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(1) a. Denote an = n(2sin x)n

n2+300 . Then lim
n→∞

n
√
|an| = |2sin(x)|. Thus the series converges absolutely for |2sin(x)| < 1 and

diverges for |2sin(x)| > 1. The border points:

• 2sin(x) = 1. The series
∞∑
n=1

n
n2+300 diverges by comparison to

∑
1
n

• 2sin(x) = −1. The series
∞∑
n=1

(−1)nn
n2+300 is the alternating series, the sequence n

n2+300 converges monotonically (for n

large enough) to 0. Thus by Leibnitz’s criterion the series converges. The convergence is conditional (as for 2sin(x) = 1
the series diverges).

Finally, the series converges absolutely for −π6 +πn < x < π
6 +πn, n ∈ Z and converges conditionally for x = π

6 +2πn,

x = 5π
6 + 2πn, n ∈ Z.

b. We should compute
∮
C

~Fd~C. Use the Stokes formula to transform this integral into the surface integral
s

S

rot(~F )d~S,

over the surface S = {xsin(α) + ysin(β) + zsin(γ) = 0, x2 + y2 + z2 ≤ R2}. The normal to this surface is taken

upstairs, as the curve is oriented counterclockwise. The unit normal is: N̂ = (sin(α),sin(β),sin(γ))√
sin2(α)+sin2(β)+sin2(γ)

. And rot(~F )N̂ =

−2 sin(α)+sin(β)+sin(γ)√
sin2(α)+sin2(β)+sin2(γ)

. Thus
s

S

rot(~F )d~S =
s

S

(−2 sin(α)+sin(β)+sin(γ)√
sin2(α)+sin2(β)+sin2(γ)

)dS. Finally,
s

S

dS = Area(S) = πR2.

Therefore:
∮
C

~Fd~C = −2 sin(α)+sin(β)+sin(γ)√
sin2(α)+sin2(β)+sin2(γ)

πR2.

(2) a. Let F (x, y, z) = ex+z−(x+y2)(x+z)−1. Then ∂zF |(−1,1,1) 6= 0. Thus, by the implicit function theorem, the equation
F (x, y, z) = 0 has the unique solution z(x, y) defined in some neighborhood of (−1, 1) and satisfying: z(−1, 1) = 1.

The derivatives of this implicit function: z′x|(−1,1) = −1, z′y|(−1,1) = 0. The directional derivative in the direction
~v = (1, 2) − (−1, 1) = (2, 1) is: grad(z) · ~v = −2 < 0. Therefore the function decreases in the direction from (−1, 1) to
(1, 2).

b. We are looking for the minimum of the function f(x, y) = x2+y2 under the condition g(x, y) = 7x2+8xy+y2−45 =
0. The condition fxgy = fygx gives: 2x2 − 2y2 = 3xy. From here we get: either x = 2y or x = −y2 . Substitute these
conditions to g(x, y) = 0. We get: if x = 2y then y = ±1; if 2x = −y then there are no solutions. Thus there are just
two points to consider: (2, 1) and (−2,−1). In both cases f(x, y) = 5.

Finally, we note that f(x, y) is a continuous function, while the curve {g(x, y) = 0} ⊂ R2 is a hyperbola. Thus f(x, y)
necessarily achieves its total minimum at least at one point. Therefore the points (2, 1) and (−2,−1) are the closest
points of this curve to the origin.

(3) a. The curve begins (as t→ −∞) from (∞,∞) and ends (as t→∞) at (∞,−∞). We check where y changes the sign:
y(t) > 0 for t ∈ (−∞,−2) ∪ (0, 2) and y(t) < 0 for t ∈ (−2, 0) ∪ (2,∞).

If the curve has a loop, then (x(t1), y(t1)) = (x(t2), y(t2)) for some t1 6= t2. This gives t21 − 1 = t22 − 1 and
4t1 − t31 = 4t2 − t32. With the solution: t1 = −t2 = 2. Therefore the loop corresponds to the interval t ∈ [−2, 2].

To compute the area of this loop we apply Green’s formula:
∮
∂S

(−ydx) =
s

S

dxdy. Note that in our case the orientation

of the loop is clockwise, thus we should add minus. Therefore the area of this loop equals

−
∮

γt∈[−2,2]

(−ydx) =

2∫
−2

(4t− t3)2tdt =
8 · 16

15

b. Note that |arctan(...)| < π
2 , thus the continuity is immediate. Note that f ′x|(0,0) = 0 = f ′y|(0,0), as f |xy=0 = 0.

We check the differentiability:

lim
(x,y)→(0,0)

f(x,y)−f(0,0)−f ′x|(0,0)x−f
′
y|(0,0)y√

x2+y2
= lim

(x,y)→(0,0)

x2arctan yx−y
2arctan xy√

x2+y2
= lim
r→0

r
(
cos2(φ)arctan yx − sin

2(φ)arctanxy

)
= 0.

(Again, using that |arctan(...)| is bounded.) Thus the function is differentiable.
As we did not check that the function is continuously twice-differentiable, we cannot use the standard f ′′xy = f ′′yx.

Thus we compute the 2’nd order derivatives directly. We record the derivatives of the first order:

f ′x =
{ 2x · arctan yx − y, xy 6= 0

0, xy = 0
, f ′y =

{ −2y · arctan yx + x, xy 6= 0
0, xy = 0

Therefore f ′′xy|(0,0) = 0 and f ′′yx|(0,0) = 0. In particular f ′′xy|(0,0) = f ′′yx|(0,0).
(4) a. Note that the body does not contain the origin. Thus the field is differentiable in the body. Thus we can use Gauss’

formula:
s

∂V

~Fd~S =
t

V

div(~F )dV . By the direct computation: div(~F ) = 0. Thus
s

∂V

~Fd~S =
t

V

div(~F )dV = 0.



2

b. The total mass is
∫
γ

|y|dγ, where γ =
{ r2 = a2cos(2φ),
φ ∈ [−π4 ,

π
4 ] ∪ [ 3π4 ,

5π
4 ]

}
. Use the formula

∫
γ

fdγ =
∫
t

f
√
r2 + ( drdφ )2dφ to

get:∫
γ

|y|dγ = 2

π
4∫
−π4

|y|
√
r2 + (a

2sin(2φ)
r )2dφ = 2

π
4∫
−π4

|sin(φ)|
√
r4 + (a2sin(2φ))2dφ = 2a2

π
4∫
−π4

|sin(φ)|dφ = 4a4(1− 1√
2
)

(5) The normal to the surface is ~N = (4x − y − z, 4y − x − z, 4z − x − y). The surface is tangent to the given plane at

the points where ~N ∼ (1, 2, 1). In particular this gives Nx = Nz, which means x = z. Then Ny = 2Nx gives y = 4
3x.

Substitute this to the equation of the surface to get the points: (3, 4, 3) and (−3,−4,−3).


