1.a. Solution 1. We will use Cauchy criterion for convergence. For this we estimate:

$$|a_{n+1} - a_n| = |2\sin\frac{a_n - a_{n-1}}{2}\cos\frac{a_n + a_{n-1}}{2}| \le |(a_n - a_{n-1})\cos\frac{a_n + a_{n-1}}{2}|.$$

Note that $|a_{n>0}| \le 1$, thus $|a_{n>1}| = |sin(a_{n-1})| \le |sin(1)|$. Thus we get: $|a_{n+1} - a_n| \le sin(1)|a_n - a_{n-1}|$. Note that 0 < sin(1) < 1. Thus, as has been proved in the class, a_n converges to a finite limit.

Denote $x = \lim_{n \to \infty} a_n$. Then x = sin(x). And this equation has the unique solution: x = 0. (Indeed, for $x \neq 0$: |sin(x)| < |x|.)

Solution 2. Note that $|a_1| \le 1 < \frac{\pi}{2}$. Thus, if $a_1 \ge 0$ then $a_{n>1} \ge 0$, while if $a_1 \le 0$ then $a_{n>1} \le 0$. Thus, if $a_1 \ge 0$ then $0 \le a_{n+1} = sin(a_n) \le a_n$, while if $a_1 \le 0$ then $0 \ge a_{n+1} = sin(a_n) \ge a_n$. In both cases we get that the sequence is monotonic (and bounded) thus converges. Now the limit is obtained as in the solution above.

1.b. Present the expression for a_n in the form $\frac{1}{n} + \sum_{k=1}^n \frac{1}{n} \frac{1}{\sqrt{1+\frac{k}{n}}}$. The second part is the Riemann sum for $\int_0^1 \frac{dx}{\sqrt{1+x}}$. Therefore $\lim_{n \to \infty} a_n = 2(\sqrt{2} - \sqrt{1})$.

2.a. Using Taylor expansions $sin(\alpha x) = \alpha x - \frac{(\alpha x)^3}{3!} + O(x^5)$ we get: $sin(\alpha sin(\beta x)) = \alpha(\beta x - \frac{(\beta x)^3}{3!}) - \frac{(\alpha \beta x)^3}{3!} + O(x^5)$ and $sin(\alpha sin(\beta x)) - sin(\beta sin(\alpha x)) = \frac{\beta \alpha^3 - \alpha \beta^3}{3!} x^3 + O(x^5)$. By the initial assumption $\beta \alpha^3 - \alpha \beta^3 \neq 0$. Therefore n = 3 and $\lim_{x \to 0} \frac{sin(\alpha sin(\beta x)) - sin(\beta sin(\alpha x))}{x^3} = \frac{\beta \alpha^3 - \alpha \beta^3}{3!}$.

2.b.
$$\int_{2}^{3} x \cdot \ln(x^{2} - 1) dx = \frac{x^{2}}{2} \ln(x^{2} - 1) \Big|_{2}^{3} - \int_{2}^{3} \frac{x^{2} 2x dx}{2(x^{2} - 1)} = \frac{27 \ln(2) - 4 \ln(3)}{2} - \int_{4}^{9} \frac{t dt}{2(t - 1)} = \frac{24 \ln(2) - 3 \ln(3) - 5}{2}.$$

3.a. Denote $f(x) = \arcsin(e^{-x})$. Using Lagrange's theorem: $\left|\frac{\arcsin(e^{-x}) - \arcsin(e^{-y})}{x-y}\right| = |f'(c)| = \frac{e^{-c}}{\sqrt{1-e^{-2c}}} = \frac{1}{\sqrt{e^{2c}-1}}$ for some $c \in (x, y)$. By the assumption c > 2 thus $e^{2c} > e^4 > 16$. Thus $\frac{1}{\sqrt{e^{2c}-1}} < \frac{1}{3}$. Therefore

$$|arcsin(e^{-x}) - arcsin(e^{-y})| \le \lambda \frac{|x-y|}{3}$$

3.b. Let T be a period of f(x). By Cantor's theorem f(x) is uniformly continuous on say [0, 2T]. Thus for any $\epsilon > 0$ there exists $\delta > 0$ (which does not depend on x) such that $|x_1 - x_2| < \delta$ implies $|f(x_1) - f(x_2)| < \epsilon$ for any $x_1, x_2 \in [0, 2T]$.

Now choose any $x_1, x_2 \in \mathbb{R}$ such that $|x_1 - x_2| < \delta$. Present them in the form: $x_2 = \tilde{x}_2 + mT$, $x_1 = \tilde{x}_1 + mT$, where $\tilde{x}_1, \tilde{x}_2 \in [0, 2T]$ and $|\tilde{x}_1 - \tilde{x}_2| < \delta$. Thus: $|f(x_1) - f(x_2)| = |f(\tilde{x}_1) - f(\tilde{x}_2)| < \epsilon$. Which is precisely the uniform continuity.

Question: why did we consider here the interval [0, 2T] and not just [0, T]?

4.a. The integrand is bounded and continuous. We should check the convergence of $\int_{0}^{\infty} (**)dt$ and $\int_{-\infty}^{0} (**)dt$.

Note that $0 < \frac{e^{2t}}{1+e^{(1+\sqrt{2})t}} = \frac{1}{e^{-2t}+e^{(\sqrt{2}-1)t}} < e^{(1-\sqrt{2})t}$. Thus the integral $\int_{0}^{\infty} (**)dt$ converges by comparison to

 $\int_{0}^{\infty} e^{(1-\sqrt{2})t} dt.$ Similarly, $0 < \frac{e^{2t}}{1+e^{(1+\sqrt{2})t}} < e^{2t}$, thus $\int_{-\infty}^{0} (**)dt$ converges by comparison to $\int_{-\infty}^{0} e^{2t} dt.$

4.b.i. The function f(x) is differentiable as the integrand is continuous. In particular f(x) is bounded on any finite interval. Moreover, it is bounded on $(0, \infty)$, by part a.

Note that f(1) = 0. As the integrand is positive, f(x) > 0 for x > 1 and f(x) < 0 for $x \in (0, 1)$.

As the function is continuous and bounded, and $\lim_{x\to 0^+} f(x)$, $\lim_{x\to\infty} f(x)$ exist, f(x) uniformly continuous. (As was proven in the class.)

As f(x) is continuous everywhere in $(0, \infty)$ and $\lim_{x \to 0^+} f(x)$ is finite, there are no vertical asymptotes at finite points. There is horizontal asymptote, as $x \to \infty$, and it is: $y = \int_{0}^{\infty} \frac{e^{2t}}{1 + e^{(1+\sqrt{2})t}} dt < \infty$.

4.b.ii. $f'(x) = \frac{x}{1+x^{1+\sqrt{2}}} > 0$, so the function grows monotonically on $(0, \infty)$. Thus there are no local/global minima/maxima. $sup(f) = \lim_{x \to \infty} f(x)$ and $inf(f) = \lim_{x \to \infty} f(x)$, both are finite.

minima/maxima. $\sup(f) = \lim_{x \to +\infty} f(x)$ and $\inf(f) = \lim_{x \to 0^+} f(x)$, both are finite. $f''(x) = \frac{1-\sqrt{2}x^{1+\sqrt{2}}}{(1+x^{1+\sqrt{2}})^2}$. Thus for $0 < x < 2^{-\frac{1/2}{1+\sqrt{2}}}$, f''(x) > 0 (the function is convex down) and for $x > 2^{-\frac{1/2}{1+\sqrt{2}}}$, f''(x) < 0 (the function is convex up). The point $x = 2^{-\frac{1/2}{1+\sqrt{2}}}$ is the only inflection point.