Convex Sets

A set C is a convex set if $\lambda x + (1 - \lambda)y \in C$ for each $x \in C$, $y \in C$ and $0 < \lambda < 1$. A sum $\lambda_1 x_1 + \ldots + \lambda_m x_m$ is called a convex combination of $x_1 \ldots x_m$ if the cofficients λ_i are non-negative and $\lambda_1 + \ldots + \lambda_m = 1$.

Properties

1. If A and B are convex sets then the following sets are convex:

 $A \cap B$,

A+B,

 αA ,

 \bar{A} ,

Int(A).

2. A set C is convex if and only if it contains all the convex combinations of its elements.

The intersection of all the convex sets containing a given subset S is called the convex hull of S and is denoted by Co(S).

The convex hull of a finite set is colled a *polytope*.

- 3. Co(S) consists of all the convex combinations of the elements of S.
- 4. If A is a convex set then

$$Int(A) = Int(\bar{A}).$$

Cones

A set K is a cone if $\lambda x \in K$ for each $x \in K$ and $\lambda > 0$.

A convex cone is a cone which is a convex set.

A finite cone is the sum of a finite number of rays.

- 1. The intersection of an arbitrary collection of convex cones is a convex cone.
- 2. A finite cone is a closed convex cone.

Extreme points

Let C be a convex set. A point $x \in C$ is an extreme point of C iff there is no way to express x as a convex combination $\lambda y + (1 - \lambda z)$ where $y \neq z$.

Separation theorems

Let A and B be two sets. We say that the sets can be *separated* if there exists a hyperplane

$$H = \{x \in E^n : (a, x) = \alpha\}$$

such that

$$(a, x) \ge \alpha$$
 for all $x \in A$

and

$$(a, x) \le \alpha$$
 for all $x \in B$.

We say that the sets can be strongly separated if there exists a hyperplane

$$H = \{x \in E^n : (a, x) = \alpha\}$$

such that

$$(a, x) > \alpha$$
 for all $x \in A$

and

$$(a, x) < \alpha \text{ for all } x \in B.$$

Lemma 1. If A is a closed convex set and $0 \in A$ then the sets $\{0\}$ and A can be strongly separated.

Lemma 2. If A is a convex set and $0 \in A$ then the sets $\{0\}$ and A can be separated.

Theorem 1. Let A and B be convex sets and $A \cap B = \emptyset$. Then A and B can be separated.

Theorem 2. Let A be a convex set, K be a convex cone and $A \cap K = \emptyset$. Then A and K can be separated by hyperplane:

$$H = \{x \in E^n : (a, x) = 0\}.$$