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Some of the work discussed here was done with James Zhang several
years ago.
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1. Rigid Dualizing Complexes over Rings

1. Rigid Dualizing Complexes over Rings

All rings in this talk are commutative.

We fix a base ring K, which is regular noetherian and finite
dimensional (e.g. a field or Z).

Let A be an essentially finite type K-ring. Recall that this means A is a
localization of a finite type K-ring. In particular A is noetherian and
finite dimensional.

We denote by C(Mod A) the category of complexes of A-modules, and
D(Mod A) is the derived category.
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1. Rigid Dualizing Complexes over Rings

There is a functor

Q : C(Mod A) → D(Mod A)

which is the identity on objects. The morphisms in D(Mod A) are all of
the form Q(φ) ◦ Q(ψ)−1, where ψ is a quasi-isomorphism.

Inside D(Mod A) there is the full subcategory Db
f (Mod A) of complexes

with bounded finitely generated cohomology.

In [YZ3] we constructed a functor

SqA/K
: D(Mod A) → D(Mod A)

called the squaring.

It is a quadratic functor: if φ : M → N is a morphism in D(Mod A), and
a ∈ A, then

SqA/K
(aφ) = a2 SqA/K

(φ).
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1. Rigid Dualizing Complexes over Rings

If A is flat over K then there is an easy formula for the squaring:

SqA/K
(M) = RHomA⊗KA(A, M ⊗L

K M).

But in general we have to use DG rings to define SqA/K
(M).

A rigidifying isomorphism for M is an isomorphism

ρ : M
≃
−→ SqA/K

(M)

in D(Mod A).

A rigid complex over A relative to K is a pair (M, ρ), consisting of a
complex M ∈ Db

f (Mod A) and a rigidifying isomorphism ρ.
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1. Rigid Dualizing Complexes over Rings

Suppose (N, σ) is another rigid complex. A rigid morphism

φ : (M, ρ) → (N, σ)

is a morphism φ : M → N in D(Mod A), such that the diagram

M

φ

��

ρ
// SqA/K

(M)

SqA/K
(φ)

��

N
σ

// SqA/K
(N)

is commutative.

We denote by D(Mod A)rig/K the category of rigid complexes, and
rigid morphisms between them.

Here is the important property of rigidity: if (M, ρ) is a rigid complex
such that canonical morphism A → RHomA(M, M) is an isomorphism,
then the only automorphism of (M, ρ) in D(Mod A)rig/K is the identity.
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1. Rigid Dualizing Complexes over Rings

Rigid dualizing complexes were introduced by M. Van den Bergh
[VdB] in 1997. Note that Van den Bergh considered dualizing
complexes over a noncommutative ring A, and the base ring K was a
field.

More progress (especially the passage from base field to base ring) was
done in the papers “YZ” in the references.

Warning: the paper [YZ3] has several serious errors in the proofs,
some of which were discovered (and fixed) by the authors of [AILN].
Fortunately all results in [YZ3] are correct, and an erratum is being
prepared.

Further work on rigidity for commutative rings was done by Avramov,
Iyengar, Lipman and Nayak. See [AILN, AIL] and the references
therein.
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2. Rigid Residue Complexes over Rings

2. Rigid Residue Complexes over Rings

Again A is an essentially finite type K-ring.

The next definition is from [RD].

A complex R ∈ Db
f (Mod A) is called dualizing if it has finite injective

dimension, and the canonical morphism A → RHomA(R, R) is an
isomorphism.

Grothendieck proved that for a dualizing complex R, the functor

RHomA(−, R)

is a duality (i.e. contravariant equivalence) of Db
f (Mod A).
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2. Rigid Residue Complexes over Rings

A rigid dualizing complex over A relative to K is a rigid complex (R, ρ)
such that R is dualizing.

We know that A has a rigid dualizing complex (R, ρ).

Moreover, any two rigid dualizing complexes are uniquely isomorphic
in D(Mod A)rig/K.

If A = K is a field, then its rigid dualizing complex R must be
isomorphic to K[d] for an integer d. We define the rigid dimension to be

rig.dim
K
(K) := d.

Example 2.1. If the base ring K is also a field, then

rig.dim
K
(K) = tr.deg

K
(K).

On the other hand,
rig.dim

Z
(Fq) = −1

for any finite field Fq.
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2. Rigid Residue Complexes over Rings

For a prime ideal p ∈ Spec A we define

rig.dim
K
(p) := rig.dim

K
(k(p)),

where k(p) is the residue field.

The resulting function

rig.dim
K

: Spec A → Z

has the expected property: it drops by 1 if p ⊂ q is an immediate
specialization of primes.

For any p ∈ Spec A we denote by J(p) the injective hull of the
A-module k(p). This is an indecomposable injective module.
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2. Rigid Residue Complexes over Rings

A rigid residue complex over A relative to K is a rigid dualizing complex
(KA, ρA), such that for every i there is an isomorphism of A-modules

K−i
A

∼=
⊕

p∈Spec A
rig.dim

K
(p)=i

J(p) .

A morphism φ : (KA, ρA) → (K′
A, ρ′A) between rigid residue complexes

is a homomorphism of complexes φ : KA → K′
A in C(Mod A), such that

Q(φ) : (KA, ρA) → (K′
A, ρ′A)

is a morphism in D(Mod A)rig/K.

We denote by C(Mod A)res/K the category of rigid residue complexes.
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2. Rigid Residue Complexes over Rings

The algebra A has a rigid residue complex (KA, ρA).

It is unique up to a unique isomorphism in C(Mod A)res/K. So we call it
the rigid residue complex of A.

Let me mention several important functorial properties of rigid
residue complexes.
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2. Rigid Residue Complexes over Rings

Suppose A → B is an essentially étale homomorphism of K-algebras.

There is a unique homomorphism of complexes

qB/A : KA → KB,

satisfying suitable conditions, called the rigid localization
homomorphism.

The homomorphism qB/A induces an isomorphism of complexes
B ⊗A KA

∼= KB.

If B → C is another essentially étale homomorphism, then

qC/A = qC/B ◦ qB/A .

In this way rigid residue complexes form a quasi-coherent sheaf on the
étale topology of Spec A. This will be important for us.
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2. Rigid Residue Complexes over Rings

Now let A → B any homomorphism between essentially finite type
K-algebras.

There is a unique homomorphism of graded A-modules

TrB/A : KB → KA,

satisfying suitable conditions, called the ind-rigid trace homomorphism.

It is functorial: if B → C is another algebra homomorphism, then

TrC/A = TrB/A ◦TrC/B .

When A → B is a finite homomorphism, then TrB/A is a
homomorphism of complexes.

The ind-rigid traces and the rigid localizations commute with each
other.
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2. Rigid Residue Complexes over Rings

Example 2.2. Take an algebraically closed field K (e.g. K = C), and let
A := K[t], polynomials in a variable t.

The rigid residue complex of A is concentrated in degrees −1, 0 :

K−1
A = Ω1

K(t)/K

∂A=∑ ∂m
// K0

A =
⊕

m⊂A max
Homcont

K
(Âm, K)

Note that for a maximal ideal m = (t − λ), λ ∈ K, the complete local
ring is Âm = K[[t − λ]].

The local component ∂m sends a meromorphic differential form α to
the m-adically continuous functional ∂m(α) on Âm coming from the
residue pairing:

∂m(α)(a) := Resm(aα) ∈ K.

The rigid residue complex of K is just K0
K
= K.

Now consider the ring homomorphism K → A.
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2. Rigid Residue Complexes over Rings

(cont.) The ind-rigid trace TrA/K is the vertical arrows here:

K−1
A = Ω1

K(t)/K

∂A=∑ ∂m
//

Tr−1
A/K

=0

��

K0
A =

⊕
m⊂A max

Homcont
K

(Âm, K)

Tr0
A/K

��

K−1
K

= 0
∂K=0

// K0
K
= K

The homomorphism Tr0
A/K

is

Tr0
A/K

(
∑m

φm

)
:= ∑m

φm(1) ∈ K.

Taking α := dt
t ∈ Ω1

K(t)/K
, whose only pole is a simple pole at the

origin, we have
(Tr0

A/K
◦ ∂A)(α) = 1.

We see that the diagram is not commutative; i.e. TrA/K is not a
homomorphism of complexes.
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2. Rigid Residue Complexes over Rings

The last property I want to mention is étale codescent.

Suppose u : A → B is a faithfully étale ring homomorphism. This
means that the map of schemes Spec B → Spec A is étale and surjective.

Let v1, v2 : B → B ⊗A B the two inclusions.

Then for every i the sequence of A-module homomorphisms

Ki
B⊗AB

Trv1
−Trv2−−−−−→ Ki

B
Tru−→ Ki

A → 0

is exact.
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3. Rigid Residue Complexes over Schemes

3. Rigid Residue Complexes over Schemes

Now we look at a finite type K-scheme X. If U ⊂ X is an affine open
set, then A := Γ(U,OX) is a finite type K-ring.

Let M be a quasi-coherent OX-module. For any affine open set U,
Γ(U,M) is a Γ(U,OX)-module.

If V ⊂ U is another affine open set, then

Γ(U,OX) → Γ(V,OX)

is an étale ring homomorphism.

And there is a homomorphism

Γ(U,M) → Γ(V,M)

of Γ(U,OX)-modules.

Amnon Yekutieli (BGU) Residues 18 / 39

3. Rigid Residue Complexes over Schemes

A rigid residue complex on X is a complex KX of quasi-coherent
OX-modules, together with a rigidifying isomorphism ρU for the
complex Γ(U,KX), for every affine open set U.

There are two conditions:

(i) The pair
(
Γ(U,KX), ρU

)
is a rigid residue complex over the ring

Γ(U,OX) relative to K.

(ii) For an inclusion V ⊂ U of affine open sets, the canonical
homomorphism

Γ(U,KX) → Γ(V,KX)

is the unique rigid localization homomorphism between these
rigid residue complexes.

We denote by ρX := {ρU} the collection of rigidifying isomorphisms,
and call it a rigid structure.
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3. Rigid Residue Complexes over Schemes

Suppose (KX, ρX) and (K′
X, ρ′

X) are two rigid residue complexes on X.

A morphism of rigid residue complexes

φ : (KX, ρX) → K′
X, ρ

′
X)

is a homomorphism φ : KX → K′
X of complexes of OX-modules, such

that for every affine open set U, with A := Γ(U,OX), the induced
homomorphism Γ(U, φ) is a morphism in C(Mod A)res/K.

We denote the category of rigid residue complexes by C(QCoh X)res/K.

Every finite type K-scheme X has a rigid residue complex (KX, ρX);
and it is unique up to a unique isomorphism in C(QCoh X)res/K.
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3. Rigid Residue Complexes over Schemes

Suppose f : X → Y is any map between finite type K-schemes.

The complex f∗(KX) is a bounded complex of quasi-coherent
OY-modules.

The ind-rigid traces for rings that we talked about before induce a
homomorphism of graded quasi-coherent OY-modules

(3.1) Trf : f∗(KX) → KY,

which we also call the ind-rigid trace homomorphism.

It is functorial: if g : Y → Z is another map, then

Trg◦f = Trg ◦Trf .

It is not hard to see that if f is a finite map of schemes, then Trf is a
homomorphism of complexes.
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4. Residues and Duality for Proper Maps of Schemes

4. Residues and Duality for Proper Maps of Schemes

Theorem 4.1. (Residue Theorem, [Ye2])

Let f : X → Y be a proper map between finite type K-schemes.

Then the ind-rigid trace
Trf : f∗(KX) → KY

is a homomorphism of complexes.

The idea of the proof (imitating [RD]) is to reduce to the case when
Y = Spec A, A is a local artinian ring, and X = P1

A (the projective line).

For this special case we have a proof that relies on the following fact:
the diagonal map X → X ×A X endows the A-module H1(X, Ω1

X/A)
with a canonical rigidifying isomorphism relative to A.
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4. Residues and Duality for Proper Maps of Schemes

Theorem 4.2. (Duality Theorem, [Ye2])

Let f : X → Y be a proper map between finite type K-schemes.

Then for any M ∈ Db
c (Mod X) the morphism

Rf∗
(
RHomOX

(M,KX)
)
→ RHomOY

(
Rf∗(M),KY

)

in D(Mod Y), that is induced by the ind-rigid trace

Trf : f∗(KX) → KY,

is an isomorphism.

The proof of Theorem 4.2 imitates the proof of the corresponding
theorem in [RD], once we have the Residue Theorem 4.1 at hand.

The proofs of Theorems 4.1 and 4.2 are sketched in the incomplete
preprint [YZ1]. Complete proofs will be available in [Ye2].
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4. Residues and Duality for Proper Maps of Schemes

One advantage of our approach – using rigidity – is that it is much
cleaner and shorter than the original approach in [RD]. This is because
we can avoid complicated diagram chasing (that was not actually
done in [RD], but rather in follow-up work by Lipman, Conrad and
others). See Lipman’s book [LH] for a full account.

Another advantage, as we shall see next, is that the rigidity approach
gives rise to a useful duality theory for stacks.
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5. Finite Type DM Stacks

5. Finite Type DM Stacks

Unfortunately I do not have time to give background on stacks. For
those who do not know about stacks, it is useful to think of a
Deligne-Mumford stack X as a scheme, with an extra structure: the
points of X are clumped into finite groupoids.

Here are some good references on algebraic stacks: [LMB], [SP] and
[Ol].

Before going on, I should mention the paper [Ni] by Nironi, that also
addresses Grothendieck duality on stacks. The approach is based on
Lipman’s work in [LH]. Not all details in that paper are clear to me.

Dualizing complexes on stacks are also discussed in [AB], but that
paper does not touch Grothendieck duality for maps of stacks.
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5. Finite Type DM Stacks

We will only consider noetherian finite type DM K-stacks.

Let X be such a stack. If g : U → X is an étale map from an affine
scheme, then Γ(U,OU) is a finite type K-ring.

The definition of a rigid residue complex on X is very similar to the
scheme definition.

A rigid residue complex on X is a complex of quasi-coherent OX-modules
KX, together with a rigid structure ρX.

However here the indexing of the rigid structure ρX = {ρ(U,g)} is by
étale maps g : U → X from affine schemes.

For any such (U, g) there is a rigidifying isomorphism ρ(U,g) for the
complex Γ(U, g∗(KX)), and the pair

(
Γ(U, g∗(KX)), ρ(U,g)

)

is a rigid residue complex over the ring Γ(U,OU) relative to K.
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5. Finite Type DM Stacks

The compatibility condition is this: suppose we have a commutative
diagram of étale maps

U2
h

//

g2
##

U1

g1

��

X

where U1 and U2 are affine schemes.

Then the homomorphism of complexes

h∗ : Γ(U1, g∗1(KX)) → Γ(U2, g∗2(KX))

is the unique rigid localization homomorphism, w.r.t. ρ(U1,g1) and
ρ(U2,g2).
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5. Finite Type DM Stacks

Theorem 5.1. ([Ye3]) Let X be a finite type DM stack over K.

The stack X has a rigid residue complex (KX, ρX). It is unique up to a unique
rigid isomorphism.

The proof is by étale descent for quasi-coherent sheaves.

Theorem 5.2. ([Ye3]) Let f : X → Y be a map between finite type DM
K-stacks.

There is a homomorphism of graded quasi-coherent OY-modules

Trf : f∗(KX) → KY

called the ind-rigid trace, extending the ind-rigid trace on K-algebras.

The proof relies on the étale codescent property of the ind-rigid trace.
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5. Finite Type DM Stacks

The obvious question now is: do the Residue Theorem and the Duality
Theorem hold for a proper map f : X → Y between stacks?

I only know a partial answer.

By the Keel-Mori Theorem, a separated stack X has a coarse moduli
space π : X → X. The map π is proper and quasi-finite, and X is, in
general, an algebraic space.

Let us call X a coarsely schematic stack if its coarse moduli space X is a
scheme.

This appears to be a rather mild restriction: most DM stacks that come
up in examples are of this kind.

A map f : X → Y is called a coarsely schematic map if for some surjective
étale map V → Y from an affine scheme V, the stack

X′ := X×Y V

is coarsely schematic.
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5. Finite Type DM Stacks

Theorem 5.3. (Residue Theorem, [Ye3])

Suppose f : X → Y is a proper coarsely schematic map between finite type
DM K-stacks.

Then the rigid trace
Trf : f∗(KX) → KY

is a homomorphism of complexes of OY-modules.

It is not expected that duality will hold in this generality. In fact, there
are easy counter examples. The problem is finite group theory in positive
characteristics!

Following [AOV], a separated stack X is called tame if for every
algebraically closed field K, the automorphism groups in the finite
groupoid X(K) have orders prime to the characteristic of K.
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5. Finite Type DM Stacks

A separated map f : X → Y is called a tame map if for some surjective
étale map V → Y from an affine scheme V, the stack X′ := X×Y V is
tame.

Theorem 5.4. (Duality Theorem, [Ye3])

Suppose f : X → Y is a proper tame coarsely schematic map between finite
type DM K-stacks.

Then Trf induces duality (as in Theorem 4.2).

Remark 5.5. It is likely that the “coarsely schematic” condition could
be removed from these theorems; but I don’t know how.

Here is a sketch of the proofs of Theorems 5.3 and 5.4.

Take a surjective étale map V → Y from an affine scheme V such that
the stack X′ := X×Y V is coarsely schematic.
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5. Finite Type DM Stacks

Consider the commutative diagram of maps of stacks

X′

π′

~~

f ′

��

// X

f

��

X′

g′
  

V // Y

where f ′ is gotten from f by base change, and X′ is the coarse moduli
space of X′.

It suffices to prove “residues” and “duality” for the map f ′.

Because X′ is a scheme, the proper map g′ satisfies both “residues” and
“duality” (by Theorems 4.1 and 4.2).

It remains to verify “residues” and “duality” for the map π′ : X′ → X′.
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5. Finite Type DM Stacks

These properties are étale local on X′.

Namely let U′
1, . . . , U′

n be affine schemes, and let

(5.6) ∐
i

U′
i → X′

be a surjective étale map.

For any i let
X′

i := X′ ×X′ U′
i .

It is enough to check “residues” and “duality” for the maps
π′

i : X′
i → U′

i .

∐i X
′
i

//

∐i π′
i

��

X′

π′

��

∐i U′
i

// X′

Note that U′
i is the coarse moduli space of the stack X′

i.
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5. Finite Type DM Stacks

It is possible to choose a covering (5.6) such that

X′
i
∼= [Wi/Gi] and U′

i
∼= Wi/Gi.

Here Wi is an affine scheme, Gi is a finite group acting on Wi, [Wi/Gi]
is the quotient stack, and Wi/Gi is the quotient scheme.

Moreover, in the tame case we can assume that the order of the group
Gi is invertible in the ring Γ(U′

i ,OU′
i
).

Amnon Yekutieli (BGU) Residues 34 / 39

5. Finite Type DM Stacks

We have now reduced the problem to proving “residues” and
“duality” for the map of stacks

π : [W/G] → W/G,

where W = Spec A for some ring A, and G is a finite group acting on A.

The proofs are by direct calculations, using the fact that

QCoh [W/G] ≈ Mod
G A ,

the category of G-equivariant A-modules, and under this equivalence
the functor π∗ becomes π∗(M) = MG.

- END -
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