Prof. Arkady Leiderman

Fundamentals of Analysis for EE Homework 1

Question 1. Let \boldsymbol{A} be any infinite set. Prove that for every countable set \boldsymbol{B} the following equality holds: $|\boldsymbol{A}|=|\boldsymbol{A} \cup \boldsymbol{B}|$.

Question 2. Find an explicit formula for a bijective mapping $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}] \rightarrow \boldsymbol{R}$. Is it possible to find such a mapping continuous?

Question 3. For every set $\boldsymbol{A} \subset \boldsymbol{R}$ and every number $\boldsymbol{r} \in \boldsymbol{R}$ define the set

$$
A+r=\{x+r: x \in A\} \subset R
$$

Assume that \boldsymbol{A} is a countable set. Prove that there exists a number $\boldsymbol{r} \in \boldsymbol{R}$ such that $A \cap(A+r)=\varnothing$.

Question 4. Let $\boldsymbol{f}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a monotone real function. Denote by \boldsymbol{A} the set of all points of discontinuity of \boldsymbol{f}. Prove that \boldsymbol{A} is a finite or a countable set.
Hint: Which kind of discontinuity may have any monotone function?

Question 5. Let ($\boldsymbol{X}, \boldsymbol{d}$) be a metric space. Prove that for any 3 points $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{X}$ the following inequality holds: $d(x, y) \geq|d(x, z)-d(z, y)|$.

Question 6. Let \boldsymbol{E} be a finite set. Denote the power set of \boldsymbol{E} by $\boldsymbol{X}: \boldsymbol{X}=\{\boldsymbol{A} \subseteq \boldsymbol{E}\}$. For every two subsets $\boldsymbol{A} \subseteq \boldsymbol{E}, \boldsymbol{B} \subseteq \boldsymbol{E}$ define the number $\boldsymbol{d}(\boldsymbol{A}, \boldsymbol{B})=|\boldsymbol{A} \Delta \boldsymbol{B}|$. (Here $\boldsymbol{A} \Delta \boldsymbol{B}=(\boldsymbol{A} \backslash \boldsymbol{B}) \cup(\boldsymbol{B} \backslash \boldsymbol{A})$ denotes the symmetric difference).
Prove that $(\boldsymbol{X}, \boldsymbol{d})$ is a metric space.

Question 7. Let ($\boldsymbol{X}, \boldsymbol{d}$) be a metric space. Find all values of constant numbers \boldsymbol{C} such that
(a) $\boldsymbol{C} \cdot \boldsymbol{d}$ defines a metric on the set \boldsymbol{X}.
(b) $\boldsymbol{C}+\boldsymbol{d}$ defines a metric on the set \boldsymbol{X}.

Question 8. Let \boldsymbol{d}_{1} and \boldsymbol{d}_{2} be two metrics defined on a set \boldsymbol{X}. Find which formulas below necessarily define a metric on the same set \boldsymbol{X} :
(a) $\boldsymbol{d}_{1}+\boldsymbol{d}_{2}$.
(b) $\max \left\{d_{1}, d_{2}\right\}$.
(c) $\min \left\{d_{1}, d_{2}\right\}$.

Question 9. Let (X, d) be a metric space. Suppose that a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ converges to $x \in X$ according to metric d. Prove that $\lim _{n \rightarrow \infty} d\left(x_{n}, y\right)=d(x, y)$ for each $\boldsymbol{y} \in \boldsymbol{X}$.

Question 10. Definition: Let ($\boldsymbol{X}, \boldsymbol{d}$) be a metric space. The following set
$\bar{B}\left(P_{0}, r\right)=\left\{P \in X: d\left(P, P_{0}\right) \leq r\right\}$
is called a closed ball with the radius $\boldsymbol{r}>\mathbf{0}$ in the metric space $(\boldsymbol{X}, \boldsymbol{d})$.
Assume that $\boldsymbol{d}_{\mathbf{1}}$ and $\boldsymbol{d}_{\mathbf{2}}$ are two metrics in the space $\boldsymbol{R}^{\mathbf{3}}$
defined as follows: $\boldsymbol{P}_{\mathbf{1}}=\boldsymbol{P}_{\mathbf{1}}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{z}_{\mathbf{1}}\right) ; \boldsymbol{P}_{\mathbf{2}}=\boldsymbol{P}_{\mathbf{2}}\left(\boldsymbol{x}_{\mathbf{2}}, \boldsymbol{y}_{2}, \boldsymbol{z}_{\mathbf{2}}\right)$ are any two points and $d_{1}\left(P_{1}, P_{2}\right)=\left|z_{2}-z_{1}\right|+\left|y_{2}-y_{1}\right|+\left|x_{2}-x_{1}\right|$
$d_{2}\left(P_{1}, P_{2}\right)=\max \left\{\left|z_{2}-z_{1}\right|,\left|y_{2}-y_{1}\right|,\left|x_{2}-x_{1}\right|\right\}$
Describe geometric form of the closed balls $\overline{\boldsymbol{B}}\left(\boldsymbol{P}_{\mathbf{0}}, r\right)$, where $\boldsymbol{P}_{\mathbf{0}}=(\mathbf{0}, \mathbf{0}, \mathbf{0}), r=\mathbf{1}$ in the metric spaces $\left(\boldsymbol{R}^{\mathbf{3}}, \boldsymbol{d}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{R}^{\mathbf{3}}, \boldsymbol{d}_{\mathbf{2}}\right)$.

