Review Questions

Mark all correct answers for each of the following questions.
>, denotes an arbitrary alphabet and L an arbitrary language over X,
unless otherwise specified.

1. Let M = ({s},{a,b},{a}, A, s, {s}) be the following automaton:

a,€la
@

g

b,ale

Let G = (N, {a,b}, R, S) be the context-free grammar, constructed ac-
cording to the algorithm presented in class, satisfying L(G) = L(M).
Let M; be the automaton obtained from M upon adjoining the tran-
sition ((s, ¢, a), (s,a)) to A, and M, the automaton obtained from M
upon adjoining the transition ((s, c,a?), (s,a?)) to A. (Each time, the
alphabet ¥ is augmented from {a, b} to {a,b,c}.) Let

Gl = (Nla {CL, b7 c}aRhS): GZ = (N2a {CL, ba C}7R27S)

be the corresponding context-free grammars.

Let L C {a, b, c}* be the language consisting of all words w over {a, b, c}
satisfying |w|, = |w|p and |ul, > |u|, for every prefix u of w.

(a) [Ri] = [R|+1.
(b) L(M,) = L.



(c) The language L — L(M,) is infinite.

(d) |Ry| = |R| + 10.

(e) Ny consists of 9 letters, but only for 7 of them there exists a rule
in Ry allowing us to substitute them by some word.

(f) L(M,) — L(M,) is infinite.

(g) None of the above.

2. Let M; and M, be Turing machines with the same alphabets > and I'
and let w € X%,

(a) If M; halts for the input w, then so does M; M.

(b) If M, does not halt for the input w, then so does M; Ms.
(c) If My does not halt for the input w, then so does M; M.
(

d) If M, M, does not halt for the input w, then either there exists a
prefix u of w such that M; does not halt for u or there exists a
suffix v of w such that M, does not halt for v.

(e) If L (MyMy) # 0, then L (M) # 0.
() If L(M,) = L (M,) = X*, then L (M, M,) = ¥*.
(g) None of the above.

3. (a) Let M = (Q,%,T',4,s,h) be a Turing machine. Let w € ¥* be an
input for which M neither halts nor hangs. Define the configura-
tion u,g,v, for n = 0,1,..., as the configuration at which M
arrives after n steps. (That is, inductively, uwygovy = sw and
UnQnUn b=Un+1@n1Vn+1-) Then the set {u, :n > 0} may be infi-
nite, but the set {v, : n > 0} is necessarily finite.

(b) For every Turing-decidable language L there exists a constant C
(depending on L) and a Turing machine M deciding L, such that
for every input w € ¥* the computation takes at most C steps.
However, there exists no constant C' having this property for all
Turing-decidable languages.



(c) Given an arbitrary language L, there exists a Turing machine
M = (Q,%X,T,6,s,h) and ¢ € Q such that for every w € L we
have swi-q@ and for every w ¢ L we have sw|-q@.

(d) If L* is Turing-decidable, then L is Turing-decidable as well.

(e) Let L C ¥* be a language for which there exists a Turing-decidable
language L; C ¥* and a Turing machine M computing a function
f : ¥* — ¥* possessing the properties f(L) C Ly and f (X* — L) C
>* — Ly. Then L is Turing-decidable.

(f) Let L C ¥* be a language having the property that for each w € L
there exists a Turing machine M with input alphabet X such that
swi=h@) and for each w € ¥* — L there exists a Turing machine
M with input alphabet ¥ such that sw{-h@. Then L is Turing-
decidable.

(g) None of the above.

4. Let My, My, M3 be Turing machines computing the functions f;, fo, f3:
{0,1}* —{0, 1}*, respectively, where:
fi(w) = w?, w e {0,1}*.
fo(w) = oo™t ..o, w =010y ...0, € {0,1}*.
fa(w) = 11*l0, w € {0,1}*.
All three machines have the head pointing at the leftmost square on
the tape when they halt.

(a) All three machines compute functions from Z, to Z,. However,
there exist machines computing functions from {0,1}* but not
from Z, to Z,.

(b) The machine M;Mj; computes a function ¢13 : Z, — Z,, and

(¢) The machine M, computes a function g, : Z, — Z ., and ¢2(999) =
499499.

(d) The machine M3® computes a function g33s : Zy —> Zy, and
93,38(53) = 92

(e) If M is a Turing machine computing both a function f from {0, 1}*
to {0,1}* and a function g from Z, to Z,, then f is injective if
and only if g is.



(f) If M is a Turing machine computing both a function f from {0,1}*
to {0,1}* and a function ¢g from Z, to Z,, and f is surjective,
then so is g.

(g) None of the above.

5. (a) If M; is a Turing machine computing the function ¢; : Z; —Z
given by
gl(n) = nQa n e Z+a

then the machine M? computes the function g5 : Z, — Z given
by
gi2(n) = n', nei,.

(b) The Turing machine M, represented by the diagram

%\/\?'\rRﬁl
W,

computes a function g, : Z% — Z, and g¢(33, 42, 35) = 113.
(¢) The Turing machine Mj represented by the diagram

0,1

0,1 0,1
W T T

B¢R BJ{




computes a function g3 : Z, — Z, and ¢3(37) = 1.

(d) If My is a Turing machine computing a function g4 : Zy —Z
and g4(n) = n for all n > 1, then ¢4(0) = 0.

(e) If M; is a Turing machine computing a function from Z, to Z.,
then it computes a function from Z2 to Z?%, but the converse is
not necessarily true.

(f) If Mg is a Turing machine computing a function from {0,1}* to
{0,1}*, then for every positive integer k£ it computes a function
from Z¥ to Z% , and conversely.

(g) None of the above.

Solutions

1. Recall that the automaton M is not simple. To make it simple we
added to A the transition ((s, a, a), (s,a?)) to obtain a new set of tran-
sitions A’. Upon adding the transition ((s, ¢, a), (s, a)), the automaton
stays simple. Hence the only rule R; contains on top of the rules of R
is:

(s,a,s) = c(s,a,s).

All words of the form ¢" belong to L, but not to L(M;). Hence L —
L(M,) is infinite.

Upon adding the transition ((s,c,a?),(s,a?)) to A’, the automaton
becomes non-simple. According to our algorithm, we need to add to @) a
new state ¢ and replace the additional transition by the two transitions
((s,€,a),(g,€)) and ((g, c,a), (s,a?)). The new state ¢ is not accepting,
so there is still a single type-1 rule:

S — (s,e,s).

The transition ((s, a,¢€), (s, a) contributes now two type-2 grammatical
rules instead of one:

e (s,e,5) = a(s,a,s),
e (s,6,q) = a(s,a,q).

The transition ((s,a,a), (s,a?)) contributes four type-2 grammatical
rules instead of one:



The transition ((s,b,a), (s,€)) contributes two type-3 rules instead of
one:

Finally, there are now two type-4 rules instead of one:
e (s,6,8) = ¢,
e {(q,e,q) — ¢.
Altogether, |[Ny| = 9 and |Ry| = 17. Only the letter (g, ¢, s) has no

rule which allows converting it to some other word. (The reason is that
one cannot proceed in the automaton from the state ¢ if the stack is

empty.)

All words of the forms ac™b belong to L(M;), but not to L(Ms), so that
L(Ml) — L(MQ) is infinite.

Thus, only (a), (c¢) and (f) are true.



2. If M halts for the input w, then the machine M;M; will get to the
state h; and continue to the initial state of My. However, at that point
the word on the tape is in general not the original input word w (and
even if it is — there is no reason to expect the head to point at the
leftmost square of the tape). Hence there is no reason to expect MM,
to behave one way or another. For the same reason, if it is given that
M, does not halt for w, there is no reason to expect M; M, not to halt;
if and when M, halts, the word on the tape and the head’s position may
well be such that M, will arrive at the state ho. On the other hand, if
M, does not halt for w, then M; M, will hang or enter an infinite loop
when given the input w already at the first stage, while M; is active.

It may be the case that M; and M, halt for every input while M; M,
halts for no input. For example, suppose M; = W, for some v, €
I' — (XU{B}), while M, halts right away if it reads a letter in XU { B}
and hangs for any other letter. Then after the first stage of action of
MM, the tape has a 7 at its leftmost square, so the machine will
hang at the second stage.

If M, = T and M, = T}, then L (M, M,) = 5* while L (M,) = 0.
Thus, only (b) is true.

3. Let M be a machine which, given any input, acts as follows. First it
moves the input one square to the right. Then, at each stage, it first
moves the head all the way to the left, then moves it back to the right
and copies the letter at the rightmost written square to the square on
its right. Clearly, if the input is, say, o, then the v,’s will assume in
the process any value in {e, Bo}{o}*.

A machine deciding a language erases any input and writes in its stead
either @) or (v). Hence the computation must consume at least as many
steps as the length of the input. (Actually, it must be at least twice,
as the head needs to be at the beginning of the tape by the end of the
computation.)

Let M; be a machine deciding the language >*, having the property
that the head points at the leftmost square when the computation ends.
Let M, be a machine which repetitively changes the letter at the current



square from ¢) to ) and from ) to &). The machine M = M; M, has
the property that both swi*s,@) and swf-s,@ for every w € X*.

Let L be any undecidable language. Adding or removing finitely many
words from an undecidable language clearly leaves it undecidable, so
that we may assume L D Y. But then L* = ¥* is decidable, while L is
not.

Let L be a language with the properties in (e). By first moving the
input one square to the right, then moving the head back to the leftmost
letter of the input, letting M operate, and then moving the output one
square to the left, we may assume M always leaves the head at the
leftmost square when it halts. Now let M; be a machine deciding L;.
Then M M, decides L.

For every word w € ¥* there exist both a machine M such that sw-h6)
and a machine M such that swf=h@). In fact, just take for the first
a machine deciding ¥* and for the second a machine deciding ). (In
both cases we assume the head points at the leftmost square when the
machine halts.)

Thus, only (c¢) and (e) are true.

. A Machine computing a function from {0, 1}* to {0,1}* computes also
a function from Z, to Z, if and only if, whenever the input is of the
form 1"0 for some non-negative integer n, the output is of this form as
well. In our case the machine M; does not compute a function from
Z, to Z, since the output corresponding to any input contains twice
as many zeros as the input. The machines M, and Mj satisfy the
condition, and are readily seen to compute the functions
go(n)=m+1)+n+.. . +2="082 4 5z,

gs(n) =n+1, nez,,

respectively. In particular, g,(999) = 129%10L 1 = 500499.

Since the head is returned to the beginning of the tape at the end of
the operation of each machine, any concatenation of these machines
computes the corresponding composition of the functions computed by

the machines. Hence M;Mj; computes the function fi3 from {0,1}* to
{0,1}* given by

f13(w) = f3(w2) = 12\w|0’ w e {O, 1}*,

8



and M3® computes the function f38:
3B w) =1"*37,  we{0,1}".

Therefore
g13(n) =2n+2, nez,

and
g338(n) =n + 38, nez;.

In particular, g13(200) = 402 and g3 35(53) = 91.

If M computes both a function f from {0,1}* to {0,1}* and a function
g from Z, to Z,, then g is obtained from the restriction of f to the
set of inputs of the form 1"0. Hence, if f is injective, then g is also
injective. However, the converse is false; the machine Mj provides a
counter-example. If f is surjective, then g is not necessarily surjective,
as it is possible that some words of the form 1™0 are obtained as values
of f only at points which are not of this form. An explicit example to
this effect is provided by a machine computing the function f given by:

u?0, w=u0, v € {0,1}*,
f(w): 0102 ...0|n/2], w=ul, u=010y...04 € {0’1}*7
g, w = €.

Thus, only (g) is true.

. The information regarding M; is not enough to know what M? will
compute (if at all). If we knew that when M, halts the head is pointed
to the leftmost square on the tape, it would follow immediately that
M? indeed computes gio. However, if (for example) M; starts with
checking whether the letter on the tape is B and hangs in that case,
and in all other cases halts with the head at the first blank square, then
M? does not halt at all.

The machine M, changes all input letters to 1, changes the first blank
square to 0 and then halts. Hence for each £ it computes the function
from Z* into Z, taking (ni,ns,...,n) to SF (1) =38 ni+k
In particular, go(33,42,35) = 33 +42+ 35+ 3 = 113.



The machine M3 erases the first letter and then moves the head right
until it gets to the first blank square, looping periodically in the mean-
while between the three T machines at the top part of the diagram.
Then it erases the whole input. However, if it leaves the top row
through one of the first two 7z machines it just writes 0 at the first
square of the tape, whereas in the remaining cases it writes 110 on
the tape. Now the first row of the diagram is exited at the third T
machine if and only if the length of the input is divisible by 3, that is
the input itself is 2 modulo 3. Hence

(n) = 0, n =0 (mod 3) Vn =1 (mod 3),
9= 2, n = 2 (mod 3).
In particular, g3(37) = 0.

Suppose M, halts if the first square is marked with 1, but writes 10
on the tape otherwise. Then it computes the function g4 : Z, —Z

given by
(n) = n, n>1,
ga\n) = 1, n = 0.

The machine M, computes both a function from {0,1}* to {0,1}* and
a function from Z, to Z, yet it does not compute a function from Z?
to Z2.

Thus, only (b) is true.

10



