Fundamentals of Analysis for EE Homework 1

<u>Question 1</u>. Let A be any infinite set. Prove that for every countable set B the following equality holds: $|A| = |A \cup B|$.

<u>Question 2</u>. Find an explicit formula for a bijective mapping $f:[0,1] \rightarrow R$. Is it possible to find such a mapping continuous?

Question 3. For every set $A \subset R$ and every number $r \in R$ define the set $A + r = \{x + r : x \in A\} \subset R$.

Assume that A is a countable set. Prove that there exists a number $r \in R$ such that $A \cap (A+r) = \emptyset$.

<u>Question 4</u>. Let $f : R \to R$ be a monotone real function. Denote by A the set of all points of discontinuity of f. Prove that A is a finite or a countable set. Hint: Which kind of discontinuity may have any monotone function?

<u>Question 5</u>. Let (X,d) be a metric space. Prove that for any 3 points $x, y, z \in X$ the following inequality holds: $d(x,y) \ge |d(x,z) - d(z,y)|$.

<u>Question 6</u>. Let *E* be a finite set. Denote the power set of *E* by $X : X = \{A \subseteq E\}$. For every two subsets $A \subseteq E$, $B \subseteq E$ define the number $d(A,B) = |A \triangle B|$. (Here $A \triangle B = (A \setminus B) \cup (B \setminus A)$ denotes the symmetric difference). Prove that (X,d) is a metric space.

<u>Question 7</u>. Let (X,d) be a metric space. Find all values of constant numbers C such that (a) $C \cdot d$ defines a metric on the set X.

(b) C + d defines a metric on the set X.

Question 8. Let d_1 and d_2 be two metrics defined on a set X. Find which formulas below necessarily define a metric on the same set X: (a) $d_1 + d_2$.

- (b) $\max\{d_1, d_2\}$.
- (c) $\min\{d_1, d_2\}$.

<u>Question 9</u>. Let (X,d) be a metric space. Suppose that a sequence $\{x_n\}_{n=1}^{\infty} \subset X$ converges to $x \in X$ according to metric d. Prove that $\lim_{n \to \infty} d(x_n, y) = d(x, y)$ for each $y \in X$.

<u>Question 10</u>. Definition: Let (X, d) be a metric space. The following set

$$\overline{B}(P_0,r) = \{P \in X : d(P,P_0) \le r\}$$

is called a closed ball with the radius r > 0 in the metric space (X, d).

Assume that d_1 and d_2 are two metrics in the space \mathbb{R}^3 defined as follows: $P_1 = P_1(x_1, y_1, z_1); P_2 = P_2(x_2, y_2, z_2)$ are any two points and $d_1(P_1, P_2) = |z_2 - z_1| + |y_2 - y_1| + |x_2 - x_1|$ $d_2(P_1, P_2) = \max\{|z_2 - z_1|, |y_2 - y_1|, |x_2 - x_1|\}$

Describe geometric form of the closed balls $\overline{B}(P_0, r)$, where $P_0 = (0, 0, 0), r = 1$ in the metric spaces (R^3, d_1) and (R^3, d_2) .