The Simplex Method. Problems with upper boundaries

Let us consider a linear program (problem C)

$$
\min c[N] \times x[N]
$$

subject to conditions:

$$
\begin{gathered}
A[M, N] \times x[N]=b[M], \\
l[N] \leq x[N] \leq u[N] .
\end{gathered}
$$

It is possible: $l_{j}=-\infty$ and $u_{j}=\infty$.
A basis N_{B} is not degenerate if the corresponding basic solution satisfy the following condition: $l_{j}<x_{j}<u_{j}$ for $j \in N_{B}$.

Assumptions:
(i) Each basis contains m components;
(ii) absence of degeneracy: each feasible basis is not degenerate.

Let N_{B} be a feasible basis and let x be the corresponding basic solution.
Let the set $N_{F}=N \backslash N_{B}$ be divided into two sets:

$$
\begin{aligned}
& N_{F}^{-}=\left\{j \in N_{F}: x_{j}=l_{j}\right\}, \\
& N_{F}^{+}=\left\{j \in N_{F}: x_{j}=u_{j}\right\} .
\end{aligned}
$$

Vector x is an optimal solution iff there exists a vector $y[M]$ such that

$$
\begin{aligned}
& y[M] \times A\left[M, N_{B}\right]=c\left[N_{B}\right], \\
& y[M] \times A\left[M, N_{F}^{-}\right] \leq c\left[N_{F}^{-}\right], \\
& y[M] \times A\left[M, N_{F}^{+}\right] \geq c\left[N_{F}^{+}\right] .
\end{aligned}
$$

An improving algorithm (one step of the simplex method)

(1) Calculate the vector of the dual variables $y[M]$ from the following system of linear equations:

$$
y[M] \times A\left[M, N_{B}\right]=c\left[N_{B}\right] .
$$

(2) If $y[M] \times A[M, j] \leq c[j]$ for all $j \in N_{F}^{-}$and $y[M] \times A[M, j] \geq c[j]$ for all $j \in N_{F}^{+}$then x is an optimal solution of problem (C) and y is an optimal solution of the dual problem.
(3) Find an element to be introduced into the basis: $j_{0} \in N_{F}^{-}$such that $y[M] \times A\left[M, j_{0}\right]>c\left[j_{0}\right]$ or $j_{0} \in N_{F}^{+}$such that $y[M] \times A\left[M, j_{0}\right]<c\left[j_{0}\right]$.
(4) Find a vector $\lambda\left[N_{B}\right]$ from the following system of linear equations:

$$
A\left[M, N_{B}\right] \times \lambda\left[N_{B}\right]=A\left[M, j_{0}\right] .
$$

(5) Find an element to be removed from the basis: find $t^{*}=\min \left(t_{1}, t_{2}, t_{3}\right)$ where

$$
\text { if } j_{0} \in N_{F}^{-}
$$

$$
\begin{aligned}
t_{1}=\frac{x_{j_{1}}-l_{j_{1}}}{\lambda_{j_{1}}} & =\min _{j \in N_{B}: \lambda[j]>0} \frac{x_{j}-l_{j}}{\lambda_{j}} ; \\
t_{2}=\frac{u_{j_{2}}-x_{j_{2}}}{-\lambda_{j_{1}}} & =\min _{j \in N_{B}: \backslash[j]<0} \frac{u_{j}-x_{j}}{-\lambda_{j}} ; \\
t_{3} & =u_{j_{0}}-l_{j_{0}} ;
\end{aligned}
$$

if $j_{0} \in N_{F}^{+}$

$$
\begin{aligned}
t_{1}=\frac{x_{j_{1}}-l_{j_{1}}}{-\lambda_{j_{1}}} & =\min _{j \in N_{B}: \lambda[j]<0} \frac{x_{j}-l_{j}}{-\lambda_{j}} ; \\
t_{2}=\frac{u_{j_{2}}-x_{j_{2}}}{\lambda_{j_{1}}} & =\min _{j \in N_{B}: \lambda[j]>0} \frac{u_{j}-x_{j}}{\lambda_{j}} ; \\
t_{3} & =u_{j_{0}}-l_{j_{0}}
\end{aligned}
$$

If $t=\infty$ then problem (C) has no solution.
(6) Calculate a new basis N_{B}, new sets N_{F}^{-}and N_{F}^{+}and new basic solution: if $t^{*}=t_{1}$ and $j_{0} \in N_{F}^{-}$:

$$
\begin{aligned}
& N_{B}:=N_{B} \cup j_{0} \backslash j_{1}, \\
& N_{F}^{-}:=N_{F}^{-} \backslash j_{0} \cup j_{1}, \\
& N_{F}^{+} \text {is not changed, }
\end{aligned}
$$

$$
\begin{gathered}
x_{j_{0}}:=l_{j_{0}}+t^{*}, \\
x_{j}=x_{j}-t^{*} \lambda_{j}\left(j \in N_{B}\right) ;
\end{gathered}
$$

if $t^{*}=t_{2}$ and $j_{0} \in N_{F}^{-}$:

$$
N_{B}:=N_{B} \cup j_{0} \backslash j_{2},
$$

$$
\begin{gathered}
N_{F}^{-}:=N_{F}^{-} \backslash j_{0} \cup j_{1}, \\
N_{F}^{+}:=N_{F}^{+} \cup j_{2}, \\
x_{j_{0}}:=l_{j_{0}}+t^{*}, \\
x_{j}=x_{j}-t^{*} \lambda_{j}\left(j \in N_{B}\right) ;
\end{gathered}
$$

if $t^{*}=t_{1}$ and $j_{0} \in N_{F}^{+}$:

$$
\begin{gathered}
N_{B}:=N_{B} \cup j_{0} \backslash j_{1}, \\
N_{F}^{-}:=N_{F}^{-} \cup j_{1}, \\
N_{F}^{+}:=N_{F}^{+} \backslash j_{0}, \\
x_{j_{0}}:=u_{j_{0}}-t^{*}, \\
x_{j}=x_{j}+t^{*} \lambda_{j}\left(j \in N_{B}\right) ;
\end{gathered}
$$

if $t^{*}=t_{2}$ and $j_{0} \in N_{F}^{+}$:

$$
\begin{gathered}
N_{B}:=N_{B} \cup j_{0} \backslash j_{2}, \\
N_{F}^{+}:=N_{F}^{+} \backslash j_{0} \cup j_{2}, \\
N_{F}^{-} \text {is not changed, } \\
x_{j_{0}}:=u_{j_{0}}-t^{*}, \\
x_{j}=x_{j}+t^{*} \lambda_{j}\left(j \in N_{B}\right) ;
\end{gathered}
$$

if $t^{*}=t_{3}$ and $j_{0} \in N_{F}^{-}$:
N_{B} is not changed,

$$
\begin{gathered}
N_{F}^{-}:=N_{F}^{-} \backslash j_{0}, \\
N_{F}^{+}:=N_{F}^{+} \cup j_{0}, \\
x_{j_{0}}:=u_{j_{0}}, \\
x_{j}=x_{j}-t^{*} \lambda_{j}\left(j \in N_{B}\right) ;
\end{gathered}
$$

if $t^{*}=t_{3}$ and $j_{0} \in N_{F}^{+}$:
N_{B} is not changed,

$$
\begin{gathered}
N_{F}^{+}:=N_{F}^{+} \backslash j_{0}, \\
N_{F}^{-}:=N_{F}^{-} \cup j_{0}, \\
x_{j_{0}}:=l_{j_{0}}, \\
x_{j}=x_{j}+t^{*} \lambda_{j}\left(j \in N_{B}\right) ;
\end{gathered}
$$

