ω
n
XÛY ! OY

For any a 2 A one has

TrRDf

�adt1 ^ Ð Ð Ð ^ dtn

ti11 Ð Ð Ð t
in
n

�

=
²

a if i = (1Ò    Ò 1)
0 otherwise.

(8.9)

This follows from properties R6 (normalization) and R7 (intersection) of the residue

symbol ([RD] Section III.9). Alternatively this can be checked as follows. Note that

TrRDf factors through Rf
Ł

Ω
n
Pn
Y
ÛY
. For the case i = (1Ò    Ò 1) use [RD] Proposition III.10.1.

For i 6= (1Ò    Ò 1) consider a change of coordinates ti 7! ïiti, ïi 2 A. By [RD] Corol-

lary III.10.2, TrRDf is independent of homogeneous coordinates, so it must be 0.

Now sinceW0 \ f%1(y) = Z0 we have

H n
Z0
(Ωn

XÛY 
 f ŁM ) ≤ H n
W0
(Ωn

XÛY 
 f ŁM )

and so the formula for TrRDf in (8.6) is given by (8.9). But the same formula is used in

[Hg1] to define Tr
û

.

STEP 2. The general situation: takeg:Y0

! Y as in Lemma 8.5, and setZ0

0 := Z0ðYY
0.

The flatness of g implies there is a natural isomorphism of OY0-modules

gŁf
Ł

H n
Z0
(Ωn

XÛY 
 f ŁM ) ≤ f 0

Ł

H n
Z0

0
(Ωn

X0

ÛY0


 f 0

Ł

M 0)

(where M 0 := gŁM ) and by [RD] Theorem III.10.5 property TRA4 we have

gŁ(TrRDf ) = TrRDf 0

(8.10)

Let Â0 := ÔY0

Òy0

≤ A0


A Â, so Â! Â0 is finite flat. Therefore

Â0


Â H
n
¬

(Ω̂n
B̂ÛÂ


Â M) ≤
M

¬

0

2Z0

0

Hn
¬

0

(Ω̂n
B̂

¬

0

ÛÂ0


Â0

M0)(8.11)
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HereM0 := M 0

y0

≤ Â0


ÂM and
Q

¬

0

2Z0

0
B̂

¬

0 is the decomposition of A0


A B̂ to local rings.

Write û0

¬

0

: Â0

! B̂
¬

0 . Direct verification shows that under the isomorphism (8.11),

1
 Tr
û

=
X

¬

0

2Z0

0

Tr
û

0

¬

0

(8.12)

Since Â ! Â0 is faithfully flat it follows that M ! M0 is injective. In view of the

equalities (8.10) and (8.12), we conclude that it suffices to check for each ¬0 = x0

2 Z0

that Tr
û

0

¬

0

= TrRDf 0

on Hn
¬

0

(Ω̂n
B̂

¬

0

ÛÂ0


Â0

M0). But there is a section õx0 :Y0

! X0, so we can

apply Step 1.

PROOF OF THEOREM 8.1.

STEP 1 (UNIQUENESS). Suppose ê0X:K
Ð

XÛS
! ô

4K Ð
SÛS

is another isomorphism sat-

isfying Tr
ô

= TrRD
ô

ô

Ł

(ê0X). Then ê
0

X = aêX for some a 2 Γ(XÒOŁ

X), and by assumption

for any closed point x 2 X and ã 2 KXÛS(x) there is equality Trô(ã) = Tr
ô

(aã). Now

writing s := ô(x), it’s known that

Hom OSÒs

�

KXÛS(x)ÒKSÛS(s)
�

is a free ÔXÒx-module with basis Trô. Therefore a = 1 in ÔXÒx. Because this is true for all

closed points we see that a = 1.

STEP 2. Assume X = An
ð S and f = ô. In this case there is a canonical isomorphism

of complexes

K ÐXÛS ≤ EΩ
n
XÛS[n] ≤ Eô!OS ≤ ô

4K ÐSÛS

(cf. [RD] TheoremVI.3.1 and our Proposition 6.12), which we use to define êX:K ÐXÛS
!

ô

4K Ð
SÛS

. Consider x 2 X, Z := fxgred, s := ô(x) and assume x is closed in ô
)1(s). By

replacing S with a suitable open neighborhood of s we can assume Z! S is finite. Then

we are allowed to apply Lemma 8.8 with Y = S, M = K SÛS(s). It follows that (8.2)

commutes on ô
Ł

KXÛS(x) ² ôŁ

K Ð
XÛS

.

STEP 3. Let X be any finite type S-scheme. For every affine open subscheme U ² X

we can find a closed immersion h:U ! An
S. Write Y := An

S and let ôU and ôY be the

structural morphisms. Now Trh induces an isomorphism

K ÐUÛS ≤ Hom Y(OUÒK
Ð

YÛS)Ò

and TrRDh induces an isomorphism

ô

4

U K ÐSÛS ≤ Hom Y(OUÒ ô
4

Y K ÐSÛS)

So the isomorphism êY of Step 2 induces an isomorphism êU:K ÐUÛS
! ô

4

U K Ð
SÛS

, which

satisfies Tr
ôU

= TrRD
ôU
ôUŁ

(êU). According to Step 1 the local isomorphisms êU can be

glued to a global isomorphism êX.
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STEP 4. Let f :X ! Y be any S-morphism. To check (8.2) wemay assumeX and Y are

affine, and in view of Step 3wemay in fact assume Y = Am
ðS andX = An

ðY ≤ An+m
ðS.

Now apply Lemma 8.8 with x 2 X closed in its fiber and M := KYÛS(y).
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