Prof. Arkady Leiderman

Fundamentals of Analysis for EE
 Homework 2

Question 1. Consider the following subset of the plane:
$\boldsymbol{A}=\left\{\left(\boldsymbol{x}, \sin \left(\frac{\mathbf{1}}{x}\right): \boldsymbol{x}>\mathbf{0}\right\} \subset \boldsymbol{R}^{\mathbf{2}}\right.$. What is the $\operatorname{closure} \operatorname{cl}(\boldsymbol{A})$ in $\boldsymbol{R}^{\mathbf{2}} ?$

Question 2. Let $\boldsymbol{f}(\boldsymbol{x}): \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a function.
(a) Prove that if $\boldsymbol{f}(\boldsymbol{x})$ is continuous at every point \boldsymbol{x}, then the graph of the function $\Gamma=\left\{(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}): \boldsymbol{x} \in \boldsymbol{R}\}\right.$ is a closed subset of $\boldsymbol{R}^{\mathbf{2}}$.
(b) Is the converse also true: If the graph of a function is closed in $\boldsymbol{R}^{\mathbf{2}}$, then the function $\boldsymbol{f}(\boldsymbol{x})$ is continuous at every point?

Question 3. Let $(\boldsymbol{X}, \boldsymbol{d})$ be a metric space and \boldsymbol{A} be a non-empty subset of \boldsymbol{X}.
Define a number $\boldsymbol{\rho}(\boldsymbol{x}, \boldsymbol{A})=\inf \{\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}): \boldsymbol{y} \in \boldsymbol{A}\}$ for every $\boldsymbol{x} \in \boldsymbol{X}$.
Prove that the closure $\operatorname{cl}(\boldsymbol{A})=\{\boldsymbol{x} \in \boldsymbol{X}: \boldsymbol{\rho}(\boldsymbol{x}, \boldsymbol{A})=\mathbf{0}\}$.

Question 4. A metric space ($\boldsymbol{X}, \boldsymbol{d})$ is called separable if there is a countable set $\boldsymbol{A} \subseteq \boldsymbol{X}$ such that $\operatorname{cl}(\boldsymbol{A})=\boldsymbol{X}$. A family of open sets $\boldsymbol{B}=\left\{\boldsymbol{U}_{\alpha}\right\}$, where every $\boldsymbol{U}_{\boldsymbol{\alpha}} \subseteq \boldsymbol{X}$, is called a base for \boldsymbol{X} if for every point $\boldsymbol{x} \in \boldsymbol{X}$ and every open set \boldsymbol{V} containing \boldsymbol{x} there is $\boldsymbol{U}{ }_{\alpha} \in \boldsymbol{B}$ such that $\boldsymbol{x} \in \boldsymbol{U}_{\alpha} \subseteq V$.
(a) Prove that any Euclidean space $\boldsymbol{R}^{\boldsymbol{n}}$ is separable.
(b) Prove that any metric space ($\boldsymbol{X}, \boldsymbol{d}$) is separable if and only if it has a countable base.

Question 5. In $X=R$ define $d(x, y)=|\operatorname{arctg}(x)-\operatorname{arctg}(y)|$ for every $x, y \in X$.
(a) Prove that $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})$ defines a metric in \boldsymbol{X}.
(b) Is ($\boldsymbol{X}, \boldsymbol{d})$ a complete metric space?

Question 6. Let $\boldsymbol{C}[-\mathbf{1}, \mathbf{1}]$ be a metric space of continuous functions with the metric $d(f, g)=\int_{-1}^{1}|f(x)-g(x)| d x$. Consider the following sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$:

$$
f_{n}(x)=\left\{\begin{aligned}
1 & \text { if } x \in[1 / n, 1] \\
n x & \text { if } x \in[-1 / n, 1 / n] \\
-1 & \text { if } x \in[-1,-1 / n]
\end{aligned}\right.
$$

Prove that $\left\{f_{n}(\boldsymbol{x})\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Is the metric \boldsymbol{d} complete?

Question 7. Let ($\boldsymbol{X}, \boldsymbol{d}_{X}$) and ($\boldsymbol{Y}, \boldsymbol{d}_{\boldsymbol{Y}}$) be two metric spaces.
(a) Assume that a mapping $\boldsymbol{f}:\left(\boldsymbol{X}, \boldsymbol{d}_{\boldsymbol{X}}\right) \rightarrow\left(\boldsymbol{Y}, \boldsymbol{d}_{\boldsymbol{Y}}\right)$ satisfies the Lipschitz condition:
$\exists K>0 \forall x_{1}, x_{1} \in X d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq K d_{X}\left(x_{1}, x_{2}\right)$.
Prove that $\boldsymbol{f}(\boldsymbol{x})$ is a uniformly continuous mapping on $\left(\boldsymbol{X}, \boldsymbol{d}_{X}\right)$.
(b) Fix a point $\boldsymbol{p} \in \boldsymbol{X}$ and define a function $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{R}$ by the formula: $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{d}_{\boldsymbol{X}}(\boldsymbol{x}, \boldsymbol{p})$.

Prove that $\boldsymbol{f}(\boldsymbol{x})$ is a uniformly continuous function on $\left(\boldsymbol{X}, \boldsymbol{d}_{X}\right)$.

Question 8. Consider a closed ball in the space $C[0,1]$:
$\overline{\boldsymbol{B}}=\left\{\boldsymbol{f} \in \boldsymbol{C}[\mathbf{0}, \mathbf{1}]: \max _{x \in[\mathbf{0}, \mathbf{1}]}|\boldsymbol{f}(\boldsymbol{x})| \leq \mathbf{1}\right\}$. Is the set $\overline{\boldsymbol{B}}$ compact?

Question 9. Prove that if $(\boldsymbol{X}, \boldsymbol{d})$ is a compact metric space, then \boldsymbol{d} is a complete metric.

Question 10. Let $\left(\boldsymbol{X}, \boldsymbol{d}_{\boldsymbol{X}}\right)$ and $\left(\boldsymbol{Y}, \boldsymbol{d}_{\boldsymbol{Y}}\right)$ be two metric spaces and $\boldsymbol{f}:\left(\boldsymbol{X}, \boldsymbol{d}_{X}\right) \rightarrow\left(\boldsymbol{Y}, \boldsymbol{d}_{\boldsymbol{Y}}\right)$ be a continuous mapping.
(a) Prove that if $\boldsymbol{K} \subset \boldsymbol{X}$ is a compact set, then its image $\boldsymbol{f}(\boldsymbol{K}) \subset \boldsymbol{Y}$ is also a compact set.
(b) Let $\left(\boldsymbol{X}, \boldsymbol{d}_{\boldsymbol{X}}\right)$ be the Euclidean space \boldsymbol{R}^{n}. Prove that if $\boldsymbol{A} \subset \boldsymbol{R}^{n}$ is a bounded set, then its image $\boldsymbol{f}(\boldsymbol{A}) \subset \boldsymbol{Y}$ is also a bounded set.

