
Final #1

Mark the correct answer in each part of the following questions.

1. The sequence (dk)∞k=1 is defined by:

dk =

{
50, k ≤ 20,
3, k > 20.

Denote Dn = (d1, d2, . . . , dn) for every n.

(i) The sequence Dn is graphic for infinitely many values of n and
non-graphic for infinitely many other values of n. However, for no
n does there exist a tree whose sequence of vertex degrees is Dn.

(ii) The sequence Dn is graphic for every sufficiently large n.

(iii) There exists exactly one value of n for which Dn is the sequence
of vertex degrees of some tree.

(iv) For every constant C, there exists an n such that Dn is the se-
quence of vertex degrees of some graph G with ω(G) > C.

(v) None of the above.

2. Let (di)
n
i=1 be a sequence of integers with d1 ≥ d2 ≥ . . . ≥ dn ≥ 1,

where n ≥ 5.

(i) The sequence is graphic if and only if there exist indices i, j, with
1 ≤ i < j ≤ n, such that the sequence d1, d2, . . . , di−1, di −
1, di+1, . . . , dj−1, dj − 1, dj+1, . . . , dn is graphic.

(ii) If dn−1 = dn = 1, then the sequence is graphic if and only if the
sequence d1, d2, . . . , dn−3, dn−2 is.
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(iii) If dn−3 = dn−2 = dn−1 = dn = 3, then the sequence is graphic if
and only if the sequence d1, d2, . . . , dn−5, dn−4 is.

(iv) The sequence is graphic if and only if the sequence d1 − 1, d2 −
1, d3, . . . , dn is graphic and d1 < n.

(v) None of the above.

3. Let A be a set of size 6. Consider the graph G = (V,E), where V = 2A

(i.e., the set of all subsets of A) and

E = {(B,C) : B,C ⊆ A, |B 4 C| ≡ 1 (mod 2)}.

E = {(B,C) : B,C ⊆ A, |B 4 C| ≡ 1(mod 2)}.

(Here we denote by4 the symmetric difference of sets, namely B4C =
(B − C) ∪ (C −B).)

(a) The independence number of G is

(i) α(G) = 22.

(ii) α(G) = 23.

(iii) α(G) = 24.

(iv) α(G) = 25.

(v) none of the above.

(b) The chromatic number of G is

(i) χ(G) = 2.

(ii) χ(G) = 6.

(iii) χ(G) = 7.

(iv) χ(G) = 32.

(v) none of the above.

(c) The number of spanning trees of G is

(i) τ(G) = 232.

(ii) τ(G) = 264.

(iii) τ(G) = 2310.

(iv) τ(G) = 2372.
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(v) none of the above.

4. Define (for the purpose of this question only) a sub-Latin square with
memory r to be an n × n square, satisfying the same requirements
as does a Latin square, except for the following change regarding the
columns: Instead of requiring that all entries in each column be distinct,
we require only that each entry be distinct from the r entries immedi-
ately above it, but it may equal any of the entries above them. (For
example, for r = 3, denoting by aij the (i, j)-th entry, we require that
a10,5 6= a7,5, a8,5, a9,5 but allow any of the equalities a10,5 = a1,5, a10,5 =
a2,5, . . . , a10,5 = a6,5.) We employ the methods, used in class to bound
from below and from above the number of Latin squares, to accomplish
the same for sub-Latin squares with memory r = 3.

(a) The lower bound our method yields is:

(i) n!n(1− 3/n)n
2−n.

(ii) n!n(1− 1/n)n(1− 2/n)n(1− 3/n)n
2−3n.

(iii) n!n(1− 1/n)(1− 2/n)(1− 3/n)n
2−n−2.

(iv) n!n(1− 1/n)(1− 3/n)n
2−n−1.

(v) none of the above.

(b) The upper bound our method yields is:

(i) (n− 0)!
n

n−1 (n− 1)!
n−1
n−2 (n− 2)!

n−2
n−3 (n− 3)!n−4.

(ii) (n− 0)!(n− 1)!(n− 2)!(n− 3)!n.

(iii) (n− 0)!
n

n−0 (n− 1)!
n

n−1 (n− 2)!
n

n−2 (n− 3)!n.

(iv) (n− 0)!1+1/n(n− 1)!1+2/n(n− 2)!1+3/n(n− 3)!n.

(v) none of the above.

5. Let G = (V,E) be a graph, with V = {v1, v2, . . . , vn} for some even
number n. For a positive integer k, denote by χ̃(G, 2k) the number of
proper colorings of G in the 2k colors 1, 2, . . . , 2k, in which each vertex
vi with an even i is colored in an even color (namely, one of the colors
2, 4, . . . , 2k), while each vi with an odd i is colored in an odd color.
Denote by E00 (resp. E11, E01) the set of edges (vi, vj) with both i and
j even (resp. both i and j odd, i even and j odd).
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(i) The function χ̃(G, 2k) is a polynomial function of degree n in k.
The coefficient of kn−1 is −|E01|.

(ii) The function χ̃(G, 2k) is a polynomial function of degree n in k.
The coefficient of kn−1 is −|E00| − |E11|.

(iii) The function χ̃(G, 2k) is a polynomial function of degree n in k.
The coefficient of kn−1 is −2n|E01|.

(iv) The function χ̃(G, 2k) is a polynomial function of degree n in k.
The coefficient of kn−1 is −2n(|E00|+ |E11|).

(v) None of the above.

6. Let Km,n = (A ∪B,A×B) be a complete bi-partite graph, with parts
A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}. Consider the graph
G = (A ∪B,A×B ∪ {(b1, b2)}). We have τ(G) =

(i) mn−1nm−1 + 2mn−1nm−2.

(ii) mn−1nm−1 + 2mn−2(n− 1)m−1.

(iii) mn−1nm−1 + 2mn−2nm−1.

(iv) mn−1nm−1 + 2mn−1(n− 1)m−1.

(v) None of the above.

7. In the matrix-tree theorem and its proof we have defined matrices Q,C,
that satisfied the equality CCT = Q. Denoting by abs(M), for any
matrix M , the matrix obtained from M by replacing each entry by its
absolute value, the matrix abs(C)abs(CT )

(i) is abs(Q).

(ii) is a matrix with determinant 1.

(iii) is a matrix with at least one eigenvalue that is not real (for n ≥ 3).

(iv) is a matrix, the sum of all whose entries is the same as the sum
of all entries of Q.

(v) enjoys none of the above properties.
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Solutions

1. We use the Erdős-Gallai Theorem. It is easy to see that, if n ≥ 21 is
odd, then so is

∑n
i=1 di. Therefore, for such n, the sequence Dn is not

a graphic sequence.

We now claim that for sufficiently large even n, the sequence is graphic.
The condition that

∑n
i=1 di is even is certainly satisfied for such n. We

have to show that

k∑
i=1

di ≤ k(k − 1) +
n∑

j=k+1

min{k, dj}, 1 ≤ k ≤ n.

Indeed, if k ≤ 50, then for n ≥ 1140,

k∑
i=1

di ≤ 20 · 50 + 30 · 3 ≤
1140∑
j=51

min{k, dj} < k(k− 1) +
n∑

j=k+1

min{k, dj}.

If k ≥ 51, then for every n(≥ k),

k∑
i=1

di ≤ k · 50 ≤ k(k − 1) ≤ k(k − 1) +
n∑

j=k+1

min{k, dj}.

Dn cannot be the sequence of vertex degrees of a tree because
∑n

i=1 di >
2n−2. (Alternatively, since a graph with this sequence of vertex degrees
has no leaves.)

Thus, (i) is true.

2. The condition in (i) is necessary. In fact, suppose that G is a graph
with vertices v1, v2, . . . , vn, and corresponding degrees d1, d2, . . . , dn.
Pick two adjacent vertices vi and vj. Omitting the edge (vi, vj) from
G, we see that the sequence d1, d2, . . . , di−1, di − 1, di+1, . . . , dj−1, dj −
1, dj+1, . . . , dn is graphic. However, the condition is not sufficient. For
example, take d1 = d2 = n, d3 = d4 = . . . = dn = n− 1. The sequence
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is not graphic, as a graph with this sequence of vertex degrees requires
v1 to have more neighbors than the maximum possible. Yet reducing
d1 and d2 by 1 each, we obtain the sequence of vertex degrees of Kn.

In (ii), if the sequence d1, d2, . . . , dn−3, dn−2 is graphic, then indeed so is
the original sequence; take a graph with vertex degrees d1, d2, . . . , dn−2
and add two vertices vn−1, vn, neighboring each other but no other
vertices. However, the converse is false. For example, let n = 4, d1 =
d2 = 2, d3 = d4 = 1. A path on 4 vertices has these vertex degrees but,
omitting d3 and d4, we are clearly left with a non-graphic sequence.

In (iii), the situation is similar. Namely, if the sequence d1, d2, . . . , dn−4
is graphic, then, adding to a graph with these vertex degrees a K4, we
see that so is the original sequence. To see that the converse is false,
note that the sequence given by d1 = d2 = . . . = d6 = 3 is graphic
(being the sequence of vertex degrees of K3,3, for example), but the
subsequence consisting of the first two elements is not such.

The condition in (iv) is necessary. First, we must have d1 < n since
each vertex may have at most n − 1 neighbors. From the proof of
the Havel-Hakimi Theorem (one may use the theorem itself instead),
it follows that, if the original sequence is graphic, then there exists a
graph with this sequence of vertex degrees, such that the vertex v1 with
degree d1 neighbors exactly the vertices v2, v3, . . . , vk+1, with degrees
d2, d3, . . . , dk+1, where k = d1. Removing the edge (v1, v2), we obtain
a graph whose vertex degrees are d1 − 1, d2 − 1, d3, . . . , dn. However,
the condition is not sufficient. For example, the sequence defined by
d1 = d2 = 3, d3 = d4 = 1 is clearly non-graphic, but, reducing the first
two di’s by 1 each, we obtain a graphic sequence.

Thus, (v) is true.

3. One verifies readily that two subsets are adjacent if and only if their
sizes are of different parities. As A has 32 subsets of even size and 32
of odd size, G is isomorphic to K32,32.

(a) Each of the two parts of the graph forms an independent set, and
clearly there is no larger independent set. Hence α(G) = 32.

Thus, (iv) is true.
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(b) Since the graph is bi-partite and non-empty, χ(G) = 2.

Thus, (i) is true.

(c) According to the formula for the number of spanning trees of
complete bi-partite graphs, we have τ(G) = 3232−1 · 3232−1 = 2310.

Thus, (iii) is true.

4. In both parts of the question, the approach is identical to that we took
for Latin squares. The only difference with respect to the situation
there is the number of possibilities we have for each entry when filling
in any row. With the constraints in this question, the first four rows
behave the same as for Latin squares. However, for each row k ≥ 5,
instead of having to avoid at each entry the symbols used at all k − 1
entries above it, we only have to avoid the three right above it (that
are different from each other). Namely, at each entry by itself we have
n− 3 options.

(a) For filling in the first row we have exactly n! possibilities, for the
second row – at least (n− 1)n · n!

nn possibilities, for the third row
– at least (n− 2)n · n!

nn possibilities, and for each of the following
n − 3 rows – at least (n − 3)n · n!

nn possibilities. Hence the total
number of possibilities is bounded below by

n! · (n− 1)n
n!

nn
· (n− 2)n

n!

nn

(
(n− 3)n · n!

nn

)n−3

.

Thus, (ii) is true.

(b) For filling in the first row we have exactly n! possibilities, for the
second row – at most (n− 1)!

n
n−1 possibilities, for the third row –

at most (n−2)!
n

n−2 possibilities, and for each of the following n−3
rows – at most (n − 3)!

n
n−3 possibilities. Hence the total number

of possibilities is bounded above by

(n− 0)!
n

n−0 (n− 1)!
n

n−1 (n− 2)!
n

n−2 (n− 3)!n.

Thus, (iii) is true.
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5. A proper coloring of G is actually made up by two independent proper
colorings of subgraphs of G. We have to choose a proper coloring of
the subgraph G0, induced by the vertices v2, v4, . . . , vn, using the colors
2, 4, . . . , 2k, and a proper coloring of the subgraph G1, induced by the
vertices v1, v3, . . . , vn, using the colors 1, 3, . . . , 2k − 1. Now, the set of
edges of G0 is E00, and that of G1 is E11. Hence, denoting m = n/2,
the number of colorings of G0 is

χ(G0, k) = km − |E00|km−1 +
m∑
i=2

aik
m−i

and that of G1 is

χ(G1, k) = km − |E11|km−1 +
m∑
i=2

bik
m−i

for appropriate integers ai, bi. Consequently:

χ̃(G, 2k) = χ(G0, k)χ(G1, k) = kn − (|E00|+ |E11|) kn−1 +
n∑

i=2

cik
n−i

for appropriate integers ci.

Thus, (ii) is true.

6. The natural approach to this problem is to employ the formula

τ(G) = τ(G− e) + τ(G · e),

where e = (b1, b2). Now, G− e is simply Km,n, so that

τ(G− e) = mn−1nm−1.

The graph G · e is “approximately” Km,n−1, the difference being that
all edges, one of whose endpoints is the vertex merged from b1 and
b2, are double edges. Thus, after rearranging the indices, our prob-
lem is to find τ(G′), where G′ = (V ′, E ′) is the multi-graph with
V ′ = {a1, a2, . . . , am, b1, b2, . . . , bn−1} and E ′ consisting of double edges
between all ai’s and b1 and single edges between all ai’s and bj’s with
j ≥ 2. We proceed as in the proof of the formula for the number of
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spanning trees of a complete bi-partite graph. Recall that, for sizes m
and n − 1 of the parts of the graph, our proof shows that, for each
t between 0 and m − 1 and each choice of parents for b2, b3, . . . , bn−1,
there are

(
m−1
t

)
(n− 2)t possibilities of assigning parents to t of the ai’s

out of the vertices bj with j ≥ 2, and letting the remaining m − t of
the ai’s be children of b1. The only difference in our case is that, for
each of these m− t vertices, there are two possibilities of connecting it
to b1, so that we have an additional factor of 2m−t. It follows that:

τ(G′) = mn−2
m−1∑
t=0

(
m− 1

t

)
(n− 2)t · 2m−t

= mn−2 · 2m

m−1∑
t=0

(
m− 1

t

)(
n− 2

2

)t

= mn−2 · 2m

(
n− 2

2
+ 1

)m−1

= 2mn−2nm−1.

Altogether:
τ(G) = mn−1nm−1 + 2mn−2nm−1.

Thus, (iii) is true.

7. Recall that each entry of C is either 0 or ±1. Moreover, at each column
of C there is a single 1 and a single −1. Thus, when calculating the
entry at any location (i, i) along the main diagonal of CCT , we sum
terms that are either 02 or (±1)2 each. The sum is non-negative, and
the sum obtained for the product abs(C)abs(CT ) coincides with it. An
off-diagonal entry of CCT , at location (i, j) with i 6= j, is non-zero if
and only if the vertices corresponding to the i-th and j-th vertices of
the graph are adjacent. Namely, all terms in the sum are of the form
0 ·0, with a single possible exception of a −1 ·1 product. Clearly, in the
first case the corresponding entry of abs(C)abs(CT ) vanishes as well,
and in the second case the −1 · 1 product is replaced by 1 · 1. Hence
abs(C)abs(CT ) = abs(CCT ) = abs(Q).
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In particular, the sum of all entries of abs(C)abs(CT ) is the same as
the sum of all entries of Q only if G is an empty graph.

If the graph G is K2, then

abs(Q) =

(
1 1
1 1

)
,

whose determinant is clearly 0.

The matrix Q is symmetric, and hence so is abs(Q) as well. Thus, all
eigenvalues are necessarily real.

Thus, (i) is true.
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