
Midterm

Mark the correct answer in each part of the following questions.

1. Consider the problem of handshakes in a party attended by n couples,
discussed in class. Suppose now that the hostess received from the
other participants some answers (not necessarily distinct answers, as
in the version presented in class). She believes them all, except for her
husband. Let k1 be the number of hands her husband has shaken, k2
the number of hands she has shaken, and k3, k4, . . . , k2n the numbers
reported by the other participants.

(i) The values of k2, k3, k4, . . . , k2n determine uniquely that of k1, so
the hostess will in any case know whether her husband has lied or
not.

(ii) Some values of k2, k3, k4, . . . , k2n determine uniquely that of k1,
but there are values k2, k3, k4, . . . , k2n for which every value of k1
between 0 and 2n− 2 are possible.

(iii) Some values of k2, k3, k4, . . . , k2n determine uniquely that of k1.
Other values k2, k3, k4, . . . , k2n do not determine uniquely that of
k1, but they always give some information, namely there are al-
ways some values between 0 and 2n− 2 that k1 may not assume,
given k2, k3, k4, . . . , k2n.

(iv) None of the above.

2. A family G of graphs is (for the purpose of this question only) a Havel-
Hakimi family if every graph G ∈ G, with at least 2 vertices, has
the following property: If d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 are the degrees
of the vertices of G, then there exists a graph G′ ∈ G such that
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d2 − 1, . . . , dk+1 − 1, dk+2, . . . , dn (where k = d1) is the sequence of
degrees of its vertices.

Consider the following claims:
I. The family of complete graphs is a Havel-Hakimi family.
II. The family of bi-partite graphs is a Havel-Hakimi family.
III. The family of circles is a Havel-Hakimi family.
IV. The family of trees is a Havel-Hakimi family.

(i) Exactly one of the claims above is true.

(ii) Exactly two of the claims above are true.

(iii) Exactly three of the claims above are true.

(iv) All four claims above are true.

3. Let G = (V,E), where V = {1, 2, . . . , 40} and (u, v) ∈ E if one of the
numbers u, v divides the other.

(a) The clique number of G is

(i) ω(G) = 3.

(ii) ω(G) = 4.

(iii) ω(G) = 5.

(iv) ω(G) = 6.

(v) None of the above.

(b) The independence number of G is

(i) α(G) = 20.

(ii) α(G) = 21.

(iii) α(G) = 22.

(iv) α(G) = 23.

(v) None of the above.

(c) The chromatic number of G is

(i) χ(G) = 4.
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(ii) χ(G) = 5.

(iii) χ(G) = 6.

(iv) χ(G) = 7.

(v) None of the above.

4. Let X3 be the graph whose proper colorings we connected in class to
Sudoku squares. The coefficient of k80 in the polynomial χ(X3, k) is:

(i) −810.

(ii) −972.

(iii) −1620.

(iv) −1944.

(v) None of the above.

5. Given two graphs G1, G2, consider the following possible three claims:

I. There exist infinitely many values of k, for which the number of
proper colorings of G1 using k colors is equal to the number of proper
colorings of G2 using k colors.

II. There exist infinitely many values of k, for which the number of
proper colorings of G1 using k colors is smaller than the number of
proper colorings of G2 using k colors.

III. There exist infinitely many values of k, for which the number of
proper colorings of G1 using k colors is larger than the number of proper
colorings of G2 using k colors.

(i) Claim I holds if and only if G1 and G2 are isomorphic.

(ii) For every two graphs G1, G2, exactly one of the three claims I-III
holds.
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(iii) For any two graphs G1, G2, it is possible that both claims I and
II hold, and it is also possible that both claims I and III hold, but
it is impossible that both claims II and III hold.

(iv) For any two graphs G1, G2, it is possible that all three claims I,
II and III hold.

(v) None of the above.

6. We employ the greedy coloring algorithm, presented in class, to color Cn.
Let k denote the number of colors the algorithm has actually used.

(i) For every n and ordering of the vertices, we have k = χ(Cn).

(ii) For infinitely many values of n, for every ordering of the vertices
we will have k = χ(Cn). There are also infinitely many values of n,
for which we will get k = χ(Cn) for some orderings and k > χ(Cn)
for others.

(iii) For infinitely many values of n, for every ordering of the vertices
we will have k = χ(Cn). There are also infinitely many values of
n, for which we will get k > χ(Cn) for every ordering.

(iv) For every sufficiently large n, there exist orderings of the vertices
for which k = χ(Cn), and there exist orderings for which k >
χ(Cn).

(v) None of the above.

Solutions

1. The example we have discussed in class shows that, for some values of
k2, k3, k4, . . . , k2n, the value of k1 is uniquely determined. In fact, there
other values for which it is much easier to figure out what k1 is, for
example when all other ki’s are 0 or when all are 2n− 2.
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On the other hand, for some values of k2, k3, k4, . . . , k2n, the value of
k1 is not uniquely determined. For example, suppose k3 = k4 = 1,
while k2 = k6 = k6 = . . . = k2n = 0. One interpretation of this data is
that the hostess’s husband has shaken hands with participants 3 and
4, in which case k1 = 2. It is also possible that 3 and 4 shook hands
(assuming they are not husband and wife), and k1 = 0.

By the handshakes lemma, the number of indices i for which ki is odd
must be even. Hence the hostess will in any case know the value of k1
modulo 2.

Thus, (iii) is true.

2. The sequence of vertex degrees of Kn is (n− 1, n− 1, . . . , n− 1). The
transformation in question maps it to the sequence (n−2, n−2, . . . , n−
2), which is the sequence of vertex degrees of Kn−1.

The transformation always maps the sequence of vertex degrees of some
graph to that of a graph obtained from it by removing some vertex.
Since the removal of a vertex from a bi-partite graph yields again a
bi-partite graph, the second family is also a Havel-Hakimi family.

The sequence of vertex degrees of Cn is (2, 2, . . . , 2). Applying the
transformation to this sequence, we obtain the sequence (1, 1, 2, 2, . . . , 2),
which is not the sequence of vertex degrees of a circle.

The sequence (n−1, 1, . . . , 1) is the sequence of vertex degrees of a star
on n vertices. Applying the transformation to this sequence, we obtain
the sequence (0, 0, . . . , 0), which is the sequence of vertex degrees of
K̄n−1.

Thus, (ii) is true.
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3. (a) The set {1, 2, 4, 8, 16, 32} is clearly a clique, and hence ω(G) ≥ 6.

On the other hand, let C = {u1, u2, . . . , uk} be a clique, where,
say, u1 < u2 < . . . < uk. Since uj divides uj+1 for each j, we
have uj+1 ≥ 2uj, which implies that uj ≥ 2j−1 for each j. Since
26 = 64 > 40, there exists no clique of size 7 (and, in fact, the
clique specified above is the only one of size 6). Hence ω(G) ≤ 6.

Altogether, ω(G) = 6.

Thus, (iv) is true.

(b) The set {21, 22, 23, . . . , 40} is clearly independent, and hence α(G) ≥
20.

Now for each odd u ∈ V , denote Cu = {u, 2u, 22u, . . . , 2ku},
where k is the largest integer for which 2ku ≤ 40. We have
V = ∪20

r=1C2r−1, where the union is disjoint. As each Cj is a
clique, an independent set may include at most one element of
each C2r−1. Hence α(G) ≤ 20.

Altogether, α(G) = 20.

Thus, (i) is true.

(c) Due to part (a) and the inequality χ(G) ≥ ω(G), we certainly have
χ(G) ≥ 6.

On the other hand, notice that u may (properly) divide v only if
the length of the prime power factorization (counting each prime
according to its multiplicity in the factorization) of u is shorter
than that of v. (We agree that the length of the prime power fac-
torization of 1 is 0.) Hence, denoting by Fj the set of all integers
in V whose prime power factorization is of length j, there are no
edges within any of the sets Fj. By the considerations of part (a),
we have V = ∪5j=0Fj. Coloring all elements of each Fj by color j,
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we obtain a proper coloring of G by 6 colors. Hence χ(G) ≥ 6.

Altogether, χ(G) = 6.

Thus, (iii) is true.

4. We have seen that the coefficient of kn−1 in the chromatic polynomial
of an n-vertex graph G = (V,E) is −|E|. In the graph X3, there are
34 = 81 vertices, each of which has 20 neighbors (8 on the same row, an-
other 8 on the same column, and another 4 in the same 3×3-square but
not the same row or column). Hence the total number of edges in X3 is
81·20/2 = 810. It follows that the coefficient of k80 in χ(X3, k) is −810.

Thus, (i) is true.

5. Consider the chromatic polynomials χ(G1, k) and χ(G2, k), and put
P (k) = χ(G1, k) − χ(G2, k). Since the chromatic polynomial provides
the number of proper colorings of a graph, P (k) is the excess (positive,
negative or 0) of the number of proper colorings of G1 by k colors over
the analogous number for G2. Now if Q is any non-constant polyno-
mial, we have Q(x) −→

x→∞
∞ if the leading coefficient of Q is positive

and Q(x) −→
x→∞
−∞ if it is negative. It follows that either for every

sufficiently large k the number of proper colorings of G1 by k colors
exceeds that of G2, or for every sufficiently large k the two are equal,
or for every sufficiently large k the second exceeds the first.

Claim I certainly holds if G1 and G2 are isomorphic. However, the
converse is false in general. For example, we have seen that all trees on
the same number of vertices have the same chromatic polynomial.

Thus, (ii) is true.
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6. The greedy algorithm, applied to any graph G, yields a coloring by
at most ∆(G) + 1 colors. Hence, applied to Cn, it will always yield
a coloring by at most 3 colors. As χ(Cn) = 3 for odd n, the greedy
algorithm will always yield a coloring of Cn by χ(Cn) colors for such n.
Now consider the case of even n, where we let the vertices of Cn be
0, 1, . . . , n − 1, each vertex i neighboring the vertices i ± 1 modulo n.
Depending on the ordering of the vertices, we may get a coloring by
χ(Cn) colors (for example, if we first color the vertices 0, 2, 4, . . . , n−2)
or by χ(Cn) + 1 colors (for example, if the first two vertices to be col-
ored are 0 and 3).

Thus, (ii) is true.
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