Final #2

Mark the correct answer in each of the following questions.

1. In the space L3[1, 00), let v, be the function defined by v,(z) = 1/22,
where « is an arbitrary fixed real number > 1/2. Let W = span{w},

where w(xz) = 1/z. Denote by w¥ a vector in W that is closest to v,
within W. Define the function g : (1/2,00) — R by:

g(a) = ||w — valla, 1/2 < a < .

(a) The function g is increasing over (1/2,00).

(b) The function g is decreasing over (1/2;00).

(c¢) The function ¢ is increasing over the interval (1/2,ap) for some
ap > 1/2, but not over the whole of (1/2,00).

(d) The function g is decreasing over the interval (1/2,aq) for some
ap > 1/2, but not over the whole of (1/2,00).

(e) None of the above.

2. Let V be a vector space with an inner product (-,-) and induced norm
| - ||, and {u,}22, a set of vectors in V. Define another sequence of
vectors in V' by:

1 1 1 1
Up = U+ U+ U3+ ...+ —

=1 o i n!un, n=12....

(a) If {u,}r2, is an orthonormal system then (v,)5%; is a Cauchy
sequence, but in general it does not have to be the case.

(b) The sequence (v,,)2, is a Cauchy sequence if and only if u,, — 0.
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(c) If ||un|| < 2™ for each n, then (v,)5%, is a Cauchy sequence. On

the other hand, if ||u,|| > (n — 1)! for each n, then it is not a
Cauchy sequence.

(d) If {u, }5°, is an orthonormal system and v,, — v for some v € V,

n—oo
then |jv]| =e — 1.
(e) None of the above.
3. The function f : [—m, 7] — C is differentiable of every order on the
whole interval (and f®(—7) = f®(7) for k = 0,1,2,...). All the
numbers ¢,, n=...,—3,—2,—1,1,2,3,... are given, but ¢; is not.

(a) The number ¢j is uniquely determined by the other ¢, ’s.

(b) Whether or not ¢y is uniquely determined by the other ¢,’s de-

pends on the other ¢,’s. Namely, for some choices of ¢,, n =
=3, —2,—1,1,2,3,..., the number ¢y is uniquely determined,

while for others it is not.

(¢) For every choice of ¢,,, n=...,-3,-2,—1,1,2,3,..., the number
o is not uniquely determined, but there always exists a constant
r > 0 (depending on the other ¢,’s) such that |co| < r.

(d) For every choice of ¢,, n=...,—-3,—2,—1,1,2,3,..., the number
co may be any complex number.

(e) None of the above.

4. The function f is known to belong to L3,[—m, 7] and is piecewise con-
tinuously differentiable. Denote:

(a) If [ £ m # r # [, then the Fourier series of f cannot possibly
converge pointwise in [—m, 7).

(b) If not all three numbers [, m,r are equal, then the Fourier series
of f cannot possibly converge uniformly in [—m, 7].



(c) Evenifl # r, it is still possible that the Fourier series of f converges
uniformly in [—m, 7].

(d) It is possible that [ # m and m # r, yet the Fourier series of f
converges uniformly in [, 7.

(e) None of the above.

5. We expand the function f, defined by
f(z) = sin (e’m) , —r<xz<m,

into a Fourier series

oo
2 Cn einT

n=-—00
(a) The series converges to the function pointwise and c¢_;9 = 0.

(b) The series converges to the function pointwise and c¢_19 = 1/5!.

¢) The series does not converge to the function [)()illtWiSG and ¢ 10 =
g
0.

(d) The series does not converge to the function pointwise and c¢_g =

1/51.
(e) None of the above.

6. Let (f.)>2, be the sequence of functions defined by
fo(z) = €™, n=0,12,..., -7 <x<m,
and (g,)%, the sequence defined by

_ fol@) + Fi@) - fala)
n+1

In()

, n=012..., -7<x<m.

(a) Both sequences converge only at the point z = 0.



(b) The sequence ( f,,) converges only at the point x = 0. The sequence
(gn) converges pointwise for every x € [—m,w]. However, for no

interval [a, b] with —7 < a < b < 7 does it converge uniformly on
la, b].

(c) The sequence (f,,) converges only at the point © = 0. The sequence
(gn) converges pointwise for every z € [—m,w|. It also converges
uniformly on [—m, —d] U [, 7] for every 6 > 0, but not on [—m, 7.

(d) The sequence ( f,,) converges only at the point x = 0. The sequence
(gn) converges uniformly on [—m, 7).

(e) None of the above.

7. Let f be the function defined by
fla)=(x—-1)?  —m<a<m,

and let (S,)>, be the sequence of partial sums of the Fourier series

of f.

(a) For every € > 0 there exists an N = N(¢) such that for every
n > N we have
|Sp(—m) — 7> — 1] <e.

(b) For every € > 0 there exists an N = N(¢) such that for every
n > N we have
| Sn(=7) — (7 + 1)2} <e.

(c) For every € > 0 there exists an N = N(e) such that for every
n > N we have

|Sh(x) — f(x)| <e, x € (—m, —m+0.1).

(d) For every € > 0 and = € [—, 0] there exists an N = N (e, z) such
that for every n > N we have

|1Sn(2) = f(2)] <e.

(e) None of the above.



8. Let f: R — R be defined by:

1

0, x < 0.

(a) For w # 0 we have:

3n=T) n—1<z<n, n=12,...

s 1 1—e ™
J©) =5 T
Moreover, f € L3(—00, 00).
(b) For w # 0 we have:
: 11—
Jw) = 2miw 1 —e /2
However, f ¢ L2 (—00,00).
(¢) For w # 0 we have:
P 1 1+e ™
I =5 Tr e
Moreover, f € L3(—00,00).
(d) For w # 0 we have:
. 1 l+e ™
T =5ms Tr e
However, f ¢ L2 (—00,00).
(e) None of the above.
9. Let f: R — C be defined by:
flz) = e/, z € R.



(a) We know that the function g(z) = e=**/? belongs to Lb(—00, 00).
Since the product of any function in the space Lio(—00,00) by
e~ ¥ still belongs to this space, the function f also belongs to this
space. Moreover:

. 1 .
fw)=y/gze“ 2 weR.

(b) In general it is not true that the product of any function in the
space Lpo(—00,00) by e~ still belongs to this space. However, in
our case the function f indeed belongs to the space. Moreover:

(¢) We know that the function g(x) = e*"/2 belongs to Lbq(—00, 00).
Since the product of any function in the space Lpo(—00,00) by
e~ " still belongs to this space, the function f also belongs to this
space. Moreover:

(d) In general it is not true that the product of any function in the
space L (—00,00) by e~ still belongs to this space. However, in
our case the function f indeed belongs to the space. Moreover:

f(w) = 2iei“’_“2/2, w € R.
T

(e) None of the above.



Solutions

1. For a = 1, the function v, belongs to W, so that wi = v; and ¢g(1) = 0.
For o # 1 we clearly have g(«) > 0. Now:

2
2 2 o |[{va, w)|
9(0) = oo = wlll = y/loal = ] #nvan -

We need to find the following inner products:

2 & dx 1
bl = | S = 5—
1z a—1

> dx 1
(Va, w) :/ ol o)

Hence:
1 1 (a—1)?

20 -1 a2 a?(2a—1)

The numerator decreases in the interval (%, 1), while each of the factors

in the denominator increases there. Thus, g decreases on (%, 1). Since

g vanishes at 1 and is positive for o« > 1, it does not decrease on [1, 00).

Thus, (d) is true.

2. For m > n > 1 we have:

S < 3 it X

k=n-+1 k=n+1 ’ k=n+1

[V — vnl] =

If {u,}>2, is an orthonormal system, then in particular ||u,| = 1 for
all n, and hence the right-hand side of the last inequality is the tail
of a convergent series, and thus converges to 0. The same holds if
llunl] < 2™ for all n. If |ju,|| > (n — 1)!, then the sequence is not
necessarily a Cauchy sequence, but it may be such. For example, if
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{u,}22, is an orthogonal system and ||u,|| = (n — 1)! for each n, then
form>n>1:

||Um - Un” =

Claim (d) fails because

Thus, (a) is true.

. If f is such a function, then for all ¢ € C, the function f(z) = f(x) +c

has the same properties. Since the Fourier coefficients of f and f are
the same except for ¢y, and those differ by ¢, the coefficient ¢y may be
any complex number, whatever all other coefficients may be.

Thus, (d) is true.

. The Fourier series of the function

0, z#0,
o= {27

is identically 0, and in particular converges uniformly to 0, even though
[ =r =0 while m = 1. Hence (b) is false and (d) is true.

The function
0, —m<x<0,

gz) =41, @=0,+m,
2, O0<z<m,

has the property that, at each discontinuity point, its value coincides
with the average of the two one-sided limits. Hence its Fourier series
converges pointwise to g, so that (a) is also false.
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If the Fourier series of f converges uniformly, then the limit is a con-
tinuous function. Now, in a sufficiently small neighborhood of 0 (not
including 0), in which f is continuous, the Fourier series must converge
pointwise to f. If [ # r, then the limit of the Fourier series cannot be
continuous, and the convergence cannot be uniform. Hence (c) is false.

Thus, (d) is true.

. The Taylor series of the function sin converges uniformly to the function
on bounded subsets of the plane. It follows that the series

_21$)2n+1 e n

nZ: 2n +1)! Z (2n —|— 1)! e

n—=

converges uniformly to f on [—m, 7]. It is therefore its Fourier series,

Le., c_oany1) = (éT for all n > 0, and ¢, = 0 for all m which is not

of that form. In particular, for —10 = —2(2-2 + 1), we have
121

Tl sl

Thus, (b) is true.

. The sequence (f,(x))>2, is identically 1 for z = 0, and in particular
converges. Let x # 0, and suppose that the sequence converges at z,
say fn(x) —a for some a. Since |f,(z)| = 1 for each n, we have

la| = 1. Clearly, fnt1(z) — a as well, while on the other hand
n—oo

fri1(z) = €7 fo(z) — e™a.

n—o0

Thus, € = 1, contradicting the fact that x # 0.



Now:
n 1 1— 6i(n+1):p

i\ : : ) 07
gn(z) = ()" =< n+1 1 —ei v#
k=0 1, xz=0.

For each = # 0, the second factor on the right-hand side is fixed, and
therefore g, () — 0. Since the pointwise limit of the sequence (g,,) is
n—oo

therefore discontinuous at x = 0, while each member of the sequence is
continuous, the convergence cannot possibly be uniform. However, for
any fixed 6 € (0,7) and all x € [—m, —0] U [0, 7] we have

|1 _6ix’ _ ‘e—ix/Q . 6ix/2| —9

. X .
Sln—‘ > 2sin —,
2 2

and therefore
‘1 _ ei(n-i-l):c} 1 1

< . .
(n+1)-2sing =~ sing n+1

l9(x)] <

It follows that g,(z) — 0 uniformly on [—7, 6] U [4, 7].

n—oo

Thus, (c) is true.

. Since f is piecewise continuously differentiable,

Sucr) —y Lm0 S i)

o 1)2 _1)2
2
This is exactly the meaning of (a), and thereby shows that (b) is false.

Since f(—7) # 7 + 1, claim (d) is also false.

If the sequence (S,,) converged uniformly in (—m, 0], then, since it con-
verges at the point — also, it would converge uniformly on [—m,0].
But then the limit would be continuous, which it is not, as it is (z —1)?
for z € (—m,0] and (7 + 1) for z = —.

Thus, (a) is true.
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8. For w # 0:

R 1 00 k+1 ] 1 0 N k+1 ]
= — W ]y — 2~ —wz ]
f(w) o kgzo/k f(z)e T =5 ,;:0 /k e x

e —kiw —(k+1)iw —tw X
2m Z w 2miw Z
k=0 k=0

B 1 — g—iw i e iw k B 1 1 — e
o 2miw 2\ 2 ) 2miw 1-emw/2

Since the factor 1 — e~ /2 in the denominator is bounded away from
0 (namely, its absolute value is at least 1/2), the transform is bounded
above in absolute value by C/|w| for some constant C. Hence fe
L} (=00, 00).

Thus, (a) is true.

9. The function g(z) = e *l belongs to Lh(—00,00), but its product
with e™® is identically 1 on the negative half-line, so that it does not
belong to L (—00,00). However, in our case

f(z) = e~ TT/2 61/26_(”1)2/2,
so that f is obtained by shifting and multiplying by a constant the

function g(x) = e~**/2. Since g belongs to Lby(—00,00), so does f.
Moreover,

f(w) _ f{el/Qe—(a:+1)2/2} (w) = 61/2]_—{6—(x+1)2/2} (w) =

—w?/2 _ € iw—w?/2

_ 61/26iw]_—{€—x2/2}<w) 261/26110\/%6 — /e

Thus, (d) is true.
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