(1) a. Denote $a_{n}=\left(\frac{n+2}{n+1}\right)^{n} \frac{(2 x-1)^{n}}{2^{n}(x+3)^{n}}$, then $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\left|\frac{2 x-1}{2(x+3)}\right|$. Thus the series converges absolutely for $\left|\frac{(2 x-1)}{(x+3)}\right|<2$ and diverges for $\left|\frac{(2 x-1)}{(x+3)}\right|>2$. It remains to check the boundary points:
\star If $\frac{2 x-1}{x+3}=-2$, i.e. $x=-\frac{4}{5}$, then the series is $\sum_{n \geq 1}\left(\frac{n+2}{n+1}\right)^{n}(-1)^{n}$. It diverges, as $a_{n} \nrightarrow 0$.
\star The case $\frac{2 x-1}{x+3}=2$ is not realized as this equation has no solutions.
In total: the series converges absolutely for $\left|\frac{2 x-1}{x+3}\right|<2$ and diverges otherwise. The condition on x reads: $x>-\frac{5}{4}$.
b. We should compute $\oint_{C} \vec{F} d \vec{C}$. Use the Stokes formula to transform this integral into the surface integral $\iint \operatorname{rot}(\vec{F}) d \vec{S}$, over the surface $S=\left\{x^{2}+y^{2}+z^{2}=2 R x, z>0, x^{2}+y^{2} \leq 2 r x\right\}$. The normal to this surface is taken upstairs, as the curve is oriented counterclockwise. The normal is: $\overrightarrow{\mathcal{N}}=\partial_{x} \vec{r} \times \partial_{y} \vec{r}=\left(-\partial_{x} z,-\partial_{y} z, 1\right)$.

The natural parametrization of the surface is: $z=\sqrt{2 R x-x^{2}-y^{2}}$ therefore
$\iint \operatorname{rot}(\vec{F}) d \vec{S}=\iint(2 y-2 z, 2 z-2 x, 2 x-2 y) \cdot \overrightarrow{\mathcal{N}} d x d y=\iint_{x^{2}+y^{2} \leq 2 r x} 2\left(x-y+(z-y) \partial_{x} z+(x-z) \partial_{y} z\right) d x d y$
Note that $\partial_{x} z=\frac{R-x}{z}, \partial_{y} z=-\frac{y}{z}$. Therefore the integral to compute is: $\iint_{x^{2}+y^{2} \leq 2 r x} 2 R\left(1-\frac{y}{z}\right) d x d y$.
The domain of the integration, the disc $\left\{(x-r)^{2}+y^{2} \leq r^{2}\right\}$, is symmetric with respect to the \hat{x} axis (i.e. with respect to $y \leftrightarrow-y$). The function $\frac{y}{z}$ is anti-symmetric with respect to $y \leftrightarrow-y$. Therefore $\iint_{x^{2}+y^{2} \leq 2 r x} 2 R \frac{y}{z} d x d y=0$. Thus the initial integral equals to:
$\oint_{C} \vec{F} d \vec{C}=\iint \operatorname{rot}(\vec{F}) d \vec{S}=\iint_{x^{2}+y^{2} \leq 2 r x} 2 R\left(1-\frac{y}{z}\right) d x d y=\iint_{x^{2}+y^{2} \leq 2 r x} 2 R d x d y=2 R \cdot A r e a\left\{(x-r)^{2}+y^{2} \leq r^{2}\right\}=2 R \pi r^{2}$
(2) a. First we expand the function x^{y} around the point $(1,1)$ up to the second order:
$x^{y}=1+\left.\left(y x^{y-1}\right)\right|_{(1,1)} \Delta x+\left.\left(\ln (x) x^{y}\right)\right|_{(1,1)} \Delta y+\frac{\left.\left(y(y-1) x^{y-2}\right)\right|_{(1,1)}(\Delta x)^{2}+\left.2\left(x^{y-1}+y \ln (x) x^{y-1}\right)\right|_{(1,1)} \Delta x \Delta y+\left.\left(\ln ^{2}(x) x^{y}\right)\right|_{(1,1)}(\Delta y)^{2}}{2}+\cdots$ $=1+\Delta x+\Delta x \Delta y+\cdots$

Therefore $x^{y} y^{x}=(1+\Delta x+\Delta x \Delta y+\cdots)(1+\Delta y+\Delta x \Delta y+\cdots)=1+\Delta x+\Delta y+3 \Delta x \Delta y+\cdots$.
Thus approximately: $1.02^{1.03} 1.03^{1.02} \approx 1+0.02+0.03+3 \cdot 0.02 \cdot 0.03=1.0518$.
b. In the polar coordinates the equation of the curve is: $r^{2}\left(1-\frac{\sin ^{2}(2 \phi)}{2}\right)=1$. As ϕ changes from 0 to 2π the point on the curve evolves once around the centre of coordinates. The curve lies between the circle of radius 1 and the circle of radius $\sqrt{2}$. The curve intersects the coordinates axes at the points $(\pm 1,0),(0, \pm 1)$.

The area:

$$
\iint 1 d S=\int_{0}^{2 \pi} d \phi \int_{0}^{\frac{1}{\sqrt{1-\frac{\sin ^{2}(2 \phi)}{2}}}} r d r=\frac{1}{2} \int_{0}^{2 \pi} \frac{d \phi}{1-\frac{\sin ^{2}(2 \phi)}{2}}=\int_{0}^{2 \pi} \frac{d \phi}{1+\cos ^{2}(2 \phi)}=8 \int_{0}^{\frac{\pi}{4}} \frac{d \phi}{1+\cos ^{2}(2 \phi)}
$$

Change the variable $t=2 \phi$, then the needed integral is

$$
4 \int_{0}^{\frac{\pi}{2}} \frac{d t}{1+\cos ^{2}(t)}=4 \int_{0}^{\frac{\pi}{2}} \frac{\frac{1}{\cos ^{2} t} d t}{\frac{1}{\cos ^{2} t}+1} \stackrel{x=\tan (t)}{=} 4 \int_{0}^{\infty} \frac{d x}{1+x^{2}+1}=4 \int_{0}^{\infty} \frac{1}{2} \frac{d x}{1+\left(\frac{x}{\sqrt{2}}\right)^{2}}=4 \frac{1}{2} \sqrt{2} \frac{\pi}{2}
$$

(3) a. Rename the axes, $y \leftrightarrow z$, then we should find the area of the surface $x^{2}+y^{2}+z^{2}=a^{2}$ inside $x^{2}+y^{2} \leq b^{2}$.

It is enough to compute the area of the part $z=\sqrt{a^{2}-x^{2}-y^{2}} \geq 0$ with $x^{2}+y^{2} \leq b^{2}$. The surface area is: $\iint 1 d s$. The natural parametrization of the surface is in terms of x, y. Thus the normal is $\overrightarrow{\mathcal{N}}=\partial_{x} \vec{r} \times \partial_{y} \vec{r}=\operatorname{det}\left(\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ 1 & 0 & \partial_{x} z \\ 0 & 1 & \partial_{y} z\end{array}\right)$. Therefore $\|\overrightarrow{\mathcal{N}}\|=\sqrt{1+\left(\partial_{x} z\right)^{2}+\left(\partial_{y} z\right)^{2}}$. We convert the surface integral to the double integral:

$$
\begin{aligned}
& \iint 1 d s=\iint_{x^{2}+y^{2} \leq b^{2}} \sqrt{1+\left(\partial_{x} z\right)^{2}+\left(\partial_{y} z\right)^{2}} d x d y=\iint_{x^{2}+y^{2} \leq b^{2}} \sqrt{1+\frac{x^{2}}{a^{2}-x^{2}-y^{2}}+\frac{y^{2}}{a^{2}-x^{2}-y^{2}}} d x d y= \\
& =\iint_{x^{2}+y^{2} \leq b^{2}} \frac{a d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}=a 2 \pi \int_{0}^{b} \frac{r d r}{\sqrt{a^{2}-r^{2}}}=2 \pi a\left(a-\sqrt{a^{2}-b^{2}}\right)
\end{aligned}
$$

Thus the total area is $2 \cdot 2 \pi a\left(a-\sqrt{a^{2}-b^{2}}\right)$
b. First consider the function $g(t)=\left\{\begin{array}{l}\frac{\ln (1+t)}{t}, t \neq 0 \\ 1, t=0\end{array}\right.$. The Taylor expansion of this function is readily obtained from the expansion of \ln : $g(t)=1-\frac{t}{2}+\frac{t^{2}}{3}+\cdots$. Therefore the Taylor expansion of the initial function is: $f(x, y)=1-\frac{x^{2}+y^{2}}{2}+\frac{\left(x^{2}+y^{2}\right)^{2}}{3}+\cdots$. In particular the function is differentiable at the origin.
(4) a. Use Green's formula, $\oint_{\partial \mathcal{D}} \vec{F} d \vec{\gamma}=\iint_{\mathcal{D}}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$, where $\mathcal{D}=\left\{1 \leq x^{2}+y^{2} \leq 4,0<x \leq y \leq \sqrt{3} x\right\}$. By the direct check: $\partial_{x} F_{y}-\partial_{y} F_{x}=\frac{1}{x^{2}+y^{2}}$. Thus

$$
\oint_{\partial \mathcal{D}} \vec{F} d \vec{\gamma}=\iint_{\mathcal{D}} \frac{d x d y}{x^{2}+y^{2}}=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d \phi \int_{1}^{2} \frac{r d r}{r^{2}}=\frac{\pi}{12} \ln (2)
$$

b. The mass equals $\iint_{V} 1 d V=\iint_{S}|\cos (x) \cos (y)| d x d y$, where $S=\left\{|x+y| \leq \frac{\pi}{2},|x-y| \leq \frac{\pi}{2}\right\}$. Note that for $(x, y) \in S: \cos (x) \cos (y) \geq 0$.

Change the variables: $s=x+y, t=x-y$. The Jacobian factor is $\frac{1}{2}$. Thus:

$$
\iint_{S}|\cos (x) \cos (y)| d x d y=\iint_{\substack{|s| \leq \frac{\pi}{2} \\|t| \leq \frac{\pi}{2}}} \frac{1}{2} \cos \frac{s+t}{2} \cos \frac{s-t}{2} d s d t=\frac{1}{4} \iint_{\substack{|s| \leq \frac{\pi}{2} \\|t| \leq \frac{\pi}{2}}}(\cos (s)+\cos (t)) d s d t=\pi
$$

(5) Parameterize L_{1} by x, i.e. $z=3 x, y=2 x$. Parameterize L_{2} by y, i.e. $z=-2-3 y, x=-1-2 y$. Fix a point on L_{1} and a point on L_{2}. The square-of-distance is: $f(x, y)=(-1-2 y-x)^{2}+(y-2 x)^{2}+(-2-3 y-3 x)^{2}=$ $5+14 y^{2}+14 x^{2}+16 y+14 x+18 x y$.

We are looking for the (global) minimum of this function. $\operatorname{grad}(f)=0$ gives the only suspicious point: $x=-\frac{26}{115}$, $y=-\frac{49}{115}$. Note that the minimum must be obtained at some point (because $f(x, y)$ is continuous, bounded from below and tends to ∞ as x or y go to $\infty)$. Therefore $(x, y)=\left(-\frac{26}{115},-\frac{49}{115}\right)$ is precisely the point of the global minimum.

