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Abstract. LetAbe a¢nite-dimensional algebraovera¢eld k.The derived Picard groupDPickðAÞ
is the group of triangle auto-equivalences ofDb

ðmodAÞ induced by two-sided tilting complexes.
We study the groupDPickðAÞwhenA is hereditaryand k is algebraically closed.We obtain general
results on the structure ofDPickðAÞ, as well as explicit calculations for many cases, including all
¢nite and tame representation types. Our method is to construct a representation of
DPickðAÞ on a certain in¢nite quiver Cirr. This representation is faithful when the quiver D of
A is a tree, and thenDPickðAÞ is discrete. Otherwise a connected linear algebraic group can occur
as a factor ofDPickðAÞ.When A is hereditary, DPickðAÞ coincides with the full group of k-linear
triangle auto-equivalences of DbðmodAÞ. Hence, we can calculate the group of such
auto-equivalences for any triangulated category D equivalent to DbðmodAÞ. These include the
derived categories of piecewise hereditary algebras, and of certain noncommutative spaces intro-
duced by Kontsevich and Rosenberg.
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0 Introduction and Statement of Results

Let k be a ¢eld and A an associative unital k-algebra. We write ModA for the cat-
egory of left A-modules, and Db

ðModAÞ for the bounded derived category. Let
A� be the opposite algebra and Ae:¼ A�k A� the enveloping algebra, so that
ModAe is the category of k-central A-A-bimodules.
A two-sided tilting complex a complex T 2 Db

ðModAeÞ for which there exists
another complex T_ 2 Db

ðModAeÞ satisfying T_ �L
A T ffi T �L

A T_ ffi A. This notion
is due to Rickard [Rd]. The derived Picard group of A (relative to k) is

DPickðAÞ:¼
ftwo-sided tilting complexes T 2 Db

ðModAeÞg

isomorphism

*The second author was partially supported by the US-Israel Binational Science
Foundation.
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with identity element A, product ðT1;T2Þ 7!T1 �L
A T2 and inverse T 7!T_:¼

RHomAðT ;AÞ. See [Ye] for more details.
Since every invertible bimodule is a two-sided tilting complex, DPickðAÞ contains

the (noncommutative) Picard group PickðAÞ as a subgroup. It also contains a central
subgroup hsi ffi Z, where s is the class of the two-sided tilting complex A½1�. In [Ye]
we showed that when A is either local or commutative one has DPickðAÞ ¼
PickðAÞ � hsi. This was discovered independently by Rouquier and Zimmermann
[Zi], [RZ]. On the other hand, in the smallest example of a k-algebra A that is neither
commutative nor local, namely the 2� 2 upper triangular matrix algebra, this
equality fails. These observations suggest that the group structure of DPickðAÞ
should carry some information about the geometry of the noncommutative ring A.
This prediction is further motivated by another result in [Ye], which says that

DPickðAÞ classi¢es the dualizing complexes over A. The geometric signi¢cance of
dualizing complexes is well known (cf. [RD] and [YZ]).
From a broader perspective, DPickðAÞ is related to the geometry of noncom-

mutative schemes on the one hand, and to mirror symmetry and deformations
of (commutative) smooth projective varieties on the other hand. See [BO], [Ko],
[KR] and [Or].
A good starting point for the study of the group DPickðAÞ is to consider ¢nite

dimensional k-algebras. The geometric object associated to a ¢nite-dimensional
k-algebraA is its quiver D, as de¢ned by Gabriel (cf. [GR] or [ARS]). It is worthwhile
to note that from the point of view of noncommutative localization theory (cf. [MR]
Section 4.3) D is the link graph of A. More on this in Remark 1.2.
Some calculations of the groups DPickðAÞ for ¢nite-dimensional algebras have

already been done. Let us mention the work of Rouquier and Zimmermann [RZ]
on Brauer tree algebras, and the work of Lenzing and Meltzer [LM] on canonical
algebras.
In this paper we present a systematic study the group DPickðAÞ when A is a ¢nite

dimensional hereditary algebra over an algebraically closed ¢eld k. We obtain gen-
eral results on the structure ofDPickðAÞ, as well as explicit calculations. These results
carry over to piecewise hereditary algebras, as well as to certain noncommutative
schemes. The rest of the Introduction is devoted to stating our main results.
The group AutkðAÞ ¼ AutAlgkðAÞ of k-algebra automorphisms is a linear algebraic

group over k, via the inclusion intoAutModkðAÞ ¼ GLðAÞ. This induces a structure of
linear algebraic group on the quotient OutkðAÞ of outer automorphisms. We denote
by Out0kðAÞ the identity component of OutkðAÞ.
Recall that A is a basic k-algebra if A=r ffi k� � � � � k, where r is the Jacobson

radical. For a basic algebra one has OutkðAÞ ¼ PickðAÞ. A hereditary basic algebra
A is isomorphic to the path algebra kD of its quiver. An algebra A is indecomposable
iff the quiver D is connected.
For Morita equivalent k-algebras A and B one has DPickðAÞ ffi DPickðBÞ, and the

quivers of A and B are isomorphic. According to a result of Brauer (see [Po]
Section 2) one has Out0kðAÞ ffi Out0kðBÞ. If A ffi

Qn
i¼1Ai then DPickðAÞ ffi G j�

Qn
i¼1
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DPickðAiÞ, where G � Sn is a permutation group (cf. [Ye] Lemma 2.6). Also
DðAÞ ffi

‘
DðAiÞ and Out0kðAÞ ffi

Q
Out0kðAiÞ. Since the main result Theorem 0.1 is

stated in terms of D and Out0kðAÞ, we allow ourselves to assume throughout that
A is a basic indecomposable algebra.
Given a quiverQ we denote by Q0 its vertex set. For a pair of vertices x; y 2 Q0 we

write dðx; yÞ for the arrow-multiplicity, i.e. the number of arrows a: x! y. Let
AutðQ0Þ be the permutation group of Q0, and let AutðQ0; dÞ be the subgroup of
arrow-multiplicity preserving permutations, namely

AutðQ0; dÞ ¼ fp 2 AutðQ0Þ j dðpðxÞ; pðyÞÞ ¼ dðx; yÞ for all x; y 2 Q0g:

Write AutðQÞ for the automorphism group of the quiver Q. Then AutðQ0; dÞ is the
image of the canonical homomorphism AutðQÞ ! AutðQ0Þ. The surjection
AutðQÞ !! AutðQ0; dÞ is split, and it is bijective iff Q has no multiple arrows.
Of particular importance to us is a certain countable quiver Cirr. This is a full

subquiver of the Auslander^Reiten quiver CðDb
ðmodAÞÞ of Db

ðmodAÞ as de¢ned
by Happel [Ha]. Here modA is the category of ¢nitely generated A-modules. If
A has ¢nite representation type (i.e. D is a Dynkin quiver) then Cirr ffi ZZD, where
ZZD is the quiver introduced by Riedtmann [Rn]. Otherwise Cirr ffi Z�ZZD. See De¢-
nitions 2.2 and 2.3 for the de¢nition of the quivers Cirr andZZD, and see Figures 3 and
4 for illustrations. The group DPickðAÞ acts on Cirr

0 by arrow-multiplicity preserving
permutations, giving rise to a group homomorphism q: DPickðAÞ ! AutðCirr

0 ; dÞ.
De¢ne the bimoduleA�:¼ HomkðA; kÞ. ThenA� is a two-sided tilting complex, the

functor M 7!A� �L
A M ffi RHomAðM;A�Þ is the Serre functor of Db

ðmodAÞ in the
sense of [BK], andM 7!A�½�1� �L

A M is the translation functor in the sense of [Ha]
Section I.4. We write t 2 DPickðAÞ for the element represented by A�½�1�. Then
t is the translation of the quiver Cirr. Let us denote by AutðCirr

0 ; dÞht;si the subgroup
of AutðCirr

0 ; dÞ consisting of permutations that commute with t and s.
Here is the main result of the paper.

THEOREM 0.1. Let A be an indecomposable basic hereditary ¢nite dimensional
algebra over an algebraically closed ¢eld k, with quiver D.

(1) There is an exact sequence of groups

1! Out0kðAÞ ! DPickðAÞ !
q

AutðCirr
0 ; dÞht;si ! 1:

This sequence splits.
(2) If A has ¢nite representation type then there is an isomorphism of groups

DPickðAÞ ffi AutðZZDÞhti:

(3) If A has in¢nite representation type then there is an isomorphism of groups

DPickðAÞ ffi
�
AutððZZDÞ0; dÞhti j�Out0kðAÞ

�
�Z:
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The factor Z of DPickðAÞ in part 3 is generated by s. If D has no multiple arrows
then so does ZZD, and hence AutððZZDÞ0; dÞ ¼ AutðZZDÞ. The proof of Theorem
0.1 is in Section 3 where it is stated again as Theorem 3.8.
Recall that a ¢nite-dimensional k-algebra B is called piecewise hereditary of type D

if Db
ðmodBÞ � Db

ðmodAÞ where A ¼ kD for some ¢nite quiver D without oriented
cycles. By [Rd] Corollary 3.5 one knows that DPickðBÞ ffi DPickðAÞ. The next
corollary follows.

COROLLARY 0.2. Suppose B is a piecewise hereditary k-algebra of type D. Then
DPickðBÞ is described by Theorem 0.1 with A ¼ kD.

In Section 4 we work out explicit descriptions of the groups PickðAÞ and DPickðAÞ
for the Dynkin and af¢ne quivers, as well as for some wild quivers with multiple
arrows. As an example we present below the explicit description of DPickðAÞ for
a Dynkin quiver of type An (which corresponds to upper triangular n� n matrices).
The corollary is extracted from Theorem 4.1.

COROLLARY 0.3. Suppose D is a Dynkin quiver of type An and A ¼ kD. Then
DPickðAÞ is an abelian group generated by t and s, with one relation tnþ1 ¼ s�2:

The relation tnþ1 ¼ s�2 was already discovered by E. Kreines (cf. [Ye] Appendix).
This relation has been known also to Kontsevich, and in his terminology Db

ðmodAÞ
is ‘fractionally Calabi^Yau of dimension ðn� 1Þ=ðnþ 1Þ’ (see [Ko]; note that the
Serre functor is ts).
SupposeD is a k-linear triangulated category that’s equivalent to a small category.

Denote by Outtrk ðDÞ the group of k-linear triangle auto-equivalences of D modulo
functorial isomorphisms. For a ¢nite-dimensional algebra A one has DPickðAÞ �
Outtrk ðD

b
ðmodAÞÞ, with equality when A is hereditary (cf. Corollary 1.9).

In [KR] Kontsevich and Rosenberg introduce the noncommutative projective
space NPn

k, nX 1. They state that Db
ðCohNPn

kÞ is equivalent to Db
ðmodkXnþ1Þ,

where Xnþ1 is the quiver in Figure 6, and CohNPn
k is the category of coherent

sheaves. By Beilinson’s results in [Be], there is an equivalence Db
ðCohP1kÞ �

Db
ðmodkX2Þ. Combining Theorem 4.3 and Corollary 1.9 we get the next corollary.

COROLLARY 0.4. Let X be either NPn
k (nX 1) or Pn

k (n ¼ 1). Then

Outtrk ðD
b
ðCohX ÞÞ ffi Z�

�
Z j� PGLnþ1ðkÞ

�
:

In Section 5 we look at a tree D with n vertices. Every orientation o of D gives a
quiver Do. The equivalences between the various categories Db

ðmodkDoÞ form
the derived Picard groupoid DPickðDÞ. The subgroupoid generated by the two-sided
tilting complexes of [APR] is called the re£ection groupoid RefðDÞ. We show that
there is a surjection RefðDÞ !!W ðDÞ, where W ðDÞ � GLnðZÞ is the Weyl group
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as in [BGP]. We also prove that for any orientation o, RefðDÞðo;oÞ ¼ htoi where
to 2 DPickðAoÞ is the translation.

1. Conventions and Preliminary Results

In this section we ¢x notations and conventions to be used throughout the paper.
This is needed since there are con£icting conventions in the literature regarding
quivers and path algebras. We also prove two preliminary results.
Throughout the paper k denotes a ¢xed algebraically closed ¢eld. Our notation for

a quiver is Q ¼ ðQ0;Q1Þ; Q0 is the set of vertices, and Q1 is the set of arrows. For
x; y 2 Q0, dðx; yÞ denotes the number of arrows x! y.
In this section the letter A denotes a k-linear category that’s equivalent to a small

full subcategory of itself (this assumption avoids some set theoretical problems).
Let us write AutkðAÞ for the class of k-linear auto-equivalences of A. Then the set

OutkðAÞ ¼
AutkðAÞ

functorial isomorphism
ð1:1Þ

is a group.
Suppose A is a k-linear additive Krull^Schmidt category (i.e. dimkHomAðM;NÞ

<1 and all idempotents split). We de¢ne the quiver CðAÞ of A as follows:
C0ðAÞ is the set of isomorphism classes of indecomposable objects of A. For two
vertices x; y there are dðx; yÞ arrows a: x! y, where we choose representatives
Mx 2 x, My 2 y, IrrðMx;MyÞ ¼ radðMx;MyÞ=rad2ðMx;MyÞ is the space of
irreducible morphisms and dðx; yÞ:¼ dimkIrrðMx;MyÞ. See [Rl] Section 2.2 for full
details.
If A is a k-linear category (possibly without direct sums) we can embed it in the

additive category A�N, where a morphism ðx;mÞ ! ðy; nÞ is an n�m matrix with
entries in Aðx; yÞ ¼ HomAðx; yÞ. Of course, if A is additive then A � A�N. If
A�N is Krull^Schmidt then we shall write CðAÞ for the quiver CðA�NÞ.
Let Q be a quiver. Assume that for every vertex x 2 Q0 the number of arrows

starting or ending at x is ¢nite, and for every two vertices x; y 2 Q0 there is only
a ¢nite number of oriented paths from x to y. Let khQi be the path category, whose
set of objects is Q0, the morphisms are generated by the identities and the arrows,
and the only relations arise from incomposability of paths. Observe that this differs
from the de¢nition in [Rl], where the path category corresponds to khQi �N in
our notation. The morphism spaces of khQi are Z-graded, where the arrows have
degree 1. If I � khQi is any ideal contained in rad2khQi ¼

L
nX 2 khQin, and

khQ; Ii:¼ khQi=I is the quotient category, then the additive category khQ; Ii�
N is Krull^Schmidt, and the quiver of khQ; Ii is CðkhQ; IiÞ ¼ Q.
Let A be a ¢nite-dimensional k-algebra. In representation theory there are three

equivalent ways to de¢ne the quiver D ¼ DðAÞ of A. The set D0 enumerates either
a complete set of primitive orthogonal idempotents fexgx2D0 , as in [ARS]
Section III.1; or it enumerates the simple A-modules fSxgx2D0 , as in [Rl] Section 2.1;
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or it enumerates the indecomposable projective A-modules fPxgx2D0 , as in [Rl] Sec-
tion 2.4. The arrow multiplicity is in all cases

dðx; yÞ ¼ dimkexðr=r
2Þey ¼ dimkExt1AðSy;SxÞ ¼ dimkIrrprojAðPx;PyÞ:

Here r is the Jacobson radical and projA is the category of ¢nitely generated pro-
jective modules, which is Krull^Schmidt. Observe that the third de¢nition is just
DðAÞ ¼ CðprojAÞ.

Remark 1.2. The set D0 also enumerates the prime spectrum of A, SpecA ffi
fpxgx2D0 . One can show that r=r

2 ffi
L

x;y2D0 ðpx \ pyÞ=pxpy as A-A-bimodules. This
implies that dðx; yÞ > 0 iff there is a second layer link px ? py (cf. [MR] Section
4.3.7). Thus if we ignore multiple arrows, the quiver D is precisely the link graph
of A.
Recall that a translation t is an injective function from a subset ofQ0, called the set

of non-projective vertices, to Q0, such that dðtðyÞ; xÞ ¼ dðx; yÞ. Q is a stable trans-
lation quiver if it comes with a translation t such that all vertices are non-projective.
A polarization m is an injective function de¢ned on the set of arrows b: x! y ending
in nonprojective vertices, with mðbÞ: tðyÞ ! x. Cf. [Rl] Section 2.2.

NOTATION 1.3. Suppose the quiver Q has a translation t and a polarization m.
Given a nonprojective vertex y 2 Q0 let x1; . . . ; xm be some labeling, without
repetition, of the set of vertices fx j there is an arrow x! yg. Correspondingly,
label the arrows bi;j: xi ! y and ai;j: tðyÞ ! xi, where i ¼ 1; . . . ;m; j ¼ 1; . . . ; di;
di ¼ dðxi; yÞ; and ai;j ¼ mðbi;jÞ. The mesh ending at y is the subquiver with vertices
ftðyÞ; xi; yg and arrows fai;j; bi;jg.
If Q has no multiple arrows then di ¼ 1 and the picture of the mesh ending at y is

shown in Figure 1.
The mesh relation at y is de¢ned to be

Xm

i¼1

Xdi

j¼1

bi;jai;j 2 HomkhQi
�
tðyÞ; y

�
: ð1:4Þ

It is a homogeneous morphism of degree 2.

DEFINITION 1.5. Let Im be the mesh ideal in the category khQi, i.e. the two-sided
ideal generated by the mesh relations (1.4) where y runs over all nonprojective
vertices. The quotient category

khQ; Imi:¼ khQi=Im

is called the mesh category.
Observe that in [Rn], [Rl] and [Ha] the notation for khQ; Imi is kðQÞ.
Now let D be a ¢nite quiver without oriented cycles and A ¼ kD the path algebra.

Our convention for the multiplication in A is as follows. If x!
a

y and y!
b

z are
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paths in D, and if x!
g

z is the concatenated path, then g ¼ ab in A. We note that the
composition rule in the path category khDi is opposite to that in A, so thatL

x;y HomkhDiðx; yÞ ¼ A�.
For every x 2 D0 let ex 2 A be the corresponding idempotent, and let Px ¼ Aex be

the indecomposable projective A-module. So fPxgx2D0 is a set of representatives
of the isomorphism classes of indecomposable projective A-modules. De¢ne
P � modA to be the full subcategory on the objects fPxgx2D0 . Then P�N �

projA and D ffi CðPÞ ffi CðprojAÞ.
There is an equivalence of categories khDi !

�
P that sends x 7!Px, and an arrow

a: x! y goes to the right multiplication Px ¼ Aex !
a

Py ¼ Aey. We will identify
P and khDi in this way.
Recall that the automorphism group AutkðAÞ is a linear algebraic group. LetH be

the closed subgroup

H:¼ fF 2 AutkðAÞ j F ðexÞ ¼ ex for all x 2 D0g:

LEMMA 1.6. H is connected.
Proof. For each pair x; y 2 D0 the k-vector space Pðx; yÞ:¼ HomPðx; yÞ ffi exAey is

graded. Let Pðx; yÞi be the homogeneous component of degree i, and

Y :¼
Y

x;y2D0

�
Autk

�
Pðx; yÞ1

�
�Homk

�
Pðx; yÞ1;Pðx; yÞX 2

�	
:

This is a connected algebraic variety. Since A is generated as k-algebra by the
idempotents and the arrows, and the only relations in A are the monomial relations
arising from incomposability of paths, it follows that any element F 0 2 Y extends
uniquely to a k-algebra automorphism F of A that ¢xes the idempotents. Conversely
any automorphism F 2 H restricts to an element F 0 ofY . This bijectionY ! H is an
isomorphism of varieties. Hence H is connected. &

The next result is partially proved in [GS] Theorem 4.8 (they assume k has charac-
teristic 0).

Figure 1. The mesh ending at the vertex y when di ¼ 1.
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PROPOSITION 1.7. Let A be a basic hereditary ¢nite dimensional algebra over an
algebraically closed ¢eld k, with quiver D.

(1) There is a split exact sequence of groups

1! Out0kðAÞ ! PickðAÞ ! AutðD0; dÞ ! 1:

(2) The group Out0kðAÞ is trivial when D is a tree.
Proof. (1) Since A is basic we have OutkðAÞ ¼ PickðAÞ. By Morita theory we have

PickðAÞ ffi OutkðModAÞ. Any auto-equivalence of the category P extends to an
auto-equivalence of ModA (using projective resolutions), and this induces an
isomorphism of groups OutkðPÞ !

’
OutkðModAÞ.

The class of auto-equivalences AutkðPÞ is actually a group here. In fact AutkðPÞ
can be identi¢ed with the subgroup of AutkðAÞ consisting of automorphisms that
permute the set of idempotents fexg � A.
De¢ne a homomorphism of groups q: OutkðAÞ ! AutðD0; dÞ by qðF ÞðxÞ ¼ y if

FPx ffi Py. Thus we get a commutative diagram

H ���! AutkðPÞ ���! AutkðAÞ???y
???yf

???y
???yg

OutkðPÞ ���!
ffi

OutkðAÞ ���!
q

AutðD0; dÞ:

For an element F 2 AutkðPÞ we have F jfexg
¼ qf ðF Þ and, hence, KerðqÞ ¼ f ðHÞ ¼

gðHÞ. According to Lemma 1.6,H is connected. Because g is a morphism of varieties
we see that KerðqÞ is connected. But the index of KerðqÞ is ¢nite, so we get
KerðqÞ ¼ Out0kðAÞ.
In order to split q we choose any splitting of AutðDÞ !! AutðD0; dÞ and compose it

with the homomorphism AutðDÞ ! AutkðPÞ.
(2) When D is a tree the group H is a torus: H ffi

Q
x;y2D0 Autk

�
Pðx; yÞ1

�
. In fact H

consists entirely of inner automorphisms that are conjugations by elements of
the form

P
lxex with lx 2 k�. Thus gðHÞ ¼ 1. &

The next theorem seems to be known to some experts, but we could not locate any
reference in the literature. Since it is needed in the paper we have included a short
proof. For a left coherent ring A (e.g. a hereditary ring) we denote by modA
the category of coherent A-modules. In the theorem k could be any ¢eld.

THEOREM 1.8. Suppose A is a hereditary k-algebra. Then any k-linear triangle
auto-equivalence of Db

ðmodAÞ is standard.
Proof. Let F be a k-linear triangle auto-equivalence of Db

ðmodAÞ. By [Rd]
Corollary 3.5 there exits a two-sided tilting complex T with T ffi FA in
Db
ðmodAÞ. Replacing F with ðT_ �L

A �ÞF we may assume that FA ffi A. Hence
F ðmodAÞ � modA, and F jmodA is an equivalence. Classical Morita theory says that
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F jmodA ffi ðP �A �Þ for some invertible bimodule P. So replacing F by ðP_ �A �ÞF
we can assume that there is an isomorphism f0: F jmodA ffi 1modA.
Now for every object M 2 Db

ðmodAÞ we can choose an isomorphism
M ffi

L
i Mi½�i� with Mi 2 modA (cf. [Ha] Lemma I.5.2). De¢ne fM : FM !

’
M

to be the composition

FM ffi
M
ðFMiÞ½�i� �������!

P
f0Mi
½�i� M

i

Mi½�i� ffiM:

According to the proof of [BO] Proposition A.3, for any morphism a: M ! N one
has fNF ðaÞ ¼ afM , so f: F ! 1DbðmodAÞ is an isomorphism of functors. &

COROLLARY 1.9. Suppose A is a hereditary k-algebra. Then

DPickðAÞ ffi Outtrk ðD
b
ðmodAÞÞ:

Proof. The group homomorphism DPickðAÞ ! Outtrk ðD
b
ðmodAÞÞ is injective, say

by [Ye] Proposition 2.2, and it is surjective by the theorem. &

2. An Equivalence of Categories

In this section we prove the technical result Theorem 2.6. It holds for any ¢nite
dimensional hereditary k-algebra A. In the special case of ¢nite representation type,
Theorem 2.6 is just [Ha] Proposition I.5.6. Our result is the derived category counter-
part of [Rl] Lemma 2.3.3. For notation see Section 1 above.
We use a few facts about Auslander^Reiten triangles inDb

ðmodAÞ. These facts are
well known to experts in representation theory, but for the bene¢t of other readers we
have collected them in Theorems 2.1 and 2.4.
Let D be a k-linear triangulated category, which is Krull^Schmidt (as additive

category). As in any Krull^Schmidt category, sink and source morphisms can be
de¢ned in D; cf. [Rl] Section 2.2. In [Ha] Section I.4, Happel de¢nes Auslander^
Reiten triangles in D, generalizing the Auslander^Reiten (or almost split) sequences
in an abelian Krull^Schmidt category. A triangle M0!

g
M!

f
M00 !M0½1� in D is

an Auslander^Reiten triangle if g is a source morphism, or equivalently if f is a
sink morphism. As before, we denote by Mx 2 D an indecomposable object in
the isomorphism class x 2 CðDÞ.
Now let D be a ¢nite quiver without oriented cycles, and A ¼ kD the path algebra.

For M 2 modk let M�:¼ HomkðM; kÞ. De¢ne auto-equivalences s and t of
Db
ðmodAÞ by sM:¼M½1� and tM:¼ RHomAðM;AÞ�½�1� ffi A�½�1� �L

A M.

THEOREM 2.1 (Happel, Ringel). Let A ¼ kD. Then the following hold.

(1) As an additive k-linear category, Db
ðmodAÞ is a Krull^Schmidt category.
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(2) The quiver C:¼ CðDb
ðmodAÞÞ is a stable translation quiver, and the translation t

satis¢es MtðxÞ ffi tMx.
(3) The Auslander^Reiten triangles in Db

ðmodAÞ (up to isomorphism) correspond
bijectively to the meshes in C. In the notation 1.3 with Q ¼ C these triangles are

MtðyÞ���!
ðgi;jÞ Mm

i¼1

Mdi

j¼1

Mxi ���!
ðfi;jÞ

t

My !MtðyÞ½1�:

(4) A morphism ðgi;jÞ: MtðyÞ !
Lm

i¼1
Ldi

j¼1Mxi is a source morphism i¡ forall i, fgi;jg
di
j¼1

is a basis of IrrDbðmodAÞðMtðyÞ;Mxi Þ. Likewise a morphism ðfi;jÞ
t:
Lm

i¼1
Ldi

j¼1Mxi !

My is a sink morphism i¡ for all i, ffi;jg
di
j¼1 is basis of IrrDbðmodAÞðMxi ;MyÞ.

Proof. (1) This is implicit in [Ha] Sections I.4 and I.5. In particular [Ha] Lemma
I.5.2 shows that for any indecomposable object M 2 Db

ðmodAÞ the ring
EndDbðmodAÞðMÞ is local.
(2) See [Ha] Corollary I.4.9.
(3) According to [Ha] Theorem I.4.6 and Lemma I.4.8, for each y 2 C0 there exists

such an Auslander^Reiten triangle. By [Ha] Proposition I.4.3 these are all the
Auslander^Reiten triangles, up to isomorphism.
(4) Since source and sink morphism depend only on the structure of k-linear addi-

tive category on Db
ðmodAÞ (cf. [Ha] Section I.4.5) we may use [Rl] Lemma 2.2.3.&

The Auslander^Reiten quiver CðDb
ðmodAÞÞ contains the quiver D, as the full

subquiver with vertices corresponding to the indecomposable projective A-modules,
under the inclusion modA � Db

ðmodAÞ.

DEFINITION 2.2. We call a connected component of CðDb
ðmodAÞÞ irregular if it is

isomorphic to the connected component containing D, and we denote by Cirr the
disjoint union of all irregular components of CðDb

ðmodAÞÞ.
The name ‘irregular’ is inspired by [ARS] Section VIII.4, where regular com-

ponents of CðmodAÞ are discussed. The quiver Cirr will be of special interest to
us. It’s structure is explained in Theorem 2.4 below. But ¢rst we need to recall
the following de¢nition due to Riedtmann [Rn],

DEFINITION 2.3. From the quiver D one can construct another quiver, denoted by
ZZD. The vertex set ofZZD isZ� D0, and for every arrow x �a! y in D there are arrows
ðn; xÞ ���!

ðn;aÞ
ðn; yÞ and ðn; yÞ ���!

ðn;a�Þ
ðnþ 1; xÞ in ZZD.

The function tðn; xÞ ¼ ðn� 1; xÞ makes ZZD into a stable translation quiver.
Observe that t is an automorphism of the quiver ZZD, not just of the vertex set
ðZZDÞ0. ZZD is equipped with a polarization m, given by mðnþ 1; aÞ ¼ ðn; a�Þ and
mðn; a�Þ ¼ ðn; aÞ. See Figures 3 and 4 in Section 4 for examples. We identify D with
the subquiver f0g � D � ZZD.
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Next let us de¢ne a quiver Z� ðZZDÞ:¼
‘

m2Z ZZD; the connected components are
fmg � ðZZDÞ, m 2 Z. De¢ne an automorphism s of Z� ðZZDÞ by the action
sðmÞ ¼ mþ 1 on the ¢rst factor. There is a translation t and a polarization m of
Z� ðZZDÞ that extend those of ZZD ffi f0g � ðZZDÞ and commute with s.
The auto-equivalences s and t of Db

ðmodAÞ induce commuting permutations of
C0, which we also denote by s and t respectively.

THEOREM 2.4 (Happel). (1) If A has ¢nite representation type then there is a unique
isomorphism of quivers r:ZZD!

’
Cirr which is the identity on D and commutes with t on

vertices. Furthermore Cirr ¼ CðDb
ðmodAÞÞ.

(2) If A has in¢nite representation type then there exists an isomorphism of quivers
r:Z� ðZZDÞ !

’
Cirrwhich is the identity on D and commutes with t and s on vertices.

If D is a tree then the isomorphism r is unique.
Proof. This is essentially [Ha] Proposition I.5.5 and Corollary I.5.6. &

Fix once and for all for every vertex x 2 Cirr
0 an indecomposable object

Mx 2 Db
ðmodAÞ which represents x, and such that Mx ¼ Px for x 2 D0. De¢ne

B � Db
ðmodAÞ to be the full subcategory with objects fMx j x 2 ðZZDÞ0g.

The additive category B�N is also Krull^Schmidt, so for Mx;My 2 B the two
k-modules IrrB�NðMx;MyÞ and IrrDbðmodAÞðMx;MyÞ could conceivably differ (cf. [Rl]
Section 2.2). But this is not the case as we see in the lemma below.

LEMMA 2.5. Suppose I � Z is a segment (i.e. I ¼ fi 2 Z j aW iW bg with
a; b 2 Z [ f�1g). Let BðIÞ � Db

ðmodAÞ be the full subcategory on the objects
Mx, x 2 I � D0 � CðDb

ðmodAÞÞ0. Then for any Mx;My 2 BðIÞ one has

IrrBðIÞ�NðMx;MyÞ ffi IrrDbðmodAÞðMx;MyÞ:

Proof.Consider a sink morphism inDb
ðmodAÞ ending inMðn;yÞ, ðn; yÞ 2 ðZZDÞ0. By

Theorem 2.1(3) and Theorem 2.4, it is of the form ðfi;jÞ
t:
Lm

i¼1
Ldi

j¼1Mðn�ei;xiÞ !Mðn;yÞ

with ei 2 f0; 1g (cf. Notation 1.3). From the de¢nition of a sink morphism we see that
this is also a sink morphism in the category B�N.
According to [Rl] Lemma 2.2.3 (dual form), both k-modules IrrB�NðMðn�ei;xiÞ;

Mðn;yÞÞ and IrrDbðmodAÞðMðn�ei;xiÞ;Mðn;yÞÞ have the morphisms fi;1; . . . ; fi;di as basis.
And there are no irreducible morphisms N !Mðn;yÞ for indecomposable objects
N not isomorphic to one of the Mðn�ei;xiÞ, in either category. Thus the lemma is
proved for BðIÞ ¼ B.
Let x; y 2 D0 and l; n 2 Z. IfHomðMðl;xÞ;Mðn;yÞÞ 6¼ 0 then necessarily l W n. This is

clear for l ¼ 0, sinceMð0;xÞ is a projective module, and an easy calculation shows that
for n < 0,

H0ðMðn;yÞÞ ffi H0ðA�½�1� �L
A � � � �

L
A A�½�1� �L

A Mð0;yÞÞ ¼ 0:

In general we can translate by t�l .
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Now take an arbitrary segment I . The paragraph above implies that for n; l 2 I
and iX 0, radi

BðIÞ�NðMðl;xÞ;Mðn;yÞÞ ¼ radi
B�NðMðl;xÞ;Mðn;yÞÞ. Hence IrrBðIÞ�NðMðl;xÞ;

Mðn;yÞÞ ¼ IrrB�NðMðl;xÞ;Mðn;yÞÞ. &

Henceforth we shall simply write IrrðMx;MyÞ when x; y 2 ðZZDÞ0. The lemma
implies that the quiver of the category BðIÞ is the full subquiver ID � ZZD.
Note that for I ¼ f0g we get BðIÞ ¼ P. Since P is canonically equivalent to khDi,

there is a full faithful k-linear functor G0: khDi ! B such that G0x ¼Mx ¼ Px

for every vertex x 2 D0, and fG0ðajÞg
dðx;yÞ
j¼1 is a basis of IrrðMx;MyÞ for every pair

of vertices x; y, where a1; . . . ; adðx;yÞ are the arrows aj: x! y.

THEOREM 2.6. Let D be a ¢nite quiver without oriented cycles, A ¼ kD its path
algebra, khZZD; Imi the mesh category (De¢nitions 2.3 and 1.5) and B �
Db
ðmodAÞ the full subcategory on the objects fMxgx2ðZZDÞ0

. Then there is a k-linear
functor

G: khZZD; Imi ! B

such that

(i) Gx ¼Mx for each vertex x 2 ðZZDÞ0.
(ii) GjkhDi ¼ G0.
(iii) G is full and faithful.

Moreover, the functor G is unique up to isomorphism.

In other words, there is a unique equivalence G extending G0.

Proof. Let Qþ � ZZD be the full subquiver with vertex set fðn; yÞ j nX 0g. Given a
vertex ðn; yÞ in Qþ, denote by pðn; yÞ the number of its predecessors, i.e. the number
of vertices ðm; xÞ such that there is a path ðm; xÞ ! � � � ! ðn; yÞ in Qþ. For any
pX 0 let Qþp be the full subquiver with vertex set fðn; yÞ j nX 0; pðn; yÞW pg. Qþp
is a translation quiver with polarization, and khQþp ; Imi � khZZD; Imi is a full sub-
category.
By recursion on p, we will de¢ne a functor G: khQþp ; Imi ! B satisfying conditions

(i), (ii) and

(iv) Let x; y be a pair of vertices and let a1; . . . ; adðx;yÞ be the arrows aj: x! y. Then
fGðajÞg

dðx;yÞ
j¼1 is a basis of IrrðMx;MyÞ.

Take pX 0. It suf¢ces to de¢ne GðaÞ for an arrow a in Qþp . These arrows fall into
three cases, according to their end vertex ðn; yÞ:

(a) pðn; yÞ < p, in which case any arrow a ending in ðn; yÞ is in Qþp�1, and GðaÞ is
already de¢ned.
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(b) pðn; yÞ ¼ p and n ¼ 0. Any arrow a ending in ðn; yÞ is in D, so we de¢ne
GðaÞ:¼ G0ðaÞ. By Lemma 2.5 condition (iv) holds.

(c) pðn; yÞ ¼ p and nX 1. In this case ðn; yÞ is a nonprojective vertex in Qþp , and we
consider the mesh ending at ðn; yÞ. The vertices with arrows to ðn; yÞ are
ðn� ei; xiÞ, where i ¼ 1; . . . ;m; xi 2 D0 and ei ¼ 0; 1 (cf. Notation 1.3). Since
pðn� 1; yÞ < pðn� ei; xiÞ < p the arrows ai;j are all in the quiverQþp�1 and, hence,
Gðai;jÞ are de¢ned.
According to condition (iv), Lemma 2.5 and Theorem 2.1(4) it follows that there

exists an Auslander^Reiten triangle

Mðn�1;yÞ ���!
ðGðai;j ÞÞ Mm

i¼1

Mdi

j¼1

Mðn�ei;xiÞ ���!
ðfi;jÞ

t

Mðn;yÞ !Mðn�1;yÞ½1� ð2:7Þ

in Db
ðmodAÞ. De¢ne

Gðbi;jÞ:¼ fi;j: Mðn�ei;xiÞ !Mðn;yÞ:

Note that the mesh relation
P

bi;jai;j in khQþp i is sent by G to
P

Gðbi;jÞGðai;jÞ ¼ 0,
so we indeed have a functor G: khQþp ; Imi ! B. Also, byTheorem 2.1(4), for any i
the set fGðbi;jÞg

di
j¼1 is a basis of IrrðMðn�ei;xiÞ;Mðn;yÞÞ.

Thus we obtain a functor G: khQþ; Imi ! B.
By symmetry we construct a functor G: khQ�; Imi ! B for negative vertices

(i.e. nW 0), extending G0. Putting the two together we obtain a functor
G: khZZD; Imi ! B satisfying conditions (i), (ii) and (iv).
Let us prove G is fully faithful. For any n 2 Z there is a full subquiver

ZZX nD � ZZD, on the vertex set fði; xÞ j iX ng. Correspondingly there are full
subcategories khZZX nD; Imi � khZZD; Imi and BðZX nÞ � B. It suf¢ces to prove that
G: khZZX nD; Imi ! BðZX nÞ is fully faithful. By Lemma 2.5 the quiver of BðZX nÞ

is ZZX nD, which is pre-projective. So we can use the last two paragraphs in the proof
of [Rl] Lemma 2.3.3 almost verbatim.
Finally we shall prove that G is unique up to isomorphism. Suppose

G0: khZZD; Imi ! B is another k-linear functor satisfying conditions (i)^(iii). We will
show there is an isomorphism f: G!

’
G0 that is the identity on khDi.

By recursion on p we shall exhibit an isomorphism f: GjkhQþp ;Imi
!
’

G0jkhQþp ;Imi
. It

suf¢ces to consider case (c) above, so let ðn; yÞ be such a vertex. Then, because
G0ðai;jÞ ¼ fðn�ei;xiÞ

Gðai;jÞf
�1
ðn�1;yÞ, we have

X
i;j

G0ðbi;jÞfðn�ei;xiÞ
Gðai;jÞ ¼ G0

X
i;j

bi;jai;j

 !
fðn�1;yÞ ¼ 0:

Applying Homð�;Mðn;yÞÞ to the triangle (2.7) we obtain a morphism a 2 EndðMðn;yÞÞ

such thatG0ðbi;jÞfðn�ei;xiÞ
¼ aGðbi;jÞ. BecauseG0 is faithful we see that a 6¼ 0, and since

EndðMðn;yÞÞ ffi k it follows that a is invertible. Set fðn;yÞ:¼ a 2 AutðMðn;yÞÞ. This yields
the desired isomorphism f: GjkhQþp ;Imi

!
’

G0jkhQþp ;Imi
.
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By symmetry the isomorphism f extends to Q�. &

The uniqueness of G gives the next corollary.

COROLLARY 2.8. Let F be a k-linear auto-equivalence of khZZD; Imi ¢xing all
objects, and such that F jkhDi ffi 1khDi. Then F ffi 1khZZD;Imi.

Remark 2.9. Beware that if A has in¢nite representation type then khCirr; Imi is not
equivalent to the full subcategory of Db

ðmodAÞ on the objects fMxgx2Cirr
0
. This is

because there are nonzero morphisms from the projective modules (vertices in
the component ZZD) to the injective modules (vertices in f1g �ZZD).

3. The Representation of DPickðAÞ on the Quiver Cirr

This section contains the proof of the main result of the paper, Theorem 0.1 (restated
here as Theorem 3.8). It is deduced from the more technical Theorem 3.7.
Throughout k is an algebraically closed ¢eld, D is a connected ¢nite quiver without
oriented cycles, and A ¼ kD is the path algebra. We use the notation of previous
sections.
Recall that A� ¼ HomkðA; kÞ is a tilting complex. We shall denote by t the class of

A�½�1� in DPickðAÞ, and by s the class of A½1�. We identify an element T 2 DPickðAÞ
and the induced auto-equivalence F ¼ T �L

A � of D
b
ðmodAÞ.

LEMMA 3.1. t and s are in the center of DPickðAÞ.
Proof. The fact that s is in the center of DPickðAÞ is trivial. As for t, this follows

immediately from [Rd] Proposition 5.2 (or by [BO] Proposition 1.3, since
A� �L

A � is the Serre functor of D
b
ðmodAÞ). &

In De¢nition 2.2 we introduced the quiver Cirr. Recall that for a vertex x 2 Cirr
0 ,

Mx 2 Db
ðmodAÞ is the representative indecomposable object.

LEMMA 3.2. There is a group homomorphism

q: DPickðAÞ ! AutðCirr
0 ; dÞht;si

such that qðF ÞðxÞ ¼ y iff FMx ffiMy.
Proof. Given an auto-equivalence F of Db

ðmodAÞ, the formula qðF ÞðxÞ ¼ y iff
FMx ffiMy de¢nes a permutation qðF Þ of C0ðDb

ðmodAÞÞ that preserves arrow-
multiplicities. Hence it restricts to a permutation of Cirr

0 . By Lemma 3.1, qðF Þ com-
mutes with t and s. &

The group Out0kðAÞ was de¢ned to be the identity component of OutkðAÞ.
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LEMMA 3.3. KerðqÞ ¼ Out0kðAÞ.
Proof. Let T 2 DPickðAÞ. By Theorem 2.4 we know that Cirr

0 ¼
S

i;j2Z tisjðD0Þ.
Hence by Lemma 3.1, T 2 KerðqÞ iff T acts trivially on the set D0. In particular,
we see that KerðqÞ � PickðAÞ. Now use Proposition 1.7. &

LEMMA 3.4. Suppose A has ¢nite representation type. Then s is in the center of the
group AutðCirrÞ

hti.
Proof. According to [Rn] Section 2, the group AutðZZDÞhti is abelian in all cases

except D4. But a direct calculation in this case (cf. Theorem 4.1) gives s ¼ t�3. &

Before we can talk about the mesh category khCirr; Imi of the quiver Cirr, we have to
¢x a polarization m on it. If the quiver D has no multiple arrows then so does Cirr (by
Theorem 2.4), and hence there is a unique polarization on it. If D isn’t a tree let us
choose an isomorphism r:Z� ðZZDÞ !

’
Cirr as in that theorem. This determines a

polarization m on Cirr. We also get a lifting of the permutation s to an auto-
equivalence of khCirr; Imi.

LEMMA 3.5. There are group homomorphisms

p: OutkðkhCirr; ImiÞ ! AutðCirr
0 ; dÞhti

and

r: AutðCirr
0 ; dÞhti ! OutkðkhCirr; ImiÞ

satisfying pðF ÞðxÞ ¼ Fx for an auto-equivalence F and a vertex x; pr ¼ 1; and both p
and r commute with s.

Proof. Since Cirr ffi CðkhCirr; ImiÞ we get a permutation pðF Þ 2 AutðCirr
0 ; dÞ. Let’s

prove that pðF Þ commutes with t in AutðCirr
0 Þ. Consider a vertex y 2 Cirr

0 . In the
Notation 1.3, there are vertices xi and irreducible morphisms fF ðai;jÞg

di
j¼1 and

fF ðbi;jÞg
di
j¼1 that form bases of IrrkhCirr;Imi

ðFty;FxiÞ and IrrkhCirr;Imi
ðFxi;FyÞ respect-

ively. Since we have

X
F ðbi;jÞF ðai;jÞ ¼ 0 2 rad2khCirr;Imi

ðFty;FyÞ=rad3khCirr;Imi
ðFty;FyÞ

this must be a multiple of a mesh relation. Hence Fty ¼ tFy.
Finally to de¢ne r we have to split AutðCirrÞ !! AutðCirr

0 ; dÞ consistently with m. It
suf¢ces to order the set of arrows fa: x! yg for every pair of vertices x; y 2 Cirr

0
consistently with m. We only have to worry about this when A has in¢nite represen-
tation type. For any x; y 2 D0 choose some ordering of the set fa: x! yg. Using
m and s this ordering can be transported to all of Z� ðZZDÞ. By the isomorphism
r of Theorem 2.4 the ordering is copied to Cirr. &
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LEMMA 3.6. There exists a group homomorphism

~qq: DPickðAÞ ! OutkðkhCirr; ImiÞ

such that p~qq ¼ q.
Proof. Choose an equivalence G: khZZD; Imi ! B as in Theorem 2.6. If A has in¢-

nite representation type then the isomorphism r we have chosen (as in Theorem
2.4) tells us how to extend G to an equivalence G: khCirr; Imi !

‘
l2Z B½l� that com-

mutes with s (cf. Remark 2.9).
Let F be a triangle auto-equivalence of Db

ðmodAÞ. Then F induces a permutation
p ¼ qðF Þ of the set Cirr

0 that commutes with s. For every vertex x 2 Cirr
0 choose an

isomorphism fx: FMx !
’

MpðxÞ inDb
ðmodAÞ. Given an arrow a: x! y in Cirr, de¢ne

the morphism ~qqffxg
ðF ÞðaÞ: pðxÞ ! pðyÞ by the condition that the diagram

FMx ���!
FGðaÞ

FMy

fx

???y fy

???y
MpðxÞ �������!

G~qqffxgðF ÞðaÞ
MpðyÞ

commutes. Then ~qqffxg
ðF Þ 2 AutkðkhCirr; ImiÞ.

If ff0xg is another choice of isomorphisms f
0
x: FMx !

’
MpðxÞ then ff0xf

�1
x g is an

isomorphism of functors ~qqffxg
ðF Þ ! ~qqff0xgðF Þ, so the map ~qq: DPickðAÞ !

OutkðkhCirr; ImiÞ is independent of these choices.
It is easy to check that ~qq respects composition of equivalences. &

THEOREM 3.7. Let A be an indecomposable basic hereditary ¢nite-dimensional
k-algebra with quiver D. Then the homomorphism ~qq of Lemma 3.6 induces an
isomorphism of groups

DPickðAÞ ffi OutkðkhCirr; ImiÞ
hsi

ffi
Outk

�
khZZD; Imi

�
if A has finite representation type;

Outk
�
khZZD; Imi

�
� hsi otherwise.

(

Proof. The proof has three parts.
(1) We show that the homomorphism

~qq: DPickðAÞ ! OutkðkhCirr; ImiÞ

of Lemma 3.6 is injective. Let T be a two-sided tilting complex such that ~qqðT Þ ffi
1khCirr;Imi

. Then the permutation qðT Þ ¢xes the vertices of D � Cirr. Using the fact
that A ffi

L
x2D0 Mx we see that T ffi A in Db

ðmodAÞ. Replacing T with H0T we
may assume T is a single bimodule. According to [Ye] Proposition 2.2, we see that
T is actually an invertible bimodule. Since khDi ! khZZD; Imi is full we get
~qqðT ÞjkhDi ffi 1khDi. Hence, by Morita theory, we have T ffi A as bimodules.
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(2) Assume A has ¢nite representation type, so that Cirr ffi ZZD. We prove that

~qq: DPickðAÞ ! OutkðkhZZD; ImiÞ

is surjective.
Consider a k-linear auto-equivalence F of khZZD; Imi. Let p:¼ pðF Þ 2

AutððZZDÞ0; dÞhti ffi AutðZZDÞhti as in the proof of Lemma 3.6. According to Lemma
3.4, p commutes with s. De¢ne

M:¼
M
x2D0

Mpð0;xÞ 2 Db
ðmodAÞ:

Then for any x; y 2 D0 and integers n; i the equivalence G: khZZD; Imi ! B of
Theorem 2.6 produces isomorphisms

HomDbðmodAÞðMpð0;xÞ;Mðn;yÞ½i�Þ

ffi HomkhZZD;Imiðpð0; xÞ; siðn; yÞÞ

ffi HomkhZZD;Imiðð0; xÞ; sip�1ðn; yÞÞ

ffi HomDbðmodAÞðMð0;xÞ;Mp�1ðn;yÞ½i�Þ:

Therefore

HomDbðmodAÞðM;M½i�Þ

ffi
M

x;y2D0

HomDbðmodAÞðMð0;xÞ;Mð0;yÞ½i�Þ

ffi
A� if i ¼ 0,

0 otherwise.

�

Also for any ðn; yÞ there is some integer i and x 2 D0 such that

HomDbðmodAÞðMpð0;xÞ;Mðn;yÞ½i�Þ 6¼ 0:

Since any object N 2 Db
ðmodAÞ is a direct sum of indecomposables Mðn;yÞ, this

implies that RHomAðM;NÞ 6¼ 0 if N 6¼ 0. By [Ye] Theorem 1.8 and the proof of
‘(ii) ) (i)’ of [Ye] Theorem 1.6 there exists a two-sided tilting complex T with
T ffiM in DðModAÞ (cf. [Rd] Section 3). Replacing F with ~qqðT_ÞF , where
T_:¼ RHomAðT ;AÞ, we can assume that pðF Þ is trivial.
Now that pðF Þ is trivial, F restricts to an auto-equivalence of khDi, and by

Proposition 1.7 we have F jkhDi ffi 1khDi. Then Corollary 2.8 tells us F ffi 1khZZD;Imi.
(3) Assume A has in¢nite representation type. Then the quiver isomorphism r of

Theorem 2.4 induces a group isomorphism

OutkðkhCirr; ImiÞ
hsi
ffi OutkðkhZZD; ImiÞ � hsi;
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and hsi ffi Z. We prove that

~qq: DPickðAÞ ! OutkðkhZZD; ImiÞ �Z

is surjective.
Take an auto-equivalence F of khZZD; Imi, and write p:¼ pðF Þ 2 AutððZZDÞ0; dÞhti.

After replacing F with tjF for suitable j 2 Z, we can assume that pð0; xÞ 2
ZZX 0D for all x 2 D0. Because ZZX 0D is the preprojective component of CðmodAÞ
(cf. [Rl]), we get

M:¼
M
x2D0

Mpð0;xÞ 2 modA:

As in part 2 above, EndAðMÞ ¼ A�. Since M is a complete slice, [HR] Theorem 7.2
says thatM is a tilting module. SoM is a two-sided tilting complex overA. Replacing
F by ~qqðM_ÞF we can assume pðF Þ is trivial. Let P be an invertible bimodule such that
~qqðPÞjkhDi ffi F jkhDi. Replacing F with ~qqðP_ÞF we get F jkhDi ffi 1khDi. Then by Corollary
2.8 we get F ffi 1hZZD;Imi. &

The next theorem is Theorem 0.1 in the Introduction.

THEOREM 3.8. Let A be an indecomposable basic hereditary ¢nite-dimensional
algebra over an algebraically closed ¢eld k, with quiver D.

(1) There is an exact sequence of groups

1! Out0kðAÞ ! DPickðAÞ !
q

AutðCirr
0 ; dÞht;si ! 1:

This sequence splits.
(2) If A has ¢nite representation type then there is an isomorphism of groups

DPickðAÞ ffi AutðZZDÞhti:

(3) If A has in¢nite representation type then there is an isomorphism of groups

DPickðAÞ ffi
�
AutððZZDÞ0; dÞhti j�Out0kðAÞ

�
�Z:

Proof. (1) By Theorem 3.7 and Lemma 3.5 the homomorphism q is surjective.
Lemma 3.3 identi¢es KerðqÞ.
(2) If A has ¢nite representation type then D is a tree, so Out0kðAÞ ¼ 1 by Proposition
1.7. By Theorem 2.4 and Lemma 3.4 we get

AutðCirr
0 ; dÞht;si ffi AutðCirrÞ

ht;si
ffi AutðZZDÞhti:

358 JUN-ICHI MIYACHI AND AMNON YEKUTIELI



(3) If A has in¢nite representation type then

AutðCirr
0 ; dÞht;si ffi AutððZZDÞ0; dÞhti � hsi

by Theorem 2.4. We know that s is in the center of DPickðAÞ. &

We end the section with the following problem.

PROBLEM 3.9. The Auslander^Reiten quiver CðDb
ðmodAÞÞ is de¢ned for any ¢nite

dimensional k-algebra A of ¢nite global dimension. Can the action of DPickðAÞ on
CðDb

ðmodAÞÞ be used to determine the structure of DPickðAÞ for any such A?

4. Explicit Calculations

In this section we calculate the group structure of DPickðAÞ for the path algebra
A ¼ kD for several types of quivers. Throughout Sm denotes the permutation group
of f1; . . . ;mg.
Suppose D is a tree. Given an orientation o of the edge set D1, denote by Do the

resulting quiver, and by Ao:¼ kDo. If o and o0 are two orientations of D then
Db
ðmodAoÞ � Db

ðmodAo0 Þ. This equivalence will be discussed in the next section.
For now we just note that the groups DPickðAoÞ ffi DPickðAo0 Þ, so we are allowed
to choose any orientation of D when computing these groups. This observation
is relevant to Theorems 4.1 and 4.2 below.

THEOREM 4.1. Let D be a Dynkin quiver as shown in Figure 2, and let A:¼ kD be the
path algebra. Then PickðAÞ ffi AutðDÞ and DPickðAÞ ffi AutðZZDÞhti. The groups AutðDÞ

and AutðZZDÞhti are described in Table I.
Proof. The isomorphisms are by Theorem 0.1 and Proposition 1.7. The data in the

third column of Table I was calculated in [Rn] Section 4, except for the shift s which
did not appear in that paper. So we have to do a few calculations involving s. Below
are the calculations for types An and D4; the rest are similar and are left to the reader
as an exercise.

Table I. The groupAutðZZDÞhti for a Dynkin quiver.The orientation of D is shown in Figure 2. In typesDn and
E6; y is the element of order 2 in AutðD).

Type AutðDÞ AutðZZDÞhti Relation

An; n even 1 ht; si ffi Z tnþ1 ¼ s�2

An; n odd 1 ht; si ffi Z� ðZ=2ZÞ tnþ1 ¼ s�2

D4 S3 AutðDÞ � hti ffi S3 �Z t3 ¼ s�1

Dn; nX 5 S2 AutðDÞ � hti ffi S2 �Z tn�1 ¼ ys�1; n odd
tn�1 ¼ s�1; n even

E6 S2 AutðDÞ � hti ffi S2 �Z t6 ¼ ys�1

E7 1 hti ffi Z t9 ¼ s�1

E8 1 hti ffi Z t15 ¼ s�1
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Type An: Choose the orientation in Figure 2. The quiver ZZD looks like Figure 3.
Therefore AutðZZDÞhti ¼ ht; Zi where Zð0; 1Þ ¼ ð0; nÞ and Zð0; nÞ ¼ ðn� 1; 1Þ.
Now by [Ha] Section I.5.5 and [ARS] Sections VII.1 and VIII.5, the quiver

CðmodAÞ � ZZD is the full subquiver on the vertices in the triangle
fðm; iÞ j mX 0; mþ iW ng. The projective vertices are ð0; iÞ and the injective vertices
are ðn� i; iÞ, where i 2 f1; . . . ; ng. We see that sð0; iÞ ¼ ði; nþ 1� iÞ, and the quiver
C
�
ðmodAÞ½1�

�
¼ s

�
CðmodAÞ

�
is the full subquiver on the vertices in the triangle

fðm; iÞ j mW n; mþ iX nþ 1g. Hence, Z ¼ ts and AutðZZDÞhti ¼ ht; si. The relation
t�ðnþ1Þ ¼ s2 is easily veri¢ed.
Type D4: The quiver ZZD is in Figure 4, and CðmodAÞ � ZZD is a full subquiver.

From the shape of D we know that modA should have 4 indecomposable projective
modules, 3 having length 2 and one of them simple. From the shape of the opposite
quiver D� we also know that modA should have 4 indecomposable injective
modules, 3 of them simple and one of length 4. Counting dimensions using
Auslander^Reiten sequences we conclude that CðmodAÞ is the full subquiver on
the vertices f0; 1; 2g � D0. The projective vertices are fð0; 1Þ; ð0; iÞg, the injective
vertices are fð2; 1Þ; ð2; iÞg, and the simple vertices are fð0; 1Þ; ð2; iÞg, where
i 2 f2; 3; 4g.
For i 2 f1; 2; 3; 4g let Pi, Si and Ii, be the projective, simple and injective modules

respectively, indexed such that Pi !! Si Ii, and with Pi ¼Mð0;iÞ. So P1 ¼ S1
and Ii ¼ Si for i 2 f2; 3; 4g. By the symmetry of the quiver it follows that there is
a nonzero morphism ð0; iÞ ! ð2; iÞ in khZZDi for i 2 f2; 3; 4g, and hence Mð2;iÞ ffi Si

The rule for connecting CðmodAÞ with CðmodA½1�Þ (see [Ha] Section I.5.5) implies
that Mð3;1Þ ffiMð0;1Þ½1� ¼ P1½1�. Therefore Mð3;iÞ ffi Pi0 ½1� for i; i0 2 f2; 3; 4g. Now for
each such i there is an Auslander^Reiten triangle Mð2;iÞ !Mð3;1Þ !Mð3;iÞ !

Mð2;iÞ½1�. When this triangle is turned it gives an exact sequence 0! P1!
Pi0 ! Si ! 0 and, hence, i0 ¼ i. The conclusion is that sðm; iÞ ¼ ðmþ 3; iÞ for all
ðm; iÞ 2 ðZZDÞ0, so s ¼ t�3. &

!

Figure 2. Orientations for the Dynkin graphs.

360 JUN-ICHI MIYACHI AND AMNON YEKUTIELI



THEOREM 4.2. Let D be a quiver of type ~DDn, ~EE6, ~EE7 or ~EE8, with the orientation shown
in Figure 5. Then PickðAÞ ffi AutðDÞ and

DPickðAÞ ffi Z�AutðZZDÞhti:

The structure of the group AutðZZDÞhti is given in Table II.
Proof. The isomorphisms follow from Theorem 0.1 and Proposition 1.7. The

structure of AutðZZDÞhti is quite easy to check in all cases. In type ~DDn, nX 5 odd,
the automorphism Z 2 AutðZZDÞhti is

Zði; jÞ ¼
ði; nþ 2� jÞ if j ¼ 2; n,

ði �
1� ð�1Þj

2
; nþ 2� jÞ otherwise .

8<
: &

THEOREM 4.3. For any nX 2 let Xn be the quiver shown in Figure 6, and let
A:¼ kXn be the path algebra. Then PickðAÞ ffi PGLnðkÞ and

DPickðAÞ ffi Z�
�
Z j� PGLnðkÞ

�
:

In the semidirect product the action of a generator r 2 Z on a matrix F 2 PGLnðkÞ is
rFr�1 ¼ ðF�1Þt.

Figure 3. The quiver ZD for D of type A3. The vertices in modA are labeled.

Figure 4. The quiver ZD for D of type D4. The vertices in modA are labeled.
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Proof. As in the proof of Lemma 1.6 and Proposition 1.7, the group of auto-
equivalences of the path category is AutkðkhXniÞ ¼ Aut0kðkhXniÞ ffi GLnðkÞ. Hence
PickðAÞ ffi OutkðkhXniÞ ffi PGLnðkÞ.
Given F 2 AutkðkhXniÞ let ½ai;j� 2 GLnðkÞ be its matrix w.r.t. to the basis faig,

and let ½bi;j�:¼ ð½ai;j �
�1
Þ
t. De¢ne an auto-equivalence ~FF 2 Aut0kðkhZZXniÞ with

~FF ðm; aiÞ ¼
P

j ai;jðm; ajÞ and ~FF ðm; a�i Þ ¼
P

j bi;jðm; a�j Þ, m 2 Z. Then ~FF preserves all
mesh relations, and by a linear algebra argument we see that up to scalars at each
vertex, the only elements of Aut0kðkhZZXniÞ are of the form ~FF .
Let r 2 AutðZZXnÞ be rðm; 1Þ ¼ ðm; 2Þ and rðm; 2Þ ¼ ðmþ 1; 1Þ, with the obvious

action on arrows to make it commute with the polarization m. Then
OutkðkhZZXn; ImiÞ is generated by PGLnðkÞ and r, so OutkðkhZZXn; ImiÞ ffi

Z j� PGLnðkÞ. The formula for ~FF above shows that rFr�1 ¼ ðF�1Þt for F 2 PGLnðkÞ.
Finally use Theorem 3.7. &

Remark 4.4. By [Be] and [BO] we see that for n ¼ 2 in the theorem above,
DPickðAÞ ffi Z�Z� PGL2ðkÞ. The apparent discrepancy is explained by the fact
that Z j� PGL2ðkÞ ffi Z� PGL2ðkÞ via ðm;F Þ 7! ðm;HmF Þ, where H ¼ 0 �1

1 0

� �� �
.

Figure 5. Orientations for the a⁄ne tree graphs.

Table II. The groups AutðZZDÞhti for the a⁄ne tree quivers shown in Figure 5.

Type AutðDÞ AutðZZDÞhti Relations

~DD4 S4 AutðDÞ � hti ffi S4 �Z
~DDn; nX 5 even S2 j�S22 AutðDÞ � hti ffi ðS2 j�S22Þ �Z
~DDn; nX 5 odd S22 AutðDÞ � hZi ffi S22 �Z Z2 ¼ t
~EE6 S3 AutðDÞ � hti ffi S3 �Z
~EE7 S2 AutðDÞ � hti ffi S2 �Z
~EE8 1 hti ffi Z
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For integers pX qX 1 let Tp;q be the quiver shown in Figure 6. Let D be a quiver with
underlying graph ~AAn. Then D can be brought to one of the quivers Tp;q, pþ q ¼ nþ 1,
by a sequence of admissible re£ections s�x at source vertices (see Section 6). Therefore
DPickðkDÞ ffi DPickðkTp;qÞ:

THEOREM 4.5. Let A be the path algebra kTp;q.

(1) If p ¼ q ¼ 1 then PickðAÞ ffi PGL2ðkÞ and DPickðAÞ ffi Z�
�
Z j� PGL2ðkÞ

�
.

(2) If p > q ¼ 1 then PickðAÞ ffi
k� k
0 1

� �
and DPickðAÞ ffi Z�

�
Z j�

k� k
0 1

� ��
.

(3) If p ¼ q > 1 then PickðAÞ ffi S2 j� k� and DPickðAÞ ffi Z2 �
�
S2 j� k�

�
.

(4) If p > q > 1 then PickðAÞ ffi k� and DPickðAÞ ffi Z2 � k�.
Proof. (1) This is because T1;1 ¼ X2.
(2) Here the group of auto-equivalences of khTp;qi is, in the notation of the proof of

Proposition 1.7, AutkðkhTp;qiÞ ffi ðk�Þ
pþ1
� k, and the group of isomorphisms is

ðk�Þp. Therefore OutkðkhTp;qiÞ is isomorphic to k� � k as varieties, and as matrix

group OutkðkhTp;qiÞ ffi
k� k
0 1

� �
. The auto-equivalence associated to

a b
0 1

� �
2

k� k
0 1

� �

is ai 7! ai and b1 7! ab1 þ bap � � � a1.
The quiver ZZTp;q has no multiple arrows. Let r be the symmetry

rðm; iÞ ¼ ðm; i � 1Þ for iX 2; and rðm; 1Þ ¼ ðm� 1; pÞ:

Then r generates AutðZZTp;qÞ
hti, and we can use Theorem 0.1. The action of r on

OutkðkhTp;qiÞ is

r
a b
0 1

� �
r�1 ¼

a �b
0 1

� �
:

(3) Here Aut0kðkhTp;qiÞ ffi ðk�Þ
2p, and the subgroup of isomorphisms is ðk�Þ2p�1.

The symmetry y 2 AutðTp;qÞ of order 2 acts on k� by yay�1 ¼ a�1.
Let r be the symmetry

rðm; 1Þ ¼ ðm� 1; pþ qÞ; rðm; iÞ ¼ ðm; i � 1Þ if 2W iW pþ 1;

Figure 6. The quivers Xn and Tp;q.
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and

rðm; iÞ ¼ ðm� 1; i � 1Þ if pþ 2W iW pþ q:

Then r and y commute, and they generate AutðZZTp;qÞ
hti. The action of r on

AutkðkhTp;qiÞ is trivial.
(4) Similar to case 3. &

5. The Re£ection Groupoid of a Graph

In this section we interpret the re£ection functors of [BGP] and the tilting modules of
[APR] in the setup of derived categories.
Let D be a tree with n vertices. Denote by OrðDÞ the set of orientations of the edge

set D1. For o 2 OrðDÞ let Do be the resulting quiver, and let Ao be the path algebra
kDo.
Given two orientations o;o0 let

DPickðo;o0Þ:¼
ftwo-sided tilting complexes T 2 Db

ðModðAo0 �k A�oÞÞg
isomorphism

:

The derived Picard groupoid of D is the groupoid DPickðDÞ with object set OrðDÞ and
morphism sets DPickðo;o0Þ. Thus when o ¼ o0 we recover the derived Picard group
DPickðAoÞ.
For an orientation o and a vertex x let Px;o 2 modAo be the corresponding

indecomposable projective module. Denote by to the translation functor of
Db
ðmodAoÞ, i.e. the functor to ¼ A�o½�1� �

L
Ao
�.

Suppose x 2 ðDoÞ0 is a source. De¢ne s�x o to be the orientation obtained fromo by
reversing the arrows starting at x. Let

Tx;o:¼ t�1o Px;o !
M
y 6¼x

Py;o

 !
2 modAo:

According to [APR] Section 3, Tx;o is a tilting module, with EndAo ðTx;oÞ
�
ffi As�x o. It

is called an APR tilting module. One has isomorphisms in modAs�x o:

HomAo ðTx;o;Py;oÞ ffi Py;s�x o if y 6¼ x;

HomAo ðTx;o; t�1o Px;oÞ ffi Px;s�x o:
ð5:1Þ

Under the anti-equivalence between modAo and the category of ¢nite dimensional
representations of the quiver Do, the re£ection functor of [BGP] is sent to
HomAo ðTx;o;�Þ:modAo ! modAs�x o.

DEFINITION 5.2. The re£ection groupoid of D is the subgroupoid RefðDÞ �
DPickðDÞ generated by the two-sided tilting complexes Tx;o 2 Db

ðModðAo�k

A�s�x oÞÞ, as o runs over OrðDÞ and x runs over the sources in Do.
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Given an orientation o the set f½Px;o�gx2D0 is a basis of the Grothendieck group
K0ðAoÞ ¼ K0ðD

b
ðmodAoÞÞ. Let ZD0 be the free Abelian group with basis

fexgx2D0 . Then ½Px;o� 7! ex determines a canonical isomorphism K0ðAoÞ !
’

ZD0 .
For a two-sided tilting complex T 2 DPickðo;o0Þ let w0ðT Þ: K0ðAoÞ !

’
K0ðAo0 Þ be

w0ðT Þð½M�Þ:¼ ½T �
L
Ao

M�. Using the projective bases we get a functor (when we con-
sider a group as a groupoid with a single object)

w0: DPickðDÞ ! AutZðZ
D0 Þ ffi GLnðZÞ:

Recall that for a vertex x 2 D0 one de¢nes the re£ection sx 2 AutZðZ
D0Þ by

sxex:¼ �ex þ
X
fx;yg2D1

ey;

sxey:¼ ey if y 6¼ x:

TheWeyl group of D is the subgroupW ðDÞ � AutZðZ
D0 Þ generated by the re£ections

sx.

PROPOSITION 5.3. Let x be a source in the quiver Do. Then

w0ðTx;oÞ ¼ sx:

Proof. There is an Auslander^Reiten sequence

0! Px;o !
M

ðx!yÞ2ðDoÞ1

Py;o ! t�1o Px;o ! 0

in modAo. Applying the functor T_x;o �
L
Ao
� ffi RHomAo ðTx;o;�Þ to this sequence,

and using formula (5.1), we get a triangle

T_x;o �
L
Ao

Px;o !
M
fx;yg2D1

Py;s�x o ! Px;s�x o ! ðT
_
x;o �

L
Ao

Px;oÞ½1�

in Db
ðmodAs�x oÞ. Hence

½T_x;o �
L
Ao

Px;o� ¼ �½Px;s�x o� þ
X
fx;yg2D1

½Py;s�x o� 2 K0ðAs�x oÞ:

On the other hand for y 6¼ x we have ½T_x;o �
L
Ao

Py;o� ¼ ½Py;s�x o�. This proves that
w0ðT

_
x;oÞ ¼ sx; but sx ¼ s�1x .
An immediate consequence is: &

COROLLARY 5.4. w0ðRefðDÞÞ ¼W ðDÞ.
An ordering ðx1; . . . ; xnÞ of D0 is called source-admissible for an orientation o if xi

is a source in the quiver Ds�xi�1
���s�x1o

for all 1W iW n. Any orientation has sou-
rce-admissible orderings of the vertices.
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PROPOSITION 5.5. Let ðx1; . . . ; xnÞ be a source-admissible ordering of D0 for an
orientation o. Write oi:¼ s�xi

� � � s�x1o, Ai:¼ Aoi and Ti:¼ Txi;oi�1 . Then

T_n �
L
An�1
� � � �L

A2 T_2 �
L
A1 T_1 ffi A�o½�1�

in Db
ðModAe

oÞ.
Proof. For an orientation o let Cirr

o � CðDb
ðmodAoÞÞ be the quiver of

De¢nition 2.2. As usual ðCirr
o Þ0 denotes the set of vertices of C

irr
o . Let GðDÞ be the

groupoid with object set OrðDÞ, and morphism sets Iso
�
ðCirr

o Þ0; ðC
irr
o0 Þ0

�
for

o;o0 2 OrðDÞ. The groupoid GðDÞ acts faithfully on the family of sets
X ðDÞ:¼ fðCirr

o Þ0go2OrðDÞ. According to Theorem 0.1 there is an injective map of
groupoids q: DPickðDÞ GðDÞ.
Let us ¢rst assume D is a Dynkin graph. Then there is a canonical isomorphism of

sets X ðDÞ ffi Z� D0 �OrðDÞ. The action of qðtoÞ on X ðDÞ is qðtoÞði; x;oÞ ¼
ði � 1; x;oÞ. By formula (5.1), the action of qðT_x;oÞ on X ðDÞ is qðT_x;oÞð0; y;oÞ ¼
ð0; y; s�x oÞ if y 6¼ x, and qðT_x;oÞð1; x;oÞ ¼ ð0; x; s�x oÞ. Since qðtoÞ commutes with
qðT_x;oÞ we have

qðT_n �
L
An�1
� � � �L

A1 T_1 Þði; x;oÞ ¼ ði � 1; x;oÞ ¼ qðtoÞði; x;oÞ

for any x 2 D0 and i 2 Z.
If D is not Dynkin then X ðDÞ ffi Z�Z� D0 �OrðDÞ, qðtoÞðj; i; x;oÞ ¼
ðj; i � 1; x;oÞ, etc., and the proof is the same after these modi¢cations.

PROPOSITION 5.6. For any orientation o, RefðDÞðo;oÞ ¼ htoi:
Proof.We will only treat the Dynkin case; the general case is proved similarly with

modi¢cations like in the previous proof.
Let T 2 RefðDÞðo;oÞ. From the proof above we see that qðT Þð0; x;oÞ ¼ ðiðxÞ; x;oÞ

for some iðxÞ 2 Z. A quiver map p:Do ! ZZDo with pðxÞ ¼ ðiðxÞ; xÞ must have
iðxÞ ¼ i for all x, since D is a tree. Therefore qðT Þ ¼ qðt�i

o Þ. &

Remark 5.7. The explicit calculations in Section 4 show that the shift s ¼ A½1� is
not in hti � DPickðAÞ for most algebras A. Thus RefðDÞ 6¼

� DPickðDÞ for most graphs
D.
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