
Final #2

Mark the correct answer in each of the following questions.

1. In the space L2
PC[1,∞), let vα be the function defined by vα(x) = 1/xα,

where α is an arbitrary fixed real number > 1/2. Let W = span{w},
where w(x) = 1/x. Denote by w∗α a vector in W that is closest to vα
within W . Define the function g : (1/2,∞)→ R by:

g(α) = ‖w∗α − vα‖2, 1/2 < α <∞.

(a) The function g is increasing over (1/2,∞).

(b) The function g is decreasing over (1/2,∞).

(c) The function g is increasing over the interval (1/2, α0) for some
α0 > 1/2, but not over the whole of (1/2,∞).

(d) The function g is decreasing over the interval (1/2, α0) for some
α0 > 1/2, but not over the whole of (1/2,∞).

(e) None of the above.

2. Let V be a vector space with an inner product 〈·, ·〉 and induced norm
‖ · ‖, and {un}∞n=1 a set of vectors in V . Define another sequence of
vectors in V by:

vn =
1

1!
u1 +

1

2!
u2 +

1

3!
u3 + . . .+

1

n!
un, n = 1, 2, . . . .

(a) If {un}∞n=1 is an orthonormal system then (vn)∞n=1 is a Cauchy
sequence, but in general it does not have to be the case.

(b) The sequence (vn)∞n=1 is a Cauchy sequence if and only if un −→
n→∞

0.
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(c) If ‖un‖ ≤ 2n for each n, then (vn)∞n=1 is a Cauchy sequence. On
the other hand, if ‖un‖ ≥ (n − 1)! for each n, then it is not a
Cauchy sequence.

(d) If {un}∞n=1 is an orthonormal system and vn −→
n→∞

v for some v ∈ V ,

then ‖v‖ = e− 1.

(e) None of the above.

3. The function f : [−π, π] → C is differentiable of every order on the
whole interval (and f (k)(−π) = f (k)(π) for k = 0, 1, 2, . . .). All the
numbers cn, n = . . . ,−3,−2,−1, 1, 2, 3, . . . are given, but c0 is not.

(a) The number c0 is uniquely determined by the other cn’s.

(b) Whether or not c0 is uniquely determined by the other cn’s de-
pends on the other cn’s. Namely, for some choices of cn, n =
. . . ,−3,−2,−1, 1, 2, 3, . . ., the number c0 is uniquely determined,
while for others it is not.

(c) For every choice of cn, n = . . . ,−3,−2,−1, 1, 2, 3, . . ., the number
c0 is not uniquely determined, but there always exists a constant
r > 0 (depending on the other cn’s) such that |c0| < r.

(d) For every choice of cn, n = . . . ,−3,−2,−1, 1, 2, 3, . . ., the number
c0 may be any complex number.

(e) None of the above.

4. The function f is known to belong to L2
PC[−π, π] and is piecewise con-

tinuously differentiable. Denote:

l = f(0−), m = f(0), r = f(0+).

(a) If l 6= m 6= r 6= l, then the Fourier series of f cannot possibly
converge pointwise in [−π, π].

(b) If not all three numbers l,m, r are equal, then the Fourier series
of f cannot possibly converge uniformly in [−π, π].
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(c) Even if l 6= r, it is still possible that the Fourier series of f converges
uniformly in [−π, π].

(d) It is possible that l 6= m and m 6= r, yet the Fourier series of f
converges uniformly in [−π, π].

(e) None of the above.

5. We expand the function f , defined by

f(x) = sin
(
e−2ix

)
, −π ≤ x ≤ π,

into a Fourier series
∞∑

n=−∞

cne
inx.

(a) The series converges to the function pointwise and c−10 = 0.

(b) The series converges to the function pointwise and c−10 = 1/5!.

(c) The series does not converge to the function pointwise and c−10 =
0.

(d) The series does not converge to the function pointwise and c−10 =
1/5!.

(e) None of the above.

6. Let (fn)∞n=0 be the sequence of functions defined by

fn(x) = einx, n = 0, 1, 2, . . . , −π ≤ x ≤ π,

and (gn)∞n=0 the sequence defined by

gn(x) =
f0(x) + f1(x) + . . .+ fn(x)

n+ 1
, n = 0, 1, 2, . . . , −π ≤ x ≤ π.

(a) Both sequences converge only at the point x = 0.
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(b) The sequence (fn) converges only at the point x = 0. The sequence
(gn) converges pointwise for every x ∈ [−π, π]. However, for no
interval [a, b] with −π ≤ a < b ≤ π does it converge uniformly on
[a, b].

(c) The sequence (fn) converges only at the point x = 0. The sequence
(gn) converges pointwise for every x ∈ [−π, π]. It also converges
uniformly on [−π,−δ] ∪ [δ, π] for every δ > 0, but not on [−π, π].

(d) The sequence (fn) converges only at the point x = 0. The sequence
(gn) converges uniformly on [−π, π].

(e) None of the above.

7. Let f be the function defined by

f(x) = (x− 1)2, −π ≤ x < π,

and let (Sn)∞n=1 be the sequence of partial sums of the Fourier series
of f .

(a) For every ε > 0 there exists an N = N(ε) such that for every
n > N we have ∣∣Sn(−π)− π2 − 1

∣∣ < ε.

(b) For every ε > 0 there exists an N = N(ε) such that for every
n > N we have ∣∣Sn(−π)− (π + 1)2

∣∣ < ε.

(c) For every ε > 0 there exists an N = N(ε) such that for every
n > N we have

|Sn(x)− f(x)| < ε, x ∈ (−π,−π + 0.1).

(d) For every ε > 0 and x ∈ [−π, 0] there exists an N = N(ε, x) such
that for every n > N we have

|Sn(x)− f(x)| < ε.

(e) None of the above.
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8. Let f : R→ R be defined by:

f(x) =


1

2n−1 , n− 1 ≤ x < n, n = 1, 2, . . .

0, x < 0.

(a) For ω 6= 0 we have:

f̂(ω) =
1

2πiω
· 1− e−iω

1− e−iω/2
.

Moreover, f̂ ∈ L2
PC(−∞,∞).

(b) For ω 6= 0 we have:

f̂(ω) =
1

2πiω
· 1− e−iω

1− e−iω/2
.

However, f̂ /∈ L2
PC(−∞,∞).

(c) For ω 6= 0 we have:

f̂(ω) =
1

2πiω
· 1 + e−iω

1 + e−iω/2
.

Moreover, f̂ ∈ L2
PC(−∞,∞).

(d) For ω 6= 0 we have:

f̂(ω) =
1

2πiω
· 1 + e−iω

1 + e−iω/2
.

However, f̂ /∈ L2
PC(−∞,∞).

(e) None of the above.

9. Let f : R→ C be defined by:

f(x) = e−x−x
2/2, x ∈ R.
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(a) We know that the function g(x) = e−x
2/2 belongs to L1

PC(−∞,∞).
Since the product of any function in the space L1

PC(−∞,∞) by
e−x still belongs to this space, the function f also belongs to this
space. Moreover:

f̂(ω) =

√
1

2π
eiω−ω

2/2, ω ∈ R.

(b) In general it is not true that the product of any function in the
space L1

PC(−∞,∞) by e−x still belongs to this space. However, in
our case the function f indeed belongs to the space. Moreover:

f̂(ω) =

√
1

2π
eiω−ω

2/2, ω ∈ R.

(c) We know that the function g(x) = e−x
2/2 belongs to L1

PC(−∞,∞).
Since the product of any function in the space L1

PC(−∞,∞) by
e−x still belongs to this space, the function f also belongs to this
space. Moreover:

f̂(ω) =

√
e

2π
eiω−ω

2/2, ω ∈ R.

(d) In general it is not true that the product of any function in the
space L1

PC(−∞,∞) by e−x still belongs to this space. However, in
our case the function f indeed belongs to the space. Moreover:

f̂(ω) =

√
e

2π
eiω−ω

2/2, ω ∈ R.

(e) None of the above.
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Solutions

1. For α = 1, the function v1 belongs to W , so that w∗1 = v1 and g(1) = 0.
For α 6= 1 we clearly have g(α) > 0. Now:

g(α) = ‖vα − w∗α‖ =

√
‖vα‖2 − ‖w∗α‖

2 =

√
‖vα‖2 −

|〈vα, w〉|2

‖w‖2
.

We need to find the following inner products:

‖vα‖2 =

∫ ∞
1

dx

x2α
=

1

2α− 1
,

〈vα, w〉 =

∫ ∞
1

dx

xα+1
=

1

α
,

‖w‖2 =

∫ ∞
1

dx

x2
= 1.

Hence:

g2(α) =
1

2α− 1
− 1

α2
=

(α− 1)2

α2(2α− 1)
.

The numerator decreases in the interval (1
2
, 1), while each of the factors

in the denominator increases there. Thus, g decreases on (1
2
, 1). Since

g vanishes at 1 and is positive for α > 1, it does not decrease on [1,∞).

Thus, (d) is true.

2. For m > n ≥ 1 we have:

‖vm − vn‖ =

∥∥∥∥∥
m∑

k=n+1

1

k!
uk

∥∥∥∥∥ ≤
m∑

k=n+1

‖uk‖
k!
≤

∞∑
k=n+1

1

k!
uk.

If {un}∞n=1 is an orthonormal system, then in particular ‖un‖ = 1 for
all n, and hence the right-hand side of the last inequality is the tail
of a convergent series, and thus converges to 0. The same holds if
‖un‖ ≤ 2n for all n. If ‖un‖ ≥ (n − 1)!, then the sequence is not
necessarily a Cauchy sequence, but it may be such. For example, if
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{un}∞n=1 is an orthogonal system and ‖un‖ = (n− 1)! for each n, then
for m > n ≥ 1:

‖vm − vn‖ =

√√√√ m∑
k=n+1

1

k2
−→
n→∞

0.

Claim (d) fails because

‖v‖ = lim
n→∞

‖vn‖ = lim
n→∞

√√√√ n∑
k=1

1

k!2
≤ lim

n→∞

n∑
k=1

1

k!2
< lim

n→∞

n∑
k=1

1

k!
= e−1.

Thus, (a) is true.

3. If f is such a function, then for all c ∈ C, the function f̃(x) = f(x) + c
has the same properties. Since the Fourier coefficients of f and f̃ are
the same except for c0, and those differ by c, the coefficient c0 may be
any complex number, whatever all other coefficients may be.

Thus, (d) is true.

4. The Fourier series of the function

f(x) =

{
0, x 6= 0,

1, x = 0,

is identically 0, and in particular converges uniformly to 0, even though
l = r = 0 while m = 1. Hence (b) is false and (d) is true.

The function

g(x) =


0, −π < x < 0,

1, x = 0,±π,
2, 0 < x < π,

has the property that, at each discontinuity point, its value coincides
with the average of the two one-sided limits. Hence its Fourier series
converges pointwise to g, so that (a) is also false.
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If the Fourier series of f converges uniformly, then the limit is a con-
tinuous function. Now, in a sufficiently small neighborhood of 0 (not
including 0), in which f is continuous, the Fourier series must converge
pointwise to f . If l 6= r, then the limit of the Fourier series cannot be
continuous, and the convergence cannot be uniform. Hence (c) is false.

Thus, (d) is true.

5. The Taylor series of the function sin converges uniformly to the function
on bounded subsets of the plane. It follows that the series

∞∑
n=0

(−1)n (e−2ix)
2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)n

(2n+ 1)!
e−2(2n+1)ix

converges uniformly to f on [−π, π]. It is therefore its Fourier series,

i.e., c−2(2n+1) = (−1)n
(2n+1)!

for all n ≥ 0, and cm = 0 for all m which is not

of that form. In particular, for −10 = −2(2 · 2 + 1), we have

c−10 =
(−1)2

(2 · 2 + 1)!
=

1

5!
.

Thus, (b) is true.

6. The sequence (fn(x))∞n=1 is identically 1 for x = 0, and in particular
converges. Let x 6= 0, and suppose that the sequence converges at x,
say fn(x) −→

n→∞
α for some α. Since |fn(x)| = 1 for each n, we have

|α| = 1. Clearly, fn+1(x) −→
n→∞

α as well, while on the other hand

fn+1(x) = eixfn(x) −→
n→∞

eixα.

Thus, eix = 1, contradicting the fact that x 6= 0.
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Now:

gn(x) =
1

n+ 1

n∑
k=0

(
eix
)n

=


1

n+ 1
· 1− ei(n+1)x

1− eix
, x 6= 0,

1, x = 0.

For each x 6= 0, the second factor on the right-hand side is fixed, and
therefore gn(x) −→

n→∞
0. Since the pointwise limit of the sequence (gn) is

therefore discontinuous at x = 0, while each member of the sequence is
continuous, the convergence cannot possibly be uniform. However, for
any fixed δ ∈ (0, π) and all x ∈ [−π,−δ] ∪ [δ, π] we have∣∣1− eix∣∣ =

∣∣e−ix/2 − eix/2∣∣ = 2
∣∣∣sin x

2

∣∣∣ ≥ 2 sin
δ

2
,

and therefore

|g(x)| ≤
∣∣1− ei(n+1)x

∣∣
(n+ 1) · 2 sin δ

2

≤ 1

sin δ
2

· 1

n+ 1
.

It follows that gn(x) −→
n→∞

0 uniformly on [−π,−δ] ∪ [δ, π].

Thus, (c) is true.

7. Since f is piecewise continuously differentiable,

Sn(−π) −→
n→∞

f(−π+) + f(π−)

2
=
f(−π) + f(π)

2

=
(−π − 1)2 + (π − 1)2

2
= π2 + 1.

This is exactly the meaning of (a), and thereby shows that (b) is false.
Since f(−π) 6= π2 + 1, claim (d) is also false.

If the sequence (Sn) converged uniformly in (−π, 0], then, since it con-
verges at the point −π also, it would converge uniformly on [−π, 0].
But then the limit would be continuous, which it is not, as it is (x−1)2

for x ∈ (−π, 0] and (π + 1)2 for x = −π.

Thus, (a) is true.
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8. For ω 6= 0:

f̂(ω) =
1

2π

∞∑
k=0

∫ k+1

k

f(x)e−iωxdx =
1

2π

∞∑
k=0

2−k
∫ k+1

k

e−iωxdx

=
1

2π

∞∑
k=0

2−k
e−kiω − e−(k+1)iω

iω
=

1− e−iω

2πiω

∞∑
k=0

2−ke−kiω

=
1− e−iω

2πiω

∞∑
k=0

(
e−iω

2

)k
=

1

2πiω
· 1− e−iω

1− e−iω/2
.

Since the factor 1 − e−iω/2 in the denominator is bounded away from
0 (namely, its absolute value is at least 1/2), the transform is bounded

above in absolute value by C/|ω| for some constant C. Hence f̂ ∈
L2
PC(−∞,∞).

Thus, (a) is true.

9. The function g(x) = e−|x| belongs to L1
PC(−∞,∞), but its product

with e−x is identically 1 on the negative half-line, so that it does not
belong to L1

PC(−∞,∞). However, in our case

f(x) = e−x−x
2/2 = e1/2e−(x+1)2/2,

so that f is obtained by shifting and multiplying by a constant the
function g(x) = e−x

2/2. Since g belongs to L1
PC(−∞,∞), so does f .

Moreover,

f̂(ω) = F
{
e1/2e−(x+1)2/2

}
(ω) = e1/2F

{
e−(x+1)2/2

}
(ω) =

= e1/2eiωF
{
e−x

2/2
}

(ω) = e1/2eiω 1√
2π
e−ω

2/2 =
√

e
2π
eiω−ω

2/2.

Thus, (d) is true.
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