MIXED RESOLUTIONS AND SIMPLICIAL SECTIONS

AMNON YEKUTIELI

ABSTRACT. We introduce the notions of mixed resolutions and simplicial sec-
tions, and prove a theorem relating them. This result is used (in another
paper) to study deformation quantization in algebraic geometry.

0. INTRODUCTION

Let K be a field of characteristic 0. In this paper we present several technical
results about the geometry of K-schemes. These results were discovered in the
course of work on deformation quantization in algebraic geometry, and they play
a crucial role in [Ye3]. This role will be explained at the end of the introduction.
The idea behind the constructions in this paper can be traced back to old work of
Bott [Bo, HY].

Let 7 : Z — X be a morphism of K-schemes, and let U = {Uqy, ..., Ugm)} be an
open covering of X. A simplicial section o of 7, based on the covering U, consists
of a family of morphisms o; : A} x U; — Z, where © = (ig,...,iq) is a multi-
index; Af is the g-dimensional geometric simplex; and U; := Uiy N --- N UG,)-
The morphisms o; are required to be compatible with 7 and to satisfy simplicial
relations. See Definition 5.1 for details. An important example of a simplicial
section is mentioned at the end of the introduction.

Another notion we introduce is that of mized resolution. Here we assume the
K-scheme X is smooth and separated, and each of the open sets U(;y in the covering
U is affine. Given a quasi-coherent Ox-module M we define its mixed resolution
Mixg; (M). This is a complex of sheaves on X, concentrated in non-negative degrees.
As the name suggests, this resolution mixes two distinct types of resolutions: a de
Rham type resolution which is related to the sheaf Px of principal parts of X and
its Grothendieck connection, and a simplicial-Cech type resolution which is related
to the covering U. The precise definition is too complicated to state here — see
Section 4.

Let CT(QCoh Ox) denote the abelian category of bounded below complexes of
quasi-coherent Ox-modules. For any M € CT(QCoh Ox) the mixed resolution
Mixg; (M) is defined by totalizing the double complex B, , Mix{;(MP). The de-
rived category of K-modules is denoted by D(Mod K).

Theorem 0.1. Let X be a smooth separated K-scheme, and let U =
{Uwy; -+, Uin)} be an affine open covering of X.
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(1) There is a functorial quasi-isomorphism M — Mixgy (M) for M €
C*(QCoh Ox).

(2) Given M € C*H(QCohOx), the canonical morphism T'(X,Mixy (M)) —
RI (X, Mixg; (M)) in D(ModK) is an isomorphism.

(3) The quasi-isomorphism in part (1) induces a functorial isomorphism
I'(X, Mixg, (M)) 2 RT(X, M) in D(Mod K).

This is repeated as Theorem 4.15 in the body of the paper. Note that part (3)
is a formal consequence of parts (1) and (2).

A useful corollary of the theorem is the following (see Corollary 4.16). Suppose
M and N are two complexes in CT(QCoh Ox), and ¢ : Mixy; (M) — Mixy (N) is
a K-linear quasi-isomorphism. Then

I'(X,¢): I'(X,Mixy M)) — T'(X, Mixy (V)

is a quasi-isomorphism.
Here is the connection between simplicial sections and mixed resolutions.

Theorem 0.2. Let X be a smooth separated K-scheme, let m : Z — X be a
morphism of schemes, and let U be an affine open covering of X. Suppose o is
a simplicial section of m based on U. Let My, ..., M., N be quasi-coherent Ox -
modules, and let

o : HW;(’PX oy M;) = 1 (Px ®ox N)
i=1

be a continuous Ogz-multilinear sheaf morphism on Z. Then there is an induced
K-multilinear sheaf morphism
o () : HMiXU(Mi) — Mixy (N)
i=1
on X.

In the theorem, the continuity and the complete pullback 7* refer to the dir-inv
structures on these sheaves, which are explained in Section 1. A more detailed
statement is Theorem 5.2 in the body of the paper.

Let us explain, in vague terms, how Theorem 0.2, or rather Theorem 5.2, is used
in the paper [Ye3]. Let X be a smooth separated n-dimensional K-scheme. As we
know from the work of Kontsevich [Ko], there are two important sheaves of DG Lie
algebras on X, namely the sheaf 7, of poly derivations, and the sheaf D,
of poly differential operators. Suppose U is some affine open covering of X. The
inclusions 7, x — Mixy (7,0, x) and D, x — Mixy (D), x) are then quasi-
isomorphisms of sheaves of DG Lie algebras (cf. Theorem 0.1). The goal is to find
an L., quasi-isomorphism

v MiXU(%Oly,X) - 1\/DXU (Dpoly,X)

between these sheaves of DG Lie algebras. Having such an L., quasi-isomorphism
pretty much implies the solution of the deformation quantization problem for X.
Let Coor X denote the coordinate bundle of X. This is an infinite dimensional
bundle over X, endowed with an action of the group GL,(K). Let LCC X be the
quotient bundle Coor X / GL, (K). In [Ye4] we proved that if the covering U is fine
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enough (the condition is that each open set U;) admits an étale morphism to Ag),
then the projection 7 : LCC X — X admits a simplicial section o.

Now the universal deformation formula of Kontsevich [Ko] gives rise to a con-
tinuous L, quasi-isomorphism

U: " (Px ®ox Thory,x) = T (Px ®0x Dpory,x)

on LCC X. This means that there is a sequence of continuous Op,cc x-multilinear
sheaf morphisms

Z/{T : HT W*(PX ®OX %oly,X) - W;(,PX ®0X Dpoly,X)a

r > 1, satisfying very complicated identities. Using Theorem 5.2 we obtain a
sequence of multilinear sheaf morphisms

o (Uy): Hr MiXU(%oly,X) - MiXU(Dpoly,X)

on X. After twisting these morphisms suitably (this is needed due to the presence of
the Grothendieck connection; cf. [Ye2]) we obtain the desired L, quasi-isomorphism
v,

We believe that mixed resolutions, and the results of this paper, shall have addi-
tional applications in algebraic geometry (e.g. algebro-geometric versions of results
on index theorems in differential geometry, cf. [NT]; or a proof of Kontsevich’s fa-
mous yet unproved claim on Hochschild cohomology of a scheme [Ko, Claim 8.4]).

1. REVIEW OF DIR-INV MODULES

We begin the paper with a review of the concept of dir-inv structure, which was
introduced in [Ye2]. A dir-inv structure is a generalization of adic topology.
Let C be a commutative ring. We denote by Mod C' the category of C-modules.

Definition 1.1. (1) Let M € ModC. An inv module structure on M is an
inverse system {F*M };cn of C-submodules of M. The pair (M, {F'M};cn)
is called an inv C'-module.

(2) Let (M,{FiM};cn) and (N, {F*N};en) be two inv C-modules. A function
¢ : M — N (C-linear or not) is said to be continuous if for every i € N
there exists ¢/ € N such that ¢(F" M) C FIN.

(3) Define InvMod C' to be the category whose objects are the inv C-modules,
and whose morphisms are the continuous C-linear homomorphisms.

There is a full and faithful embedding of categories Mod C' < Inv Mod C';, M +—
(M, {...,0,0}).

Recall that a directed set is a partially ordered set J with the property that for
any ji,jo € J there exists j3 € J such that j1, jo < js.

Definition 1.2. (1) Let M € ModC. A dir-inv module structure on M is a
direct system {F;M};c; of C-submodules of M, indexed by a nonempty
directed set J, together with an inv module structure on each F;M, such
that for every ji < jo the inclusion Fj, M — F;, M is continuous. The pair
(M,{F;M},es) is called a dir-inv C-module.

(2) Let (M,{F;M}),esand (N, {FyN }rek) be two dir-inv C-modules. A func-
tion ¢ : M — N (C-linear or not) is said to be continuous if for every j € J
there exists k € K such that ¢(F;M) C FyN, and ¢ : F;M — FyN is a
continuous homomorphism between these two inv C-modules.
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(3) Define DirlnvMod C' to be the category whose objects are the dir-inv C-
modules, and whose morphisms are the continuous C-linear homomor-
phisms.

An inv C-module M can be endowed with a dir-inv module structure {F;M};c s,
where J := {0} and FoM := M. Thus we get a full and faithful embedding
Inv Mod C' — DirlnvMod C.

Inv modules and dir-inv modules come in a few “flavors”: trivial, discrete and
complete. A discrete inv module is one which is isomorphic, in Inv Mod C, to an
object of Mod C' (via the canonical embedding above). A complete inv module is
an inv module (M, {F?M};cn) such that the canonical map M — lim.; FiM is
bijective. A discrete (resp. complete) dir-inv module is one which is isomorphic, in
DirInv Mod C, to a dir-inv module (M, {F; M} cs), where all the inv modules F; M
are discrete (resp. complete), and the canonical map lim;_, F;M — M in Mod C'is
bijective. A trivial dir-inv module is one which is isomorphic to an object of Mod C.
Discrete dir-inv modules are complete, but there are also other complete modules,
as the next example shows.

Example 1.3. Assume C is noetherian and c-adically complete for some ideal
c. Let M be a finitely generated C-module, and define F'M := ¢"*'M. Then
{FiM};en is called the c-adic inv structure, and of course (M,{F‘M};cn) is a
complete inv module. Next consider an arbitrary C-module M. We take {F;M},c;
to be the collection of finitely generated C-submodules of M. This dir-inv module
structure on M is called the c-adic dir-inv structure. Again (M,{F;M};c;) is a
complete dir-inv C-module. Note that a finitely generated C-module M is discrete
as inv module iff ¢!M = 0 for ¢ > 0; and a C-module is discrete as dir-inv module
iff it is a direct limit of discrete finitely generated modules.

The category Dirlnv Mod C' is additive. Given a collection { My }rex of dir-inv
modules, the direct sum €, ;- M}, has a structure of dir-inv module, making it into
the coproduct of {My}rex in the category DirlnvMod C. Note that if the index
set K is infinite and each Mj, is a nonzero discrete inv module, then @, ., My is
a discrete dir-inv module which is not trivial. The tensor product M ®c N of two
dir-inv modules is again a dir-inv module. There is a completion functor M +— M.
(Warning: if M is complete then M=M , but it is not known if M is complete for
arbitrary M.) The completed tensor product is M R¢N = MTX)C\N . Completion
commutes with direct sums: if M = @, ., M}, then M = DPrex M. See [Ye2] for
full details.

A graded dir-inv module (or graded object in Dirlnv Mod C) is a direct sum
M = @,,c; My, where each My, is a dir-inv module. A DG algebra in Dir Inv Mod C
is a graded dir-inv module A = @, A*, together with continuous C-(bi)linear
functions p: A x A — Aand d: A — A, which make A into a DG C-algebra. If A
is a super-commutative associative unital DG algebra in Dirlnv Mod C, and g is a
DG Lie Algebra in DirInv Mod C, then A ®¢ g is a DG Lie Algebra in Dir Inv Mod C.

Let A be a super-commutative associative unital DG algebra in Dir Inv Mod C'.
A DG A-module in DirlnvMod C' is a graded object M in Dirlnv Mod C, together
with continuous C-(bi)linear functions p: A x M — M and d : M — M, which
make M into a DG A-module in the usual sense. A DG A-module Lie algebra in
DirlnvMod C' is a DG Lie algebra g in Dirlnv Mod C, together with a continuous
C-bilinear function p : A X g — g, such that such that g becomes a DG A-module,
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and
[a171, az72] = (=1)"* araz [, 72]
for all ar, € A% and 7y € g'*.
All the constructions above can be geometrized. Let (Y, O) be a commutative

ringed space over K, i.e. Y is a topological space, and O is a sheaf of commutative
K-algebras on Y. We denote by Mod O the category of O-modules on Y.

Example 1.4. Geometrizing Example 1.3, let X be a noetherian formal scheme,
with defining ideal Z. Then any coherent Ox-module M is an inv Ox-module,
with system of submodules {Z**M},cn, and M = M\; cf. [EGA I]. We call an
Ox-module dir-coherent if it is the direct limit of coherent Ox-modules. Any dir-
coherent module is quasi-coherent, but it is not known if the converse is true. At
any rate, a dir-coherent Ox-module M is a dir-inv Ox-module, where we take
{FjM}jcs to be the collection of coherent submodules of M. Any dir-coherent
Ox-module is then a complete dir-inv module. This dir-inv module structure on
M is called the Z-adic dir-inv structure. Note that a coherent Ox-module M is
discrete as inv module iff Z*M = 0 for i >> 0; and a dir-coherent Ox-module is
discrete as dir-inv module iff it is a direct limit of discrete coherent modules.

If f:(Y',0) — (Y,0) is a morphism of ringed spaces and M € DirInv Mod O,
then there is an obvious structure of dir-inv @’ -module on f*M, and we define
ffM = F/\\/l If M is a graded object in DirInv Mod O, then the inverse images
f*M and f*M are graded objects in DirlnvMod @’. If G is an algebra (resp. a
DG algebra) in Dirlnv Mod O, then f*G and f* G are algebras (resp. DG algebras)
in DirlnvMod @’. Given N € DirlnvMod O’ there is an obvious dir-inv O-module
structure on f,N.

Example 1.5. Let (Y, O) be a ringed space and V' C Y an open set. For a dir-inv
O-module M there is an obvious way to make I'(V, M) into a dir-inv O-module. If
M is a complete inv O-module then I'(V, M) is a complete inv O-module. If V' is
quasi-compact and M is a complete dir-inv O-module, then T'(V, M) is a complete
dir-inv I'(V, O)-module.

2. COMPLETE THOM-SULLIVAN COCHAINS

From here on K is a field of characteristic 0. Let us begin with some abstract
notions about cosimplicial modules and their normalizations, following [HS] and
[HY]. We use the notation Mod K and DGModK for the categories of K-modules
and DG (differential graded) K-modules respectively.

Let A denote the category with objects the ordered sets [¢] := {0,1,...,q},
¢ € N. The morphisms [p] — [g] are the order preserving functions, and we write
Al :=Homa ([p], [¢]). The i-th co-face map 0" : [p] — [p+1] is the injective function
that does not take the value i; and the i-th co-degeneracy map s’ : [p] — [p — 1]
is the surjective function that takes the value 7 twice. All morphisms in A are
compositions of various 0% and s’.

An element of A may be thought of as a sequence @ = (i, ...,7p) of integers
with 0 < ip < -+ <4y < ¢. Given 4 € A;n, j e AP and a € Ag, we sometimes
write a. (i) ;=ioa € A" and a*(j) ;== aoj € Al,.

Let C be some category. A cosimplicial object in C is a functor C': A — C. We
shall usually refer to the cosimplicial object as C'= {C?},en, and for any a € Al
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the corresponding morphism in C will be denoted by o* : CP — C9. A simplicial
object in C is a functor C : A°? — C. The notation for a simplicial object will be
C ={Cp}lpeny and a, : Cy — C).

Suppose M = {M} ¢y is a cosimplicial K-module. The standard normalization
of M is the DG module NM defined as follows: NIM := () Ker(s’ : M9 —
M¢4~1Y). The differential is 9 := 3 9%0(~1)'0" : NYM — N9+1M. We get a functor
N: AModK — DGMod K.

For any ¢ let Af be the geometric q-dimensional simplex

Al :=SpecKlto, ..., ty]/(to+ -+, —1).

The i-th vertex of A} is the K-rational point « such that ¢;(z) =1 and ¢;(z) =0
for all j # i. We identify the vertices of Al with the ordered set [¢] = {0,1,...,¢}.
For any « : [p] — [¢] in A there is a unique linear morphism « : A}y — Al
extending it, and in this way {Af },en is a cosimplicial scheme.

For a K-scheme X we write QP(X) := T'(X, Q_’;(/K). Taking X := A} we have
a super-commutative associative unital DG K-algebra Q(Af) = @,y 2P (AL),
that is generated as K-algebra by the elements ¢, ..., t,, dto,. .., dt;. The collection
{Q(AL)}4en is a simplicial DG algebra, namely a functor from A°P to the category
of DG K-algebras.

In [HY] we made use of the Thom-Sullivan normalization NM of a cosimplicial
K-module M. For some applications (specifically [Ye3]) a complete version of this
construction is needed. Recall that for M, N € DirlnvModK we can define the
complete tensor product N ® M. The K-modules Qq(A]lK) are always considered
as discrete inv modules, so Q(A]ZK) is a discrete dir-inv DG K-algebra.

Definition 2.1. Suppose M = { M9}, is a cosimplicial dir-inv K-module, namely
each M? € DirlnvModK, and the morphisms a* : MP — MY, for a € Ag, are
continuous K-linear homomorphisms. Let

(2.2) NIM ﬁ (Qq(AfK) @%Ml)
=0

be the submodule consisting of all sequences (ug,u1,...), with u; € Qq(AfK) ® M,
such that

(2.3) (1 ®a*)(ug) = (o @ 1)(w;) € QUAE) @ M!

for all £,/ € N and all « € Afc. Define a coboundary operator @ : N9M — N9t1Af
using the exterior derivative d : Qq(A]lK) — Qatl (A]ZK). The resulting DG K-module
(NM, 6) is called the complete Thom-Sullivan normalization of M.

The K-module NM = ) 4eN NY9M is viewed as an abstract module. We obtain
a functor R
N : A DirlnvMod K — DGMod K.
Remark 2.4. In case each M' is a discrete dir-inv module one has Qq(AfK) ®M! =
Q(AL) ® M!, and therefore NM = NM.
The standard normalization NM also makes sense here, via the forgetful functor

ADirlnvModK — A ModK. The two normalizations N and N are related as
follows. Let [4, : Q(AL) — K be the K-linear map of degree —I defined by
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integration on the compact real [-dimensional simplex, namely |’ PR AARRRVAYS e 117
etc. Suppose each dir-inv module M! is complete, so that using [Ye2, Proposition
1.5] we get a functorial K-linear homomorphism

/ ‘A M - KoM = M.
Al

Proposition 2.5. Suppose M = { M} ,cy is a cosimplicial dir-inv K-module, with
all dir-inv modules M9 complete. Then the homomorphisms fAl induce a quasi-
isomorphism

/ : ﬁM — NM
A
in DGMod K.

Proof. This is a complete version of [HY, Theorem 1.12]. Let Al be the simplicial
set Al = Homa (—, [1]); so its set of p-simplices is Ai,. Define C to be the algebra

of normalized cochains on Al, namely
O} := N Homses (A', K) 2 Homsgers (A" K).

Here AY" s the (finite) set of nondegenerate simplices, i.e. those sequences ¢ =
(i0,-..,4p) satisfying 0 < ip < --- < 4, < [. As explained in [HY, Appendix A]
we have simplicial DG algebras C' = {C}ien and Q(Ag) = {Q(Ak)}en, and a
homomorphism of simplicial DG modules p : Q(Ag) — C.

It turns out (this is work of Bousfield-Gugenheim) that p is a homotopy equiv-
alence in A°? DGModK, i.e. there are simplicial homomorphisms ¢ : C' — Q(Ag),
h:C — Cand b : Q(Ag) — Q(Ag) such that 1 —po¢ = hod+doh and
1—¢gop=h'od+doh

Now for M = {M9} € ADirlnvModK and N = {N,} € A’ ModK let
N ®._ M be the complete version of [HY, formula (A.1)], so that in particular

Q(Ag)®. M = NM and C®._ M = NM. Moreover
p@)HlM:/ : NM — NM.
A
It follows that [ A is a homotopy equivalence in DGMod K. O

Suppose A = {A%} e is a cosimplicial DG algebra in Dirlnv Mod K (not neces-
sarily associative nor commutative). This is a pretty complicated object: for every
q we have a DG algebra A? = P, , A%% in DirInv Mod K. For every a € A7 there
is a continuous DG algebra homomorphism o* : AP — A%, and the o* have to
satisfy the simpliciAal relations.

Anyhow, both NA and NA are DG algebras. For NA the DG algebra structure
comes from that of the DG algebras Q(AL)® A, via the embeddings (2.2). In
case each A! is an associative super-commutative unital DG K-algebra, then so is

NA. Likewise for DG Lie algebras. (The algebra NA, with its Alexander-Whitney
product, is very noncommutative.)

Assume that each A% is complete, so that the integral fA : NA — NA is defined.
This is not a DG algebra homomorphism. However:
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Proposition 2.6. Suppose A = {A%%4en is a cosimplicial DG algebra in
DirInv Mod K, with all A? complete. Then the homomorphisms fA, induce an iso-
morphism of graded algebras

H(/ ) HNA = HNA.
A

Proof. This is a complete variant of [HY, Theorem 1.13]. The proof is identical,
after replacing “®” with “®” where needed; cf. proof of previous proposition. [

Remark 2.7. If A is associative then presumably [ A extends to an A quasi-

isomorphism NA — NA.

3. COMMUTATIVE CECH RESOLUTIONS

In this section K is a field of characteristic 0 and X is a noetherian topological
space. We denote by Kx the constant sheaf K on X. We will be interested in
the category Dirlnv ModK x, whose objects are sheaves of K-modules on X with
dir-inv structures. Note that any open set V' C X is quasi-compact.

Let X = J2, Uiy be an open covering, which we denote by U. For any i =
(i0,---,iq) € A" define U; := Uy N---NUg,,), and let g; : U; — X be the
inclusion. Given a dir-inv K x-module M and natural number ¢ we define a sheaf

clU, M) = [] gigi' M.

€A

This is a finite product. For an open set V' C X we then have
r(v,.ciUu,M)) = [[ T(vnui, M.

icAm
For any ¢ the K-module I'(VNU;, M) has a dir-inv structure. Hence I'(V, C*(U, M))
is a dir-inv K-module. If M happens to be a complete dir-inv K x-module then
I(V,C4(U, M)) is a complete dir-inv K-module, since each VNU; is quasi-compact.

Keeping V fixed we get a cosimplicial dir-inv K-module {T'(V,C¢(U, M))}qu'
Applying the functors N¢ and N? we obtain K-modules NT'(V, C(U, M)) and
N4T(V,C(U, M)). As we vary V these become presheaves of K-modules, which
we denote by N9C(U, M) and NIC(U, M).

Recall that a simplex ¢ = (io,...,%,) is nondegenerate if iy < --- < 4,4. Let
AZ"”nd be the set of non-degenerate simplices inside AJ".

Lemma 3.1. For every q the presheaves

NIC(U, M) : V — NT(V,C(U, M))
and

NIC(U, M) : V s NI (V, C(U, M))
are sheaves. There is a functorial isomorphism of sheaves

(3.2) NICU, M) = ] giegi' M,

iear
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and functorial embeddings of sheaves

(3.3) NoW, M) =[] [T 9o 07 (27(AL) & M)
lEN ieA™

and

(3.4) M — N°C(U, M).

Proof. Since {C?(U, M)}qen is a cosimplicial sheaf we get the isomorphism (3.2).
As for ﬁqC(U,M), consider the sheaf Q7(AL)&® M on X. Take any open set
VCcXand:ze A;". Since V N U; is quasi-compact we have
QUAL) STV NU;, M) 2T (V NU;, Q1(AL) & M)
=T (V.. g ((AR) B M)).
By Definition 2.1 there is an exact sequence of presheaves on X:

0—Ncw, M)~ [ [ o (@(AL)EM)

IEN icAl
1Ra" —a.®1 - ENS
=25 00 I I 9600t (QUAR) @ M).
kIEN acAl i€A]
Since the presheaves in the middle and on the right are actually sheaves, it follows

that N?C(U, M) is also a sheaf.
Finally the embedding (3.4) comes from the embeddings M — Q°(AL)&® M,
w—1®w. g

Thus we have complexes of sheaves NC(U, M) and NC(U, M). There are func-

torial homomorphisms M — NC(U, M) and M — NC(U, M). Note that the
complex I'(X,NC(U, M)) is nothing but the usual global Cech complex of M for
the covering U.

Definition 3.5. The complex NC(U, M) is called the commutative Cech resolution
of M.

The reason for the name is that NC(U, Ox) is a sheaf of super-commutative DG
algebras, as can be seen from the next lemma.

Lemma 3.6. Suppose M1, ..., M., N are dir-inv K x-modules, and q1,...,q € N.
Let g :=q1 + -+ + q.. Suppose that for everyl € N and i € A" we are given K-
multilinear sheaf maps

¢q1’...,qmi : (qu (A]IK) @ (Ml Uz)) X X (QQT(A%K)Q%(MT
— Q1(A%) ® Wu,)

that are continuous (for the dir-inv module structures), and are compatible with the
simplicial structure as in Definition 2.1. Then there are unique K-multilinear sheaf
maps

Uz))

bara  NUC(U, M) x - x N&"C(U, M,) — NIC(U, N)
that commute with the embeddings (3.3).

Proof. Direct verification. O
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Lemma 3.7. Let Mq,..., M., N be dir-inv Kx-modules, and ¢ : [[M; = N a
continuous K-multilinear sheaf homomorphism. Then there is an induced homo-
morphism of complexes of sheaves
¢:NC(U,M;)®---@NC(U, M,) — NC(U,N).
Proof. Use Lemma 3.6. O
In particular, if M is a dir-inv O x-module then NC(U, M) is a DG NC(U, Ox)-

module.
If M=, MPis a graded dir-inv K y-module then we define

NCW, M) =@ NICU, MP)

ptg=i
and

NC(U, M) =, NC(U, M’

Due to Lemma 3.7, if M is a complex in Dirlnv Mod K x, then NC(U, M) is also
a complex (in ModK ), and there is a functorial homomorphism of complexes

M — NC(U, M).

Theorem 3.8. Let X be a noetherian topological space, with open covering U =
{Ui}ito- Let M be a bounded below complex in Dirlnv Mod K x, and assume each
MP s a complete dir-inv K x -module. Then:

(1) For any open set V.C X the homomorphism
V/ VNC U,M)) —T(V,NC(U, M))

18 a quasi-isomorphism of complexes of K-modules.
(2) There are functorial quasi-isomorphism of complezes of K x -modules

M — NCU, M) L2, Now, m).

Proof. (1) Lemma 3.1 and Proposition 2.5 imply that for any p the homomorphism
of complexes

V/ I(V, NC(U, MP)) = T(V,NC(U, MP))

is a quasi-isomorphism. Now use the standard filtration argument (the complexes
in question are all bounded below).

(2) From (1) we deduce that
(3.9) V/ r(v, NC(U ,M)) = T(V,NC(U, M))
is a quasi-isomorphism. Hence

/A . NC(U, M) — NC(U, M)

is a quasi-isomorphism of complexes of sheaves.

It is a known fact that MP — NC(U, MP) is a quasi-isomorphism of sheaves (see
[Ha] Lemma 4.2). Again this implies that M — NC(U, M) is a quasi-isomorphism.
And therefore the homomorphism M — NC(U, M) coming from (3.4) is also a
quasi-isomorphism. (I
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Now let us look at a separated noetherian formal scheme X. Let 7 be some
defining ideal of X, and let X be the scheme with structure sheaf Ox := Ox/Z. So
X and X have the same underlying topological space. Recall that a dir-coherent
Ox-module is a quasi-coherent Ox-module which is the union of its coherent sub-
modules.

Corollary 3.10. Let X be a noetherian separated formal scheme over K, with
defining ideal T and underlying topological space X . Let U = {Uy;}i%, be an affine
open covering of X. Let M be a bounded below complex of sheaves of K-modules on
X. Assume each MP is a dir-coherent Ox-module, and the coboundary operators
MP — MPTL gre continuous for the -adic dir-inv structures (but not necessarily
Ox-linear). Then:

(1) The canonical morphism

(X, NC(U, M)) — RT(X,NC(U, M))

in D(ModK) is an isomorphism.
(2) There is a functorial isomorphism

(X, NC(U, M)) = RI(X, M)
in D(Mod K).
Proof. (1) Counsider the commutative diagram

I~ F(Xv.fA)

| |

= RI(X,[A)
RT(X,NC(U, M)) ——— RT(X,NC(U, M))

in D(ModK), in which the vertical arrows are the canonical morphisms. By part
(1) of the theorem (with V' = X) the top arrow is a quasi-isomorphism. And by
part (2) the bottom arrow is an isomorphism. Hence it is enough to prove that the
right vertical arrow is an isomorphism.

Using a filtration argument we may assume that M is a single dir-coherent Ox-
module. Now I'(X,NC(U, M)) is the usual Cech resolution of the sheaf M with
respect to the covering U (cf. equation 3.2)). So it suffices to prove that for all ¢
and 7 € A:In’“d the sheaves g;. gi_lj\/l are I'(X, —)-acyclic.

First let’s assume M is a coherent Ox-module. Let i; be the open formal
subscheme of X supported on U;. Then g, 1 M is a coherent Og(,-module, and both
gi : Y; — X and U; — SpecK are affine morphisms. By [EGA I, Theorem 10.10.2]
it follows that g;. g;l/\/l = Rgix« g;l/\/l, and also

L(Us, g; *M) = RT(Us, g; * M) = RI(X, Rgsw g; * M) = RI(X, giw g; " M).

We conclude that H7 (X, g;. g; ' M) = 0 for all j > 0.

In the general case when M is a direct limit of coherent Ox-modules we still get
HY (X, gix g; "M) =0 for all j > 0.
(2) By part (2) of the theorem we get a functorial isomorphism RI'(X, M) &
RI'(X,NC(U, M)). Now use part (1) above. O
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4. Mi1XED RESOLUTIONS

In this section K is s field of characteristic 0 and X is a finite type K-scheme.

Let us begin be recalling the definition of the sheaf of principal parts Px from
[EGA IV]. Let A: X — X2 = X xg X be the diagonal embedding. By completing
X? along A(X) we obtain a noetherian formal scheme X, and Py := Ox. The two
projections p; : X2 — X give rise to two ring homomorphisms p} : Ox — Px. We
view Px as a left (resp. right) Ox-module via p} (resp. p3).

Recall that a connection V on an Ox-module M is a K-linear sheaf homomor-
phism V : M — Q% ®0, M satisfying the Leibniz rule V(fm) = d(f)®@m+ fV(m)
for local sections f € Ox and m € M.

Definition 4.1. Consider the de Rham differential dxz,x : Ox2 — Qﬁ(?/x relative
to the morphism ps : X2 — X. Since ka/x ~pr QL = pflﬂk Bprloy Ox2 we
obtain a K-linear homomorphism dxz,x : Oxz — p} QL. Passing to the comple-
tion along the diagonal A(X) we get a connection of Ox-modules

(4.2) Vp :Px — Q}X ®ox Px

called the Grothendieck connection.

Note that the connection Vp is py 1O -linear. It will be useful to describe Vp
on the level of rings. Let U = Spec C' C X be an affine open set. Then

I'(U,Q% ®o, Px) = Q¢ ®c (@) ~QLeC,

the I-adic completion, where I := Ker(C ® C' — (). And Vp : CoC— Q?(@\C’
is the completion of d®@1: C® C — QL ® C.
As usual the connection Vp of (4.2) induces differential operators of left Ox-
modules
Vp : Q% @0, Px — Q¥ ®o, Px
for all ¢ > 0, by the rule
(4.3) Vp(a®b) =d(a) @b+ (—=1)'a A Vp(b).

Theorem 4.4. Assume X is a smooth n-dimensional K-scheme. Let M be an
Ox -module. Then the sequence of sheaves on X

0— M2 D, M IZEM 0L 96 Px @0, M

(4.5) SR
-—>Q?{®ox7jx®ox./\/l—>0

s exact.

Proof. The proof is similar to that of [Yel, Theorem 4.5]. We may restrict to
an affine open set U = Spec B C X that admits an étale coordinate system s =
($1,.-.,8n), i.e. K[s] — B is an étale ring homomorphism. It will be convenient

to have another copy of B, which we call C; so that I'(U, Px) = m’, the I-adic

completion, where I := Ker(B ® C — B). We shall identify B and C' with their

images inside B ® C, and denote the copy of the element s; in C by r;. Letting

ti:=r;—s; € BQC we then have t; = §; = 1 ® s; — s; ® 1 in our earlier notation.

Note that QK[S] C Qp is a sub DG algebra, and B ®g|g QK[S] — 5 is a bijection.
By definition

(4.6) T(U,Qy ®0, Px) 2005 (B C) =0, o C.
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The differential Vp on the left goes to the differential dg®@1¢ on the right. Consider
the sub DG algebra QK[S] ®C C Qp ® C. We know that K — QK[S] is a quasi-
isomorphism; therefore so is C' — QK[ 5 ® C.

Because t; + s; = r; € C we see that C[s] = C[t] C B ® C. Therefore we obtain
C-linear isomorphisms

Qg © C = Q) Oks) Cls] = Q) Ox o) CIEL-
So there is a commutative diagram

(4.7) 0— C —— Clt] — 2 Q) @x(e) Clt] 5 -+ Uy Oxpe) ClH] — 0

| ] | i

0—C—BoC—2s OLbecC L aneC

of C-modules. The top row is exact, and the vertical arrow are inclusions. Let us
introduce a new grading on Q]%[s] ®x[s) C[t] as follows: deg(s;) := 1, deg(t;) := 1,
deg(d(s;)) := 1 and deg(c) := 0 for every nonzero ¢ € C. Since Vp(t;) = —d(s;) we
see that Vp is homogeneous of degree 0, and thus the top row in (4.7) is an exact
sequence in the category GrMod C' of graded C-modules. Now each term in this
sequence is a free graded C-module, and therefore this sequence is split in GrMod C.

The t-adic inv structure on C[t] can be recovered from the grading, and this
inv structure is the same as the [-adic inv structure on B ® C. Therefore the
completion is Qi[s] k(s Cl[t]] = Q' ® C. Thus the diagram (4.7) is transformed
to the commutative diagram

0— C — C[it] 2 () ®xcls) ClIE] RAZG Qg 5] ©xs] Cl[E] — 0
0—C— B0 2 Lol — 2 o a0 ——0

in which the top tow is continuously C-linearly split, and the vertical arrows are
bijections. Hence the bottom row is split exact. Comparing this to (4.6) we conclude
that the sequence of right Oy-modules

0 — Oy 22 Pxly Y2 (2% ®oy Px)lo ~2> - (V% ®oy Px)|r — 0

is split exact.
Therefore it follows that for any Ox-module M the sequence (4.5), when re-
stricted to U, is split exact. (I

Let us now fix an affine open covering U = {U(q), ..., Upn)} of X.

Let ZTx = Ker(Px — Ox). This is a defining ideal of the noetherian formal
scheme (X,0z) := (X,Px). So Px is an inv module over itself with the Zx-adic
inv structure. Given quasi-coherent Ox-modules M and N, the tensor product
N ®oy Px ®0, M is a dir-coherent Px-module, and so it has the Zx-adic dir-inv
structure. See Example 1.4. In particular

Qx ®oyx Px ®ox M = ®p>0 QI)]{ ®ox Px ®oy M

becomes a dir-inv K x-module.
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Lemma 4.8. Qx ®0, Px ®ox M is a DG Qx-module in DirInv Mod K x, with
differential Vp @ 1.

Proof. Because Vp ® 1, is a differential operator of Py-modules, it is continuous
for the Tx-adic dir-inv structure. See [Ye2, Proposition 2.3]. O

Henceforth we will write Vp instead of Vp ® 14.
Definition 4.9. Let M be a quasi-coherent Ox-module. For any p,q € N define
Mix} /(M) := NIC(U, Q% ®oy Px @0y M).
The Grothendieck connection
Vp: Q5 ®oy Px oy M — ngl ®ox Px ®o, M
induces a homomorphism of sheaves
Vp : Mix};4 (M) — Mixt, ™ 9(M).
We also have 9 : MixF;? (M) — Mix2?™ (M). Define
Mixj; (M) = @ MixP;? (M),

p+ag=i
Mixg; (M) := @ Mix}, (M)

and

(410) dmix =0 + (*I)QV']D : MIXI()J’q(M) — ijg""l’q @MiX%q+1(M),

The complex (MixU(/\/l)7 dmix) is called the mized resolution of M.

There are functorial embeddings of sheaves

411)  MC Px ®oy M C NOC(U, 0% ®0, Px G0y M) = MixS (M)

and
412)  MiBIM) C [ ] 995" (Q1AK) & (% @0y Px @ox M));
leN ieAnm
see Lemma 3.1.
Proposition 4.13. (1) Mixy (Ox) is a sheaf of super-commutative associative

unital DG K-algebras. There are two K-algebra homomorphisms p3, ps :
OX — MiX(()J(Ox).

(2) Let M be a quasi-coherent Ox-module. Then Mixy (M) is a left DG
Mix¢; (Ox)-module.

(3) If M is a locally free Ox-module of finite rank then the multiplication map

Mixg; (Ox) ®0x M — Mixg (M)
s an isomorphism.

Proof. By by Lemmas 3.1 and 3.7. O

Note that dpyix 0 p5 : Ox — Mixy; (Ox) is zero, but dpix o pj # 0.
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Proposition 4.14. Let My,..., M., N be quasi-coherent Ox-modules. Suppose

¢ H(QX ®ox Px ®ox Mi) — Qx ®ox Px @0y N

i=1

is a continuous 2 x -multilinear sheaf morphism of degree d. Then there is a unique
K-multilinear sheaf morphism of degree d

NC(U, ¢) : Mixgy (My) x - - - x Mixy (M,.) — Mixgy (N)
which is compatible with ¢ via the embedding (4.12).
Proof. This is an immediate consequence of Lemma 3.7. (]
Suppose we are given M € CT(QCoh Ox). Define
Mixg (M)? = @ Mixg, (MP)
pta=i
with differential
dmix + (=1)%d g = Mix (MP) — Mix4 ™ (MP) & Mix?, (MPFL).

Theorem 4.15. Let X be a smooth separated K-scheme, and let U
{Uwy, -+, Uiy} be an affine open covering of X.

(1) There is a functorial quasi-isomorphism M — Mixgy(M) for M €
C*t(QCoh Ox).

(2) Given M € C*H(QCohOx), the canonical morphism I'(X, Mixy (M)) —
RI (X, Mixg; (M)) in D(ModK) is an isomorphism.

(3) The quasi-isomorphism in part (1) induces a functorial isomorphism
I'(X, Mixg, (M)) = RT(X, M) in D(ModK).

Proof. (1) Write N := Qx ®0, Px ®o, M. A filtration argument and Theorem
4.4 show that the inclusion M — N is a quasi-isomorphism. Next we view N
as a bounded below complex in DirlnvModKx. By Theorem 3.8(2) we have a

quasi-isomorphism N — NIC(U, N) = Mixg (M).

(2) This is due to Corollary 3.10(1), applied to the formal scheme (X, Px) and the
complex N of dir-coherent Px-modules defined above.

(3) This assertion is an immediate consequence of parts (1) and (2). O

Corollary 4.16. In the situation of the theorem, suppose M, N € C*(QCoh Ox)
and ¢ : Mixy, (M) — Mixg; (N) is a K-linear quasi-isomorphism. Then

['(X,¢) : T (X, Mixg(M)) — T'(X, Mixg (V)
s a quasi-isomorphism.
Proof. Consider the commutative diagram

I'(X, Mixg (M)) L) I'(X, Mixg (V)

| l

RI(X, Mixg (M) “m?h R (X, Mixg, (A))
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in D(ModK). By part (2) of the theorem the vertical arrows are isomorphisms.
Since ¢ is an isomorphism in D(ModKx) it follows that the bottom arrow is an
isomorphism. O

Given a quasi-coherent O x-module M and an integer i define

G Mixg (M) = @ Mix{, (M).
qi
Then {G?Mixy;(M)}iez is a descending filtration of Mixy; (M) by subcomplexes,
satisfying G Mixg; (M) = Mixy (M) for i < 0 and (); G* Mixy (M) = 0. For any
i define
gré, Mixg; (M) := G* Mixg; (M) / G Mixg, (M).

The functor

gré, Mixy, : QCoh Ox — Mod K y
is additive, but we do not know whether it is exact. The next theorem asserts this
in a very special case.

Consider the sheaves of DG Lie algebras 7, and D,  as complexes of

quasi-coherent Ox-modules (cf. [Ye3, Proposition 3.18]). According to [Yel, The-
orem 0.4] there is a quasi-isomorphism

U Tpory,x = Dpoly, x-

Theorem 4.17. For any i the homomorphism of complezes
gre Mixy, (Ur) gfé; MiXU(Tpoly,X) - gTiG Mixy; (Dpoly,x)
is a quasi-isomorphism.
Proof. Given a point x € X choose an affine open neighborhood V' of x which
admits an étale morphism V' — AR. By [Ye2, Theorem 4.11] the map of complexes
Z/{l'V : %oly,X'V - Dpoly,le

is a homotopy equivalence in CT(QCoh Oy). Since gri, Mix,; is an additive functor
we see that gry, Mixg, (U1)]v is a quasi-isomorphism. O

Remark 4.18. We know very little about the structure of the sheaves NIC(U, M),
even when M = Ox. Cf. [HS].

5. SIMPLICIAL SECTIONS

Let X be a K-scheme, and let X = UZ’;O Uiy be an open covering, with in-
clusions g¢;y @ Uy — X. We denote this covering by U. For any multi-index
i = (ig,...,iq) € A} we write U; := ﬂ?:o Ugi,), and we define the scheme
Uy = HieA;ﬂ U;. Given o € A and @ € A" there is an inclusion of open sets
ay : Uy — U, (4)- These patch to a morphism of schemes o, : U, — Up, making
{Uq}qen into a simplicial scheme. The inclusions g(;) : Uy — X induce inclusions
gi : Uy — X and morphisms g, : U; — X; and one has the relations g, o o, = g4
for any o € AJ.

Definition 5.1. Let 7 : Z — X be a morphism of K-schemes. A simplicial section
of m based on the covering U is a sequence of morphisms

o={0y: Ak xU; — Z}4en

satisfying the following conditions.
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s

A]}( X U(O,l)

FIGURE 1. An illustration of a simplicial section o based on an
open covering U = {U;)}. On the left we see two components of
o in dimension ¢ = 0; and on the right we see one component in
dimension ¢ = 1.

(i) For any ¢ the diagram

AL xU, —— 7

oL
v, —2.
is commutative.
(ii) For any aw € Al the diagram

AR x U,

N
AL x U, /Z

%

q
Ag x U,
is commutative.

Given a multi-index 7 € A? we denote by o; the restriction of o4 to A x Uj.
See Figure 1 for an illustration.

As explained in the introduction, simplicial sections arise naturally in several
contexts, including deformation quantization.

Let A be an associative unital super-commutative DG K-algebra. Consider ho-
mogeneous A-multilinear functions ¢ : My X --- x M, — N, where My,..., M., N
are DG A-modules. There is an operation of composition for such functions: given
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functions v; : Hj L; j — M, the composition is ¢ o (1 X --- X 9, : Hij Li; — N.
There is also a summation operation: if ¢; : [[, M; — N are homogeneous of equal
degree then so is their sum }, ¢;. Finally, let d : [[; M; — [[; M; be the function

d(mq,...,my) = Z:l:(ml,...,d(mi),...,mr)
i=1

with Koszul signs. All the above can of course be sheafified, i.e. A is a sheaf of DG
algebras on a scheme Z etc.

As before let 7 : Z — X be a morphism if K-schemes, and let U = {U;} be
an open covering of X. Suppose o is a simplicial section of = based on U. We
consider Q% as a discrete inv K x-module, and Qx = D,>0 Q% has the @ dir-inv
structure. Likewise for Q7 = P, 2.

Suppose M is a quasi-coherent Ox-module. Then, as explained in Section 4,
Qy ®o, ™™ (Px @0, M) is a DG Qz-module on Z, with the Grothendieck con-
nection Vp. And Mixy (M) is a DG Mixy (Ox)-module on X, with differential

dmix .

Theorem 5.2. Let w : Z — X be a morphism of schemes, and suppose o is a
simplicial section of m based on an open covering U of X. Let Mq,..., M., N be
quasi-coherent Ox -modules, and let

¢: [] (2280, 7 (Px ®ox My)) = Qz 80, 7 (Px ®ox N)

=1

be a continuous Qz-multilinear sheaf morphism on Z of degree k. Then there is an
induced Mixg; (Ox )-multilinear sheaf morphism of degree k

o*(¢) : Mixgy (M) x -+ X Mixg (M) — Mixg (V)

on X with the following properties:

(i) The assignment ¢ — o*(p) respects the operations of composition and sum-
mation.
(ii) If ¢ = 7*(¢o) for some continuous Qx -multilinear morphism

r

¢o : H (Qx ®ox Px ®ox M;) = Qx Qo Px ®ox N

i=1

then a*(¢) = NC(U, ¢p).
(iii) Assume that
Vpod—(=1)f¢oVp =1
for some continuous Q) z-multilinear sheaf morphism
P H (22 ®o, ™ (Px ®ox M;)) = Q; ®o0, 7™ (Px @0y N)
i=1
of degree k + 1. Then
dmix © U*(¢> - (_1>ka*(¢) o dmix = U*(w)

Before the proof we need an auxiliary result.
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Lemma 5.3. Let A and B be complete DG algebras in Dirlnv Mod K, and let
¥+ A — B be a continuous DG algebra homomorphism. To any DG A-module
M in DirlnvMod K we assign the DG B-module f*M := B&4 M. Then to any
continuous A-multilinear function ¢ : [[, M; — N we can assign a continuous B-
multilinear function f*(¢) : [, f*(M;) — f*(N). This assignment is functorial in
f*, and respects the operations of composition and summation. If ¢ and ) are such
continuous A-multilinear functions, homogeneous of degrees k and k+1 respectively
and satisfying
dog—(-1)f¢pod =1,
then
do f*(¢) = (~=1)Ff (@) od = f* ().

Proof. This is all straightforward, except perhaps the last assertion. For that we
make the calculations. By continuity and multilinearity it suffices to show that

(do f*@)(B) = (=D (f*(#) 0 d)(8) = f*()(B)
for 8= (61,...,0), with 8; = b; ® my, b; € BPi and m; € M%. Then
(do f*(¢))(B) = d(£by ...b - ¢(ma,...,m;))
= 4d(by---by) - p(my,...,my) by by - d(P(my,...,m,))
with Koszul signs. Since
d(8;) = d(b;) @ m; £ b; ® d(m;)
we also have

(f*(¢)od)(8) = Zif*(@(ﬁl,...,d(ﬁi),...,m
- Z(j:bl'-d(bi)mbr'¢(m1,...,mr)

:I:blbrqb(ml,,d(mz)mr))
=+d(by---b,) - p(ma,...,my) £ by b - d(d(ma, ..o my)).

Finally

f*(w)(ﬁ) = j:bl o 'bT : ¢(m17' . '7m7‘)7
and the signs all match up. O
Proof of the theorem. For a sequence of indices @ = (ig,...,%) € A]" let us intro-

duce the abbreviation Y; := A]lK x U;, and let po : Y; — U; be the projection. The
simplicial section o restricts to a morphism o; : Y; — Z.

By Lemma 5.3, applied with respect to the DG algebra homomorphism o} :
0,0y — {ly,, there is an induced continuous {2y,-multilinear morphism

r ~
o1 (@) [T (O 8,010,070 (@280, 7 (Px @0, My)) )
j=1
- QYi ééa;lﬂzai_l (QZ®OZ ™ (Px ®ox N))

Now for any quasi-coherent O x-module M we have an isomorphism of dir-inv

DG Qy,-modules

Qyi ®g;1QZU{1(QZ®OZ ™ (Px ®oy M)) =~ Qyi(@oyip;(PX ®ox M).
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Under the DG algebra isomorphism pa.{2y, = Q(AL) ® Qu, there is a dir-inv DG
module isomorphism

P2+ (Qy, Doy, P3(Px ®ox M)) = Q(Ag) & (Qx ®ox Px ®oyx M)y,

i

Thus we obtain a family of morphisms

T

7i(0): [T (AAk) & (2x @0y Px B0, M),

j=1

— Q(A]lK) ® (QX ®ox Px ®ox N)‘U’L)

indexed by % and satisfying the simplicial relations. Now use Lemma 3.6 to obtain

o*(¢$). Properties (i-iii) follow from Lemma 5.3. O
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