
Probability Theory

Solutions to Selected Exercises

1 Review Questions in Combinatorics

1. There are two points to consider: how many arrangements are
there for 5 digits and 5 letters, and how many choices of digits and
letters are there for any arrangement. Consider the second point:
there are 10 different digits, and repetitions are allowed, so there
are 105 possibilities. There are 26 letters, so altogether there are
105 · 265 possibilities. The only difference between the parts of the
question is the number of arrangements. Denote a place for a digit
by d, and a place for a letter by l.

(a) The single arrangement is dddddlllll. The number of possibili-
ties is 105 · 265.

(b) In general the digits and letters should alternate. However,
a single pair of adjacent digits is still possible. Observe that
each letter (except perhaps for the last) is followed by a digit,
so we have five objects: four ld pairs, and a single l. The
remaining d may be anywhere in between, or to the left of, or
to the right of these five objects − altogether 6 possibilities.
ldldldldld ldldldlddl ldldlddldl
ldlddldldl lddldldldl dldldldldl

.

The overall number is 6 · 105 · 265.

(c) The number of arrangements is
(
10
5

)
, so the overall number is(

10
5

)
· 105 · 265.

2.

(a) Every combination is a sequence of length 7 over {1, . . . , 5}, in
which every digit must appear at least once. By inclusion and
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exclusion, the number of such sequences is

5∑
k=0

(−1)k

(
5

k

)
(5− k)7 = 16, 800.

(b) The new combinations are sequences as in case (a), but the first
two elements have to be distinct and their order is immaterial.
Thus, from the result of the preceding part we have first to
subtract the number of those sequences in which the first two
entries are equal, which is

5

(
5! + 4 ·

(
5

2, 1, 1, 1

))
= 1800,

and then divide by 2. Altogether, we obtain

16800− 1800

2
= 7500

possibilities.

3.

(a) kn.

(b) Let Ai be the event that the ith processor is assigned at least one
job, i = 1, 2, . . . , k, and A the event in the question. Clearly,
A =

⋂k
i=1 Ai. By the principle of inclusion and exclusion, and

using the symmetry of the events Ai, we have

P (A) = P

(
k⋃

i=1

Ai

)

= kP (A1)−
(

k

2

)
P (A1A2) + . . . + (−1)k−1

(
k

k

)
P

(
k⋂

i=1

Ai

)
.

Thus

P (A) = 1− P (A)

= 1− k

(
1− 1

k

)n

+

(
k

2

)(
1− 2

k

)n

+ . . . + (−1)k−2

(
k

k − 1

)
· 1

kn
.

4.

(a) rn.

(b) The first letter of the word may be any of the letters in Σ. In
each of the other n−1 places we may put any of the r−1 letters
distinct from the one in the preceding place. Hence there are
r(r − 1)n−1 possibilities in all.
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(c) Let an be the number of words not containing two consecutive
occurrences of σ. The set of words in question consists of two
disjoint subsets – those starting with σ, and those starting with
some other letter. In the first set, each word may have any
letter distinct from σ in the second place, and the remaining
n − 2 letters must form a word of length n − 2 satisfying our
condition. In the second set, each word may have any letter
distinct from σ as the first letter, and the remaining n−1 letters
must form a word of length n−1 satisfying our condition. Thus
we have:

an = (r − 1)an−2 + (r − 1)an−1, a0 = 1, a1 = r.

Solving the above recurrence relation, we obtain:

x2 + (r − 1)x− (r − 1) = 0.

Hence
an = c1b

n
1 + c2b

n
2 ,

where b1 =
r−1+

√
(r−1)(r+3)

2
and b2 =

r−1−
√

(r−1)(r+3)

2
. Substi-

tuting in the initial conditions a0 = 1, a1 = r, we obtain:

c1 =
b2 − r

b2 − b1

, c2 =
r − b1

b2 − b1

.

(d)

(
n

n1, n2, . . . , nr

)
.

(e) r[
n+1

2 ].

5.

(b) The generating function is f(x) = 1
1−2x

, and we obtain an =
2n, n ≥ 0.

8. Since n! = e
Pn

i=1 ln i the inequality

e
(n

e

)n

≤ n! ≤ e

(
n + 1

e

)n+1

is equivalent to

n ln n− n + 1 ≤
n∑

i=1

ln i ≤ (n + 1) ln (n + 1)− n.

Since
∫

ln xdx = x ln x − x + c and the function ln x is increasing,
we have ∫ n

1

ln xdx ≤
n∑

i=1

ln i ≤
∫ n+1

1

ln xdx,
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which gives the required result.

9.

(a) (
2n

n

)
=

(2n)!

(n!)2
≈
√

2π2n
(

2n
e

)2n(√
2πn

(
n
e

)n)2 =
22n

√
πn

.

(b) Consider the 2nth row of Pascal’s triangle. The sum of all
entries is 22n, and therefore each of them, in particular the
middle entry

(
2n
n

)
, is less than 22n. On the other hand, it is

easy to check that the binomial coefficients
(
2n
j

)
increase as

j increases from 0 to n, and decrease from that place on. In
particular,

(
2n
n

)
is the maximal entry in the row. Consequently:

22n

2n + 1
≤
(

2n

n

)
≤ 22n .

10. The set of binary trees on n vertices splits into n + 1 disjoint
subsets, depending on the number vertices in the left subtree. For
each k, the number of trees with k vertices at the left subtree (and
thus n− k − 1 vertices at the right subtree) is Ck · Cn−1−k. Hence:

Cn =
n−1∑
k=0

CkCn−1−k, n ≥ 1,

with the initial condition C0 = 1. It follows that

f(x) = c0 + x
∞∑

n=1

(
n−1∑
k=0

Ck · Cn−1−k

)
xn−1 = xf(x)2,

and therefore
xf(x)2 − f(x) + 1 = 0.

Consequently

f(x) =
1±

√
1− 4x

2x
=

1±
(
1− 2

∑
k=1∞

(
2(k−1)

k−1

)
xk

k

)
2x

.

Choosing the possibility with the minus sign, we obtain

f(x) =
∞∑

n=0

(
2n

n

)
xn

n + 1
,

so that Cn = 1
n+1

(
2n
n

)
.

11.
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(a) The set of all permutations which may be obtained by the sys-
tem in the question decomposes into a union of disjoint subsets
as follows. Consider the number of the step, between 2 and
2n at which the number 1 was moved from S to Q2. The step
number may be any even number in this range. Consider the
set of permutations in which this move took place at the 2jth
step. Thus, we moved the number 1 from Q1 to S at the first
step, moved the next j−1 integers 2, 3, . . . , j from Q1 to Q2 (via
S) in the next 2j − 2 steps, moved 1 from S to Q2 at the 2jth
step, and then moved the remaining integers j + 1, j + 2, . . . , n
from Q1 to Q2 in the next 2(n− j) steps. We had Pj−1 possi-
bilities for moving 2, 3, . . . , j and Pn−j possibilities for moving
j +1, j + 2, . . . , n. Consequenly, the sequence (Pn) satisfies the
recurrence:

Pn+1 = P0Pn + P1Pn−1 + P2Pn−2 + . . . + Pn−1P1 + PnP0.

The sequence is completely determined by this recurrence and
the initial condition P0 = 1.

(b) Let f(x) =
∑∞

i=0 Pix
i. Solving the recurrence relation in the

preceding part we have:

f(x)− P0 = x
∞∑

n=0

n∑
i=0

PiPn−ix
n = xf 2(x),

which yields the solutions

f1(x) =
1 +

√
1− 4x

2x

and

f2(x) =
1−

√
1− 4x

2x
.

Now
√

1− 4x =
∑∞

n=0

(
1/2
n

)
(−4x)n = 1 −

∑∞
n=1

1
2n−1

(
2n
n

)
xn.

Since the Pn’s are positive, we have to select f2(x) as the rele-
vant solution. The generating function is then

f(x) =
1

2x

(
1−

(
1−

∞∑
n=1

1

2n− 1

(
2n

n

)
xn

))
=

∞∑
n=0

1

n + 1

(
2n

n

)
xn,

which gives

Pn =
1

n + 1

(
2n

n

)
.

12.

(a) We need to make l + m moves, out of which l should be to the
right and the other m upwards. Hence the number of possibil-
ities is

(
m+l

l

)
.
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(b) The problem is equivalent to the ballot problem, so that the
number of possibilities is

(
m+l

l

)
−
(

m+l
l+1

)
if m ≤ k (and 0 other-

wise).

(c) Clearly, the number of all walks going from (0, 0) to (l,m) is:

Wl,m = Wl,m−1 + Wl−1,m + Wl−1,m−1,
Wl,0 = W0,m = 1, l, m ≥ 0.

Thus

Wl,mxlym = Wl,m−1x
lym + Wl−1,mxlym + Wl−1,m−1x

lym

and

∞∑
m=1

∞∑
l=1

Wl,mxlym = y

∞∑
m=1

∞∑
l=1

Wl,m−1x
lym−1+x

∞∑
m=1

∞∑
l=1

Wl−1,mxl−1ym+xy

∞∑
m=1

∞∑
l=1

Wl−1,m−1x
l−1ym−1,

or equivalently

f(x, y)−
∞∑
l=1

Wl,0x
l−

∞∑
m=1

W0,mym−W0,0 = y

(
f(x, y)−

∞∑
m=0

W0,mym

)
+x

(
f(x, y)−

∞∑
m=0

Wl,0x
l

)
+xyf(x, y).

Since Wl,0 = W0,m = 1 we obtain

f(x, y)− x

1− x
− y

1− y
−1 = y

(
f(x, y)− 1

1− y

)
+x

(
f(x, y)− 1

1− x

)
+xyf(x, y),

which provides the result: f(x, y) = 1/(1− x− y − xy).

2 Elementary Probability Calculations

18.

(a) For the event in question to occur, the first dn/2e tosses may
have any outcomes, and then the other bn/2c tosses are uniquely
determined by them. Hence the required probability is 2dn/2e/2n =
1/2bn/2c.

(b) There are only two sequences satisfying the property, and hence
the probability is 2

2n = 1
2n−1 .

(c) For a non-negative integer n and a word w over {0, 1}, denote
by an,w the number of words of length n starting with w and
satisfying the requiremnts. It is easy to see that

an,0 = an,00 + an,01 = an,001 + an,01 = an−2,1 + an−1,1.
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Due to symmetry, an,w = an,w, where w is the word obtained
from w upon replacing each 0 by 1 and each 1 by 0. Therefore:

an,0 = an−2,0 + an−1,0.

The initial conditions are a0,0 = a1,0 = 1. It follows that an,0

is Fibonacci’s sequence. Therefore the required probability is
2Fn

2n = Fn

2n−1 .

(d) If n is even the probability is =
(

n
n/2

)
/2n, while if n is odd

there are no sequences satisfying the condition, so that the
probability is 0.

25. The sets A1 and A2 may be chosen in 2n · 2n = 4n ways alto-
gether. To satisfy the condition A1

⋂
A2 = ∅, we have to require that

each j ∈ {1, 2, . . . , n} belongs to at most one of the sets A1 and A2.
Thus we have 3 possibilities for each j, namely either j ∈ A1

⋂
A2

or j ∈ A1

⋂
A2 or j ∈ A1

⋂
A2. Hence the number of possibilities

satisfying the requirement is 3n. It follows that the probability of
the event in question is (3/4)n.

30. Due to symmetry, all 3! = 6 possible orderings of X1, X2 and
X3 are equi-probable, whence each has probability 1/6.

32. The number of possibilities for choosing the cards is
(
52
13

)
(order

does not matter). This constitutes the denominator for all parts.

(a) There are 4 possible full hands, so the probability is 4/
(
52
13

)
.

(b) All the 13 cards should be chosen from the 48 non-ace cards:(
48
13

)
/
(
52
13

)
= 39·38·37·36

52·51·50·49
.

(c) There are
(
4
1

)
ways to choose a king, the same for a queen, and

the other 11 should be chosen from the remaining 40 cards:(
4
1

)(
4
1

)(
52−4−4−4

11

)
/
(
52
13

)
=

(4
1)

2
·(40

11)
(52
13)

.

(d) There are
(
4
1

)
ways to choose each card, and hence the proba-

bility is
(
4
1

)13
/
(
52
13

)
.

41.

(a) Since all the events in the union are disjoint, the probability is
the sum of probabilities. Consequently:

P

(
∞⋃
i=1

[
1

2i + 1
,

1

2i

])
=

∞∑
i=1

(
1

2i
− 1

2i + 1

)
= 1− ln 2

.
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(b) For any n, the set in question is contained in the set of numbers
whose infinite decimal expansion does not contain the digit 7 in
any of the first n places. The latter set is clearly of probability
(9/10)n. Thus the probability of our set is less than (9/10)n

for each n, and therefore it vanishes.

(c) As in the preceding part, the probability is 0.

43.

(a) Let us show that:

lim sup
n→∞

An = [0, 2], lim inf
n→∞

An = [1/2, 1].

Indeed, if x ∈ [0, 1], then x ∈ An for each even n, while if
x ∈ [1, 2], then x ∈ An for each odd n, so that lim supn→∞ An ⊇
[0, 2]. On the other hand, if x < 0, then x /∈ An for any n, while
if x > 2 then x /∈ An for n > 1

x−2
. This gives the inverse inclu-

sion lim supn→∞ An ⊆ [0, 2].
If x ∈ [1/2, 1], then x ∈ An for each n, and in particular
lim infn→∞ ⊇ [1/2, 1]. If x < 1/2, then x /∈ An for any odd
n, while if x > 1 then x /∈ An for odd n > 1

x−1
. Therefore

lim infn→∞ ⊆ [1/2, 1].

(b) A point belongs to lim supn→∞ An if it belongs to infinitely
many of the events An, which happens if and only if it belongs
to the union ∪∞i=kAi for each k. It follows that

lim sup
n→∞

An = ∩∞k=1 ∪∞i=k Ai,

which representation proves that lim supn→∞ An is an event.
Similarly

lim inf
n→∞

An = ∪∞k=1 ∩∞i=k Ai,

which proves that lim infn→∞ An is an event.

46.

(a) The number of all subsets of A is of size 2n. Thus Equivalently,
we have to calculate the sum of those binomial coefficients

(
n
k

)
with even k. Since the expression 1+(−1)k

2
takes the value 1 for

even k and vanishes for odd k, we have:∑
2|k

(
n

k

)
=

n∑
k=0

1 + (−1)k

2

(
n

k

)
=

1

2

n∑
k=0

(
n

k

)
+

1

2

n∑
k=0

(−1)k

(
n

k

)
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=
1

2
· 2n +

1

2
· (1− 1)n = 2n−1.

Consequently the required probability is 1
2
.

(b) A simple calculation yields:

1 + ωk + ω2k =

{
3, 3|k,
0, 3 - k.

Consequently:∑
3|k

(
n

k

)
=

n∑
k=0

1 + ωk + ω2k

3

(
n

k

)
=

1

3

[
2n + (1 + ω)n + (1 + ω2)n

]
=

2n + (−ω2)n + (−ω)n

3
.

Hence the probability for |R| to be divisible by 3 is

1

3

[
1 +

(−ω2)n + (−ω)n

2n

]
.

Similarly, to find the probability for |R| to be 1 modulo 3, we
calculate:

1 + ω2ωk + ωω2k =

{
3, k ≡ 1(mod 3),
0, otherwise.

Hence ∑
k≡1(mod 3)

(
n

k

)
=

n∑
k=0

1 + ω2ωk + ωω2k

3

(
n

k

)
=

1

3

[
2n + ω2(1 + ω)n + ω(1 + ω2)n

]
=

2n + ω2(−ω2)n + ω(−ω)n

3
.

and the probability is
1

3

[
1− (−ω2)n+1 + (−ω)n+1

2n

]
.

(c)

P (|R| ≡ i(mod 4)) =


2n+(1+i)n+(1−i)n

2n+2 i = 0
2n−i(1+i)n+i(1−i)n

2n+2 i = 1
2n−(1+i)n−(1−i)n

2n+2 i = 2
2n+i(1+i)n−i(1−i)n

2n+2 i = 3
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51.

(a) The problem is equivalent to the problem regarding 2n people,
n with $10 bills and n with $5 bills, waiting in line to but tickets
for a show, which has been solved in class. Hence the required

probability is
1

n + 1
.

(b) The number of legal expressions is the same as in the preceding

part, namely

(
2n
n

)
n + 1

, . However, this time the total number of

possibilities is 22n. Thus the required probability is

(
2n
n

)
(n + 1)22n

.

3 Conditional Probability

4 Discrete Distributions

87.

(c) For any c > 0 the values assumed by p(x) are non-negative. The
value of c is determined by the requirement that their sum be
1. First let us decompose the given rational function. Namely,
we are looking for constants a, b and d for which:

1

x(x + 1)(x + 2)
=

a

x
+

b

x + 1
+

d

x + 2
.

This gives:

a(x + 1)(x + 2) + bx(x + 2) + dx(x + 1) = 1.

Making the substitutions x = 0, x = −1 and x = −2 we obtain:

2a = 1, −b = 1, 2d = 1,

and therefore

a =
1

2
, b = −1, d =

1

2
.

Hence:
∞∑

x=1

1

x(x + 1)(x + 2)
=

∞∑
x=1

(
1/2

x
− 1

x + 1
+

1/2

x + 2

)
=

1/2

1
−1

2
+

1/2

2
=

1

4
.

Thus c = 4.
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5 Expectation

96.

(b)

E(X) =
∑n

k=0 2k
(

n
k

)
pk(1− p)n−k =

∑n
k=0

(
n
k

)
(2p)k(1− p)n−k

= (2p + (1− p))n = (1 + p)n.

(c)

E(X) =
∑n

k=0 sin k
(

n
k

)
pk(1− p)n−k =

∑n
k=0

eik−e−ik

2i

(
n
k

)
pk(1− p)n−k

= 1
2i

(∑n
k=0

(
n
k

)
(pei)k(1− p)n−k −

∑n
k=0

(
n
k

)
(pe−i)k(1− p)n−k

)
= 1

2i
((pei + 1− p)n − (pe−i + 1− p)n) .

99.

(a) Let Ak, 1 ≤ klen, denote the event whereby k is the largest
number in the sample. Then

P (Ak) =
kn − (k − 1)n

Nn
,

and therefore

E(X) =
1

Nn

N∑
k=1

k(kn − (k − 1)n).

It follows that:

E(X) =
1

Nn

(
NN+1 −

N−1∑
k=1

kn

)
= N −

N−1∑
k=1

(
k

N

)n

.

(b) Write E(X) in the form:

E(X) = N −N

N−1∑
k=0

1

N

(
k

N

)n

.

The sum on the right hand side is a Darboux sum corresponding
to the integral

∫ 1

0
xndx. Hence E(X) behaves asymptotically

as N − N
n+1

.

(c) As n becomes large, all the terms in the sum on the right hand
side of the expression for E(X) tend to 0, and therefore E(X)
tends to N .
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104.

(a) If the envelope we took contains an amount x, then it is in
principle possible that the value x was selected from the distri-
bution, in which case the other envelope contains an amount
of 2x, and it is possible that only x/2 was selected and we re-
ceived the second envelope, in which case the other envelope is
the first and so contains only x/2. Now the probability for the
first event is (using conditional probabilities)

p(x) · 1
2

p(x) · 1
2

+ p(x/2) · 1
2

=
p(x)

p(x) + p(x/2)
.

The probability in this case that x/2 was selected is therefore
p(x/2)

p(x) + p(x/2)
. Hence our expected prize if we switch to the

other envelope is

p(x)

p(x) + p(x/2)
· 2x +

p(x/2)

p(x) + p(x/2)
· x

2
.

Therefore we should indeed switch if and only

p(x)

p(x) + p(x/2)
· 2x +

p(x/2)

p(x) + p(x/2)
· x

2
> x

(where in the case of equality we are actually indifferent be-
tween the two options). A routine simplification yields the
equivalent condition 2p(x) > p(x/2).

(b) For the distribution in (i) we have the condition in (a) is satisfied
for every possible value of x, and we should always switch. For
the distribution in (ii), the condition is satisfied only for x = 2,
so we should switch only in this case. (Notice that in this latter
case we are actually certain that the other envelope contains
an amount of 4, as otherwise it would mean that the value 1
had been selected, which is impossible.)

106. Denote by D the distance between v1 and v2. Since P (D =
1) = p:

E(D) ≥ 1 · P (D = 1) + 2 · P (D ≥ 2) = p + 2(1− p) = 2− p.

On the other hand, by the solution of Problem 50 we have

P (D ≥ 3) ≤ (n− 2) ·
(
1− p2

)n−2
,

and consequently:

E(D) ≤ 1 · P (D = 1) + 2 · P (D ≥ 2) + n · P (D ≥ 3)

≤ p + 2(1− p) + n(n− 2) ·
(
1− p2

)n−2 −→
n→∞

2− p.
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Thus E(D) −→
n→∞

2− p.

110.

(Algorithm a) Denote by “success” the event that an n-tuple forms
a permutation. The probability for this event is p = n!

nn . The
number of selections of n-tuples is distributed G(p). Hence the
expected number of selections is

1

p
=

nn

n!
.

Since each selection consists of n integers, the expected num-
ber of random integers by this algorithm is nn+1

n!
. , which is

approximately
√

2π
n

en.

(Algorithm b) Denote by Xi the number of steps required to obtain
the i-th digit, i = 1, . . . n. Clearly, Xi ∼ G(1− (i− 1)/n), and
therefore

E(Xi) =
n− i + 1

n
, i = 1, . . . , n.

The total number of selections is X =
∑n

i=1 Xi, and hence:

E(X) =
n∑

i=1

E(Xi) =
n∑

i=1

n− i + 1

n
= n

(
1 +

1

2
+

1

3
+ . . . +

1

n

)
.

This time the expected number of selections is only about
n log n.

112. For 0 ≤ i ≤ n, denote by Xi the diameter of the graph ob-
tained after the ith stage of the construction process. With this
notation, we have to bound E(Xn) from below. Denote:

Di = Xi −Xi−1, 1 ≤ i ≤ n.

Obviously D1 = 0 and D2 = 1. For i ≥ 3 we have Di = 1 if at
the ith stage we connect the selected vertex to a vertex which is at
a distance Xi−1 from some vertex of the graph we have after the
(i − 1)st stage; otherwise – Di = 0. Since the diameter after the
(i− 1)st stage is Xi−1, there are at least two vertices at that point
satisfying this condition, so that

P (Di = 1) ≥ 2

i− 1
.

Hence:

E(Xn) =
n∑

i=1

E(Di) ≥ 0 + 1 +
n∑

i=3

2

i− 1

= 2(1 + 1/2 + 1/3 + . . . + 1/(n− 1))− 1.
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6 Continuous Distributions

119. Obviously, X is distributed Cauchy.

7 Variance and Covariance

134. Let X denote the number of ones. Then X =
∑n

i=1 Xi, where
Xi = 1 if the outcome of the ith roll is 1 and Xi = 0 otherwise. Let
Y and Yi, 1 ≤ i ≤ n, be defined similarly for the sixes. Obviously,
X, Y ∼ B(n, 1/6), so that:

E(X) = E(Y ) =
n

6
.

Now

E(XY ) = E

(
n∑

i=1

Xi ·
n∑

j=1

Yj

)

=
n∑

i,j=1

E(XiYj) =
∑
i6=j

E(Xi)E(Yj) +
n∑

i=1

E(XiYi)

= n(n− 1) · 1

6
· 1

6
+

n∑
i=1

0 =
n(n− 1)

6
,

and therefore

Cov(X, Y ) =
n(n− 1)

6
− n

6
· n

6
= − n

36
.

135.

(a) Obviously, X ∼ H(m, a, b), Y ∼ H(n, a, b), and therefore

E(X) =
ma

a + b
, V (X) =

mab

(a + b)2

(
1− m− 1

a + b− 1

)
,

and

E(Y ) =
na

a + b
, V (Y ) =

nab

(a + b)2

(
1− n− 1

a + b− 1

)
.

14



(b) Write X =
∑n

i=1 Xi, where Xi = 1 if the ith ball is white and
Xi = 0 otherwise. Write Y =

∑n
i=1 Yi, analogously for the

second batch. Then

E(XY ) = E

(
m∑

i=1

Xi ·
n∑

j=1

Yj

)

=
m∑

i=1

n∑
j=1

E(XiYj) = mn
a(a− 1)

(a + b)(a + b− 1)
,

so that

Cov(X, Y ) = mn
a(a− 1)

(a + b)(a + b− 1)
− ma

a + b
· na

a + b

= − mnab

(a + b)2(a + b− 1)
.

(c) The covariance is negative since the more white balls there are in
the first batch the less we should expect to have in the second.

8 Multi-Dimensional Distributions

9 Independence
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