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0. INTRODUCTION
Suppose A is a finitely generated commutative algebra over a field k.

According to Grothendieck duality theory, there is a canonical complex KK
?

Aof A-modules, called the residue complex. It is characterized as the Cousin
complex of the twisted inverse image p !k, where p : X s Spec A ª k is
the structural morphism. KK

? has the decompositionA

KK
yq s KK x 0.1Ž . Ž .[A A

xgX rXq qy1

Ž .where X rX : X is the set of points of dimension q the q-skeletonq qy1
Ž . Ž .and KK x is an injective hull of the residue field k x . The coboundaryA

Ž . Ž .operator d : KK x ª KK y is nonzero precisely when y is an immediateA A

w xspecialization of x. For a discussion of the commutative theory see RD
w xand Ye2 .

In this paper we propose a definition of the residue complex R ? of a
noncommutative Noetherian graded k-algebra A s k [ A [ A [ ??? .1 2

Ž .We begin, in Section 1, with the generalized Auslander]Gorenstein A-G
condition. This condition can be checked whenever A has a dualizing

Ž .complex; if A is Gorenstein i.e., has finite injective dimension it reduces
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to the usual A-G condition. The generalized A-G condition is necessary

Ž .for the existence of a residue complex see below and seems to be a
reasonable requirement if A is expected to have any geometry associated
to it. We generalize a result of Bjork and Levasseur to the effect that the

Ž .canonical dimension Cdim[ yj, where j M is the grade of the module
Ž .M, is a finitely partitive exact dimension function Theorem 1.3 . We also

w xextend results of ATV2 regarding normalization of Cohen]Macaulay
Ž .modules of dimension 1 Theorem 1.9 .

Ž .In Section 2 we define a strong residue complex over A Definition 2.3 .
This is a refinement of the notion of balanced dualizing complex which

w x ?appeared in Ye1 . The strong residue complex R is unique, up to an
Ž .isomorphism of complexes of graded bimodules Theorem 2.4 . So when it

exists, R ? is a new invariant of A. The algebraic structure of R ? should
carry some ‘‘geometric information’’ about A, in analogy to the commuta-

Ž .tive case. Existence is proved in two general circumstances: i A is finite
Ž .over its center; and ii A is the twisted homogeneous coordinate ring of a

Ž . Ž .triple X, s , LL Propositions 2.11, 2.8 . In Section 3 we prove existence
Ž .for a three-dimensional Sklyanin algebra see below .

There is evidence that many important algebras, including some four-di-
Ž .mensional A-S Artin]Schelter regular algebras, do not have strong

w xresidue complexes ASZ . Guided by this evidence we devised the defini-
Ž .tion of weak residue complex Def. 2.14 . However, we do not have a single

example of an algebra which admits a weak residue complex but not a
strong one. We show that the existence of a weak residue complex implies

Ž .the generalized A-G condition Theorem 2.18 .
Section 3 is devoted to proving that a three-dimensional Sklyanin

Ž w x. Ž .algebra see ST, ATV1 has a strong residue complex. Let E, s , LL be
the triple defining A; so E is an elliptic curve, and the automorphism s is
a translation. We show that A is localizable at every s-orbit on E
Ž .Proposition 3.5 . This fact is used to show that the minimal left graded-in-
jective resolution I ? of A is also the minimal right resolution. According

w x qto Aj3 the modules I have the correct GK dimensions. Therefore by
tensoring with the dualizing bimodule v we obtain the residue complex

? ? Ž .R s v I Theorem 3.13, Corollary 3.14 .m A

1. THE GENERALIZED AUSLANDER]GORENSTEIN
CONDITION

w xIn Ye1 some ideas of Grothendieck duality theory were extended to
noncommutative rings, and we shall briefly review them here. Suppose
A s k [ A [ A [ ??? is a Noetherian graded algebra over a field k. It1 2follows that A is a finitely generated algebra. By default an A-module will
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Ž .mean a graded left module. Let GrMod A be the abelian category of

Ž .graded left A-modules with degree 0 homomorphisms, and let GrMod Af
Ž .be the subcategory of finite that is, finitely generated modules. We write

gr Ž .Hom M, N for the group of degree i homomorphisms between gradedA ileft A-modules, so
Homgr M , N sHom M , N i ,Ž . Ž .Ž .iA GrModŽ A.

Ž .where N i is the shifted module. Define
Homgr M , N [ Homgr M , N gGrMod k .Ž . Ž . Ž .[ iA A

igZ

gr Ž . Ž .Note that if M is finite then Hom M, N sHom M, N .A AWe denote by A8 the opposite ring, and Ae [ A A8. A right modulem k

Ž . Ž e.resp. a bimodule is regarded as a left A8 resp. A module.
Remark 1.1. Most definitions, operations, and conditions in this paper

have a left]right symmetry, expressible by interchanging A and A8. For
Ž . gr Ž . Ž .instance, if M, N gGrMod A8 we get Hom M, N gGrMod k .A8

Ž Ž ..Denote by D GrMod A the derived category of the abelian category
Ž . bŽ Ž ..GrMod A . Let D GrMod A be the subcategory of bounded complexesf

? qŽ Ž e..with finite cohomologies. Recall that a complex R g D GrMod A is
called dualizing if R ? has finite injective dimension over A and A8; each
H qR ? is finite over A and A8; and the natural morphisms A ª

grŽ ? ?. gr Ž ? ?.RHom R , R and A ª RHom R , R are isomorphisms inA A8

Ž Ž e.. gr Ž ?. gr Ž ?.D GrMod A . Then the functors RHom y, R and RHom y, RA A8bŽ Ž .. bŽ Ž ..are anti-equivalences between D GrMod A and D GrMod A8 . Thef fdualizing complex R ? is unique in the following sense: any other dualizing
Ž Ž e.. ? w xcomplex is isomorphic in D GrMod A to R L n , for some invert-m A

Ž w x.ible bimodule L and integer n see Ye1, Theorem 3.9 .
Ž .Let m be the augmentation ideal of A. Write G resp., G for them m 8

Ž . ?functor of left resp. right m-torsion. A dualizing complex R is called
balanced if there are isomorphisms RG R ?( RG R ?( A* inm m 8

Ž Ž e.. gr Ž .D GrMod A . Here A*[Hom A, k , the graded-injective hull of thektrivial module k. The balanced dualizing complex R ? is unique up to
Ž Ž e..isomorphism in D GrMod A . For example, a Noetherian Artin]Schelter

w xregular algebra A of dimension n has an invertible bimodule v s.t. v n is
Ž w x.a balanced dualizing complex see Ye1, Cor. 4.14 .

Suppose R ? is a dualizing complex over A. Given a finite graded
A-module M, its grade number w.r.t. R ? is defined to be

?

q ? � 4j M [ inf q N Ext M , R / 0 g Z j ` .� 4Ž . Ž .A ; R A
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Ž .Note that if A is Gorenstein i.e. it has finite injective dimension and

R ?s A we recover the usual grade number.
DEFINITION 1.2. We say A satisfies the generalized Auslander]Goren-

Ž . Ž .stein A-G condition if for every M gGrMod A , integer q and gradedf
q Ž ?. Ž .?submodule N : Ext M, R , one has j N G q, and if the sameA A8; Rholds with A, A8 interchanged.

It is easily seen that this definition does not depend on the particular
? ˜?dualizing complex R . Indeed, if we take any other complex R , then it is

Ž Ž e.. ? w xisomorphic in D GrMod A to R L n , and these twists will cancelm A

Ž .out. The condition is clearly left]right symmetric cf. Remark 1.1 . In
Section 2 we will relate the generalized A-G condition with residue
complexes.

w x w xThe next theorem generalizes results of Bjork Bj and Levasseur Le .
THEOREM 1.3. Suppose A satisfies the generalized Auslander]Gorenstein

Ž .?condition. Then M ¬ yj M is a finitely partitï e exact dimension func-A; R

Ž . Ž w x.tion on GrMod A see MR, Sects. 6.8, 8.3 .f
w x ?Proof. According to Ye1, Prop. 2.4 , we can assume R is a bounded

complex of bimodules and each Rq is graded-injective over A and A8.
Then the adjunction homomorphism M ª H ?, where

H ?[Homgr Homgr M , R ? , R ?Ž .Ž .A8 A

is a quasi-isomorphism. Pick a positive integer d large enough so that
q < < ?R / 0 only if q F d. Consider the decreasing filtration on H given by
the subcomplexes

F pH ?[Homgr Homgr M , R ? , RG p .Ž .Ž .A8 A

Then F is an exhaustive filtration, and there is a convergent spectral
sequence

E p , q s Ext gr , p Ext gr ,yq M , R ? , R ?

« M . 1.1Ž . Ž .Ž .2 A8 A

The corresponding decreasing filtration
M s FydM > Fydq1M > ??? > F dq1M s 0

w xis called the b-filtration in Le .
The generalized A-G condition tells us that E p, q s 0 if p - yq. So the2

Ž .spectral sequence lives in a bounded region of the p, q plane: p G yq
< < < < Ž . < <and q , p F d. We conclude from formula 1.1 that for every p F d
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there is an exact sequence of graded A-modules

F pM
p ,yp p0ª ª E ª Q ª 02pq1F M

p pq1qi,ypyi Ž p
?with Q a subquotient of E . Therefore j F Mr[ i 2 A; R

pq1 . Ž w x w x.F M G p cf. Bj, Thm. 1.3 and Le, Thm. 2.2 .
w xFrom here the proof continues just like in Bj, Propositions 1.6, 1.8 and

w xLe, Sects. 2]4 .
From here to the end of this section we will assume A satisfies the

generalized A-G condition, and also that it has some balanced dualizing
? ? Ž Ž e..complex R . The uniqueness of R in D GrMod A justifies the following

definition.
DEFINITION 1.4. The canonical dimension of a finite graded A-module

M is
? � 4CDim M [ yj M g Z j y` .Ž .A ; R

COROLLARY 1.5. Any finite A-module M has a critical composition series

w.r.t. CDim.
w Ž .x w xProof. See Le, 4.6.4 or MR, Lemma 6.2.10 and Prop. 6.2.20 .

PROPOSITION 1.6. Let M be a finite graded A-module.
1. One has

� 4CDim M g y`, 0, 1, . . . , CDim A ,
CDim M F 0 iff M is m-torsion, and CDim M s y` iff M s 0.

q Ž ?.2. If Ext M, R / 0 then yCDim M F q F 0.A

Ž . ?Proof. 1 Suppose M has finite length. Since R is balanced,
gr Ž ?. � 4RHom M, R ( M*, so CDim M g y`, 0 . Now suppose M is a criti-Acal module. Then either M ( k, or M has a nonzero finite length quotient

M, in which case CDim M ) CDim M s 0. But any module M has a
critical composition series.

Ž .2 The inequality q G yCDim M is trivial. By the generalized A-G
q ?Ž .condition and part 1 we have yq G CDimExt M, R G 0.A

Let us finish off this section with an application, due to Artin. It is a
w xgeneralization of ATV2, Propositions 6.3 and 6.6 .

DEFINITION 1.7. We say a finite graded A-module M is Cohen]
Ž . gr Ž ?. kw x kMacaulay C-M if RHom M, R ( M n for some A8-module MAand integer n.
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The A8-module M k is called the dual module of M, and it is also C-M:

Ž k.k kM s M. Of course, n s CDim M s CDim M .
We shall abbreviate the dualizing functors as follows: D [

gr Ž ?. gr Ž ?.RHom y, R and D8 [RHom y, R . Fix for the remainder of theA A8
? Ž Ž e.. Žsection an isomorphism RG R ( A* in D GrMod A a rigidification ofm

?. ?R . This determines an isomorphism RG R ( A* such that D8Dk ( k (m 8

Ž . Ž w x.k* * see Ye1, Remark 5.7 .
PROPOSITION 1.8. Suppose A satisfies the generalized A-G condition.
1. Let M be a finite graded A-module with CDim M s 1. Then M is

C-M iff it is m-torsion free.
2. Suppose f : M9 ª M is a homomorphism between C-M modules of

dimension 1, which is an isomorphism modulo m-torsion. Then f k : M k
ª

Ž .kM9 is also an isomorphism modulo m-torsion. To be precise, there is a

natural exact sequence of A8-modules

f k

kk0ª M ª M9 ª Coker f *ª 0.Ž . Ž .

Proof. 1. First assume M is m-torsion free. Set Ny1 [Hy1DM and
0 0 wN [H DM. Let s and s be the truncation functors of RD, Chap.F q ) q

x y1 w x 01, Sect. 7 . Since s DM ( N 1 and s s DM ( N we get aFy1 F 0 )y1triangle
y1 w x 0 y1w xN 1 ª DM ª N ª N 2 1.2Ž .

bŽ Ž .. 0in D GrMod A8 . By the generalized A-G condition the module N hasf 0 Ž 0. y1finite length, so D8N s N *. Because CDim N F 1 it follows that
q y1 0 Ž y1w x.H D8N / 0 only for q s y1, 0. Therefore H D N 2 s 0. Applying
0 Ž . Ž 0.H D8 to the triangle 1.2 we get 0ª N *ª M. The conclusion is that

N 0 s 0, so M is C-M with dual M ks Ny1.
kw xConversely, suppose M is C-M, so DM s M 1 . Let T [ G M, M [m

w xMrT. The triangle T ª M ª M ª T 1 gives an exact sequence
0 0 1H DM ªH DT ªH DM .

0 1Since M is C-M we have H DM s 0. By Proposition 1.6, H DM s 0.
Therefore T*sH 0DT s 0, so M is m-torsion free.

Ž .2. Let N [ Coker f . Since M9 is m-torsion free, it follows that
Ž . w x 0Ker f s 0, so there is a triangle M9 ª M ª N ª M9 1 . Apply H D to

this triangle, and use the fact that DN ( N*.
THEOREM 1.9. Suppose A has a balanced dualizing complex and satisfies

the generalized Auslander]Gorenstein condition. Let M be a Cohen]Macaulay

A-module with CDim M s 1. Then there is an A-module Norm M, which is
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functorial in M. There is a natural exact sequence of A-modules

0ª M ªNorm M ª M k *ª 0. 1.3Ž . Ž .

˜ ˜If M ª M is an isomorphism modulo m-torsion then Norm M ªNorm M

is an isomorphism. The module Norm M is m-torsion free. There is a natural
Ž . Ž k.isomorphism Norm M *(Norm M .

Proof. For n G 0 define A-modules M
X

[ M : M and M
Y

[n G n n

MrM
X . So M

X is a C-M module and M
Y is of finite length. The trianglen n n

Y X Y w xDM ª DM ª DM ª DM 1Ž .n n n

gives an exact sequence
kX Yk0ª M ª M ª M *ª 0. 1.4Ž . Ž . Ž .n n

Taking k-linear duals we obtain an inverse system
kY X k0ª M ª M *ª M *ª 0 1.5Ž . Ž . Ž .Ž .n n

Ž .and in the limit we get the sequence 1.3 , where Norm M [
ŽŽ X .k.lim M *. Clearly this construction is functorial for A-linear homo-

¤ n n ˜ Ž . Ž .morphisms f : M ª M between C-M modules. If Ker f and Coker f
X ˜X Ž .are m-torsion then f : M ª M is bijective for n 4 0, so Norm f isn nalso bijective.

Next we shall prove that N [Norm M is m-torsion free. For any
Ž k.X Ž k. kinteger m consider the A8-submodule M [ M : M and them G m

k Y k k X ˜ k X kŽ . Ž . ŽŽ . .quotient M [ M r M . Set M [ M . The exact se-m m ym mquence
X Y

k k k0ª M ª M ª M ª 0,Ž . Ž .m m

when dualized, gives, according to Proposition 1.8, an exact sequence
Y

k˜0ª M ª M ª M *ª 0. 1.6Ž . Ž .Ž .mym

˜ ˜Since N (Norm M we get injections M ª M ª N. On compar-ym ym

Ž . Ž .ing the size of cokernels in formulas 1.3 and 1.6 we conclude that˜lim M ( N. Therefore N is m-torsion free.mª ymNow consider the C-M A8-module M k. In the construction of
Ž k. Ž . Ž .Norm M , the sequence corresponding to 1.4 is 1.6 , so

k ˜Norm M *s lim M ( N. BŽ .Ž . ym
mª



A NONCOMMUTATIVE GRADED ALGEBRA 529
2. RESIDUE COMPLEXES}DEFINITIONS AND

PROPERTIES
Let A s k [ A [ A [ ??? be a Noetherian graded algebra over a field1 2

Žk. Suppose dim is an exact dimension function for A-modules in the sense
w x. Ž .of MR, Sect. 6.8 . Really we need two such functions, dim :GrMod AA f

� 4 Ž . � 4ª N j y` and dim :GrMod A8 ª N j y` , but we will try toA8 fkeep this fact invisible, when possible.
Ž .DEFINITION 2.1. Let M be a left graded A-module and q an integer.

Define G M to be the sum of all finite submodules M9 : M withM q

Ž .dim M9 F q. Let M :GrMod A be the subcategory whose objectsqare the modules M satisfying G M s M. For a right module N we writeM q

Ž .G N : N and the corresponding category is M8 :GrMod A8 .M8 qq

One should think of G M as the submodule of elements ‘‘supported onM qM ,’’ in analogy to commutative algebraic geometry. For any module Mqthere is a filtration
0s G M : G M : ??? : G M s MM M My1 0 d

where d s dim A.AThe subquotients are
G M [ G MrG M . 2.1Ž .M rM M Mq qy1 q qy1

We get additive functors G and G on the category of graded leftM M rMq q qy1modules. If M is a bimodule then for any a g A, right multiplication by a

preserves G M. Hence the functors G and G send bimodules toM M M rMq q q qy1bimodules.
Ž .DEFINITION 2.2. 1. A nonzero graded left A-module M is said to be

Ž .pure of dimension q w.r.t. dim if G M s M and G M s 0.M Mq qy1

2. An A-module M is said to be essentially pure of dimension q if
there is an essential submodule M9 : M which is pure of dimension q.

3. The algebra A is called pure if every essentially pure graded
A-module or A8-module is pure.
DEFINITION 2.3. A strong residue complex over A w.r.t. dim is a com-

plex of bimodules R ? satisfying:
Ž . qi Each bimodule R is a graded-injective module over A and A8.
Ž . qii Each bimodule R is pure of dimension yq over A and A8.
Ž . ?iii R is a balanced dualizing complex.
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It is immediate to see that the complex R ? is bounded; in fact, Rq / 0

� 4only for yd F q F 0, where d smin dim A, dim A .A A8

THEOREM 2.4. A strong residue complex is unique. Specifically, if R ? and˜?R are two strong residue complexes, then there is an isomorphism of com-
? ˜?plexes of graded bimodules f : R ª R , and f is unique up to a constant

in k*.
The proof is given after some preparatory results.
LEMMA 2.5. The functors G and G ha¨e derï ed functorsM M rMq q qy1

RG , RG :Dq GrMod Ae ª Dq GrMod Ae .Ž . Ž .Ž . Ž .M M rMq q qy1

? qŽ Ž e.. pIf I g D GrMod A is a complex with each I a graded-injectï e A-mod-
ule, then RG I ?s G I ? and RG I ?s G I ?.M M M rM M rMq q q qy1 q qy1

w xProof. The proof is based on that of Ye1, Theorem 1.2 , which in turn
w x ? qŽ Ž e..relies on RD, Chap. I, Theorem 5.1 . Any complex M g D GrMod A

? Ž w x.is quasi-isomorphic to some complex I as above see Ye1, Lemma 1.1 .
Thus it suffices to prove that if I ? is such a complex which is acyclic, then
the complexes G I ? and G I ? are also acyclic.M M rMq q qy1Denote by d the coboundary operator of I ?. Suppose x g G I p, d x s 0.M qLet L : A be the annihilator of x, so dim ArL F q. Since the complex

gr Ž ?. py1Hom ArL, I is acyclic, there is some y g G I with d y s x. ThisA M qproves the acyclicity of G I ?. From the exact sequence of complexesM q

0ª G I ?

ª G I ?

ª G I ?

ª 0M M M rMqy1 q q qy1

?we see that G I is also acyclic.M rMq qy1

LEMMA 2.6. Suppose R ? is a strong residue complex w.r.t. dim. Then the
Ž .generalized A-G condition holds and dims Cdim for A and A8 .

Ž q.Proof. If dim M - yq then Hom M, R s 0, and thereforeA
q Ž ?.Ext M, R s 0. This means that Cdim M F dim M.A

m Ž . Ž .Take any surjection A n ¸ M in GrMod A . Then the A8-[ is1 i
q Ž ?. qŽ .module Ext M, R is a subquotient of R yn , and hence[A i

q Ž ?.dimExt M, R F yq. At this point we have proved the generalized A-GA

Ž .condition. Next, the convergence of the spectral sequence 1.1 implies
� p, q4 p, q p, qthat dim M Fmax dim E . But dim E F yp, and E / 0 implies2 2 2

yp F q F Cdim M.
wProof of Theorem 2.4. The proof is an adaptation of ideas found in RD,

? ˜?xChap. IV . First observe that by Lemma 2.6, both R and R are strong
residue complexes w.r.t. Cdim. We define G using this dimension func-M q

? qŽ Ž e.. ?tion. Let M be any complex in D GrMod A . Replace M by a
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quasi-isomorphic complex I ? as in Lemma 2.5. Define a decreasing filtra-
tion on I ? by F pI ?[ G I ?. This filtration gives the usual spectral se-Mypquence of a filtered complex, and after identifying terms we obtain

E p , q sH pqq F pI ?rF pq1I ? sH pqqRG M ?

«H pqqM ?Ž .1 M rMyp ypy1

Ž w x. Ž . ?see ML, Chap. XI, Sect. 8 . Define the left Cousin complex of M to
Ž ?. p p, 0 p, 0 p, 0 pq1, 0be the complex EM [ E with operator d : E ª E . The1 1 1 1

qŽ Ž e.. Ž Ž e..result is a functor E :D GrMod A ªC GrMod A , where the latter
Ž .is the abelian category of complexes of graded bimodules.

If R ? is a strong residue complex, then G Rq s Rq if q s p andM rMyp ypy10 otherwise. Therefore ER ?( R ? as complexes.
w xNow according to Ye1, Sect. 4 , balanced dualizing complexes are

qŽ Ž e..unique up to isomorphism in D GrMod A . Choose such an isomor-
? ˜?phism c : R ª R , which is known to be unique up to a constant. Then

? ?˜Ž .f s E c : R ª R is the desired isomorphism.
w xThe next proposition is a generalization of Aj3, Theorem 3.14 .

PROPOSITION 2.7. If A has a strong residue complex then it is a pure

algebra.
Proof. Let M be a finite A-module and M9 : M an essential submod-

ule, pure of dimension q. It will suffice to produce an injection M9 ª

Ž yq . iR for some i. Suppose N : M9 is critical. By the generalized A-G
condition there is a nonzero homomorphism f : N ª Ryq, which by purity
must be injective. Since every nonzero A-module has a critical submod-

Ž .ule cf. Corollary 1.5 it follows that there is an essential submodule
N [ ??? [ N : M9 with all N critical. Choose injective homomorph-1 i i

yq Ž yq . iisms f : N ª R and let c : M9 ª R be any extension of f .[i i iThen c is necessarily injective.
When we can associate with A a sufficiently rich geometry, e.g., when

Žthe projective spectrum Proj A is a classical projective scheme in the
w x.terminology of AZ , one would expect that A would have a strong

residue complex. The propositions below justify this expectation. First
Ž .consider the twisted homogeneous coordinate ring of a triple X, s , LL ,

where X is a proper scheme, s is an automorphism, and LL is a s-ample
Ž w x.invertible sheaf cf. AV .

PROPOSITION 2.8. Suppose A is a twisted homogeneous coordinate ring.
ŽThen A has a strong residue complex, w.r.t. to dimsKdim Krull dimen-

.sion .
? w xProof. A balanced dualizing complex R exists by Ye1, Theorem 7.3 .

It is the cone over the natural homomorphism of complexes G# KK
?

ª A*X
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arising from Grothendieck duality. Here KK

? is the residue complex of X.XFor each q, Rq is a graded-injective module over A and A8.
Since R0 ( A*, it has Kdims 0. For q - 0 we have Rq ( G# KK

qq1.X

Ž .Because of the equivalence of categories between GrMod A modulo
m-torsion and quasi-coherent OO -modules, it follows that for any nonzeroXcoherent sheaf MM, Kdim G# MM s dim Supp MM q 1. It is known that

qq1 Žthe quasi-coherent sheaf KK is pure of dimension yq y 1 by this weXmean that each nonzero coherent subsheaf MM : KK
qq1 has dim Supp MM sX

. qyq y 1 . Hence R is pure of Kdims yq. All this works for rightAmodules too.
Remark 2.9. One can show that if some positive power of LL

s m LL
y1 is

in the identity component Pic 0X of the Picard scheme of X, then for each
graded A-module M one has the equality GKdim M sKdim M. On the

w xother hand, in AV, Example 5.18 we see a twisted homogeneous coordi-
nate ring A with GKdim A s 5 and Kdim A s 3.

? Ž . Ž Ž ..The decomposition KK s KK x cf. formula 0.1 induces a[X x g X X
? Ž Ž ..bimodule decomposition R s R T [ A*, where T runs through[ T

Ž . Ž . Ž .the s-orbits in X and R T [ G# KK x . It is known that KK x[ x g T X X

Ž . Ž .is an indecomposable injective in QCoh X , so G# KK x is indecompos-X

Ž .able in GrMod A .
Ž .PROBLEM 2.10. Is R T an indecomposable bimodule?

The second general situation to consider is an algebra finite over its
center.
PROPOSITION 2.11. If A is finite o¨er its center then it has a strong residue

complex, w.r.t dimsKdimsGKdim.
Proof. There is a finite centralizing homomorphism C ª A, where

w x Ž .C s k t , . . . , t is a commutative polynomial ring, and the variables t1 d iall have degree e G 1. The algebra C has a residue complex R ? . If e s 1Cuse Prop. 2.8 with X s P dy1; if e ) 1 simply take the same complex as fork
? grŽ ? .e s 1 and change the grading. Let R [Hom A, R . According toA C C

w x qYe1, Theorem 5.4 this is a balanced dualizing complex over A. Each RAis graded-injective on both sides. Since as a C-module Rq embeds into aA
qfinite direct sum of twists of R , it is pure of GK dimension yq.C

Here again commutative geometry says there is a bimodule decomposi-
? Ž .tion R s R p , where p runs over the graded primes of the center[pof A.

Ž .PROBLEM 2.12. Is R p an indecomposable bimodule?
Remark 2.13. Let A be the multiparameter quantum deformation ofq

w xthe polynomial ring A s k t , . . . , t , depending on a d = d matrix q s1 d
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w x Ž w x.q see Ye3 . We do not know whether, for all q, A admits a strongi j qresidue complex. The problem is that localization destroys the Z

d-grading
which is used to deform A-modules into A -modules, so the residueqcomplex R ? cannot be deformed.A

In Section 3 we shall prove that a three-dimensional Sklyanin algebra
w xhas a strong residue complex. Recent work of Ajitabh et al. ASZ shows

that some four-dimensional Artin]Schelter regular algebras do not admit
strong residue complexes. They actually find an algebra A such that in the
minimal graded-injective resolution 0ª A ª Iy4

ª Iy3
ª ??? , each I q is

Ž . y1essentially pure of dimension yq w.r.t. CdimsGKdim , but I is not
pure. Influenced by this result we make the next definition, even though

Ž .we have no example so far of an algebra with a weak residue complex but
no strong residue complex.
DEFINITION 2.14. A weak residue complex w.r.t. dim is a complex of

bimodules R ? satisfying:
Ž . qi Each bimodule R is a graded-injective module over A and A8.
Ž . qii Each bimodule R is essentially pure of dimension yq over A

and A8, and there is equality G R ?s G R ?: R ?.M M8q q

Ž . ?iii R is a balanced dualizing complex.
Let J ? be a complex of graded-injective A-modules. We say J ? is a

Ž q qq1. qminimal injective complex if for every q, Ker d : J ª J : J is an
? qŽ Ž ..essential submodule. Any complex M g D GrMod A admits a quasi-

isomorphism to a minimal injective complex J ?, and one can easily check
? Ž w x.that this J is unique up to isomorphism cf. Ye1, Lemma 4.2 . Observe

that minimality has nothing to do with a dimension function, nor is
M ?

¬ J ? functorial.
LEMMA 2.15. Suppose J ? is a complex of graded-injectï e A-modules with

J q essentially pure of dimension yq. Then J ? is minimal.
Ž q qq1.Proof. Pick an integer q. Let M [Ker d : J ª J and let I be a

graded-injective hull of M. So J q ( I [ I9 and d : I9 ª J qq1 is an injec-
tion. By the purity assumption we get I9 s 0.
We conclude:

? ˜?PROPOSITION 2.16. If R and R are weak residue complexes, then they

are isomorphic as complexes of A-modules and as complexes of A8-modules.
In particular, if one is a strong residue complex then so is the other.
PROBLEM 2.17. Is it possible for an algebra A to admit two weak

? ˜?residue complexes R and R which are not isomorphic as complexes of
Ž .graded bimodules? Of course A cannot be pure.
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At this point we wish to relate residue complexes to the generalized A-G

condition.
THEOREM 2.18. Let dim be an exact dimension function for A. Suppose

that either condition holds:
Ž .i A admits a strong residue complex.
Ž .ii A admits a weak residue complex, and e¨ery finite left or right graded

A-module has a dim critical composition series.
Then A satisfies the generalized A-G condition, and dims Cdim.

? Ž .LEMMA 2.19. Say R is the residue complex in condition ii of the

theorem. Let M be a critical finite module with dim M s d. Then for e¨ery

q ) yd there is a finite module M with dim M - d, and a homomorphism
q q ?Ž . Ž .M ª M, s.t. Ext M, R ª Ext M, R is surjectï e.A A

Ž . q Ž ?. w x Ž .Proof. Write E M [ Ext M, R . Say f g E M is represented byA
q Ž .f : M ª R . Because M is critical and therefore pure of dimension d

and Rq is essentially pure of dimension yq, f cannot be injective. So
Ž . w x Ž Ž . Ž ..M [ Im f has dim M - d and f g Im E M ª E M . Nowf f f

w x w x Ž .choose f , . . . , f which generate E M over A8. Then M [ M[1 m f ihas the required properties.
LEMMA 2.20. Let M be a finite A-module. Assume dim M s d. Then in

Ž .the situation of condition ii of the theorem:
q Ž ?.1. dimExt M, R F d for all q.A

q Ž ?.2. dimExt M, R - d for all q ) yd.A

q Ž ?.3. Ext M, R s 0 for all q - yd.A

m
Ž .Proof. Say A n ¸ M is a presentation of M. Then[ iis1

Hom M , Rq : G [Rq yn s G [Rq yn .Ž . Ž . Ž .ž / ž /A M i M8 id d

q Ž ?. Ž q.Since Ext M, R is a subquotient of Hom M, R this implies part 1. IfA Amoreover d - yq then G Rq s 0, giving part 3.M dLet us prove part 2. We may assume M is critical. Then the assertion is
a consequence of Lemma 2.19 and part 1 applied to M.

ŽNote that the two lemmas work also for right modules exchange A
.and A8 .

Ž .Proof of Theorem 2.18. We need only consider condition ii of the
Ž .theorem cf. Lemma 2.6 . Say dim M s d. By part 3 of Lemma 2.20 we
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have Cdim M F d. Suppose Cdim M - d. Then by parts 1 and 2 of the

Ž .lemma all the terms in the spectral sequence 1.1 have dim- d, which is
impossible. The conclusion is Cdim M s dim M.
To prove the generalized A-G condition it suffices to check that

q Ž ?.dimExt M, R F yq. We will do so by induction on d s dim M. ForA

d F yq this is part 1 of Lemma 2.20. For d ) yq and M critical, the
module M of Lemma 2.19 has dim M - d so we can use induction. For
other modules this is true by looking at a critical composition series.
PROBLEM 2.21. Is it true that every algebra which satisfies the general-

w xized A-G condition admits a weak residue complex? It was proved in Le
w xand TV that Sklyanin algebras of all dimensions satisfy the A-G condi-

tion, yet it is not known even whether every four-dimensional Sklyanin
algebra admits a weak residue complex.
Let us finish this section with the Cohen]Macaulay case.
COROLLARY 2.22. Assume the hypotheses of Theorem 2.18. Furthermore,

? w x Ž Ž e..assume R ( v d in D GrMod A for some bimodule v and some integer

d. Then d s Cdim A, and

0ª v ª Ryd
ª ??? ª R0

ª 0 2.2Ž .

is a minimal graded-injectï e resolution of v, both as left and right module.
gr Ž ?. ? w xProof. The isomorphism RHom A, R s R ( v d means that A isAa C-M A-module with Cdim A s d and dual module Aks v. Hence

ydy1 Ž .R s 0 and we deduce the exact sequence 2.2 . By Lemma 2.19 it is a
minimal resolution.

3. THE RESIDUE COMPLEX OF A
THREE-DIMENSIONAL
SKLYANIN ALGEBRA

In this section k is an algebraically closed field. We assume A is a
Ž w x.three-dimensional Sklyanin algebra see ST , which is the same as a type

ŽA three-dimensional regular algebra with three generators in the classifi-
w x. Ž .cation of ATV1 . The triple E, s , LL consists of a smooth elliptic curve

2 Ž .E : P , an invertible sheaf LL s OO 1 , and a translation s by some pointk E

Ž . Ž .of E k . We shall prove that A is localizable at any s-orbit T : E k .
w xSuch a result was obtained in Aj2 for twisted homogeneous coordinate

rings of P1, by another method.kLet B be the twisted homogeneous coordinate ring of the triple
Ž . Ž .E, s , LL . Then B ( Ar g where g is a central element of A of degree
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3. An OO -module MM defines a left graded B-moduleE

G# MM [ G E, LL
Ž1ys n.rŽ1ys . m MM

s n ,Ž .[
ngZ

² : swhere the exponents are in the integral group ring Z s and MM [ s * MM.
If MM is equivariant w.r.t. s then G# MM is actually a B-B-bimodule, and if
AA is an equivariant OO -algebra, then G# AA is a graded k-algebra with anE

Ž w x w x.algebra homomorphism B ª G# AA cf. AV and Ye1 .
Ž . Ž . Ž .Given a point p g E k let II p [ k E rOO , considered as a quasi-E, p

Ž . Ž .coherent sheaf. So II p is an injective hull of the residue field k p , and
there is an exact sequence

0ª OO ª k E ª II p ª 0. 3.1Ž . Ž . Ž .[E
Ž .pgE k

Ž . Ž . Ž .Let B [ G#k E , a graded k-algebra, and I p [ G# II p , a gradedE B

Ž Ž ..left B-module. Recall that the point module N is the module G#k p .p G 0
gr Ž .LEMMA 3.1. B ( Frac B, the graded total ring of fractions. I p is aE B

Ž .left graded-injectï e hull of N . Applying G# to the sequence 3.1 we get anp

exact sequence of graded left B-modules

0ª B ª B ª I p .Ž .[E B
Ž .pgE k

It is the beginning of a minimal graded-injectï e resolution, and the only
gr Ž .missing term is B*sHom B, k .k

w x ŽProof. By Ye1, Theorem 7.3 , plus the fact that OO ( v noncanoni-E E

.cally .
Ž . Ž .Fix a s-orbit T : E k . Then k p is an equivariant sheaf, and[pg Thence N is a B]B-bimodule. Let[ ppg T

I T [ I p ( G# II p .Ž . Ž . Ž .[ [B B ž /
pgT pgT

This too is a bimodule, and is also a graded-injective hull of N on[ ppg T

Ž .both sides. Define the OO -subalgebra OO : k E byE E, T

G U, OO [ OOŽ . FE , T E , p

pgTlU

for U : E open. Then we get a s-equivariant exact sequence
0ª OO ª k E ª II p ª 0, 3.2Ž . Ž . Ž .[E , T

pgT
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from which we see that OO is a s-equivariant quasi-coherent sheaf. LetE, T
B [ G#OO , a graded subalgebra of B . Define a multiplicative setT E, T E

� 4S [ B l homogeneous units of B . 3.3Ž .T T

PROPOSITION 3.2. The sequence of B ]B -bimodulesT T

dE, T0ª B ª B ª I T ª 0, 3.4Ž . Ž .T E B

Ž .gotten by applying G# to 3.2 , is exact. S is a left and right denominator setT

in B, and B s Sy1B s BSy1.T T T

To prove the proposition we first need two lemmas.
Ž . Ž .LEMMA 3.3. Gï en p g E k y T there is some b g B , s.t. b p s 01

Ž .but b q / 0 for e¨ery q g T.
Ž . ² :Proof. Say s is translation by r g E k and T s q q r in the group0

Ž . Ž . Žstructure of E k . Given any nonzero b g B s G E, LL which is the1
� 4 2 . � 4same as a line b s 0 in P its divisor of zeroes is p , p , p , and thesek 1 2 3points satisfy p q p q p s 0. Consider a line through p s p; then1 2 3 1

² : Ž .p g T iff p is in the s-orbit T 9 [ yp y q q r . Now E k being a2 3 0
² : Ž .divisible group, the cyclic subgroup r has infinite index. Hence in E k

there are infinitely many s-orbits, and so there are infinitely many lines
through p which do not intersect T at all.
LEMMA 3.4. Consider the left B-module BSy1 : B . Then BSy1 sT T Tlim Bsy1, the limit o¨er s g S .sª T

Proof. We have to prove that given s , s g S there is some s g S1 2 T T
y1 y1 y1 Ž .s.t. Bs q Bs : Bs . For any nonzero s g B let RR s : OO be the1 2 E, T

y1 y1 Ž .sheaf associated to the free module Bs ; so Bs ( G# RR s . It therefore
Ž . Ž . Ž .suffices to prove that for some s, RR s q RR s : RR s .1 2

Ž . Ž .Now RR s s OO D for some effective divisors D supported on E y T.i E i i

Ž . Ž . n Ž .Let D [ D q D , so RR s : OO D . Say D s Ý p with repetition .1 2 i E js1 j

Ž jy1Ž ..By Lemma 3.3 we can find b g B s.t. b s p s 0 but for all q g T ,j 1 j j

Ž . Ž . Ž .b q / 0. Then taking s [ b ??? b g S we get OO D : RR s .j 1 n T E

Ž .Proof of Proposition 3.2. First observe that 3.2 is a s-equivari-
Ž .ant sequence of OO -modules, so 3.4 is a sequence of graded B ]B -E, T T Tbimodules.

Choose any affine open set U : E containing T. This is possible
Ž . Ž . � 4since T / E k cf. Lemma 3.3 and we can take U s E y p9 for

1Ž . Ž .some p9 f T . Since H U, OO s 0, it follows that k E ªE

Ž Ž .. Ž .G U, II p is surjective. But I T is a direct summand of[ pg EŽk . B

Ž Ž ..G U, II p . This proves that d is surjective in degree 0. For[ pg EŽk . E, Tother degrees just twist everything.
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To prove the second assertion it suffices, by Lemma 3.4, to prove that

y1 Ž w x. y1B s BS cf. MR, Chap. 3.1 . Now BS is a graded left B-module.T T TLet RR be the sheaf on E associated to BSy1, so OO : RR : OO . If p g TT E E, T
Ž . Ž .then the stalk OO s OO , so a fortiori RR s OO . If p f T thenE, p E, T p p E, T p

Ž .by Lemma 3.3 we may find some a , b g B s G E, LL , i G 1, s.t.i i 1
Ž iy1Ž .. Ž iy1Ž .. Ž .a s p / 0, b s p s 0 and for all q g T , b q / 0. Sincei i i

b g S we geti T

c s a ??? a by1 ??? by1 g BSy1 : G E, RR .Ž .Ž .n 1 n n 1 T 0
Ž .So c g RR : k E has a pole of order at least n. This implies thatn p

Ž . Ž .RR s k E s OO .p E, T pWe have shown that RR s OO . Since BSy1 s lim Bsy1 and Bsy1 (E, T T sª

Ž . y1G# RR s it follows that BS ( G# RR s B .T T

ŽFinally, by the left]right symmetry of G# for equivariant sheaves cf.
y1w x.Ye1, Prop. 6.17 we also get S B s B .T T

Define
S̃ [ s g A N s is homogeneous and s q g g S : B� 4Ž .T T

which is clearly a multiplicative set. Let Q [ Frac gr A, the graded total
ring of fractions.

˜PROPOSITION 3.5. S is a left and right denominator set, with ring ofT
ỹ1fractions A [ AS : Q.T T

w xProof. Copy the proof of Aj1, Chap. III, Prop. 3.6 .
From here to Corollary 3.14 we will assume the automorphism s has

infinite order.
Consider a minimal graded-injective resolution of A as a left module:

d d d
y3 y2 y1 00ª A ª I ª I ª I ª I ª 0 3.5Ž .

Ž . w y1 xwith unusual numbering . Inside Q there are the two subrings L [ A g

and
A s A [ asy1 N s is homogeneous, s f g� 4Ž .E Ž g .

Ž w x. Ž .cf. Aj3 . Define an A ]A -bimodule I E [ QrA . For every p gE E A E

Ž . Ž . Ž . w xE k let I p be a graded-injective hull of N as an A-module . In Aj3A pAjitabh proves the following:
THEOREM 3.6. The left A-module Iyq is pure of GK dimensions q.

Moreo¨er,
Iy3 ( Q
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Q

y2I ( [ I EŽ .A
L

Iy1 ( I pŽ .[ A
Ž .pgE k

I 0 ( A* 3Ž .

as graded left A-modules. The homomorphism d : Iy3
ª Iy2 is the sum of

Ž .the two projections Q ¸ QrL and Q ¸ I E .A

n ŽThe algebra Q is filtered by the ‘‘fractional ideals’’ A g , n g Z theE

Ž . . Ž g .‘‘ g -adic valuation’’ and we denote by gr Q the resulting graded
algebra. Note that this algebra carries two gradings. Since g is a central

Ž g . y1w xregular element, we see that gr Q s B g, g , where g is the symbol ofE

g, and this algebra is isomorphic to a Laurent polynomial algebra over BE
Ž g . w xin the central indeterminate g. Similarly, we have gr A s B g .

Ž .Suppose M is a g -torsion left A-module. Then we write
M [Hom Ar g nq1 , M : M .Ž .Ž .yn A

This defines a decreasing exhaustive filtration on M, with M s 0. Denote1by gr Ž g .M the associated graded module.
Ž . y1 0 Ž .LEMMA 3.7. The left A-modules I E , I , and I are g -torsion. TheA

Ž g . Ž g . y1 Ž g . 0 y1Ž . w xmodules gr I E , gr I , and gr I are B g -modules; in fact, writingA

M for either of these modules we get a bijection

,
y1 Ž g .B g m M ª gr M .B 0

Proof. According to Theorem 3.6, Iy1 has GK dimension 1. Since no
w x y1 Ž .power of s fixes the class of LL in Pic E it follows that I is g -torsion

Ž w x. Ž .see ATV2, Prop. 7.8 . The other two modules are trivially g -torsion.
Ž g .Almost by definition multiplication by g is injective on gr M, n ) 0.ynSince M is a graded-injective A-module it is g-divisible, and so gr Ž g .M is

uniquely g-divisible.
y1 y1 Ž . Ž .The class g of g in I E s QrA is killed by g . Thus it inducesA E

y1?g
Ž . Ž .a degree 0 B-module homomorphism B 3 ª I E .A 0

LEMMA 3.8. 1. The sequence

y1?g d dy1 06 6 60ª B 3 I E I I ª 0Ž . Ž . 0A 0 0

Ž .is a minimal left graded-injectï e resolution of B 3 as a B-module.
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2. The sequence

y1?g
y1 Ž g .0ª B g 3 ª gr I EŽ . Ž .A

Ž g .Ž . Ž g .Ž .gr d gr d
Ž g . y1 Ž g . 0

ª gr I ª gr I ª 0
y1w xof B g -modules is exact.

Ž .Proof. 1. Since QrL has no g -torsion, it follows that
d d

? y1 0Hom B , I s 0ª I E ª I ª I ª 0 .Ž . Ž . 0ž /A A 0 0

q Ž . Ž .But Ext B, A s 0, unless q s 1, in which case it is isomorphic to B 3 .A

Ž q.Hence the sequence is exact. Clearly each Hom B, I is a graded-injec-Ative B-module. By Theorem 3.6 and Lemma 2.20 we see that the resolu-
tion is minimal.

2. Use Lemma 3.7.
Ž .Now fix a s-orbit T : E k . Set

I T [ I p : Iy1Ž . Ž .[A A
pgT

Ž . Ž .and let d : I E ª I T be the homomorphismE, T A A

d
y2 y1d : I E ¨ I ª I ¸ I T .Ž . Ž .E , T A A

PROPOSITION 3.9. d is surjectï e.E, T
Ž . Ž .Proof. We shall prove by induction on n that d : I E ªE, T yn A yn

Ž . ŽI T is surjective. For n s 0 this is done in Prop. 3.2 in view of LemmaA yn

. Ž g .Ž .3.8 part 1, and Lemma 3.1 . Therefore by Lemma 3.8, part 2, gr d isE, T
Ž . Ž . w xsurjective. Now suppose x g I T y I T , with symbol x gA yŽnq1. A yn

Ž g . Ž . w x Ž g .Ž .Žw x. Ž .gr I T . Then x s gr d y for some y g I E . ButyŽ nq1. A E, T A yŽnq1.
Ž . Ž .then x y d y g I T , and we can use the induction hypothesis.E, T A yn

Ž . Ž . Ž .LEMMA 3.10. I T is a left A -module, and d : I E ª I T isA T E, T A A

A -linear.T

Ž .Proof. It suffices to prove that for all n G 0, A I T (mT A A yn

Ž . ŽI T . For n s 0 this is done in Proposition 3.2 B is the image of AA yn T T

.under the projection A ª B . To prove the claim for n ) 0 it is enoughE E˜ Ž .to show that every s g S acts invertibly on I T . Look at the commu-T A yn
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tative diagram with exact rows:

g ?

6 6 6 6

Ž . Ž . Ž .0 I T I T I T 0A 0 A yŽnq1. A yn

6 6 6

? ? ?s s s

?g6 6 6 6

Ž . Ž . Ž .0 I T I T I T 0.A 0 A yŽnq1. A yn

Now by induction the two extreme vertical arrows are bijective. Therefore
so is the middle one.
PROPOSITION 3.11. The kernel of d isE, T

y1A g q A QT EynA g s : s I E .Ž .D T A
A AE EnG1

Ž .In particular, it is a sub-A ]A -bimodule of I E .T T A

ŽŽ . . Ž .Proof. We shall prove by induction on n that Ker d : I EE, T yn A yn

Ž . yn
ª I T is the submodule A g . For n s 0 this is done in PropositionA yn T

Ž yn . yn y33.2. Now for any n, d g s 0, since we can start with g g Q s I ,E, Tand then corresponding to the sequence
Qd d

y1Q ª [ I E ª I s I T 9Ž . Ž .[A A
L T 9

Ž .sum on all orbits T 9 we get
gyn

¬ gyn , gyn s 0, gyn
¬ 0s d gyn .Ž . Ž . Ž .Ý E , T 9

T 9

Ž . yn ŽŽ . .By by Lemma 3.10, Ker d is an A -module, so A g :Ker d .E, T T T E, T yn

Ž . Ž . Ž . Ž Ž g .Ž ..Now let x g I E y I E , d x s 0. Since Ker gr dA yŽnq1. A yn E, T E, T
y1 yŽnq1.w x Ž .s B g cf. Lemma 3.7 , there is some a g A s.t. x y ag gT T

yŽ nq1.Ž . Ž .I E and d x y ag s 0. Here we can use induction.A yn E, T
wRemark 3.12. Observe the similarity to the proof of Ye2, Theorem

x4.3.13 , the main step in constructing the residue complex on a scheme. In
both instances the surjection from a generic component to a special
component is used to parametrize the special component.
THEOREM 3.13. Suppose A is a three-dimensional Sklyanin algebra o¨er

an algebraically closed field, and the automorphism s has infinite order. Then

there is an exact sequence of graded A]A-bimodules

d d d
y3 y2 y1 00ª A ª I ª I ª I ª I ª 0
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which is a minimal graded-injectï e resolution of A, both as a left and right

module. Moreo¨er, Iyq is pure of GK dimension q, both as left and right

module.
Proof. By Theorem 3.6, Iy3 , Iy2 are bimodules, which are graded-in-

jective modules on both sides, and d : Iy3
ª Iy2 is a bimodule map.

Ž . Ž .According to Prop. 3.11, for every orbit T the kernel Ker d : I E isE, T Aa sub-bimodule. Furthermore this same kernel occurs in the minimal right
Ž . Ž .resolution of A. Since d is surjective Prop. 3.9 this endows I T withE, T A

y1 Ž .a bimodule structure. Now I s I T . We conclude that 0ª A ª[ T A

Iy3
ª Iy2

ª Iy1 is a bimodule complex which is at the same time the
beginning of a left and the beginning of a right minimal resolution. Since

Ž . Ž y2 y1. 0the sequence 3.5 is exact we see that Coker d : I ª I ( I . This
0 0 Ž .puts a bimodule structure on I , and necessarily I ( A* 3 as right

modules.
Finally, we have
COROLLARY 3.14. Let A be a three-dimensional Sklyanin algebra. Then A

has a strong residue complex w.r.t. GKdim.
Proof. If s has finite order then A is finite over its center, so we can

apply Proposition 2.11. Otherwise let v be the dualizing bimodule of A,
w x Žnamely the bimodule s.t. v 3 is a balanced dualizing complex. Actually in
Ž . . ?this special case v is just A y3 . Taking the complex I of the theorem

? ?we see that R [ v I is a strong residue complex.m A
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