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|an| → e · x. Therefore the series converges absolutely for |e · x| < 1 and diverges for |e · x| > 1.

Now we check the border points. For x = 1
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e the series is:
∞∑

n=1

(
(−1)n

n +(−1)n π
n
2

enn2

)
.

Here the second part converges absolutely (by the previous check). The first part converges by Leibnitz criterion.
In total, the series converges for x ∈ [−1

e ,
1
e ). The convergence for x = − 1

e is conditional.

b. We use Stokes’ formula:
∮
∂S

F⃗ dγ⃗ =
s

z=x2−y2

x2+y2≤1

rot(F⃗ )dS⃗. As γ⃗ runs counterclockwise, the normal to S⃗ is taken

upstairs, N⃗S = (−2x, 2y, 1). Therefore
∮
∂S

F⃗ dγ⃗ =
s

z=x2−y2

x2+y2≤1
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x2+y2≤1

(−2x+ 2y + 1)dxdy = π

(2) a. Denote f(x, y, z) = z3 − 3xyz − 4, then ∂zf = 3z2 − 3xy and ∂zf |(2,1,−2) ̸= 0. Thus there exists a differentiable
function z(x, y). Then ∂xz = yz

z2−xy and ∂yz = xz
z2−xy and further:

∂2
xz =

y∂xz

z2 − xy
− yz(2z∂xz − y)

(z2 − xy)2
, ∂2

xyz =
y∂yz + z

z2 − xy
− yz(2z∂yz − x)

(z2 − xy)2
, ∂2

yz =
x∂yz

z2 − xy
− xz(2z∂yz − x)

(z2 − xy)2

In total:

b. ∂xz = 2x− 12, ∂yz = 2y+16, thus grad(z) = (0, 0) only at the point (x, y) = (6,−8), which is not in the disc. So,
there are no critical points in the interior of the disc. It remains to check the boundary. Denote g(x, y) = x2 + y2 − 25.
Then Lagrange’s condition reads: (2x − 12)2y = (2y + 16)2x. Which means: 4x = −3y. Together with g(x, y) = 0 we
get the points (3,−4) and (−3, 4). As f(3,−4) < 0 while f(−3, 4) > 0 we get: (3,−4) is the global minimum, (−3, 4) is
the global maximum.

(3) a. The curve bounds the diamond, in Cartesian coordinates the curve equation is (xa )
2
3 +(xb )

2
3 = 1. To compute its area

we use the Green formula:

S = −
∮
γ

ydx = −
2π∫

t=0

asin3(t)3bcos2(t)(−sin(t)dt) = 3ab

2π∫
0

sin4(t)cos2(t)dt =
3ab

8
2π

b. lim
(x,y)→(0,0)

f(x, y) = lim
r→0

sin(θ)sin(r2cos(θ))
r = 0, thus the function is continuous.

∂xf |(0,0) = lim
∆x→0

f(∆x,0)−f(0,0)
∆x = 0 and similarly ∂yf |(0,0) = 0. To check the differentiability it remains to check that

the remainder vanishes fast enough:

lim
(x,y)→(0,0)

f(x, y)− x∂xf |(0,0) − y∂yf |(0,0)√
(x2 + y2)

= lim
(x,y)→(0,0)

ysin(x2)

(x2 + y2)
3
2
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(x,y)→(0,0)

sin(θ)sin(r2cos(θ))

r2

The limit does not exist. Thus the function is not differentiable.

(4) a. mass =
s

√
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√
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(v + u)|∂(x,y)∂(u,v) |dudv. Note that |∂(u,v)∂(x,y) | =
1√
x
. Thus
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2
dudv = 19

b. Note that div(F⃗ ) = 0. Therefore the fields is conservative outside the origin. Thus we can deform the surface of
integration, as far as the origin stays inside:{

M

F⃗ dS⃗ =
{

x2+y2+z2=1

F⃗ dS⃗ =
{

x2+y2+z2=1

(x, y, z)

1
dS⃗
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=

{
x2+y2+z2≤1

3dxdydz = 4π

(5) T = {x2+y2

4 ≤ z ≤ 4, x ≥ 0, y ≥ 0}.
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4∫
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