(1) a. Denote $a_{n}=\frac{n(2 \sin x)^{n}}{n^{2}+300}$. Then $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=|2 \sin (x)|$. Thus the series converges absolutely for $|2 \sin (x)|<1$ and diverges for $|2 \sin (x)|>1$. The border points:

- $2 \sin (x)=1$. The series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+300}$ diverges by comparison to $\sum \frac{1}{n}$
- $2 \sin (x)=-1$. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+300}$ is the alternating series, the sequence $\frac{n}{n^{2}+300}$ converges monotonically (for n large enough) to 0 . Thus by Leibnitz's criterion the series converges. The convergence is conditional (as for $2 \sin (x)=1$ the series diverges).

Finally, the series converges absolutely for $-\frac{\pi}{6}+\pi n<x<\frac{\pi}{6}+\pi n, n \in \mathbb{Z}$ and converges conditionally for $x=\frac{\pi}{6}+2 \pi n$, $x=\frac{5 \pi}{6}+2 \pi n, n \in \mathbb{Z}$.
b. We should compute $\oint_{C} \vec{F} d \vec{C}$. Use the Stokes formula to transform this integral into the surface integral $\iint_{S} \operatorname{rot}(\vec{F}) d \vec{S}$, over the surface $S=\left\{x \sin (\alpha)+y \sin (\beta)+z \sin (\gamma)=0, x^{2}+y^{2}+z^{2} \leq R^{2}\right\}$. The normal to this surface is taken upstairs, as the curve is oriented counterclockwise. The unit normal is: $\hat{\mathcal{N}}=\frac{(\sin (\alpha), \sin (\beta), \sin (\gamma))}{\sqrt{\sin ^{2}(\alpha)+\sin ^{2}(\beta)+\sin ^{2}(\gamma)}}$. And $\operatorname{rot}(\vec{F}) \hat{\mathcal{N}}=$ $-2 \frac{\sin (\alpha)+\sin (\beta)+\sin (\gamma)}{\sqrt{\sin ^{2}(\alpha)+\sin ^{2}(\beta)+\sin ^{2}(\gamma)}}$. Thus $\iint_{S} \operatorname{rot}(\vec{F}) d \vec{S}=\iint_{S}\left(-2 \frac{\sin (\alpha)+\sin (\beta)+\sin (\gamma)}{\sqrt{\sin ^{2}(\alpha)+\sin ^{2}(\beta)+\sin ^{2}(\gamma)}}\right) d S$. Finally, $\iint_{S} d S=\operatorname{Area}(S)=\pi R^{2}$. Therefore: $\oint_{C} \vec{F} d \vec{C}=-2 \frac{\sin (\alpha)+\sin (\beta)+\sin (\gamma)}{\sqrt{\sin ^{2}(\alpha)+\sin ^{2}(\beta)+\sin ^{2}(\gamma)}} \pi R^{2}$.
(2) a. Let $F(x, y, z)=e^{x+z}-\left(x+y^{2}\right)(x+z)-1$. Then $\left.\partial_{z} F\right|_{(-1,1,1)} \neq 0$. Thus, by the implicit function theorem, the equation $F(x, y, z)=0$ has the unique solution $z(x, y)$ defined in some neighborhood of $(-1,1)$ and satisfying: $z(-1,1)=1$.

The derivatives of this implicit function: $\left.z_{x}^{\prime}\right|_{(-1,1)}=-1,\left.z_{y}^{\prime}\right|_{(-1,1)}=0$. The directional derivative in the direction $\vec{v}=(1,2)-(-1,1)=(2,1)$ is: $\operatorname{grad}(z) \cdot \vec{v}=-2<0$. Therefore the function decreases in the direction from $(-1,1)$ to $(1,2)$.
b. We are looking for the minimum of the function $f(x, y)=x^{2}+y^{2}$ under the condition $g(x, y)=7 x^{2}+8 x y+y^{2}-45=$ 0 . The condition $f_{x} g_{y}=f_{y} g_{x}$ gives: $2 x^{2}-2 y^{2}=3 x y$. From here we get: either $x=2 y$ or $x=-\frac{y}{2}$. Substitute these conditions to $g(x, y)=0$. We get: if $x=2 y$ then $y= \pm 1$; if $2 x=-y$ then there are no solutions. Thus there are just two points to consider: $(2,1)$ and $(-2,-1)$. In both cases $f(x, y)=5$.

Finally, we note that $f(x, y)$ is a continuous function, while the curve $\{g(x, y)=0\} \subset \mathbb{R}^{2}$ is a hyperbola. Thus $f(x, y)$ necessarily achieves its total minimum at least at one point. Therefore the points $(2,1)$ and $(-2,-1)$ are the closest points of this curve to the origin.
(3) a. The curve begins (as $t \rightarrow-\infty)$ from (∞, ∞) and ends (as $t \rightarrow \infty)$ at $(\infty,-\infty)$. We check where y changes the sign: $y(t)>0$ for $t \in(-\infty,-2) \cup(0,2)$ and $y(t)<0$ for $t \in(-2,0) \cup(2, \infty)$.

If the curve has a loop, then $\left(x\left(t_{1}\right), y\left(t_{1}\right)\right)=\left(x\left(t_{2}\right), y\left(t_{2}\right)\right)$ for some $t_{1} \neq t_{2}$. This gives $t_{1}^{2}-1=t_{2}^{2}-1$ and $4 t_{1}-t_{1}^{3}=4 t_{2}-t_{2}^{3}$. With the solution: $t_{1}=-t_{2}=2$. Therefore the loop corresponds to the interval $t \in[-2,2]$.

To compute the area of this loop we apply Green's formula: $\oint_{\partial S}(-y d x)=\iint_{S} d x d y$. Note that in our case the orientation of the loop is clockwise, thus we should add minus. Therefore the area of this loop equals

$$
-\oint_{\gamma_{t \in[-2,2]}}(-y d x)=\int_{-2}^{2}\left(4 t-t^{3}\right) 2 t d t=\frac{8 \cdot 16}{15}
$$

b. Note that $|\arctan (\ldots)|<\frac{\pi}{2}$, thus the continuity is immediate. Note that $\left.f_{x}^{\prime}\right|_{(0,0)}=0=\left.f_{y}^{\prime}\right|_{(0,0)}$, as $\left.f\right|_{x y=0}=0$. We check the differentiability:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-f_{x}^{\prime}\left|(0,0) x-f_{y}^{\prime}\right|_{(0,0)} y}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \arctan \frac{y}{x}-y^{2} \arctan \frac{x}{y}}{\sqrt{x^{2}+y^{2}}}=\lim _{r \rightarrow 0} r\left(\cos ^{2}(\phi) \arctan \frac{y}{x}-\sin ^{2}(\phi) \arctan \frac{x}{y}\right)=0 .
$$

(Again, using that $|\arctan (\ldots)|$ is bounded.) Thus the function is differentiable.
As we did not check that the function is continuously twice-differentiable, we cannot use the standard $f_{x y}^{\prime \prime}=f_{y x}^{\prime \prime}$. Thus we compute the 2'nd order derivatives directly. We record the derivatives of the first order:

$$
f_{x}^{\prime}=\left\{\begin{array}{l}
2 x \cdot \arctan \frac{y}{x}-y, x y \neq 0 \\
0, x y=0
\end{array}, \quad f_{y}^{\prime}=\left\{\begin{array}{l}
-2 y \cdot \arctan \frac{y}{x}+x, x y \neq 0 \\
0, x y=0
\end{array}\right.\right.
$$

Therefore $\left.f_{x y}^{\prime \prime}\right|_{(0,0)}=0$ and $\left.f_{y x}^{\prime \prime}\right|_{(0,0)}=0$. In particular $\left.f_{x y}^{\prime \prime}\right|_{(0,0)}=\left.f_{y x}^{\prime \prime}\right|_{(0,0)}$.
(4) a. Note that the body does not contain the origin. Thus the field is differentiable in the body. Thus we can use Gauss' formula: $\iint_{\partial V} \vec{F} d \vec{S}=\iiint_{V} \operatorname{div}(\vec{F}) d V$. By the direct computation: $\operatorname{div}(\vec{F})=0$. Thus $\iint_{\partial V} \vec{F} d \vec{S}=\iiint_{V} \operatorname{div}(\vec{F}) d V=0$.
b. The total mass is $\int_{\gamma}|y| d \gamma$, where $\gamma=\left\{\begin{array}{l}r^{2}=a^{2} \cos (2 \phi), \\ \phi \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]\end{array}\right\}$. Use the formula $\int_{\gamma} f d \gamma=\int_{t} f \sqrt{r^{2}+\left(\frac{d r}{d \phi}\right)^{2}} d \phi$ to get:
$\int_{\gamma}|y| d \gamma=2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}|y| \sqrt{r^{2}+\left(\frac{a^{2} \sin (2 \phi)}{r}\right)^{2}} d \phi=2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}|\sin (\phi)| \sqrt{r^{4}+\left(a^{2} \sin (2 \phi)\right)^{2}} d \phi=2 a^{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}|\sin (\phi)| d \phi=4 a^{4}\left(1-\frac{1}{\sqrt{2}}\right)$
(5) The normal to the surface is $\overrightarrow{\mathcal{N}}=(4 x-y-z, 4 y-x-z, 4 z-x-y)$. The surface is tangent to the given plane at the points where $\overrightarrow{\mathcal{N}} \sim(1,2,1)$. In particular this gives $\mathcal{N}_{x}=\mathcal{N}_{z}$, which means $x=z$. Then $\mathcal{N}_{y}=2 \mathcal{N}_{x}$ gives $y=\frac{4}{3} x$. Substitute this to the equation of the surface to get the points: $(3,4,3)$ and $(-3,-4,-3)$.

