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1.a. Solution 1. We will use Cauchy criterion for convergence. For this we estimate:

|an+1 − an| = |2sinan − an−1

2
cos

an + an−1

2
| ≤ |(an − an−1)cos

an + an−1

2
|.

Note that |an>0| ≤ 1, thus |an>1| = |sin(an−1)| ≤ |sin(1)|. Thus we get: |an+1 − an| ≤ sin(1)|an − an−1|. Note that
0 < sin(1) < 1. Thus, as has been proved in the class, an converges to a finite limit.

Denote x = lim
n→∞

an. Then x = sin(x). And this equation has the unique solution: x = 0. (Indeed, for x ̸= 0:

|sin(x)| < |x|.)
Solution 2. Note that |a1| ≤ 1 < π

2 . Thus, if a1 ≥ 0 then an>1 ≥ 0, while if a1 ≤ 0 then an>1 ≤ 0. Thus, if a1 ≥ 0
then 0 ≤ an+1 = sin(an) ≤ an, while if a1 ≤ 0 then 0 ≥ an+1 = sin(an) ≥ an. In both cases we get that the sequence
is monotonic (and bounded) thus converges. Now the limit is obtained as in the solution above.

1.b. Present the expression for an in the form 1
n +

n∑
k=1

1
n

1√
1+ k

n

. The second part is the Riemann sum for
1∫
0

dx√
1+x

.

Therefore lim
n→∞

an = 2(
√
2−

√
1).

2.a. Using Taylor expansions sin(αx) = αx− (αx)3

3! +O(x5) we get:

sin(αsin(βx)) = α(βx− (βx)3

3!
)− (αβx)3

3!
+O(x5) and sin(αsin(βx))− sin(βsin(αx)) =

βα3 − αβ3

3!
x3 +O(x5).

By the initial assumption βα3 − αβ3 ̸= 0. Therefore n = 3 and lim
x→0

sin(αsin(βx))−sin(βsin(αx))
x3 = βα3−αβ3

3! .

2.b.
3∫
2

x · ln(x2 − 1)dx = x2

2 ln(x2 − 1)
∣∣∣3
2
−

3∫
2

x22xdx
2(x2−1) =

27ln(2)−4ln(3)
2 −

9∫
4

tdt
2(t−1) =

24ln(2)−3ln(3)−5
2 .

3.a. Denote f(x) = arcsin(e−x). Using Lagrange’s theorem:
∣∣∣arcsin(e−x)−arcsin(e−y)

x−y

∣∣∣ = |f ′(c)| = e−c
√
1−e−2c

= 1√
e2c−1

for some c ∈ (x, y). By the assumption c > 2 thus e2c > e4 > 16. Thus 1√
e2c−1

< 1
3 . Therefore

|arcsin(e−x)− arcsin(e−y)| ≤ λ
|x− y|

3
.

3.b. Let T be a period of f(x). By Cantor’s theorem f(x) is uniformly continuous on say [0, 2T ]. Thus for any
ϵ > 0 there exists δ > 0 (which does not depend on x) such that |x1 − x2| < δ implies |f(x1) − f(x2)| < ϵ for any
x1, x2 ∈ [0, 2T ].

Now choose any x1, x2 ∈ R such that |x1 − x2| < δ. Present them in the form: x2 = x̃2 + mT , x1 = x̃1 + mT ,
where x̃1, x̃2 ∈ [0, 2T ] and |x̃1 − x̃2| < δ. Thus: |f(x1)− f(x2)| = |f(x̃1)− f(x̃2)| < ϵ. Which is precisely the uniform
continuity.

Question: why did we consider here the interval [0, 2T ] and not just [0, T ]?

4.a. The integrand is bounded and continuous. We should check the convergence of
∞∫
0

(∗∗)dt and
0∫

−∞
(∗∗)dt.

Note that 0 < e2t

1+e(1+
√

2)t
= 1

e−2t+e(
√

2−1)t
< e(1−

√
2)t. Thus the integral

∞∫
0

(∗∗)dt converges by comparison to

∞∫
0

e(1−
√
2)tdt. Similarly, 0 < e2t

1+e(1+
√

2)t
< e2t, thus

0∫
−∞

(∗∗)dt converges by comparison to
0∫

−∞
e2tdt.

4.b.i. The function f(x) is differentiable as the integrand is continuous. In particular f(x) is bounded on any finite
interval. Moreover, it is bounded on (0,∞), by part a.
Note that f(1) = 0. As the integrand is positive, f(x) > 0 for x > 1 and f(x) < 0 for x ∈ (0, 1).
As the function is continuous and bounded, and lim

x→0+
f(x), lim

x→∞
f(x) exist, f(x) uniformly continuous. (As was

proven in the class.)
As f(x) is continuous everywhere in (0,∞) and lim

x→0+
f(x) is finite, there are no vertical asymptotes at finite points.

There is horizontal asymptote, as x → ∞, and it is: y =
∞∫
0

e2t

1+e(1+
√

2)t
dt < ∞.

4.b.ii. f ′(x) = x
1+x1+

√
2

> 0, so the function grows monotonically on (0,∞). Thus there are no local/global

minima/maxima. sup(f) = lim
x→+∞

f(x) and inf(f) = lim
x→0+

f(x), both are finite.

f ′′(x) = 1−
√
2x1+

√
2

(1+x1+
√

2)2
. Thus for 0 < x < 2

− 1/2

1+
√

2 , f ′′(x) > 0 (the function is convex down) and for x > 2
− 1/2

1+
√

2 ,

f ′′(x) < 0 (the function is convex up). The point x = 2
− 1/2

1+
√

2 is the only inflection point.


