JOURNAL OF ALGEBRA **186**, 522–543 (1996) ARTICLE NO. **0385**

The Residue Complex of a Noncommutative Graded Algebra

Amnon Yekutieli*

Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Communicated by J. T. Stafford

Received November 1, 1995

DEDICATED TO THE MEMORY OF PROFESSOR SHIMSHON AMITSUR

0. INTRODUCTION

Suppose *A* is a finitely generated commutative algebra over a field *k*. According to Grothendieck duality theory, there is a canonical complex \mathscr{K}_A of *A*-modules, called the *residue complex*. It is characterized as the Cousin complex of the twisted inverse image $\pi^! k$, where $\pi : X = \text{Spec } A \to k$ is the structural morphism. \mathscr{K}_A has the decomposition

$$\mathscr{H}_{A}^{-q} = \bigoplus_{x \in X_q/X_{q-1}} \mathscr{H}_{A}(x) \tag{0.1}$$

where $X_q/X_{q-1} \subseteq X$ is the set of points of dimension q (the q-skeleton) and $\mathscr{H}_A(x)$ is an injective hull of the residue field k(x). The coboundary operator $\delta: \mathscr{H}_A(x) \to \mathscr{H}_A(y)$ is nonzero precisely when y is an immediate specialization of x. For a discussion of the commutative theory see [RD] and [Ye2].

In this paper we propose a definition of the residue complex R^{\cdot} of a noncommutative Noetherian graded *k*-algebra $A = k \oplus A_1 \oplus A_2 \oplus \cdots$.

We begin, in Section 1, with the *generalized Auslander–Gorenstein* (A-G) condition. This condition can be checked whenever A has a dualizing complex; if A is Gorenstein (i.e., has finite injective dimension) it reduces

522

0021-8693/96 \$18.00

^{*} Supported by an Allon Fellowship, and an incumbent of the Anna and Maurice Boukstein Career Development Chair. E-mail address: amnon@wisdom.weizmann.ac.il.

Copyright © 1996 by Academic Press, Inc. All rights of reproduction in any form reserved.

to the usual A-G condition. The generalized A-G condition is necessary for the existence of a residue complex (see below) and seems to be a reasonable requirement if A is expected to have any geometry associated to it. We generalize a result of Bjork and Levasseur to the effect that the *canonical dimension* Cdim := -j, where j(M) is the grade of the module M, is a finitely partitive exact dimension function (Theorem 1.3). We also extend results of [ATV2] regarding normalization of Cohen–Macaulay modules of dimension 1 (Theorem 1.9).

In Section 2 we define a *strong residue complex* over A (Definition 2.3). This is a refinement of the notion of *balanced dualizing complex* which appeared in [Ye1]. The strong residue complex R^{\cdot} is unique, up to an isomorphism of complexes of graded bimodules (Theorem 2.4). So when it exists, R^{\cdot} is a new invariant of A. The algebraic structure of R^{\cdot} should carry some "geometric information" about A, in analogy to the commutative case. Existence is proved in two general circumstances: (i) A is finite over its center; and (ii) A is the twisted homogeneous coordinate ring of a triple (X, σ, \mathcal{L}) (Propositions 2.11, 2.8). In Section 3 we prove existence for a three-dimensional Sklyanin algebra (see below).

There is evidence that many important algebras, including some four-dimensional A-S (Artin–Schelter) regular algebras, do not have strong residue complexes [ASZ]. Guided by this evidence we devised the definition of *weak residue complex* (Def. 2.14). However, we do not have a single example of an algebra which admits a weak residue complex but not a strong one. We show that the existence of a weak residue complex implies the generalized A-G condition (Theorem 2.18).

Section 3 is devoted to proving that a three-dimensional Sklyanin algebra (see [ST, ATV1]) has a strong residue complex. Let (E, σ, \mathscr{L}) be the triple defining A; so E is an elliptic curve, and the automorphism σ is a translation. We show that A is localizable at every σ -orbit on E (Proposition 3.5). This fact is used to show that the minimal left graded-injective resolution I° of A is also the minimal right resolution. According to [Aj3] the modules I^q have the correct GK dimensions. Therefore by tensoring with the dualizing bimodule ω we obtain the residue complex $R^{\circ} = \omega \otimes_A I^{\circ}$ (Theorem 3.13, Corollary 3.14).

1. THE GENERALIZED AUSLANDER–GORENSTEIN CONDITION

In [Ye1] some ideas of Grothendieck duality theory were extended to noncommutative rings, and we shall briefly review them here. Suppose $A = k \oplus A_1 \oplus A_2 \oplus \cdots$ is a Noetherian graded algebra over a field *k*. It follows that *A* is a finitely generated algebra. By default an *A*-module will

mean a graded left module. Let GrMod(A) be the abelian category of graded left *A*-modules with degree 0 homomorphisms, and let $GrMod_f(A)$ be the subcategory of finite (that is, finitely generated) modules. We write $Hom_A^{gr}(M, N)_i$ for the group of degree *i* homomorphisms between graded left *A*-modules, so

$$\operatorname{Hom}_{\mathcal{A}}^{\operatorname{gr}}(M, N)_i = \operatorname{Hom}_{\operatorname{GrMod}(\mathcal{A})}(M, N(i)),$$

where N(i) is the shifted module. Define

$$\operatorname{Hom}_{A}^{\operatorname{gr}}(M,N) \coloneqq \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{A}^{\operatorname{gr}}(M,N)_{i} \in \operatorname{GrMod}(k).$$

Note that if *M* is finite then $\operatorname{Hom}_{A}^{\operatorname{gr}}(M, N) = \operatorname{Hom}_{A}(M, N)$.

We denote by A° the opposite ring, and $A^{e} := A \otimes_{k} A^{\circ}$. A right module (resp. a bimodule) is regarded as a left A° (resp. A^{e}) module.

Remark 1.1. Most definitions, operations, and conditions in this paper have a left–right symmetry, expressible by interchanging A and A° . For instance, if $M, N \in \text{GrMod}(A^\circ)$ we get $\text{Hom}_{\mathcal{A}^\circ}^{\text{gr}}(M, N) \in \text{GrMod}(k)$.

Denote by D(GrMod(A)) the derived category of the abelian category GrMod(A). Let D^b_f(GrMod(A)) be the subcategory of bounded complexes with finite cohomologies. Recall that a complex $R \in D^+(GrMod(A^e))$ is called *dualizing* if R^{\cdot} has finite injective dimension over A and A° ; each H^qR^{\cdot} is finite over A and A° ; and the natural morphisms $A \to \operatorname{RHom}_{A}^{\operatorname{gr}}(R^{\cdot}, R^{\cdot})$ and $A \to \operatorname{RHom}_{A}^{\operatorname{gr}}(R^{\cdot}, R^{\cdot})$ are isomorphisms in D(GrMod(A^e)). Then the functors $\operatorname{RHom}_{A}^{\operatorname{gr}}(-, R^{\cdot})$ and $\operatorname{RHom}_{A}^{\operatorname{gr}}(-, R^{\cdot})$ are anti-equivalences between D^b_f(GrMod(A)) and D^b_f(GrMod(A°)). The dualizing complex R^{\cdot} is unique in the following sense: any other dualizing complex is isomorphic in D(GrMod(A^e)) to $R^{\cdot} \otimes_A L[n]$, for some invertible bimodule L and integer n (see [Ye1, Theorem 3.9]).

Let in be the augmentation ideal of A. Write $\Gamma_{\mathfrak{m}}$ (resp., $\Gamma_{\mathfrak{m}^{\circ}}$) for the functor of left (resp. right) int-torsion. A dualizing complex R^{\cdot} is called *balanced* if there are isomorphisms $R\Gamma_{\mathfrak{m}}R^{\cdot} \cong R\Gamma_{\mathfrak{m}^{\circ}}R^{\cdot} \cong A^{*}$ in $D(GrMod(A^{e}))$. Here $A^{*} := \operatorname{Hom}_{k}^{\operatorname{gr}}(A, k)$, the graded-injective hull of the trivial module k. The balanced dualizing complex R^{\cdot} is unique up to isomorphism in $D(GrMod(A^{e}))$. For example, a Noetherian Artin–Schelter regular algebra A of dimension n has an invertible bimodule ω s.t. $\omega[n]$ is a balanced dualizing complex (see [Ye1, Cor. 4.14]).

Suppose R^{\cdot} is a dualizing complex over A. Given a finite graded A-module M, its grade number w.r.t. R^{\cdot} is defined to be

$$j_{A:R'}(M) := \inf\{q \mid \operatorname{Ext}_A^q(M, R') \neq 0\} \in \mathbb{Z} \cup \{\infty\}.$$

Note that if *A* is Gorenstein (i.e. it has finite injective dimension) and R = A we recover the usual grade number.

DEFINITION 1.2. We say *A* satisfies the *generalized Auslander–Gorenstein* (A-G) condition if for every $M \in \text{GrMod}_{f}(A)$, integer *q* and graded submodule $N \subseteq \text{Ext}_{A}^{q}(M, R)$, one has $j_{A^{\circ};R}(N) \ge q$, and if the same holds with *A*, *A*° interchanged.

It is easily seen that this definition does not depend on the particular dualizing complex R. Indeed, if we take any other complex \tilde{R} , then it is isomorphic in D(GrMod(A^e)) to $R^{\cdot} \otimes_A L[n]$, and these twists will cancel out. The condition is clearly left-right symmetric (cf. Remark 1.1). In Section 2 we will relate the generalized A-G condition with residue complexes.

The next theorem generalizes results of Bjork [Bj] and Levasseur [Le].

THEOREM 1.3. Suppose A satisfies the generalized Auslander–Gorenstein condition. Then $M \mapsto -j_{A;R'}(M)$ is a finitely partitive exact dimension function on $GrMod_f(A)$ (see [MR, Sects. 6.8, 8.3]).

Proof. According to [Ye1, Prop. 2.4], we can assume R^{\cdot} is a bounded complex of bimodules and each R^{q} is graded-injective over A and A° . Then the adjunction homomorphism $M \to H^{\cdot}$, where

$$H^{\cdot} := \operatorname{Hom}_{A^{\circ}}^{\operatorname{gr}}(\operatorname{Hom}_{A}^{\operatorname{gr}}(M, R^{\cdot}), R^{\cdot})$$

is a quasi-isomorphism. Pick a positive integer d large enough so that $R^q \neq 0$ only if $|q| \leq d$. Consider the decreasing filtration on H^{\cdot} given by the subcomplexes

$$F^{p}H^{:} \coloneqq \operatorname{Hom}_{\mathcal{A}^{\circ}}^{\operatorname{gr}}(\operatorname{Hom}_{\mathcal{A}}^{\operatorname{gr}}(M, R^{\cdot}), R^{\geq p}).$$

Then F is an exhaustive filtration, and there is a convergent spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_{\mathcal{A}^{\circ}}^{\operatorname{gr},p}(\operatorname{Ext}_{\mathcal{A}}^{\operatorname{gr},-q}(M,R^{\cdot}),R^{\cdot}) \Rightarrow M.$$
(1.1)

The corresponding decreasing filtration

$$M = F^{-d}M \supset F^{-d+1}M \supset \cdots \supset F^{d+1}M = 0$$

is called the b-filtration in [Le].

The generalized A-G condition tells us that $E_2^{p,q} = 0$ if p < -q. So the spectral sequence lives in a bounded region of the (p,q) plane: $p \ge -q$ and $|q|, |p| \le d$. We conclude from formula (1.1) that for every $|p| \le d$

there is an exact sequence of graded A-modules

$$0 \to \frac{F^p M}{F^{p+1} M} \to E_2^{p, -p} \to Q^p \to 0$$

with Q^p a subquotient of $\bigoplus_i E_2^{p+1+i, -p-i}$. Therefore $j_{A;R} (F^p M / F^{p+1}M) \ge p$ (cf. [Bj, Thm. 1.3] and [Le, Thm. 2.2]).

From here the proof continues just like in [Bj, Propositions 1.6, 1.8] and [Le, Sects. 2–4]. ■

From here to the end of this section we will assume *A* satisfies the generalized A-G condition, and also that it has some balanced dualizing complex R. The uniqueness of R in D(GrMod(A^e)) justifies the following definition.

DEFINITION 1.4. The *canonical dimension* of a finite graded A-module M is

$$\operatorname{CDim} M \coloneqq -j_{A \colon R}(M) \in \mathbb{Z} \cup \{-\infty\}.$$

COROLLARY 1.5. Any finite A-module M has a critical composition series w.r.t. CDim.

Proof. See [Le, (4.6.4)] or [MR, Lemma 6.2.10 and Prop. 6.2.20].

PROPOSITION 1.6. Let M be a finite graded A-module.

1. One has

$$\operatorname{CDim} M \in \{-\infty, 0, 1, \dots, \operatorname{CDim} A\},\$$

CDim $M \leq 0$ iff M is m-torsion, and CDim $M = -\infty$ iff M = 0.

2. If $\operatorname{Ext}_{\mathcal{A}}^{q}(M, R^{\cdot}) \neq 0$ then $-\operatorname{CDim} M \leq q \leq 0$.

Proof. (1) Suppose M has finite length. Since R^{\cdot} is balanced, RHom^{gr}_A(M, R^{\cdot}) $\cong M^*$, so CDim $M \in \{-\infty, 0\}$. Now suppose M is a critical module. Then either $M \cong k$, or M has a nonzero finite length quotient \overline{M} , in which case CDim M > CDim $\overline{M} = 0$. But any module M has a critical composition series.

(2) The inequality $q \ge -\text{CDim } M$ is trivial. By the generalized A-G condition and part 1 we have $-q \ge \text{CDim Ext}_A^q(M, R^{\cdot}) \ge 0$.

Let us finish off this section with an application, due to Artin. It is a generalization of [ATV2, Propositions 6.3 and 6.6].

DEFINITION 1.7. We say a finite graded *A*-module *M* is *Cohen*–*Macaulay* (C-M) if $\operatorname{RHom}_{A}^{\operatorname{gr}}(M, R^{\cdot}) \cong M^{\vee}[n]$ for some *A*°-module M^{\vee} and integer *n*.

The A° -module M^{\vee} is called the dual module of M, and it is also C-M: $(M^{\vee})^{\vee} = M$. Of course, $n = \text{CDim } M = \text{CDim } M^{\vee}$.

We shall abbreviate the dualizing functors as follows: $D := \operatorname{RHom}_{A}^{\operatorname{gr}}(-, R^{\cdot})$ and $D^{\circ} := \operatorname{RHom}_{A}^{\operatorname{gr}}(-, R^{\cdot})$. Fix for the remainder of the section an isomorphism $\operatorname{R}\Gamma_{\mathfrak{m}}R \cong A^*$ in $\operatorname{D}(\operatorname{GrMod}(A^{\operatorname{e}}))$ (a rigidification of R). This determines an isomorphism $\operatorname{R}\Gamma_{\mathfrak{m}} \circ R \cong A^*$ such that $D^{\circ}Dk \cong k \cong (k^*)^*$ (see [Ye1, Remark 5.7]).

PROPOSITION 1.8. Suppose A satisfies the generalized A-G condition.

1. Let M be a finite graded A-module with CDim M = 1. Then M is C-M iff it is m-torsion free.

2. Suppose $\phi: M' \to M$ is a homomorphism between C-M modules of dimension 1, which is an isomorphism modulo m-torsion. Then $\phi^{\vee}: M^{\vee} \to (M')^{\vee}$ is also an isomorphism modulo m-torsion. To be precise, there is a natural exact sequence of A° -modules

$$0 \to M^{\vee} \xrightarrow{\phi^{\vee}} (M')^{\vee} \to \operatorname{Coker}(\phi)^* \to 0.$$

Proof. 1. First assume *M* is int-torsion free. Set $N^{-1} := H^{-1}DM$ and $N^0 := H^0DM$. Let $\sigma_{\leq q}$ and $\sigma_{>q}$ be the truncation functors of [RD, Chap. 1, Sect. 7]. Since $\sigma_{\leq -1}DM \cong N^{-1}$ [1] and $\sigma_{\leq 0}\sigma_{>-1}DM \cong N^0$ we get a triangle

$$N^{-1}[1] \to DM \to N^0 \to N^{-1}[2]$$
 (1.2)

in $D_{f}^{b}(GrMod(A^{\circ}))$. By the generalized A-G condition the module N^{0} has finite length, so $D^{\circ}N^{0} = (N^{0})^{*}$. Because CDim $N^{-1} \leq 1$ it follows that $H^{q}D^{\circ}N^{-1} \neq 0$ only for q = -1, 0. Therefore $H^{0}D(N^{-1}[2]) = 0$. Applying $H^{0}D^{\circ}$ to the triangle (1.2) we get $0 \rightarrow (N^{0})^{*} \rightarrow M$. The conclusion is that $N^{0} = 0$, so M is C-M with dual $M^{\vee} = N^{-1}$.

Conversely, suppose *M* is C-M, so $DM = M^{\vee}[1]$. Let $T := \Gamma_{\mathfrak{m}}M$, $\overline{M} := M/T$. The triangle $T \to M \to \overline{M} \to T[1]$ gives an exact sequence

$$\mathrm{H}^{0}DM \to \mathrm{H}^{0}DT \to \mathrm{H}^{1}D\overline{M}.$$

Since *M* is C-M we have $H^0DM = 0$. By Proposition 1.6, $H^1D\overline{M} = 0$. Therefore $T^* = H^0DT = 0$, so *M* is m-torsion free.

2. Let $N := \operatorname{Coker}(\phi)$. Since M' is m-torsion free, it follows that $\operatorname{Ker}(\phi) = 0$, so there is a triangle $M' \to M \to N \to M'[1]$. Apply $\operatorname{H}^0 D$ to this triangle, and use the fact that $DN \cong N^*$.

THEOREM 1.9. Suppose A has a balanced dualizing complex and satisfies the generalized Auslander–Gorenstein condition. Let M be a Cohen–Macaulay A-module with CDim M = 1. Then there is an A-module Norm M, which is

functorial in M. There is a natural exact sequence of A-modules

$$0 \to M \to \operatorname{Norm} M \to (M^{\vee})^* \to 0.$$
(1.3)

If $M \to \tilde{M}$ is an isomorphism modulo \mathfrak{m} -torsion then Norm $M \to \operatorname{Norm} \tilde{M}$ is an isomorphism. The module Norm M is \mathfrak{m} -torsion free. There is a natural isomorphism (Norm M)* \cong Norm(M^{\vee}).

Proof. For $n \ge 0$ define A-modules $M'_n \coloneqq M_{\ge n} \subseteq M$ and $M''_n \coloneqq M/M'_n$. So M'_n is a C-M module and M''_n is of finite length. The triangle

$$DM_n'' \to DM \to DM_n' \to (DM_n'')[1]$$

gives an exact sequence

$$0 \to M^{\vee} \to (M'_n)^{\vee} \to (M''_n)^* \to 0.$$
(1.4)

Taking k-linear duals we obtain an inverse system

$$0 \to M_n'' \to \left(\left(M_n' \right)^{\vee} \right)^* \to \left(M^{\vee} \right)^* \to 0 \tag{1.5}$$

and in the limit we get the sequence (1.3), where Norm $M := \lim_{\phi n} ((M'_n)^{\vee})^*$. Clearly this construction is functorial for *A*-linear homomorphisms $\phi : M \to \tilde{M}$ between C-M modules. If Ker(ϕ) and Coker(ϕ) are *m*-torsion then $\phi : M'_n \to \tilde{M'_n}$ is bijective for $n \gg 0$, so Norm(ϕ) is also bijective.

Next we shall prove that $N := \operatorname{Norm} M$ is m-torsion free. For any integer *m* consider the A° -submodule $(M^{\vee})'_m := (M^{\vee})_{\geq m} \subseteq M^{\vee}$ and the quotient $(M^{\vee})'_m := M^{\vee}/(M^{\vee})'_m$. Set $\tilde{M}_{-m} := ((M^{\vee})'_m)^{\vee}$. The exact sequence

$$0 \to (M^{\vee})'_m \to M^{\vee} \to (M^{\vee})'_m \to 0,$$

when dualized, gives, according to Proposition 1.8, an exact sequence

$$0 \to M \to \tilde{M}_{-m} \to \left(\left(M^{\vee} \right)_{m}^{\prime \prime} \right)^{*} \to 0.$$
(1.6)

Since $N \cong \text{Norm } \tilde{M}_{-m}$ we get injections $M \to \tilde{M}_{-m} \to N$. On comparing the size of cokernels in formulas (1.3) and (1.6) we conclude that $\lim_{m \to} \tilde{M}_{-m} \cong N$. Therefore N is m-torsion free.

Now consider the C-M A° -module M^{\vee} . In the construction of Norm (M^{\vee}) , the sequence corresponding to (1.4) is (1.6), so

$$(\operatorname{Norm}(M^{\vee}))^* = \lim_{m \to \infty} \tilde{M}_{-m} \cong N.$$

2. RESIDUE COMPLEXES—DEFINITIONS AND PROPERTIES

Let $A = k \oplus A_1 \oplus A_2 \oplus \cdots$ be a Noetherian graded algebra over a field k. Suppose dim is an exact dimension function for A-modules (in the sense of [MR, Sect. 6.8]). Really we need two such functions, $\dim_A : \operatorname{GrMod}_{f}(A) \to \mathbb{N} \cup \{-\infty\}$ and $\dim_{A^\circ} : \operatorname{GrMod}_{f}(A^\circ) \to \mathbb{N} \cup \{-\infty\}$, but we will try to keep this fact invisible, when possible.

DEFINITION 2.1. Let M be a (left graded) A-module and q an integer. Define $\Gamma_{M_q}M$ to be the sum of all finite submodules $M' \subseteq M$ with dim $M' \leq q$. Let $M_q \subseteq \operatorname{GrMod}(A)$ be the subcategory whose objects are the modules M satisfying $\Gamma_{M_q}M = M$. For a right module N we write $\Gamma_{M^\circ_q}N \subseteq N$ and the corresponding category is $M^\circ_q \subseteq \operatorname{GrMod}(A^\circ)$.

One should think of $\Gamma_{M_q} M$ as the submodule of elements "supported on M_q ," in analogy to commutative algebraic geometry. For any module M there is a filtration

$$0 = \Gamma_{\mathsf{M}_{-1}} M \subseteq \Gamma_{\mathsf{M}_0} M \subseteq \cdots \subseteq \Gamma_{\mathsf{M}_d} M = M$$

where $d = \dim_A A$.

The subquotients are

$$\Gamma_{\mathsf{M}_q/\mathsf{M}_{q-1}}M \coloneqq \Gamma_{\mathsf{M}_q}M/\Gamma_{\mathsf{M}_{q-1}}M.$$
(2.1)

We get additive functors Γ_{M_q} and $\Gamma_{M_q/M_{q-1}}$ on the category of graded left modules. If M is a bimodule then for any $a \in A$, right multiplication by apreserves $\Gamma_{M_q}M$. Hence the functors Γ_{M_q} and $\Gamma_{M_q/M_{q-1}}$ send bimodules to bimodules.

DEFINITION 2.2. 1. A nonzero (graded left) *A*-module *M* is said to be *pure* of dimension *q* (w.r.t. dim) if $\Gamma_{M_a}M = M$ and $\Gamma_{M_{a-1}}M = 0$.

2. An *A*-module *M* is said to be *essentially pure* of dimension *q* if there is an essential submodule $M' \subseteq M$ which is pure of dimension *q*.

3. The algebra A is called *pure* if every essentially pure graded A-module or A° -module is pure.

DEFINITION 2.3. A strong residue complex over A w.r.t. dim is a complex of bimodules R^{\cdot} satisfying:

- (i) Each bimodule R^q is a graded-injective module over A and A° .
- (ii) Each bimodule R^q is pure of dimension -q over A and A° .
- (iii) R^{\cdot} is a balanced dualizing complex.

It is immediate to see that the complex R^{\cdot} is bounded; in fact, $R^{q} \neq 0$ only for $-d \leq q \leq 0$, where $d = \min\{\dim_{A} A, \dim_{A^{\circ}} A\}$.

THEOREM 2.4. A strong residue complex is unique. Specifically, if R^{\cdot} and \tilde{R}^{\cdot} are two strong residue complexes, then there is an isomorphism of complexes of graded bimodules $\phi : R^{\cdot} \rightarrow \tilde{R}^{\cdot}$, and ϕ is unique up to a constant in k^* .

The proof is given after some preparatory results.

LEMMA 2.5. The functors Γ_{M_a} and $\Gamma_{M_a/M_{a-1}}$ have derived functors

 $\mathrm{R}\Gamma_{\mathrm{M}_{e}}, \mathrm{R}\Gamma_{\mathrm{M}_{e}/\mathrm{M}_{e-1}}: \mathrm{D}^{+}(\mathrm{GrMod}(A^{\mathrm{e}})) \to \mathrm{D}^{+}(\mathrm{GrMod}(A^{\mathrm{e}})).$

If $I \in D^+(GrMod(A^e))$ is a complex with each I^p a graded-injective A-module, then $R\Gamma_{M_a}I = \Gamma_{M_a}I$ and $R\Gamma_{M_a/M_{a-1}}I = \Gamma_{M_a/M_{a-1}}I$.

Proof. The proof is based on that of [Ye1, Theorem 1.2], which in turn relies on [RD, Chap. I, Theorem 5.1]. Any complex $M \in D^+(GrMod(A^e))$ is quasi-isomorphic to some complex *I*[·] as above (see [Ye1, Lemma 1.1]). Thus it suffices to prove that if *I* is such a complex which is acyclic, then the complexes Γ_{M_q}*I*[·] and Γ_{M_q/M_{q-1}}*I*[·] are also acyclic. Denote by δ the coboundary operator of *I*[·]. Suppose $x \in \Gamma_{M_q}I^p$, $\delta x = 0$.

Denote by δ the coboundary operator of I. Suppose $x \in \Gamma_{M_q} I^p$, $\delta x = 0$. Let $L \subseteq A$ be the annihilator of x, so dim $A/L \leq q$. Since the complex $\operatorname{Hom}_A^{\operatorname{gr}}(A/L, I)$ is acyclic, there is some $y \in \Gamma_{M_q} I^{p-1}$ with $\delta y = x$. This proves the acyclicity of $\Gamma_{M_q} I$. From the exact sequence of complexes

$$0 \to \Gamma_{\mathsf{M}_{q-1}} I \to \Gamma_{\mathsf{M}_q} I \to \Gamma_{\mathsf{M}_q / \mathsf{M}_{q-1}} I \to 0$$

we see that $\Gamma_{M_q/M_{q-1}}I^{\cdot}$ is also acyclic.

LEMMA 2.6. Suppose R^{\cdot} is a strong residue complex w.r.t. dim. Then the generalized A-G condition holds and dim = Cdim (for A and A°).

Proof. If dim M < -q then $\operatorname{Hom}_A(M, R^q) = 0$, and therefore $\operatorname{Ext}_A^q(M, R^{\cdot}) = 0$. This means that $\operatorname{Cdim} M \leq \dim M$.

Take any surjection $\bigoplus_{i=1}^{m} A(n_i) \twoheadrightarrow M$ in GrMod(*A*). Then the A° -module $\operatorname{Ext}_{A}^{q}(M, R^{\circ})$ is a subquotient of $\bigoplus R^{q}(-n_i)$, and hence dim $\operatorname{Ext}_{A}^{q}(M, R^{\circ}) \leq -q$. At this point we have proved the generalized A-G condition. Next, the convergence of the spectral sequence (1.1) implies that dim $M \leq \max\{\dim E_2^{p,q}\}$. But dim $E_2^{p,q} \leq -p$, and $E_2^{p,q} \neq 0$ implies $-p \leq q \leq \operatorname{Cdim} M$.

Proof of Theorem 2.4. The proof is an adaptation of ideas found in [RD, Chap. IV]. First observe that by Lemma 2.6, both R^{\cdot} and \tilde{R}^{\cdot} are strong residue complexes w.r.t. Cdim. We define Γ_{M_q} using this dimension function. Let M^{\cdot} be any complex in D⁺(GrMod(A^{e})). Replace M^{\cdot} by a

quasi-isomorphic complex I^{\cdot} as in Lemma 2.5. Define a decreasing filtration on I^{\cdot} by $F^{p}I := \Gamma_{M_{-p}}I^{\cdot}$. This filtration gives the usual spectral sequence of a filtered complex, and after identifying terms we obtain

$$E_1^{p,q} = \mathrm{H}^{p+q} \big(F^p I' / F^{p+1} I' \big) = \mathrm{H}^{p+q} R \Gamma_{\mathsf{M}_{-p} / \mathsf{M}_{-p-1}} M \xrightarrow{\to} \mathrm{H}^{p+q} M'$$

(see [ML, Chap. XI, Sect. 8]). Define the (left) Cousin complex of M^{\cdot} to be the complex $(EM^{\cdot})^{p} := E_{1}^{p,0}$ with operator $d_{1}^{p,0} : E_{1}^{p,0} \to E_{1}^{p+1,0}$. The result is a functor $E : D^{+}(GrMod(A^{e})) \to C(GrMod(A^{e}))$, where the latter is the (abelian) category of complexes of graded bimodules.

If R^{\cdot} is a strong residue complex, then $\Gamma_{M_{-p}/M_{-p-1}}R^q = R^q$ if q = p and 0 otherwise. Therefore $ER^{\cdot} \cong R^{\cdot}$ as complexes.

Now according to [Ye1, Sect. 4], balanced dualizing complexes are unique up to isomorphism in D⁺(GrMod(A^e)). Choose such an isomorphism $\psi : R \to \tilde{R}$, which is known to be unique up to a constant. Then $\phi = E(\psi) : R \to \tilde{R}^{\cdot}$ is the desired isomorphism.

The next proposition is a generalization of [Aj3, Theorem 3.14].

PROPOSITION 2.7. If A has a strong residue complex then it is a pure algebra.

Proof. Let *M* be a finite *A*-module and *M'* ⊆ *M* an essential submodule, pure of dimension *q*. It will suffice to produce an injection *M'* → $(R^{-q})^i$ for some *i*. Suppose $N \subseteq M'$ is critical. By the generalized A-G condition there is a nonzero homomorphism $\phi : N \to R^{-q}$, which by purity must be injective. Since every nonzero *A*-module has a critical submodule (cf. Corollary 1.5) it follows that there is an essential submodule $N_1 \oplus \cdots \oplus N_i \subseteq M'$ with all N_i critical. Choose injective homomorphisms $\phi_i : N_i \to R^{-q}$ and let $\psi : M' \to (R^{-q})^i$ be any extension of $\bigoplus \phi_i$. Then ψ is necessarily injective.

When we can associate with A a sufficiently rich geometry, e.g., when the projective spectrum Proj A is a classical projective scheme (in the terminology of [AZ]), one would expect that A would have a strong residue complex. The propositions below justify this expectation. First consider the twisted homogeneous coordinate ring of a triple (X, σ, \mathcal{L}) , where X is a proper scheme, σ is an automorphism, and \mathcal{L} is a σ -ample invertible sheaf (cf. [AV]).

PROPOSITION 2.8. Suppose A is a twisted homogeneous coordinate ring. Then A has a strong residue complex, w.r.t. to dim = Kdim (Krull dimension).

Proof. A balanced dualizing complex R^{\cdot} exists by [Ye1, Theorem 7.3]. It is the cone over the natural homomorphism of complexes $\Gamma_* \mathscr{K}_X \to A^*$

arising from Grothendieck duality. Here \mathscr{K}_X is the residue complex of *X*. For each *q*, R^q is a graded-injective module over *A* and A° .

Since $R^0 \cong A^*$, it has Kdim = 0. For q < 0 we have $R^q \cong \Gamma_* \mathscr{X}_X^{q+1}$. Because of the equivalence of categories between $\operatorname{GrMod}(A)$ modulo int-torsion and quasi-coherent \mathscr{O}_X -modules, it follows that for any nonzero coherent sheaf \mathscr{M} , Kdim $\Gamma_* \mathscr{M} = \dim \operatorname{Supp} \mathscr{M} + 1$. It is known that the quasi-coherent sheaf \mathscr{X}_X^{q+1} is pure of dimension -q - 1 (by this we mean that each nonzero coherent subsheaf $\mathscr{M} \subseteq \mathscr{X}_X^{q+1}$ has dim $\operatorname{Supp} \mathscr{M} =$ -q - 1). Hence R_A^q is pure of Kdim = -q. All this works for right modules too.

Remark 2.9. One can show that if some positive power of $\mathscr{L}^{\sigma} \otimes \mathscr{L}^{-1}$ is in the identity component $\operatorname{Pic}^{0} X$ of the Picard scheme of X, then for each graded A-module M one has the equality GKdim $M = \operatorname{Kdim} M$. On the other hand, in [AV, Example 5.18] we see a twisted homogeneous coordinate ring A with GKdim A = 5 and Kdim A = 3.

The decomposition $\mathscr{K}_{X} = \bigoplus_{x \in X} \mathscr{K}_{X}(x)$ (cf. formula (0.1)) induces a bimodule decomposition $R = (\bigoplus_{T} R(T)) \oplus A^{*}$, where *T* runs through the σ -orbits in *X* and $R(T) := \bigoplus_{x \in T} \Gamma_{*} \mathscr{K}_{X}(x)$. It is known that $\mathscr{K}_{X}(x)$ is an indecomposable injective in QCoh(*X*), so $\Gamma_{*} \mathscr{K}_{X}(x)$ is indecomposable in GrMod(*A*).

PROBLEM 2.10. Is R(T) an indecomposable bimodule?

The second general situation to consider is an algebra finite over its center.

PROPOSITION 2.11. If A is finite over its center then it has a strong residue complex, w.r.t dim = Kdim = GKdim.

Proof. There is a finite centralizing homomorphism $C \to A$, where $C = k[t_1, \ldots, t_d]$ is a (commutative) polynomial ring, and the variables t_i all have degree $e \ge 1$. The algebra C has a residue complex R_C^{\cdot} . If e = 1 use Prop. 2.8 with $X = \mathbf{P}_k^{d-1}$; if e > 1 simply take the same complex as for e = 1 and change the grading. Let $R_A^{\cdot} := \operatorname{Hom}_C^{gr}(A, R_C^{\cdot})$. According to [Ye1, Theorem 5.4] this is a balanced dualizing complex over A. Each R_A^q is graded-injective on both sides. Since as a C-module R_A^q embeds into a finite direct sum of twists of R_C^q , it is pure of GK dimension -q.

Here again commutative geometry says there is a bimodule decomposition $R = \bigoplus_{p} R(p)$, where p runs over the graded primes of the center of A.

PROBLEM 2.12. Is R(p) an indecomposable bimodule?

Remark 2.13. Let A_q be the multiparameter quantum deformation of the polynomial ring $A = k[t_1, \ldots, t_d]$, depending on a $d \times d$ matrix q =

 $[q_{ij}]$ (see [Ye3]). We do not know whether, for all q, A_q admits a strong residue complex. The problem is that localization destroys the \mathbb{Z}^d -grading which is used to deform A-modules into A_q -modules, so the residue complex R_A^{*} cannot be deformed.

In Section 3 we shall prove that a three-dimensional Sklyanin algebra has a strong residue complex. Recent work of Ajitabh *et al.* [ASZ] shows that some four-dimensional Artin–Schelter regular algebras do not admit strong residue complexes. They actually find an algebra A such that in the minimal graded-injective resolution $0 \rightarrow A \rightarrow I^{-4} \rightarrow I^{-3} \rightarrow \cdots$, each I^q is essentially pure of dimension -q (w.r.t. Cdim = GKdim), but I^{-1} is not pure. Influenced by this result we make the next definition, even though we have no example (so far) of an algebra with a weak residue complex but no strong residue complex.

DEFINITION 2.14. A weak residue complex w.r.t. dim is a complex of bimodules R' satisfying:

(i) Each bimodule R^q is a graded-injective module over A and A° .

(ii) Each bimodule R^q is essentially pure of dimension -q over A and A° , and there is equality $\Gamma_{M_a}R := \Gamma_{M^\circ_a}R \subseteq R$.

(iii) R^{\cdot} is a balanced dualizing complex.

Let J^{\cdot} be a complex of graded-injective A-modules. We say J^{\cdot} is a minimal injective complex if for every q, $\operatorname{Ker}(\delta : J^q \to J^{q+1}) \subseteq J^q$ is an essential submodule. Any complex $M \in D^+(\operatorname{GrMod}(A))$ admits a quasi-isomorphism to a minimal injective complex J^{\cdot} , and one can easily check that this J^{\cdot} is unique up to isomorphism (cf. [Ye1, Lemma 4.2]). Observe that minimality has nothing to do with a dimension function, nor is $M \to J^{\cdot}$ functorial.

LEMMA 2.15. Suppose J^{\cdot} is a complex of graded-injective A-modules with J^{q} essentially pure of dimension -q. Then J^{\cdot} is minimal.

Proof. Pick an integer q. Let $M := \text{Ker}(\delta : J^q \to J^{q+1})$ and let I be a graded-injective hull of M. So $J^q \cong I \oplus I'$ and $\delta : I' \to J^{q+1}$ is an injection. By the purity assumption we get I' = 0.

We conclude:

PROPOSITION 2.16. If R' and \tilde{R}' are weak residue complexes, then they are isomorphic as complexes of A-modules and as complexes of A° -modules. In particular, if one is a strong residue complex then so is the other.

PROBLEM 2.17. Is it possible for an algebra A to admit two weak residue complexes R^{\cdot} and \tilde{R}^{\cdot} which are not isomorphic as complexes of graded bimodules? (Of course A cannot be pure.)

At this point we wish to relate residue complexes to the generalized A-G condition.

THEOREM 2.18. Let dim be an exact dimension function for A. Suppose that either condition holds:

(i) A admits a strong residue complex.

(ii) A admits a weak residue complex, and every finite left or right graded *A*-module has a dim critical composition series.

Then A satisfies the generalized A-G condition, and dim = Cdim.

LEMMA 2.19. Say R° is the residue complex in condition (ii) of the theorem. Let M be a critical finite module with dim M = d. Then for every q > -d there is a finite module \overline{M} with dim $\overline{M} < d$, and a homomorphism $M \to \overline{M}$, s.t. $\operatorname{Ext}_{A}^{d}(\overline{M}, R) \to \operatorname{Ext}_{A}^{d}(M, R^{\circ})$ is surjective.

Proof. Write $E(M) := \operatorname{Ext}_{A}^{q}(M, R^{\cdot})$. Say $[\phi] \in E(M)$ is represented by $\phi: M \to R^{q}$. Because M is critical (and therefore pure of dimension d) and R^{q} is essentially pure of dimension -q, ϕ cannot be injective. So $\overline{M}_{\phi} := \operatorname{Im}(\phi)$ has dim $\overline{M}_{\phi} < d$ and $[\phi] \in \operatorname{Im}(E(\overline{M}_{\phi}) \to E(M))$. Now choose $[\phi_{1}], \ldots, [\phi_{m}]$ which generate E(M) over A° . Then $\overline{M} := \bigoplus \overline{M}_{\phi_{i}}$ has the required properties. ∎

LEMMA 2.20. Let M be a finite A-module. Assume dim M = d. Then in the situation of condition (ii) of the theorem:

- 1. dim $\operatorname{Ext}_{A}^{q}(M, R^{\cdot}) \leq d$ for all q.
- 2. dim $\operatorname{Ext}_{\mathcal{A}}^{q}(M, R^{\cdot}) < d$ for all q > -d.
- 3. $\operatorname{Ext}_{A}^{q}(M, R^{\cdot}) = 0$ for all q < -d.

Proof. Say $\bigoplus_{i=1}^{m} A(n_i) \twoheadrightarrow M$ is a presentation of M. Then

$$\operatorname{Hom}_{\mathcal{A}}(M, R^{q}) \subseteq \Gamma_{\mathsf{M}_{d}} \left(\bigoplus R^{q}(-n_{i}) \right) = \Gamma_{\mathsf{M}^{\circ}_{d}} \left(\bigoplus R^{q}(-n_{i}) \right).$$

Since $\operatorname{Ext}_{A}^{q}(M, R^{\cdot})$ is a subquotient of $\operatorname{Hom}_{A}(M, R^{q})$ this implies part 1. If moreover d < -q then $\Gamma_{M}R^{q} = 0$, giving part 3.

Let us prove part 2. We may assume M is critical. Then the assertion is a consequence of Lemma 2.19 and part 1 applied to \overline{M} .

Note that the two lemmas work also for right modules (exchange A and A°).

Proof of Theorem 2.18. We need only consider condition (ii) of the theorem (cf. Lemma 2.6). Say dim M = d. By part 3 of Lemma 2.20 we

have Cdim $M \le d$. Suppose Cdim M < d. Then by parts 1 and 2 of the lemma all the terms in the spectral sequence (1.1) have dim < d, which is impossible. The conclusion is Cdim $M = \dim M$.

To prove the generalized A-G condition it suffices to check that $\dim \operatorname{Ext}_A^q(M, R^{\cdot}) \leq -q$. We will do so by induction on $d = \dim M$. For $d \leq -q$ this is part 1 of Lemma 2.20. For d > -q and M critical, the module \overline{M} of Lemma 2.19 has dim $\overline{M} < d$ so we can use induction. For other modules this is true by looking at a critical composition series.

PROBLEM 2.21. Is it true that every algebra which satisfies the generalized A-G condition admits a weak residue complex? It was proved in [Le] and [TV] that Sklyanin algebras of all dimensions satisfy the A-G condition, yet it is not known even whether every four-dimensional Sklyanin algebra admits a weak residue complex.

Let us finish this section with the Cohen-Macaulay case.

COROLLARY 2.22. Assume the hypotheses of Theorem 2.18. Furthermore, assume $R \cong \omega[d]$ in D(GrMod(A^e)) for some bimodule ω and some integer d. Then d = Cdim A, and

$$0 \to \omega \to R^{-d} \to \cdots \to R^0 \to 0 \tag{2.2}$$

is a minimal graded-injective resolution of ω , both as left and right module.

Proof. The isomorphism $\operatorname{RHom}_A^{\operatorname{gr}}(A, R^{\cdot}) = R^{\cdot} \cong \omega[d]$ means that A is a C-M A-module with $\operatorname{Cdim} A = d$ and dual module $A^{\vee} = \omega$. Hence $R^{-d-1} = 0$ and we deduce the exact sequence (2.2). By Lemma 2.19 it is a minimal resolution.

3. THE RESIDUE COMPLEX OF A THREE-DIMENSIONAL SKLYANIN ALGEBRA

In this section k is an algebraically closed field. We assume A is a three-dimensional Sklyanin algebra (see [ST]), which is the same as a type A three-dimensional regular algebra with three generators (in the classification of [ATV1]). The triple (E, σ, \mathscr{L}) consists of a smooth elliptic curve $E \subseteq \mathbf{P}_k^2$, an invertible sheaf $\mathscr{L} = \mathscr{O}_E(1)$, and a translation σ by some point of E(k). We shall prove that A is localizable at any σ -orbit $T \subseteq E(k)$. Such a result was obtained in [Aj2] for twisted homogeneous coordinate rings of \mathbf{P}_k^1 , by another method.

Let *B* be the twisted homogeneous coordinate ring of the triple (E, σ, \mathscr{L}) . Then $B \cong A/(g)$ where g is a central element of A of degree

3. An \mathcal{O}_E -module \mathcal{M} defines a left graded *B*-module

$$\Gamma_*\mathscr{M} \coloneqq \bigoplus_{n \in \mathbb{Z}} \Gamma(E, \mathscr{L}^{(1-\sigma^n)/(1-\sigma)} \otimes \mathscr{M}^{\sigma^n}),$$

where the exponents are in the integral group ring $\mathbb{Z}\langle \sigma \rangle$ and $\mathscr{M}^{\sigma} := \sigma^*\mathscr{M}$. If \mathscr{M} is equivariant w.r.t. σ then $\Gamma_*\mathscr{M}$ is actually a *B-B*-bimodule, and if \mathscr{A} is an equivariant \mathscr{O}_E -algebra, then $\Gamma_*\mathscr{A}$ is a graded *k*-algebra with an algebra homomorphism $B \to \Gamma_*\mathscr{A}$ (cf. [AV] and [Ye1]).

Given a point $p \in E(k)$ let $\mathscr{I}(p) \coloneqq k(E)/\mathscr{O}_{E,p}$, considered as a quasicoherent sheaf. So $\mathscr{I}(p)$ is an injective hull of the residue field k(p), and there is an exact sequence

$$0 \to \mathscr{O}_E \to k(E) \to \bigoplus_{p \in E(k)} \mathscr{I}(p) \to 0.$$
(3.1)

Let $B_E := \Gamma_* k(E)$, a graded *k*-algebra, and $I_B(p) := \Gamma_* \mathscr{I}(p)$, a graded left *B*-module. Recall that the point module N_p is the module $(\Gamma_* k(p))_{\geq 0}$.

LEMMA 3.1. $B_E \cong \operatorname{Frac}^{\operatorname{gr}} B$, the graded total ring of fractions. $I_B(p)$ is a left graded-injective hull of N_p . Applying Γ_* to the sequence (3.1) we get an exact sequence of graded left B-modules

$$0 \to B \to B_E \to \bigoplus_{p \in E(k)} I_B(p).$$

It is the beginning of a minimal graded-injective resolution, and the only missing term is $B^* = \text{Hom}_k^{\text{gr}}(B, k)$.

Proof. By [Ye1, Theorem 7.3], plus the fact that $\mathscr{O}_E \cong \omega_E$ (noncanonically).

Fix a σ -orbit $T \subseteq E(k)$. Then $\bigoplus_{p \in T} k(p)$ is an equivariant sheaf, and hence $\bigoplus_{p \in T} N_p$ is a *B*-*B*-bimodule. Let

$$I_B(T) := \bigoplus_{p \in T} I_B(p) \cong \Gamma_* \left(\bigoplus_{p \in T} \mathscr{I}(p) \right).$$

This too is a bimodule, and is also a graded-injective hull of $\bigoplus_{p \in T} N_p$ on both sides. Define the \mathscr{O}_E -subalgebra $\mathscr{O}_{E,T} \subseteq k(E)$ by

$$\Gamma(U, \mathscr{O}_{E,T}) := \bigcap_{p \in T \cap U} \mathscr{O}_{E,p}$$

for $U \subseteq E$ open. Then we get a σ -equivariant exact sequence

$$0 \to \mathscr{O}_{E,T} \to k(E) \to \bigoplus_{p \in T} \mathscr{I}(p) \to 0, \qquad (3.2)$$

from which we see that $\mathscr{O}_{E,T}$ is a σ -equivariant quasi-coherent sheaf. Let $B_T := \Gamma_* \mathscr{O}_{E,T}$, a graded subalgebra of B_E . Define a multiplicative set

 $S_T \coloneqq B \cap \{\text{homogeneous units of } B_T\}.$ (3.3)

PROPOSITION 3.2. The sequence of B_T - B_T -bimodules

$$0 \to B_T \to B_E \xrightarrow{o_{E,T}} I_B(T) \to 0, \qquad (3.4)$$

537

gotten by applying Γ_* to (3.2), is exact. S_T is a left and right denominator set in *B*, and $B_T = S_T^{-1}B = BS_T^{-1}$.

To prove the proposition we first need two lemmas.

LEMMA 3.3. Given $p \in E(k) - T$ there is some $b \in B_1$, s.t. b(p) = 0but $b(q) \neq 0$ for every $q \in T$.

Proof. Say σ is translation by $r \in E(k)$ and $T = q_0 + \langle r \rangle$ in the group structure of E(k). Given any nonzero $b \in B_1 = \Gamma(E, \mathscr{L})$ (which is the same as a line $\{b = 0\}$ in \mathbb{P}_k^2) its divisor of zeroes is $\{p_1, p_2, p_3\}$, and these points satisfy $p_1 + p_2 + p_3 = 0$. Consider a line through $p_1 = p$; then $p_2 \in T$ iff p_3 is in the σ -orbit $T' := -p - q_0 + \langle r \rangle$. Now E(k) being a divisible group, the cyclic subgroup $\langle r \rangle$ has infinite index. Hence in E(k) there are infinitely many σ -orbits, and so there are infinitely many lines through p which do not intersect T at all.

LEMMA 3.4. Consider the left B-module $BS_T^{-1} \subseteq B_T$. Then $BS_T^{-1} = \lim_{s \to \infty} Bs^{-1}$, the limit over $s \in S_T$.

Proof. We have to prove that given $s_1, s_2 \in S_T$ there is some $s \in S_T$ s.t. $Bs_1^{-1} + Bs_2^{-1} \subseteq Bs^{-1}$. For any nonzero $s \in B$ let $\mathscr{R}(s) \subseteq \mathscr{O}_{E,T}$ be the sheaf associated to the free module Bs^{-1} ; so $Bs^{-1} \cong \Gamma_* \mathscr{R}(s)$. It therefore suffices to prove that for some $s, \mathscr{R}(s_1) + \mathscr{R}(s_2) \subseteq \mathscr{R}(s)$.

Now $\mathscr{R}(s_i) = \mathscr{O}_E(D_i)$ for some effective divisors D_i supported on E - T. Let $D := D_1 + D_2$, so $\mathscr{R}(s_i) \subseteq \mathscr{O}_E(D)$. Say $D = \sum_{j=1}^n p_j$ (with repetition). By Lemma 3.3 we can find $b_j \in B_1$ s.t. $b_j(\sigma^{j-1}(p_j)) = 0$ but for all $q \in T$, $b_j(q) \neq 0$. Then taking $s := b_1 \cdots b_n \in S_T$ we get $\mathscr{O}_E(D) \subseteq \mathscr{R}(s)$.

Proof of Proposition 3.2. First observe that (3.2) is a σ -equivariant sequence of $\mathscr{O}_{E,T}$ -modules, so (3.4) is a sequence of graded $B_T - B_T$ -bimodules.

Choose any affine open set $U \subseteq E$ containing T. This is possible since $T \neq E(k)$ (cf. Lemma 3.3) and we can take $U = E - \{p'\}$ for some $p' \notin T$. Since $H^1(U, \mathscr{O}_E) = 0$, it follows that $k(E) \rightarrow$ $\Gamma(U, \bigoplus_{p \in E(k)} \mathscr{I}(p))$ is surjective. But $I_B(T)$ is a direct summand of $\Gamma(U, \bigoplus_{p \in E(k)} \mathscr{I}(p))$. This proves that $\delta_{E,T}$ is surjective in degree 0. For other degrees just twist everything.

To prove the second assertion it suffices, by Lemma 3.4, to prove that $B_T = BS_T^{-1}$ (cf. [MR, Chap. 3.1]). Now BS_T^{-1} is a graded left *B*-module. Let \mathscr{R} be the sheaf on *E* associated to BS_T^{-1} , so $\mathscr{O}_E \subseteq \mathscr{R} \subseteq \mathscr{O}_{E,T}$. If $p \in T$ then the stalk $\mathscr{O}_{E,p} = (\mathscr{O}_{E,T})_p$, so a fortiori $\mathscr{R}_p = (\mathscr{O}_{E,T})_p$. If $p \notin T$ then by Lemma 3.3 we may find some $a_i, b_i \in B_1 = \Gamma(E, \mathscr{L})$, $i \ge 1$, s.t. $a_i(\sigma^{i-1}(p)) \ne 0$, $b_i(\sigma^{i-1}(p)) = 0$ and for all $q \in T$, $b_i(q) \ne 0$. Since $b_i \in S_T$ we get

$$c_n = a_1 \cdots a_n b_n^{-1} \cdots b_1^{-1} \in (BS_T^{-1})_0 \subseteq \Gamma(E, \mathscr{R}).$$

So $c_n \in \mathscr{R}_p \subseteq k(E)$ has a pole of order at least *n*. This implies that $\mathscr{R}_p = k(E) = (\mathscr{O}_{E,T})_p$. We have shown that $\mathscr{R} = \mathscr{O}_{E,T}$. Since $BS_T^{-1} = \lim_{s \to \infty} Bs^{-1}$ and $Bs^{-1} \cong$

We have shown that $\mathscr{R} = \mathscr{O}_{E,T}$. Since $BS_T^{-1} = \lim_{s \to \infty} Bs^{-1}$ and $Bs^{-1} \cong \Gamma_* \mathscr{R}(s)$ it follows that $BS_T^{-1} \cong \Gamma_* \mathscr{R} = B_T$. Finally, by the left-right symmetry of Γ_* for equivariant sheaves (cf.

Finally, by the left-right symmetry of Γ_* for equivariant sheaves (cf. [Ye1, Prop. 6.17]) we also get $S_T^{-1}B = B_T$.

Define

$$\tilde{S}_T := \{ s \in A \mid s \text{ is homogeneous and } s + (g) \in S_T \subseteq B \}$$

which is clearly a multiplicative set. Let $Q := \operatorname{Frac}^{\operatorname{gr}} A$, the graded total ring of fractions.

PROPOSITION 3.5. \tilde{S}_T is a left and right denominator set, with ring of fractions $A_T := A\tilde{S}_T^{-1} \subseteq Q$.

Proof. Copy the proof of [Aj1, Chap. III, Prop. 3.6].

From here to Corollary 3.14 we will assume the automorphism σ has infinite order.

Consider a minimal graded-injective resolution of *A* as a left module:

$$0 \to A \to I^{-3} \xrightarrow{\delta} I^{-2} \xrightarrow{\delta} I^{-1} \xrightarrow{\delta} I^{0} \to 0$$
(3.5)

(with unusual numbering). Inside Q there are the two subrings $\Lambda := A[g^{-1}]$ and

$$A_E = A_{(g)} := \{as^{-1} \mid s \text{ is homogeneous, } s \notin (g)\}$$

(cf. [Aj3]). Define an $A_E - A_E$ -bimodule $I_A(E) := Q/A_E$. For every $p \in E(k)$ let $I_A(p)$ be a graded-injective hull of N_p (as an A-module). In [Aj3] Ajitabh proves the following:

THEOREM 3.6. The left A-module I^{-q} is pure of GK dimensions q. Moreover,

$$I^{-3} \cong Q$$

$$I^{-2} \cong \frac{Q}{\Lambda} \oplus I_A(E)$$
$$I^{-1} \cong \bigoplus_{p \in E(k)} I_A(p)$$
$$I^0 \cong A^*(3)$$

as graded left A-modules. The homomorphism $\delta: I^{-3} \to I^{-2}$ is the sum of the two projections $Q \twoheadrightarrow Q/\Lambda$ and $Q \twoheadrightarrow I_A(E)$.

The algebra Q is filtered by the "fractional ideals" $A_E g^n$, $n \in \mathbb{Z}$ (the "(g)-adic valuation") and we denote by $\operatorname{gr}^{(g)} Q$ the resulting graded algebra. Note that this algebra carries two gradings. Since g is a central regular element, we see that $\operatorname{gr}^{(g)} Q = B_E[\bar{g}, \bar{g}^{-1}]$, where \bar{g} is the symbol of g, and this algebra is isomorphic to a Laurent polynomial algebra over B_E in the central indeterminate \bar{g} . Similarly, we have $\operatorname{gr}^{(g)} A = B[\bar{g}]$.

Suppose *M* is a (g)-torsion left *A*-module. Then we write

$$M_{-n} := \operatorname{Hom}_A(A/(g^{n+1}), M) \subseteq M.$$

This defines a decreasing exhaustive filtration on M, with $M_1 = 0$. Denote by $gr^{(g)}M$ the associated graded module.

LEMMA 3.7. The left A-modules $I_A(E)$, I^{-1} , and I^0 are (g)-torsion. The modules $\operatorname{gr}^{(g)}I_A(E)$, $\operatorname{gr}^{(g)}I^{-1}$, and $\operatorname{gr}^{(g)}I^0$ are $B[\bar{g}^{-1}]$ -modules; in fact, writing M for either of these modules we get a bijection

$$B\left[\bar{g}^{-1}\right] \otimes_{B} M_{0} \xrightarrow{\simeq} \operatorname{gr}^{(g)}M.$$

Proof. According to Theorem 3.6, I^{-1} has GK dimension 1. Since no power of σ fixes the class of $[\mathscr{L}]$ in Pic *E* it follows that I^{-1} is (g)-torsion (see [ATV2, Prop. 7.8]). The other two modules are trivially (g)-torsion. Almost by definition multiplication by \bar{g} is injective on $\operatorname{gr}_{-n}^{(g)}M$, n > 0. Since *M* is a graded-injective *A*-module it is *g*-divisible, and so $\operatorname{gr}^{(g)}M$ is uniquely \bar{g} -divisible. ■

The class \bar{g}^{-1} of g^{-1} in $I_A(E) = Q/A_E$ is killed by (g). Thus it induces a degree 0 *B*-module homomorphism $B(3) \xrightarrow{\bar{g}^{-1}} I_A(E)_0$.

LEMMA 3.8. 1. The sequence

$$0 \to B(3) \xrightarrow{i\bar{g}^{-1}} I_A(E)_0 \xrightarrow{\delta} I_0^{-1} \xrightarrow{\delta} I_0^0 \to 0$$

is a minimal left graded-injective resolution of B(3) as a B-module.

2. The sequence

$$0 \to B\left[\bar{g}^{-1}\right](3) \xrightarrow{\bar{g}^{-1}} \operatorname{gr}^{(g)}I_{\mathcal{A}}(E)$$

$$\xrightarrow{\operatorname{gr}^{(g)}(\delta)} \operatorname{gr}^{(g)}I^{-1} \xrightarrow{\operatorname{gr}^{(g)}(\delta)} \operatorname{gr}^{(g)}I^{0} \to 0$$

of $B[\bar{g}^{-1}]$ -modules is exact.

Proof. 1. Since Q/Λ has no (g)-torsion, it follows that

$$\operatorname{Hom}_{A}(B, I^{\cdot}) = \left(0 \to I_{A}(E)_{0} \stackrel{\delta}{\to} I_{0}^{-1} \stackrel{\delta}{\to} I_{0}^{0} \to 0\right).$$

But $\operatorname{Ext}_{A}^{q}(B, A) = 0$, unless q = 1, in which case it is isomorphic to B(3). Hence the sequence is exact. Clearly each $\operatorname{Hom}_{A}(B, I^{q})$ is a graded-injective *B*-module. By Theorem 3.6 and Lemma 2.20 we see that the resolution is minimal.

2. Use Lemma 3.7.

Now fix a σ -orbit $T \subseteq E(k)$. Set

$$I_A(T) := \bigoplus_{p \in T} I_A(p) \subseteq I^{-1}$$

and let $\delta_{E,T}$: $I_A(E) \to I_A(T)$ be the homomorphism

$$\delta_{E,T}: I_A(E) \hookrightarrow I^{-2} \xrightarrow{\delta} I^{-1} \twoheadrightarrow I_A(T).$$

PROPOSITION 3.9. $\delta_{E,T}$ is surjective.

Proof. We shall prove by induction on *n* that $(\delta_{E,T})_{-n} : I_A(E)_{-n} \rightarrow I_A(T)_{-n}$ is surjective. For *n* = 0 this is done in Prop. 3.2 (in view of Lemma 3.8 part 1, and Lemma 3.1). Therefore by Lemma 3.8, part 2, $\operatorname{gr}^{(g)}(\delta_{E,T})$ is surjective. Now suppose $x \in I_A(T)_{-(n+1)} - I_A(T)_{-n}$, with symbol $[x] \in \operatorname{gr}^{(g)}_{-(n+1)}I_A(T)$. Then $[x] = \operatorname{gr}^{(g)}(\delta_{E,T})([y])$ for some $y \in I_A(E)_{-(n+1)}$. But then $x - \delta_{E,T}(y) \in I_A(T)_{-n}$, and we can use the induction hypothesis. ■

LEMMA 3.10. $I_A(T)$ is a left A_T -module, and $\delta_{E,T} : I_A(E) \to I_A(T)$ is A_T -linear.

Proof. It suffices to prove that for all $n \ge 0$, $A_T \otimes_A I_A(T)_{-n} \cong I_A(T)_{-n}$. For n = 0 this is done in Proposition 3.2 (B_T is the image of A_T under the projection $A_E \to B_E$). To prove the claim for n > 0 it is enough to show that every $s \in \tilde{S}_T$ acts invertibly on $I_A(T)_{-n}$. Look at the commu-

tative diagram with exact rows:

$$\begin{array}{cccc} 0 \longrightarrow I_{A}(T)_{0} \longrightarrow I_{A}(T)_{-(n+1)} \xrightarrow{g} I_{A}(T)_{-n} \longrightarrow 0 \\ & & \downarrow_{s} & \downarrow_{s} & \downarrow_{s} & \downarrow_{s} \\ 0 \longrightarrow I_{A}(T)_{0} \longrightarrow I_{A}(T)_{-(n+1)} \xrightarrow{g} I_{A}(T)_{-n} \longrightarrow 0. \end{array}$$

Now by induction the two extreme vertical arrows are bijective. Therefore so is the middle one.

PROPOSITION 3.11. The kernel of $\delta_{E,T}$ is

$$\bigcup_{n\geq 1} A_T g^{-n} = \frac{A_T[g^{-1}] + A_E}{A_E} \subseteq \frac{Q}{A_E} = I_A(E).$$

In particular, it is a sub- A_T - A_T -bimodule of $I_A(E)$.

Proof. We shall prove by induction on *n* that $\operatorname{Ker}((\delta_{E,T})_{-n}): I_A(E)_{-n} \to I_A(T)_{-n}$ is the submodule $A_T g^{-n}$. For n = 0 this is done in Proposition 3.2. Now for any n, $\delta_{E,T}(g^{-n}) = 0$, since we can start with $g^{-n} \in Q = I^{-3}$, and then corresponding to the sequence

$$Q \xrightarrow{\delta} \frac{Q}{\Lambda} \oplus I_A(E) \xrightarrow{\delta} I^{-1} = \bigoplus_{T'} I_A(T')$$

(sum on all orbits T') we get

$$g^{-n} \mapsto (g^{-n}, g^{-n}) = (0, g^{-n}) \mapsto 0 = \sum_{T'} \delta_{E, T'}(g^{-n}).$$

By by Lemma 3.10, $\operatorname{Ker}(\delta_{E,T})$ is an A_T -module, so $A_T g^{-n} \subseteq \operatorname{Ker}((\delta_{E,T})_{-n})$. Now let $x \in I_A(E)_{-(n+1)} - I_A(E)_{-n}$, $\delta_{E,T}(x) = 0$. Since $\operatorname{Ker}(\operatorname{gr}^{(g)}(\delta_{E,T})) = B_T[\bar{g}^{-1}]$ (cf. Lemma 3.7), there is some $a \in A_T$ s.t. $x - ag^{-(n+1)} \in I_A(E)_{-n}$ and $\delta_{E,T}(x - ag^{-(n+1)}) = 0$. Here we can use induction.

Remark 3.12. Observe the similarity to the proof of [Ye2, Theorem 4.3.13], the main step in constructing the residue complex on a scheme. In both instances the surjection from a generic component to a special component is used to parametrize the special component.

THEOREM 3.13. Suppose A is a three-dimensional Sklyanin algebra over an algebraically closed field, and the automorphism σ has infinite order. Then there is an exact sequence of graded A-A-bimodules

$$0 \to A \to I^{-3} \xrightarrow{\delta} I^{-2} \xrightarrow{\delta} I^{-1} \xrightarrow{\delta} I^0 \to 0$$

which is a minimal graded-injective resolution of A, both as a left and right module. Moreover, I^{-q} is pure of GK dimension q, both as left and right module.

Proof. By Theorem 3.6, I^{-3} , I^{-2} are bimodules, which are graded-injective modules on both sides, and $\delta: I^{-3} \to I^{-2}$ is a bimodule map. According to Prop. 3.11, for every orbit *T* the kernel Ker $(\delta_{E,T}) \subseteq I_A(E)$ is a sub-bimodule. Furthermore this same kernel occurs in the minimal right resolution of *A*. Since $\delta_{E,T}$ is surjective (Prop. 3.9) this endows $I_A(T)$ with a bimodule structure. Now $I^{-1} = \bigoplus_T I_A(T)$. We conclude that $0 \to A \to I^{-3} \to I^{-2} \to I^{-1}$ is a bimodule complex which is at the same time the beginning of a left and the beginning of a right minimal resolution. Since the sequence (3.5) is exact we see that Coker $(\delta: I^{-2} \to I^{-1}) \cong I^0$. This puts a bimodule structure on I^0 , and necessarily $I^0 \cong A^*(3)$ as right modules. ■

Finally, we have

COROLLARY 3.14. Let A be a three-dimensional Sklyanin algebra. Then A has a strong residue complex w.r.t. GKdim.

Proof. If σ has finite order then A is finite over its center, so we can apply Proposition 2.11. Otherwise let ω be the dualizing bimodule of A, namely the bimodule s.t. $\omega[3]$ is a balanced dualizing complex. (Actually in this special case ω is just A(-3).) Taking the complex I of the theorem we see that $R := \omega \bigotimes_A I$ is a strong residue complex.

ACKNOWLEDGMENTS

I thank K. Ajitabh, M. Artin, T. Levasseur, M. Van den Bergh, and J. Zhang for very helpful discussions.

REFERENCES

- [Aj1] K. Ajitabh, "Modules over Regular Algebras and Quantum Planes," Ph.D. thesis, MIT, 1994.
- [Aj2] K. Ajitabh, Residue complex for regular algebras of dimension 2, J. Algebra 179 (1996), 241–260.
- [Aj3] K. Ajitabh, Residue complex for three-dimensional Sklyanin algebras, Adv. in Math., to appear.
- [ASZ] K. Ajitabh, S. P. Smith, and J. Zhang, Auslander–Gorenstein rings and their injective resolutions, preprint.
- [ATV1] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, *in* "The Grothendieck Festschrift," Vol. 1, Birkhäuser, Boston, 1990.

- [ATV2] M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension 3, *Invent. Math.* 106 (1991), 335–388.
- [AV] M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra 133 (1990), 249–271.
- [AZ] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. in Math. 109 (1994), 228–287.
- [Bj] J. E. Bjork, The Auslander condition on noetherian rings, *in* "Séminaire Dubreil–Malliavin 1987–1988," Lecture Notes in Math., Vol. 1404, pp. 137–173, Springer-Verlag, Berlin, 1989.
- [Le] T. Levasseur, Some properties of noncommutative regular rings, *Glasgow Math. J.* 34 (1992), 277–300.
- [ML] S. Mac Lane, "Homology," Springer-Verlag, Berlin, 1995 (reprint of the 1975 edition).
- [MR] J. C. McConnell and J. C. Robson, "Noncommutative Noetherian Rings," Wiley, Chichester, 1987.
- [RD] R. Hartshorne, "Residues and Duality," Lecture Notes in Math., Vol. 20, Springer-Verlag, Berlin, 1966.
- [ST] S. P. Smith and J. Tate, The center of the 3-dimensional and 4-dimensional Sklyanin algebras, *K-Theory* 8 (1994), 19–63.
- [TV] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, *Invent. Math.*, to appear.
- [Ye1] A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), 41–84.
- [Ye2] A. Yekutieli, An explicit construction of the Grothendieck residue complex (with an appendix by P. Sastry), *Astérisque* **208** (1992).
- [Ye3] A. Yekutieli, Canonical deformations of De Rham complexes, Adv. in Math. 115 (1995), 250–268.