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(1) a. Denote an = (n+2
n+1 )

n (2x−1)n

2n(x+3)n , then lim
n→∞

n
√
|an| = | 2x−1

2(x+3) |. Thus the series converges absolutely for | (2x−1)
(x+3) | < 2

and diverges for | (2x−1)
(x+3) | > 2. It remains to check the boundary points:

⋆ If 2x−1
x+3 = −2, i.e. x = − 4

5 , then the series is
∑
n≥1

(n+2
n+1 )

n(−1)n. It diverges, as an ̸→ 0.

⋆ The case 2x−1
x+3 = 2 is not realized as this equation has no solutions.

In total: the series converges absolutely for | 2x−1
x+3 | < 2 and diverges otherwise. The condition on x reads: x > − 5

4 .

b. We should compute
∮
C
F⃗ dC⃗. Use the Stokes formula to transform this integral into the surface integrals

rot(F⃗ )dS⃗, over the surface S = {x2 + y2 + z2 = 2Rx, z > 0, x2 + y2 ≤ 2rx}. The normal to this surface is taken

upstairs, as the curve is oriented counterclockwise. The normal is: N⃗ = ∂xr⃗ × ∂y r⃗ = (−∂xz,−∂yz, 1).

The natural parametrization of the surface is: z =
√
2Rx− x2 − y2 thereforex

rot(F⃗ )dS⃗ =
x

(2y − 2z, 2z − 2x, 2x− 2y) · N⃗dxdy =
x

x2+y2≤2rx

2
(
x− y + (z − y)∂xz + (x− z)∂yz

)
dxdy

Note that ∂xz = R−x
z , ∂yz = −y

z . Therefore the integral to compute is:
s

x2+y2≤2rx

2R(1− y
z )dxdy.

The domain of the integration, the disc {(x − r)2 + y2 ≤ r2}, is symmetric with respect to the x̂ axis (i.e. with
respect to y ↔ −y). The function y

z is anti-symmetric with respect to y ↔ −y. Therefore
s

x2+y2≤2rx

2R y
z dxdy = 0.

Thus the initial integral equals to:∮
C

F⃗ dC⃗ =
x

rot(F⃗ )dS⃗ =
x

x2+y2≤2rx

2R(1− y

z
)dxdy =

x
x2+y2≤2rx

2Rdxdy = 2R ·Area
{
(x− r)2 + y2 ≤ r2

}
= 2Rπr2

(2) a. First we expand the function xy around the point (1, 1) up to the second order:

xy = 1 + (yxy−1)|(1,1)∆x+ (ln(x)xy)|(1,1)∆y +
(y(y−1)xy−2)|(1,1)(∆x)2+2(xy−1+yln(x)xy−1)|(1,1)∆x∆y+(ln2(x)xy)|(1,1)(∆y)2

2 + · · ·
= 1 +∆x+∆x∆y + · · ·

Therefore xyyx = (1 +∆x+∆x∆y + · · · )(1 + ∆y +∆x∆y + · · · ) = 1 +∆x+∆y + 3∆x∆y + · · · .
Thus approximately: 1.021.031.031.02 ≈ 1 + 0.02 + 0.03 + 3 · 0.02 · 0.03 = 1.0518.

b. In the polar coordinates the equation of the curve is: r2(1 − sin2(2ϕ)
2 ) = 1. As ϕ changes from 0 to 2π the

point on the curve evolves once around the centre of coordinates. The curve lies between the circle of radius 1 and
the circle of radius

√
2. The curve intersects the coordinates axes at the points (±1, 0), (0,±1).

The area:

x
1dS =

2π∫
0

dϕ

1√
1− sin2(2ϕ)

2∫
0

rdr =
1

2

2π∫
0

dϕ

1− sin2(2ϕ)
2

=

2π∫
0

dϕ

1 + cos2(2ϕ)
= 8

π
4∫

0

dϕ

1 + cos2(2ϕ)

Change the variable t = 2ϕ, then the needed integral is

4

π
2∫

0

dt

1 + cos2(t)
= 4

π
2∫

0

1
cos2tdt
1

cos2t + 1

x=tan(t)
= 4

∞∫
0

dx

1 + x2 + 1
= 4

∞∫
0

1

2

dx

1 + ( x√
2
)2

= 4
1

2

√
2
π

2

(3) a. Rename the axes, y ↔ z, then we should find the area of the surface x2 + y2 + z2 = a2 inside x2 + y2 ≤ b2.

It is enough to compute the area of the part z =
√
a2 − x2 − y2 ≥ 0 with x2+y2 ≤ b2. The surface area is:

s
1ds.

The natural parametrization of the surface is in terms of x, y. Thus the normal is N⃗ = ∂xr⃗×∂y r⃗ = det

x̂ ŷ ẑ
1 0 ∂xz
0 1 ∂yz

.

Therefore ||N⃗ || =
√

1 + (∂xz)2 + (∂yz)2. We convert the surface integral to the double integral:

s
1ds =

s
x2+y2≤b2

√
1 + (∂xz)2 + (∂yz)2dxdy =

s
x2+y2≤b2

√
1 + x2

a2−x2−y2 + y2

a2−x2−y2 dxdy =

=
s

x2+y2≤b2

adxdy√
a2−x2−y2

= a2π
b∫
0

rdr√
a2−r2

= 2πa(a−
√
a2 − b2)

Thus the total area is 2 · 2πa(a−
√
a2 − b2)



2

b. First consider the function g(t) =
{ ln(1+t)

t , t ̸= 0
1, t = 0

. The Taylor expansion of this function is readily obtained

from the expansion of ln: g(t) = 1 − t
2 + t2

3 + · · · . Therefore the Taylor expansion of the initial function is:

f(x, y) = 1− x2+y2

2 + (x2+y2)2

3 + · · · . In particular the function is differentiable at the origin.

(4) a. Use Green’s formula,
∮
∂D

F⃗ dγ⃗ =
s
D
(∂xFy − ∂yFx)dxdy, where D = {1 ≤ x2 + y2 ≤ 4, 0 < x ≤ y ≤

√
3x}. By the

direct check: ∂xFy − ∂yFx = 1
x2+y2 . Thus∮
∂D

F⃗ dγ⃗ =
x
D

dxdy

x2 + y2
=

π
3∫

π
4

dϕ

2∫
1

rdr

r2
=

π

12
ln(2)

b. The mass equals
t
V

1dV =
s
S

|cos(x)cos(y)|dxdy, where S = {|x + y| ≤ π
2 , |x − y| ≤ π

2 }. Note that for

(x, y) ∈ S: cos(x)cos(y) ≥ 0.
Change the variables: s = x+ y, t = x− y. The Jacobian factor is 1

2 . Thus:x
S

|cos(x)cos(y)|dxdy =
x

|s|≤π
2

|t|≤π
2

1

2
cos

s+ t

2
cos

s− t

2
dsdt =

1

4

x
|s|≤π

2

|t|≤π
2

(
cos(s) + cos(t)

)
dsdt = π

(5) Parameterize L1 by x, i.e. z = 3x, y = 2x. Parameterize L2 by y, i.e. z = −2 − 3y, x = −1 − 2y. Fix a point
on L1 and a point on L2. The square-of-distance is: f(x, y) = (−1 − 2y − x)2 + (y − 2x)2 + (−2 − 3y − 3x)2 =
5 + 14y2 + 14x2 + 16y + 14x+ 18xy.

We are looking for the (global) minimum of this function. grad(f) = 0 gives the only suspicious point: x = − 26
115 ,

y = − 49
115 . Note that the minimum must be obtained at some point (because f(x, y) is continuous, bounded from

below and tends to ∞ as x or y go to ∞). Therefore (x, y) = (− 26
115 ,−

49
115 ) is precisely the point of the global

minimum.


