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Here is the plan of my lecture:

1. Notation, and Review of Derived Categories
2. Dualizing Complexes
3. Existence of Dualizing Complexes
4. The Auslander Condition
5. Classification of Dualizing Complexes
6. Applications in Ring Theory

There will be a second talk about the geometric aspects of noncommutative
duality.

Most of the work is joint with James Zhang (UW, Seattle).

1. Notation, and Review of Derived Categories

Let A be a ring. We denote by ModA the category of left A-modules.
The objects of the derived category D(ModA) are complexes of A-modules

M =
(

· · · →M−1 →M0 →M1 → · · ·
)

.

Recall that a homomorphism of complexes φ : M → N is a quasi-isomorphism if
Hi(φ) : HiM → HiN is an isomorphism for all i. The morphisms ψ : M → N in
D(ModA) are of the form ψ = φ−1

2 ◦ φ1 where φ1 : M → L is a homomorphism of
complexes and φ2 : N → L is a quasi-isomorphism.

There is a full embedding

ModA →֒ D(ModA)

which is gotten by viewing a module M as a complex concentrated in degree 0.
Of utmost importance for us is the derived functor RHom. Given complexes

M,N ∈ D(ModA) there is a complex

RHomA(M,N) ∈ D(Mod Z)

depending functorially on M and N . If N happens to be an A-bimodule then

RHomA(M,N) ∈ D(ModAop),

where Aop is the opposite ring. There’s a functorial isomorphism

Hi RHomA(M,N) ∼= HomD(Mod A)(M,N [i])

where N [i] is the shifted complex. If M,N ∈ ModA then we recover the familiar
Exts:

Hi RHomA(M,N) = Exti
A(M,N).
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2. Dualizing Complexes

Dualizing complexes on (commutative) schemes were introduced by Grothendieck
in the 1960’s, in the book [RD]. Let us recall the definition of a dualizing complex
over a commutative noetherian ring A. It is a complex R ∈ Db

f (ModA) such that
the contravariant functor

RHomA(−, R) : D
b
f (ModA) → D

b
f (ModA)

is a duality (i.e. a contravariant equivalence). (I am omitting some details.) Here
D

b
f (ModA) is the derived category of bounded complexes with finitely generated

cohomology modules.

Example 2.1. Let K be a field. Then the complex R := K is a dualizing complex
over K. The duality RHomK(−,K) extends the usual duality of linear algebra.

So far for the classical commutative picture. From now on K will be a field, and
A will be a noetherian, unital, associative K-algebra (not necessarily commutative).
We shall write Ae := A⊗K Aop, where Aop is the opposite ring. So ModAe is the
category of A-bimodules.

Definition 2.2. ([Ye1]) A complex R ∈ Db(ModAe) is called dualizing if the
functor

RHomA(−, R) : D
b
f (ModA) → D

b
f (ModAop)

is a duality, with adjoint RHomAop(−, R). (Again I’m suppressing some details.)

Example 2.3. The complex R := A is a dualizing complex over A iff A is a
Gorenstein ring (i.e. A has finite injective dimension as left and right module over
itself).

There is a graded version of dualizing complex. Suppose A is a connected graded
algebra, namely A =

⊕

i≥0 Ai, with A0 = K and each Ai a finitely generated K-
module. Consider the category GrModA of graded left A-modules. Similarly to
Definition 2.2 we may define a graded dualizing complex R ∈ D

b(GrModAe).
The augmentation ideal of A is denoted by m, and the left (resp. right) m-torsion

functor is denoted by Γm (resp. Γm
op). We let A∗ := Homgr

K
(A,K), the graded dual

of A.

Definition 2.4. ([Ye1]) Let A be a connected graded K-algebra. A graded dualiz-
ing complex R is called balanced if

RΓmR ∼= RΓm
opR ∼= A∗

in Db(GrModAe).

It is known that a balanced dualizing complex is unique up to isomorphism.
Again A is any noetherian K-algebra (not graded). Van den Bergh discovered

the following condition on a dualizing complex R that turns out to be extremely
powerful.

Definition 2.5. ([VdB]) Let R be a dualizing complex over A. Suppose there is
an isomorphism

ρ : R
≃
→ RHomAe(A,R ⊗K R)

in D(ModAe). Then R is called a rigid dualizing complex and ρ is a rigidifying

isomorphism.
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Theorem 2.6. ([VdB], [YZ1]) A rigid dualizing complex (R, ρ) is unique up to a

unique isomorphism in D(ModAe).

Example 2.7. If A is a commutative finitely generated K-algebra, X := SpecA
and π : X → Spec K is the structural morphism, then the dualizing complex
R := RΓ(X,π!K) from [RD] is rigid.

Example 2.8. If A is finite over K then the bimodule A∗ := HomK(A,K) is a
rigid dualizing complex over A.

3. Existence of Dualizing Complexes

The question of existence of rigid dualizing complexes is quite hard. The best
existence criterion we know is due to Van den Bergh.

Theorem 3.1. ([VdB]) Suppose A admits a nonnegative exhaustive filtration F =
{FiA}i∈Z such that the graded algebra Ā := grFA is a connected graded, commuta-

tive, finitely generated K-algebra. Then A has a rigid dualizing complex.

Here is an outline of the proof. Let

Ã :=
⊕

i
(FiA)ti ⊂ A[t]

be the Rees algebra, where t is a central indeterminate of degree 1. So Ā ∼= Ã/(t)

and A ∼= Ã/(t− 1).

Since Ā is commutative it follows that Ã satisfies the χ condition of [AZ]. This

implies that the local duality functor M̃ 7→ (RΓm̃ M̃)∗ is represented by a balanced

dualizing complex R̃ over Ã. Then

RA := A⊗Ã R̃[−1] ⊗Ã A

is a rigid dualizing complex over A.
One should think of the filtration F as a “compactification of SpecA”. Indeed

if A is commutative then Proj Ã is a projective K-scheme, {t = 0} is an ample
divisor, and its complement is isomorphic to SpecA.

In practice often an algebra A comes equipped with a filtration G that satis-
fies the conditions of the next definition, but is not connected (i.e. grGA is not a
connected graded K-algebra).

Definition 3.2. A nonnegative exhaustive filtration G = {GiA}i∈Z such that grGA
is finite over its center Z(grGA), and Z(grGA) is a finitely generated K-algebra, is
called a differential filtration of finite type. If A admits such a filtration then it is
called a differential K-algebra of finite type.

We call the next result the “Theorem on the Two Filtrations”. A slightly weaker
result appeared in [MS].

Theorem 3.3. ([YZ5]) Assume the ring A has a differential filtration of finite type

G. Then there exists a differential filtration of finite type F on A such that the

graded algebra grFA is connected and commutative.

The prototypical example is:

Example 3.4. Let charK = 0. Consider the first Weyl algebra

A := K〈x, y〉/(yx− xy − 1).
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It is of course isomorphic to the ring of differential operators D(A1) on the affine
line A1 = Spec K[x], via y 7→ ∂

∂x . The first filtration of A is the filtration G by

order of operator, namely degG(x) = 0 and degG(y) = 1. The filtration G has
the benefit of localizing to a filtration of the sheaf of differential operators DA1 .
However grG

0 A = K[x̄], so grGA is not connected.

The second filtration of A is the filtration F in which degF (x) = degF (y) = 1.
Here grFA is a polynomial algebra in the variables x̄, ȳ, both of degree 1, so it is
connected.

More examples of differential K-algebras of finite type are:

Example 3.5. The ring D(X) of differential operators on a smooth affine variety
X in characteristic 0. The rigid dualizing complex is D(X)[2n] where n := dimX .

Example 3.6. The universal enveloping algebra U(g) of a finite dimensional Lie
algebra g. The rigid dualizing complex is U(g) ⊗ (

∧n
g)[n] where n := dim g.

Example 3.7. Generalizing the previous two examples, the universal enveloping
algebroid UC(L), where C is a f.g. commutative K-algebra and L is a f.g. Lie
algebroid over C.

Example 3.8. Any quotient ring A/I or any matrix ring Mn(A) of a differential
K-algebra of finite type A.

By combining Van den Bergh’s existence result with the Theorem on the Two
Filtrations, and some more work, we get:

Theorem 3.9. ([YZ5]) Let A be a differential K-algebra of finite type.

(1) A has a rigid dualizing complex RA, which is unique up to a unique rigid

isomorphism.

(2) Suppose A′ is a localization of A such that each bimodule HiRA is evenly

localizable to A′. Then A′ has a rigid dualizing complex RA′ , and there is

a unique rigid localization morphism qA/A′ : RA → RA′ .

(3) Suppose A → B is a finite centralizing homomorphism. Then B has a

rigid dualizing complex RB, and there is a unique rigid trace morphism

TrB/A : RB → RA.

“Evenly localizable” is a variant of the Ore condition. Part (2) basically says
that

RA′
∼= A′ ⊗A RA ⊗A A

′

in D(ModA′ e). And part (3) says that

RB
∼= RHomA(B,RA) ∼= RHomAop(B,RA)

D(ModAe).

Remark 3.10. I wish to amplify the significance of part (3) of the theorem.

Suppose B = A/I and M ∈ D(ModAe). Then ExtiA(B,M) is a B⊗K A
op -module,

but usually it is not a B ⊗K B
op -module, i.e.

Exti
A(B,M) · I 6= 0.

The existence of the rigid trace implies, among other things, that Exti
A(B,RA) is

indeed a B ⊗K Bop -module.
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Applications of this theorem to ring theory will be discussed in Section 6. The
geometric significance of part (2) will be explained in the second lecture.

4. The Auslander Condition

We continue with the hypothesis that A is a noetherian algebra over a field K.

Definition 4.1. ([Ye2], [YZ1]) Let R be a dualizing complex over A. We say R is
Auslander if the two conditions below hold.

(i) For any finitely generated A-module M , any integers p > q and any Aop-
submodule N ⊂ ExtpA(M,R) one has Extq

Aop(M,R) = 0.
(ii) The same after exchanging A and Aop.

This is a generalization of the classical notion of Auslander-Gorenstein ring.
Indeed, a K-algebra A is called Auslander-Gorenstein precisely if it is Gorenstein,
and the dualizing complex R := A is Auslander in the sense of the definition above.

Auslander-Gorenstein rings were studied by Gabber, Levasseur and Björk, es-
pecially in the context of D-modules. However the Gorenstein condition is very
restrictive (recall that unlike the commutative situation, a noncommutative noe-
therian ring A is seldom a quotient of a “nice” noetherian ring). On the other hand,
Auslander dualizing complexes are relatively easy to find:

Theorem 4.2. ([YZ5]) Suppose A is a differential K-algebra of finite type. Then

its rigid dualizing complex RA is Auslander.

Applications of the theorem to ring theory will be discussed in Section 6. The
geometric significance (the relation with perverse t-structures) will be explained in
the second lecture.

5. Classification of Dualizing Complexes

In the commutative case the dualizing complexes are classified by the Picard
group. Namely, given two dualizing complexes R,R′ over a commutative noetherian
ring A, one has

R′ ∼= L[n] ⊗A R

for some invertible A-module L and some integer n. See [RD].
The noncommutative picture is much more complicated. Again let A be a

noetherian algebra over a field K. A two-sided tilting complex over A is a com-
plex P ∈ Db(ModAe) such there exists some Q ∈ Db(ModAe) and isomorphisms
P ⊗L

A Q
∼= Q⊗L

A P
∼= A in D(ModAe).

Definition 5.1. ([Ye3]) The derived Picard group of A is the group

DPic(A) :=
{two-sided tilting complexes over A}

isomorphism
.

The derived Picard group classifies dualizing complexes in the following sense:

Theorem 5.2. ([Ye3]) Assume A has at least one dualizing complex. Then the

action of DPic(A) on the set

{dualizing complexes over A}

isomorphism
,

given by (P,R) 7→ P ⊗L
A R, is transitive with trivial stabilizers.
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The group DPic(A) always contains the subgroup Pic(A) × Z, where Pic(A) is
the noncommutative Picard group of A (consisting of invertible bimodules), and
Z is generated by the shift σ. However when A is neither commutative nor local,
often DPic(A) is bigger than Pic(A) × Z.

Example 5.3. Let A :=
[

K K

0 K

]

, the algebra of upper triangular 2 × 2 matrices
over K. The rigid dualizing complex RA = A∗ turns out to be a two-sided tilting
complex. In fact the functor RA ⊗L

A − is the Serre functor of Db
f (ModA), in the

sense of [BK]. Here the group Pic(A) is trivial, and DPic(A) ∼= Z, generated by the
class ν of RA. The shift satisfies σ = ν3. Thus

Pic(A) × Z $ DPic(A).

The relation σ = ν3 says that A has “Calabi-Yau dimension 1
3”, in the terminology

of Kontsevich. See [MY] for details.

6. Applications in Ring Theory

Here are a few applications of the theory of dualizing complexes.

6.1. Left vs. Right Gorenstein. In [Jo1] Jörgensen used balanced dualizing com-
plexes to prove that a connected graded algebra A is left Gorenstein iff it is right
Gorenstein.

6.2. Free Resolutions. Jörgensen [Jo2] used balanced dualizing complexes (im-
plicitly) to establish a noncommutative version of Castelnuovo-Mumford regularity.
In [Jo3] he proceeded to show that if A is a Koszul connected graded algebra with
balanced dualizing complex, then any finitely generatedA-moduleM , possibly after
truncating low degrees, will admit a linear free resolution.

6.3. Duals of Verma Modules. Consider the universal enveloping algebra A :=
U(g) of a finite dimensional Lie algebra g. In [Ye4] we described the structure of
the rigid dualizing complex of A (this had been conjectured by Van den Bergh). As
a consequence, and using the functoriality of rigid dualizing complexes (the rigid
trace) we extended results of Duflo, Brown and Levasseur [BL] regarding the Ext
duals of Verma modules.

6.4. Multiplicities of Injectives. In [YZ4] we obtained several results regarding
multiplicities of indecomposable injectives in the minimal injective resolution of a
ring A. These results extend work of previous authors (see Barou and Malliavin
[BM], Brown and Levasseur [BL]). Of particular interest is the case A = U(g), the
universal enveloping algebra of a finite dimensional Lie algebra g. Earlier papers on
this topic tended to rely on localization; and this restricted their scope to solvable
Lie algebras. Since Auslander rigid dualizing complexes were used in [YZ4], we
were able to obtain similar results for any Lie algebra (solvable or not).

6.5. Homological Transcendence Degree. In the paper [YZ6] we introduced a
new notion of transcendence degree for division rings, called the homological tran-

scendence degree, and denoted by HtrD. This invariant seems to be better-behaved
than other noncommutative invariants meant to generalize the commutative tran-
scendence degree. For instance, ifD is the total ring of fractions of an Artin-Schelter
regular algebra A of global dimension n, then HtrD = n. This, and some other
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good properties of the homological transcendence degree, were established with the
aid of Auslander rigid dualizing complexes.

6.6. Catenarity. Recall that a noetherian ring A is called catenary if given two
prime ideals p ⊂ q, any saturated chain of prime ideals

p = p0 ⊂ p1 ⊂ · · · ⊂ q

has the same length. It is known that ifA is commutative and admits some dualizing
complex then it is catenary (see [RD]). In [YZ1] we proved that some rings of
quantum type are catenary. This was extended by Goodearl-Zhang [GZ] to the
case of the quantized coordinate rings Oq(G).
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