Final #2

Mark all correct answers for each of the following questions.
> denotes an arbitrary fixed alphabet and L an arbitrary language over
3%, unless otherwise specified.

1. Given a language L over the alphabet {a,b}, denote:

2.

L'={we L:abw = wab} .
(a) If Ly, Ly C {a,b}*, then (L, U Ly)' = L U L.
(b) If Ll; L2 g {CL, b}*, then (Ll N Lz)l = Lll N LIZ
(¢) If Ly, Ly C {a,b}*, then
(L1Ly) = L1Ly U (Ly N {ab}*{a}) (Lo N {b}{ab}*).
(d) If L C {a,b}*, then (L*)" = (L')".

(e) If there exists a finite automaton accepting L, then there exists a
finite automaton accepting L'.

(f) The existence of a pushdown automaton accepting L does not
necessarily imply the existence of a pushdown automaton accept-
ing L'.

(g) None of the above.

(a) The sequence (b,)2, is defined by:
b, = n mod 10, n=0,1,2,....
The sequence (a,)$2, is defined by the recursion
ap+1 = 10a, + by, n=0,1,2,...,

and the initial condition ¢y = 0. Then the language consisting of
the base 10 expansions of all the a,’s is regular.

1

(b) For each non-negative integer n, let ¢, € {0,1,...,9}* be the
base 10 expansion of n. The language

L={ty:n>0}=1{e1,22,333,4444, .. .}

is regular.

(¢) The language L C X* is known to have the property that for every
u,v,w € X* there exists an n > 0 for which uv™w € L. Then L is
regular.

(d) The language L C ¥* is known to have the property that for every
u, v, w € X* with v # ¢ there exists an n > 0 for which uv™w € L.
Then L is regular.

(e) If G is given by the rules
S—e|aSb|SS,
then every word w € L(G) is yielded by infinitely many distinct
parse trees over (.

(f) Let G be a context-free grammar for which there exists a word
w € L(G) yielded by two distinct parse trees over G. Then the
word w is yielded by infinitely many distinct parse trees over G.

(g) None of the above.

3. Given a sequence (L,)$°; of languages and a language L over ¥, we
say that L, converges to L, and denote L, — L, if for every w € L

n—00
we have w € L, for all sufficiently large n and for every w ¢ L we have

w ¢ L, for all sufficiently large n.

(a) Let L, — L. If all L,’s are regular then L is not necessarily

n—oo
regular, and if all L,,’s are context-free then L is not necessarily

context-free. However, if all L,’s are Turing-accepted then L is
Turing-accepted

(b) If L, — L and L is Turing-accepted, then L, is Turing-accepted
for al?_s)ﬁofﬁciently large n.

(¢) f G = (N,X,R,S) is a context-free grammar, then for every
v € (N UX)* the language {w eXr: v=;>w} is context-free.

2

(d)IfM=(Q,%,T,A, s, A) is a pushdown automaton, then for every
p,q € Q and o, B € I'* the language {w € ¥* : (p,w, @)|=(q,¢,)}
is context-free.

(e)If M =(Q,%,T, A, s, A) is a pushdown automaton satisfying |a| >
|B| for every ((p,w, @), (q,B)) € A, then L(M) is regular.

HIEM=(Q,X,T,A,s,A)is a pushdown automaton satisfying |a| <
|B| for every ((p,w,), (q,B)) € A, then L(M) is regular.

(g) None of the above.

4. Let M be the pushdown automaton described by the following diagram:
acla bale

@ £€le 8

For every k > 0 let M} be the pushdown automaton obtained from M
by adding to it the transition ((f,c,a*), (s,a¥)). For k,1 > 0 let My,
be the automaton obtained from M by adding to it the transition
((f,c, ak), (s,a*)). (Thus My = My,.)

(a) All languages L(Mj,) contain properly the language L(M). More-
over, we have L(M,) DO L(M,;) DO L(My) D However, since
all languages are countable, it is impossible for all these languages
to be distinct, and therefore L(Mj., 1) = L(Mjy,) for all sufficiently
large k.

(b) Let M’ be the simple pushdown automaton, equivalent to M, con-
structed according to the algorithm presented in class. Let M, be
the automaton obtained from M’ by adding to it the transition
((f,c,a®), (s,a*)). Then the set of automata {Mj} : k > 0} con-
tains exactly two simple automata.

(c) Let G19 = (Nyo, {a, b, c}, Rig, S) be the context-free grammar sat-
isfying L(G19) = L(Mjy), constructed according to the algorithm
presented in class. Then |Ny| = 289.

(d) The set Ryq of rules in the grammar of the preceding part consists
of more than 1000000 rules.

(e) If My is changed by adjoining the state s to the set of accepting
states, then the language accepted by the automaton does not
change.

(f) It is possible to find an infinite sequence (k1,11), (k2,ls), ... of pairs
of non-negative integers such that for every ¢ # j neither of the
two languages L (M, ;,) and L (M, ;) contains the other.

(g) None of the above.

5. Given a Turing machine M = (Q, %, T, 4, s, h), denote by C' = I'* x Q) x
(I*(I" — {B}) U {e}) the space of all configurations over M. (Recall
that we denote a typical configuration by ugv rather than (u, ¢, v), but
this is of no consequence.)

(a) If M is a Turing machine, then there cannot exist an input word
w € ¥* such that swi=c for every c € C.

(b) If the set {c € C : si-c} is infinite, then M may decide a finite
language, but cannot possibly decide an infinite language.

(c) If there exists a o € ¥ such that so*s, then M does not decide a
language.

(d) If M computes a function f : ¥X* — ', and for every two input
words wq,ws € ¥* with w; # wy we have {c eC: swl}ﬁc} N
{c € C: swszc} =0, then f is one-to-one.

(e) If M computes a function f : ¥* — I'*, and there exist two input
words wi,ws € X* with wy # ws such that {c e C: swl}ﬁc} N
{c € C:swyfzc} #0, then f is not one-to-one.

(f) If M; computes a constant function f (that is, f(w) is the same for

all w € ¥*) and MM, decides a language L, then either L = ©*
or L =0.

(g) None of the above.

Solutions

1. Two words commute if and only if they are both powers of a third
word. In particular, we have abw = wab if and only if w = (ab)* for
some k > 0. Hence L' = LN L ((ab)*). This implies

(L1 U LQ)I = (L1 U LQ) N L ((ab)*)
=(L1NL((ab)*)) U(Ly N L((ab)*)) = L} U L

and

(L1 N LQ), = (L1 N LQ) NL ((ab)*)
= (LiNL((ab)*)) N (LaN L((ab)*)) = LI N LS.

Now:
(Lng)l = L1L2 NL ((ab)*) .

A word wyws is of the form (ab)* if and only if either both w; and w,
are of this form or w; = (ab)a and wy = b(ab)™ for some I,m > 0.
Consequently:

(LiLy) = L\ Ly U (Ly N {ab}*{a}) (Ly N {b}{ab}*) .

If L = {a,b}, then (L*)" = L ((ab)*), but (L')* = 0* = {¢}.

The closure properties of the family of regular languages guarantee
that, since L ((ab)*) is regular, so is L' for any regular L. Similarly, L'
is context-free for any context-free L.

Thus, (a), (b) and (e) are true.

2. Since each b, is a 1-digit number, the decimal expansion of a,; is the
concatenation of the decimal expansion of a, and the digit defining
b,. Now b,, attains periodically the values 0,1,...,9, and therefore the
language consisting of the decimal expansions of all the a,’s is

{0} U {1234567890}*{1, 12,123, ..., 123456789} ,

which is regular.

Obviously, [t7'| = n|t,|. Since the numbers |¢,| are non-decreasing, the
numbers nlt,| are strictly increasing. Moreover, for n = 10¥ we have

nlta] — (n — 1)[ty_1| = 10°(k + 1) — (10* — 1) k = 10* + k.

Thus the set of all wordlengths of the language {7 : n > 0} is of un-
bounded gaps, so that the language is not regular (and not even context-
free).

If for every w,v,w € X* there exists an n > 0 for which uv"w € L,
then, by taking v = v = ¢, we obtain w € L for every w € X%, so
that L = ¥*. Now suppose that the condition is only assumed to
hold for triplets of words w, v, w with v # ¢. Order in some way all
triplets of such words: (u1,vi,wy), (ug, Vo, ws), Let (a,) , be a se-
quence of non-negative integers, to be determined later. The language
L = {ugv*wy : k > 1} satisfies the condition in question. By taking
the sequence(a,) to increase sufficiently fast, we may ensure that the
sequence (|ug| + ag|vk| + |wg|)pe, increases arbitrarily fast and conse-
quently the set of all wordlengths of the language L is of unbounded
gaps, so that L is not regular.

Let G be given by the rules

S—e|aSb|SS,

and w € L(G). For any parse tree yielding w and corresponding se-
quence of derivations leading from S to w, we may take the same se-
quence of derivations, preceded by the two derivations S — SS — S,
and obtain another parse tree yielding w. Continuing this process, we
obtain infinitely many such parse trees. On the other hand, if G is
given by the rules

e S—Ale,

e A — g,

then there are exactly two parse trees yielding €.

Thus, (a), (¢) and (e) are true.

. For any language L there exists a sequence (L,)>; of regular lan-

guages converging to it. In fact, if L is finite, we can just take L, = L

for each n. If L is infinite, say L = {wy, ws,...}, then take L, =
{wy, ws, ..., w,} for each n. Obviously, in both cases the L,’s are reg-
ular (being finite) and converge to L. Thus, the fact that there exists
a sequence of regular languages converging to some language gives no
information regarding this language.

Similarly, the fact that a sequence of languages converges to a given lan-
guage provides little information about the properties of the languages
in the sequence. For example, let L = X* and let Ly be any language
which is not Turing-accepted. Write ¥* — Ly = {wy,ws,...}. Put
L, = LoU{w,ws, ..., w,} for each n. Each L, is not Turing-accepted
(otherwise the language Lg, obtained from it by omitting finitely many
words, would be Turing-accepted as well), yet L, m L.

Given a context-free grammar G = (N,X, R,S) and v € (N U X)*,

let G; = (N U{S5:},X,RU{(S1,v)},S51), where S; ¢ N. Then for

w € (N UX)* we have v:;>w if and only if S; %Mu. In particular,
1

{w eX* v =;>w} = L(G1), so that the left hand side is a context-
free language.

Given a pushdown automaton M = (Q,%, T, A, s, A), states p,q € Q
and words «, § € I'*, construct a pushdown automaton

My = (Q U {po, g}, %, T, A1, po, {q0})
where pg,qo ¢ @ and
A1 =AU {((po,g,g)’ (p: a))} U {((Q757B)7 (qo,g))} :

Obviously, (p, w, @) (g, ¢, 8) if and only if ((po, w, €)1~ (o, €, €), namely
if and only if w € L (M;). Hence the language

{wes: (pw,0) g.¢,0)

M
is context-free.

Let w be accepted by a pushdown automaton M = (@, 3, T, A, s, A).
Consider a sequence of configurations leading from (s, w,¢) to (f,¢,¢),
where f € A. If any of the intermediate configurations has a non-
empty word in the stack, then the first transition leading to such a

7

configuration must be of the form ((p, u,€), (¢, Bo)) for some Gy # €. In
this case we must also have some last configuration with a non-empty
stack. The transition leading from this configuration must be of the
form ((p,u,), (g,¢)) for some «y # €. Hence, if either |a| > |5| for
every ((p,w,), (g, B)) € A, or [af < |B] for every ((p,w,a),(q,5)) €
A, words in L(M) will be generated only by transitions of the form
((p,u,€),(g,€)). But then we have effectively an NFA, so that the
accepted language is regular.

Thus, (c), (d), (e) and (f) are true.

. For each k we have L(My.1) C L(My). In fact, the sequence of transi-
tions showing that a word belongs to L(Mj) shows that the word be-
longs to L(Mj 1) as well. On the other hand, a*cb* € L(M,,)—L(Mj1),
so that the above inclusions are all proper.

Mj is simple if and only if the transition ((f,c,a*), (s,a¥)) does not
prevent it from being such. For &k = 0 it is not simple as it should
contain the transition ((f, ¢, a), (s,a)) once it contains ((f,c,), (s,¢€)).
For k > 2 it is not simple because the transition involves a removal of
a word of length greater than 1 from the stack. Thus Mj, is simple only
for k = 1.

The simple automaton equivalent to My, is obtained from M by first
adding the two transitions ((s,a,a), (s,a?)) and ((s,¢,a), (f,a)), and
then letting the transition ((f, ¢, a'?), (s, a'%)) be carried out in 10 steps
instead of 1. Namely, we have to add 9 new states pi, ps,...,ps and
transitions

((fa €, a)a (pb 5))7 ((pO: &, CI,), (pla 5))a R ((pS: g, CI,), (p97 5))’ ((p9a €, a’)a (87 alO))-

The resulting automaton has a state set of size 11 and a stack alphabet
of size 1, and by the construction we have |[Njy| =1+11-(14+1)-11 =
243. The transition ((py,€,a), (s,a'?)) yields by itself the 11'° type-2
grammatical rules

(P9, a,q) — (s,a,q1){q1,0,q2) - ..{4g9,0,q)

where ¢, q1,...,q9 are any states in {s, f,p1,...,po}, so that |Ryo| is
much larger than 1000000.

In general, if an automaton is changed by turning some non-accepting
state ¢ into an accepting state, the language accepted by the new
automaton certainly contains that accepted by the old one. Clearly,
however, if the set of transitions includes a transition of the form
((g,¢,€), (f,¢e)) for some accepting state f, then the change does not
add any new words to the language. Hence changing M, by making s
an accepting state does not change the language accepted by the au-
tomaton.

Consider the language L (M, ,) for any prime p. Obviously, the num-
ber of occurrences of ¢ in any word in this language is divisible by p.
Also, the word acPb belongs to this language. It follows that, for any
two distinct primes p; and po, neither of the languages L (M p,) and
L (M, ,,) contains the other.

Thus, (d), (e) and (f) are true.

. Since a Turing machine halts upon arriving at the state h, in the course
of any computation the machine may get to at most one configuration
of the form uhv with u,v € I'*.

If the set {c eC: s}ﬁc} is infinite, then M does not halt for input ¢,
and therefore cannot possibly decide any language.

Consider a Turing machine operating as follows. At the first step, if
the leftmost square on the tape is blank, then the machine writes ¢)
and halts. If the leftmost square is not blank, then the machine erases
the tape and then moves to the state s. Then, as before, it writes &) at
the leftmost square and halts. Thus, we have sw{s for every w € ¥,
yet M decides ¥*.

If M computes a function f: ¥* — I'*, and
{c e C: Swl}ic} N {c eC: swg}ic} +0
M M

for some w; # ws, then the computation yields the same results for
inputs w; and wy. Thus f(w;) = f(w,), so that f is not one-to-one.
However, knowing that distinct inputs never lead to the same config-
uration does not imply that they yield distinct outputs, as the config-
uration takes into account also the head’s position, which is basically

immaterial at the stage when the machine halts. For example, suppose
a machine halts right away unless the head points at a blank square,
in which case the machine writes some letter oy on the tape, moves the
head to the right and halts. Then the machine computes the function
f X" — X" given by

o={z ute

ap, w=Ee.

The function is not one-to-one since f(oy) = f(g). However, for input
oo we arrive at the configuration hoy, whereas for input € we arrive at
the configuration ogyh.

If My computes a constant function f, then M;M, may still decide a
non-trivial language. This may be the case if the head is not at the same
location for all inputs. For example, suppose swi-hy, if w € L (a*),
while sw}ﬁfyoh otherwise. It is then easy to design M, so that MM,
will decide the language L (a*).

Thus, only (a) and (e) are true.

10

