
K-GROUPS AND SECONDARY INVARIANTS

ISHAI DAN-COHEN

1. Chern classes and étale cycle class maps for K0

These notes are mostly about higher K-groups and their Chern class maps
all the way to étale cohomology, skipping the higher Chow groups which
lie in between. However, I’ll start by mentioning ordinary Chow groups
briefly, since these help to clarify the relationship between K-theory and
absolute cohomology.

1.1. Let Z = Spec k a field and X smooth over Z. Let Λ = Z/ln for some n
which we fix and promptly forget (so in particular, this n need not be equal
to any other n that occurs bellow). The Kummer sequence of sheaves on
SmZ,ét

1→ Λ(1)→ Gm → Gm → 1
gives rise to a map

Pic(X) = H1
ét(X,Gm)

σ
−→ H2

ét(X,Λ(1)).

Choosing an algebraic closure, there’s a further map

H1
ét(X,Λ(1))

f
−→ H2

ét(Xk,Λ(1))Gk .

The image of the composite f ◦σ is by definition the group of divisors mod-
ulo homological equivalence, which we will denote by hom1(X). (When X
is proper, hom1(X) is also called the Néron-Severi group, and is closely
related to the maximal étale quotient of the Picard variety.)

Although we all learn about the Picard group before learning about hom1,
the general picture suggests that psychologically, it makes some sense to
reverse the order. The cycle class map

hom1(X)
σ
−→ H2

ét(Xk,Λ(1))Gk

should be viewed as psychologically prior. A partial justification for this
is that homological equivalence is conjecturally equivalent to numerical
equivalence, while the latter may be defined without reference to any Weil
cohomology theory.
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The map σ is then a refinement of the cycle class map σ whose target is
sometimes described as absolute cohomology. More on that later.

1.2. The situation described in paragraph 1.1 is the case j = 1 of the square

Ch j(X) //

����

H2 j(X,Λ( j))

����

hom j(X) // H2 j(Xk,Λ( j))Gk .

The Λ-module occurring in the south-eastern corner of the diagram is a
cohomology group (H0) of a Λ-adic Galois representation. The category of
such, RepΛ Gk, is abelian, so we can form its derived category D RepΛ Gk,
which comes together with a t-structure whose heart is

RepΛ Gk ⊂ D RepΛ Gk.

Over the years (especially in the context of motives) it has become clear
that it’s better to think of the derived category D RepΛ Gk as being psycho-
logically prior, and of the abelian category RepΛ Gk as resulting from extra
structure, namely a t-structure. So it’s worth noting that the absolute coho-
mology occurring in the north-eastern corner of the diagram can be defined
without reference to the t-structure. To see this, denote the structure map
X → Z by g and consider the derived pushforward

C = C∗ét(X,Λ( j)) := Rg∗Λ( j).

Then we have canonical isomorphisms

Hk(X,Λ( j)) = hkRΓC

= hkRHom(Λ(0),C)
= R Hom(Λ(0),C[2 j]),

where RHom denotes the mapping complex, an object of the derived cate-
gory of Λ-modules. Thus, the Galois fixed part of the geometric cohomol-
ogy H2 j(Xk,Λ( j)) = H2 j(Xk,Λ)( j) is a piece of the absolute cohomology
which may be broken-off with the help of the t-structure.

1.3. Thus, rational equivalence classes of cycles give rise to absolute coho-
mology classes. On the other hand, vector bundles give rise to cycles which
are well defined modulo rational equivalence. Starting now, however, and
for the remainder of these notes, we will skip Chow groups and go straight
from vector bundles (and the K-groups to which they give rise) to absolute
cohomology.

Let E be a vector bundle of rank r + 1 on X and let PE denote its pro-
jectivization. The Kummer sequence as above applied to PE in place of X
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yields a map
PicPE = H1

ét(PE,Gm)
c̃
−→ H2

ét(PE,Λ(1));
we set

ξE := c̃(O(1)).

1.4. If Y is a smooth Z-scheme, we define

H∗ét(Y) :=
⊕

j

H2 j(Yk,Λ( j)).

Then cup product makes H∗ét(Y) into a commutative Λ-algebra (since only
even degrees appear) and the map

π∗ : H∗ét(X)→ H∗ét(PE)

makes H∗ét(PE) into a H∗ét(X)-algebra.

Theorem 1.4.1. The algebra H∗ét(PE) is freely generated as a H∗ét(X)-module
by the elements 1, ξE, ξ

2
E, . . . , ξ

r
E.

In different notation, identifying H2 j(X,Λ( j)) with its image in H2 j(PE,Λ( j)),
we have an isomorphism of H∗(X)-modules

H∗(PE) ' H∗(X) ⊕ H∗(X)ξE ⊕ · · · ⊕ H∗(X)ξr
E.

Taking jth graded components (and dropping the free generators from the
notation), we get

H2 j(PE,Λ( j)) ' H2 j(X,Λ( j))⊕H2 j−2(X,Λ( j−1))⊕· · ·⊕H2 j−2r(X,Λ( j−r)),

where any terms outside of the range of dimensions of X vanish.
In view of Theorem 1.4.1, we may define the Chern classes

c j(E) ∈ H2 j(Y,Λ( j))

of a vector bundle E by the formula

ξr+1
E + π∗

(
c1(E)

)
∪ ξr

E + · · · + π∗
(
cr+1(E)

)
= 0 in H2r+2(PE,Λ(r + 1)).

Put more simply (while being less explicit about the Tate twists which show
up), we write ξr+1

E as a linear combination of the generators 1, ξE, . . . , ξ
r
E and

define the Chern classes to be the coefficients (or minus the coefficients, or
an alternating sum — this seems to vary depending on the source).

1.5. Denote by Proj'X the groupoid of OX-modules which are locally free of
finite rank and isomorphisms of OX-modules. Direct sum makes Proj'X into
a symmetric monoidal category. This makes π0Proj'X into a commutative
monoid. We let

π0Proj'X → K0(X)
be the universal map to an abelian group. For each j ≥ 0, there’s a map

K(X)0 → Ch j(X),
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which, I believe, may be defined by

c j([E] − [F]) = c j(E) − c j(F).

That is, each c j is a map of monoids, so extends uniquely to a map of groups.

2. From group completion to the plus construction

2.1. If X is a simplicial scheme over a base Z, then a vector bundle on X
consists of for every I ∈ ∆, a vector bundle EI on XI , and for every map
I → J in ∆ inducing f : XI ← XJ, an isomorphism

f ∗EI
∼
−→ EJ.

These form a category in a natural way.

2.2. We collect here some facts about BG; some will be used in this section,
others in the next section.

If G is an abstract group, BG can be thought of first as the category with
one objects whose automorphisms are given by G. It’s often better to think
of BG as a simplicial set by taking the nerve of this category, or as a topolog-
ical space, by taking geometric realization of the simplicial set. We won’t
distinguish between these notationally.

More generally, one can do “the same” with a sheaf of groups G (on a
topological space or a site) to obtain a simplicial sheaf BG. Here, along
the way, one may naively be led to considering a sheaf of categories up to
equality of functors, rather than up to equivalences together with coherent
higher homotopies. I’m not sure if this is dangerous.

In any case, if G is an algebraic group over a base Z, we will think of
BG as a simplicial Z-scheme. There’s a map Z → BG and the trivial action
of G on Z over BG makes Z → BG into a very special G-torsor1. Since
GLn-torsors correspond to vector bundles, BGLn has a very special vector
bundle Eu

n of rank n.2

We set
GL = colim GLn.

2.3. Let X be a scheme. Since Proj'X is a groupoid, its nerve N(Proj'X) is a
Kan-complex, i.e. an object of the∞-category S of spaces. The symmetric

1that is, it’s the universal torsor in a sense which can be made precise in several different
ways.

2I believe the universality may be (partly) described in down to earth terms as follows.
Given a scheme Y and a vector bundle of rank n on Y , there exists a Zariski hypercover
h : Y• → Y and a map fE : Y• → BGLn such that f ∗E Eu

n includes descent data for E along
h.
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monoidal structure gives N(Proj'X) the structure of an E∞-monoid in S. We
let

N(Proj'X)→ K(X)
be the universal map to an E∞-group. 3 There’s an equivalence of ∞-
categories

Sp≥0
'
−→ GrpE∞(S)

from connective spectra to E∞-groups, so that K(X) may be canonically
identified with a spectrum. 4 It follows formally from an ∞-categorical
adjunction that

π0(K(X)) ' K0(X).

2.4. Assume now that X = Spec R is affine. For each n ≥ 0, there’s a natural
fully faithful functor

BGLn(R)→ Proj'R
with essential image equivalent to the full subcategory of free modules of
rank n. Hence there’s a map of simplicial sets

BGLn(R)→ N(Proj'R)→ K(R).

For varying n, the map

BGLn(R)→ BGLn+1(R)

g 7→ g ⊕ (1)
(direct sum of matrices) commutes with the map

Proj'R → Proj'R
E 7→ E ⊕ R.

The latter becomes invertible upon passage to K(R). Taking direct limits,
we obtain (or at least expect) a map

BGL(R)→ K(R).

There’s also a natural map

K(R)→ π0K(R) = K0(R).

This last map admits a section, so that there exists a map

f : K0(R) × BGL(R)→ K(R).
3An E∞-monoid is a space with a distinguished point and a binary operation which are

unital, associative and commutative up to coherent higher homotopy. An E∞-group is an
E∞-monoid such that the induced monoid structure on π0 has inverses.

4In more down to earth terms, this means that the underlying space of K(X) comes
with an infinite sequence of deloopings; these are spaces BnK(X) together with homotopy
equivalences ΩnBnK(X) ' K(X).
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Theorem 2.4.1 (The plus theorem). Perhaps under some assumptions on R,
f induces abelianization on π1 and isomorphisms on homology with integral
(as well as some other) coefficients.

Lectures by Thomas Nikolaus at the Isaac Newton Institute available
from https://www.newton.ac.uk/event/hhhw01/ are crystal clear, un-
til they become suddenly a bit vague at exactly this point, somewhere in the
middle of lecture II. Most of the work is done in his The group completion
theorem via localizations of ring spectra; see also the exposition Group
completion is a completion by Oscar Bendix Harr available from http:
//web.math.ku.dk/~jg/students/oscar-bsthesis.pdf, as well as
notes by Shay Ben Moshe available from
http://shaybm.com/k-theory-seminar/.
The proof of Theorem 2.4.1 goes through a certain modification BGL(R)+

of the space BGL(R), commonly referred to as the plus construction. My
formulation of the theorem avoids mentioning it. See the notes by Ben
Moshe for an informal account of how the plus construction solves the
group completion problem in two steps.

2.5. As a corollary, K1(X) = R∗. Indeed,

K1(X) = π1K(X)

= (π1BGL(R))ab

= GL(R)ab,

and a calculation shows that the latter maps isomorphically to R∗ via the
determinant.

3. Chern class maps

Let X be a smooth quasiprojective k-scheme and Λ = Z/ln (l invertible in
k). Our goal in this section is to construct the Chern class maps

ci, j : Ki(X)→ H2 j−i
ét (X,Λ( j)).

These notes are based on Peter Schneider: Introduction to the Beilinson
conjectures

3.1. Let Z = Spec k, a field. Let Λ = Z/lm, l different from the characteristic
of k. Let

A =
⊕

j≥0

Λ( j)

an étale sheaf on the category SmZ of smooth quasiprojective schemes over
Z. Let a be the map

SmZ,ét → SmZ,Zar .
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Let B = Ra∗A, an object of the derived category

hD+ = hD+(SmZ,Zar,Ab)

of bounded below complexes of sheaves of abelian groups. Let C be a
quasi-isomorphic complex of injectives.

The object A of the bounded below derived category hD+
ét has a natural

group structure. With some work, this leads to associated group structures
on B and on C. This can make things simpler, although I doubt we really
need it here.

3.2. For G an abstract group, we have

H−iNZBG = Hi(BG,Z) = Hi(G,Z).

This is just the same as the usual way of computing group homology as the
homology of an explicitly constructed complex.

3.3. Let Y be a simplicial object of SmZ. We denote by ZY the simplicial
sheaf of free abelian groups generated by the functor of points of Y . We let
N of a simplicial abelian group denote the associated complex. Let F be an
object of the derived category

hDZar(SmZ,Ab).

We define
Hi(Y,F ) = HomhD(NZY,F [i]).

Of course, the notation implies that where the left-hand side is already de-
fined in a different way, the two agree.

3.4. Roughly speaking, c j of a vector bundle is the degeneracy locus of a
generic frame of appropriate size. The construction can be made sufficiently
functorial to work also for simplicial schemes. We give a very superficial
account.

The Kummer extension

0→ Λ(1)→ Gm → Gm → 1

in the category of étale sheaves of abelian groups on SmZ gives rise to a
map

Gm[−1]→ Λ(1)→ A
in the derived category of étale sheaves of abelian groups, hence to a map
of complexes of Zariski sheaves 5

c̃ : Gm[−1]→ C.
5Actually, Schneider merely hints at the existence of a map c̃ for which Theorem 3.4.1

holds. My construction may be wrong.
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Let Y be a simplicial object of SmZ and E a vector bundle. Then c̃ induces
a map

c̃E : H1(PE,Gm)→ H2(PE,C).
We denote

ξE := c̃E
(
O(1)

)
.

Theorem 3.4.1. Let Y be a simplicial object of SmZ and E a vector bundle
of rank n + 1. Denote the projection PE → Y by π. Then for each i, the map

n⊕
k=0

Hi−2k(Y,C)→ Hi(PE,C)

(α0, . . . , αn) 7→ π∗α0 + π∗α1 ∪ ξE + · · · + π∗αn ∪ ξ
n
E

is an isomorphism.

In view of Theorem 3.4.1, we may define the Chern classes

c j(E) ∈ H2 j(Y,C)

of a vector bundle E by the formula

ξn+1
E + π∗

(
c1(E)

)
∪ ξn

E + · · · + π∗
(
cn+1(E)

)
= 0 in H2n+2(PE,C).

We set c0(E) = 1 and c>n+1(E) = 0.

3.5. We define
c(n)

j ∈ H2 j(BGLn,C)

by 6

c(n)
j = c j

(
[Eu

n] − [On]
)
.

These arrange themselves into classes

c j ∈ H2(BGL,C)

represented by maps
NZBGL→ C[2 j].

3.6. Let X = Spec A be an affine scheme in SmZ. Evaluating c j on X we
obtain

c j(X) : NZBGL(X)→ C[2 j](X)
hence

H−i(c j(X)
)

: Hi(GL(A),Z)→ H2 j−i(X,C) = H2 j−i
ét

(
X,

⊕
j≥0

Λ( j)
)
.

6I haven’t quite understood this formula yet; I find Schneider’s account confusing here.
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We define ci, j for i ≥ 1 by the composite

Ki(X) = πi(K(A)) // Hi(K(A),Z)

Hi(BGL(A),Z)

Hi(GL(A),Z) // H2 j−i
ét

(
X,

⊕
k≥0 Λ(k)

)
��

H2 j−i
ét

(
X,Λ( j)

)
.

Theorem 3.7. If W → Y is a morphism in SmZ which is Zariski locally
projection from affine space then the induced map

K(W)← K(Y)

is a homotopy equivalence.

3.8. By Jouanolou’s lemma, every Y ∈ SmZ has an affine W mapping to Y
via a map as in the theorem. Since such maps also induce isomorphisms
in étale cohomology, this may be used to extend the Chern class maps to
all of SmZ. Schneider comments on a more sophisticated and conceptually
correct method which applies also to cohomology theories which are not
homotopy invariant.

4. Secondary invariants

4.1. The functors
Ab(Xét)

f∗
−→ Ab(Zét)

Γ
−→ Ab

give rise to a spectral sequence

RqΓRp f∗Λ( j) =⇒ Rp+qΓΛ( j).

This induces a filtration on H2 j−i
ét

(
X,Λ( j)

)
and, for instance, a short exact

sequence

0→ H1
(
Gk,H

2 j−i−1
ét

(
Xk,Λ( j)

))
→ H2 j−i

ét

(
X,Λ( j)

)
/F2 → H0

(
Gk,H

2 j−i
ét

(
Xk,Λ( j)

))
→ 0.

Thus the kernel of

Ki(X)→ H0
(
Gk,H

2 j−i
ét

(
Xk,Λ( j)

))
maps to

H1
(
Gk,H

2 j−i−1
ét

(
Xk,Λ( j)

))
,

providing a secondary invariant for classes which are homologically trivial.
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Example 4.2. Suppose X/k is a smooth proper curve. Then Poincaré dual-
ity provides an isomorphism

H1(Xk,Λ)(1) ' H1(Xk,Λ),

the Λ-adic Tate module of the Jacobian. Hence the kernel K0(X)0 of

K0(X)→ H0
(
Gk,H2

ét
(
Xk,Λ(1)

))
maps to

H1
(
Gk,H1

ét
(
Xk,Λ(1)

))
= H1

(
Gk,Hét

1
(
Xk,Λ

))
.


