Sketchy solutions of Moed.A, Hedva1.EE, 201.1.981
 05.07.2015 Ben Gurion University

1.a. Solution 1. We will use Cauchy criterion for convergence. For this we estimate:

$$
\left|a_{n+1}-a_{n}\right|=\left|2 \sin \frac{a_{n}-a_{n-1}}{2} \cos \frac{a_{n}+a_{n-1}}{2}\right| \leq\left|\left(a_{n}-a_{n-1}\right) \cos \frac{a_{n}+a_{n-1}}{2}\right| .
$$

Note that $\left|a_{n>0}\right| \leq 1$, thus $\left|a_{n>1}\right|=\left|\sin \left(a_{n-1}\right)\right| \leq|\sin (1)|$. Thus we get: $\left|a_{n+1}-a_{n}\right| \leq \sin (1)\left|a_{n}-a_{n-1}\right|$. Note that $0<\sin (1)<1$. Thus, as has been proved in the class, a_{n} converges to a finite limit.

Denote $x=\lim _{n \rightarrow \infty} a_{n}$. Then $x=\sin (x)$. And this equation has the unique solution: $x=0$. (Indeed, for $x \neq 0$: $|\sin (x)|<|x|$.)

Solution 2. Note that $\left|a_{1}\right| \leq 1<\frac{\pi}{2}$. Thus, if $a_{1} \geq 0$ then $a_{n>1} \geq 0$, while if $a_{1} \leq 0$ then $a_{n>1} \leq 0$. Thus, if $a_{1} \geq 0$ then $0 \leq a_{n+1}=\sin \left(a_{n}\right) \leq a_{n}$, while if $a_{1} \leq 0$ then $0 \geq a_{n+1}=\sin \left(a_{n}\right) \geq a_{n}$. In both cases we get that the sequence is monotonic (and bounded) thus converges. Now the limit is obtained as in the solution above.
1.b. Present the expression for a_{n} in the form $\frac{1}{n}+\sum_{k=1}^{n} \frac{1}{n} \frac{1}{\sqrt{1+\frac{k}{n}}}$. The second part is the Riemann sum for $\int_{0}^{1} \frac{d x}{\sqrt{1+x}}$. Therefore $\lim _{n \rightarrow \infty} a_{n}=2(\sqrt{2}-\sqrt{1})$.
2.a. Using Taylor expansions $\sin (\alpha x)=\alpha x-\frac{(\alpha x)^{3}}{3!}+O\left(x^{5}\right)$ we get:
$\sin (\alpha \sin (\beta x))=\alpha\left(\beta x-\frac{(\beta x)^{3}}{3!}\right)-\frac{(\alpha \beta x)^{3}}{3!}+O\left(x^{5}\right)$ and $\sin (\alpha \sin (\beta x))-\sin (\beta \sin (\alpha x))=\frac{\beta \alpha^{3}-\alpha \beta^{3}}{3!} x^{3}+O\left(x^{5}\right)$.
By the initial assumption $\beta \alpha^{3}-\alpha \beta^{3} \neq 0$. Therefore $n=3$ and $\lim _{x \rightarrow 0} \frac{\sin (\alpha \sin (\beta x))-\sin (\beta \sin (\alpha x))}{x^{3}}=\frac{\beta \alpha^{3}-\alpha \beta^{3}}{3!}$.
2.b. $\int_{2}^{3} x \cdot \ln \left(x^{2}-1\right) d x=\left.\frac{x^{2}}{2} \ln \left(x^{2}-1\right)\right|_{2} ^{3}-\int_{2}^{3} \frac{x^{2} 2 x d x}{2\left(x^{2}-1\right)}=\frac{27 \ln (2)-4 \ln (3)}{2}-\int_{4}^{9} \frac{t d t}{2(t-1)}=\frac{24 \ln (2)-3 \ln (3)-5}{2}$.
3.a. Denote $f(x)=\arcsin \left(e^{-x}\right)$. Using Lagrange's theorem: $\left|\frac{\arcsin \left(e^{-x}\right)-\arcsin \left(e^{-y}\right)}{x-y}\right|=\left|f^{\prime}(c)\right|=\frac{e^{-c}}{\sqrt{1-e^{-2 c}}}=\frac{1}{\sqrt{e^{2 c}-1}}$ for some $c \in(x, y)$. By the assumption $c>2$ thus $e^{2 c}>e^{4}>16$. Thus $\frac{1}{\sqrt{e^{2 c}-1}}<\frac{1}{3}$. Therefore

$$
\left|\arcsin \left(e^{-x}\right)-\arcsin \left(e^{-y}\right)\right| \leq \lambda \frac{|x-y|}{3}
$$

3.b. Let T be a period of $f(x)$. By Cantor's theorem $f(x)$ is uniformly continuous on say $[0,2 T]$. Thus for any $\epsilon>0$ there exists $\delta>0$ (which does not depend on x) such that $\left|x_{1}-x_{2}\right|<\delta$ implies $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$ for any $x_{1}, x_{2} \in[0,2 T]$.

Now choose any $x_{1}, x_{2} \in \mathbb{R}$ such that $\left|x_{1}-x_{2}\right|<\delta$. Present them in the form: $x_{2}=\tilde{x}_{2}+m T, x_{1}=\tilde{x}_{1}+m T$, where $\tilde{x}_{1}, \tilde{x}_{2} \in[0,2 T]$ and $\left|\tilde{x}_{1}-\tilde{x}_{2}\right|<\delta$. Thus: $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=\left|f\left(\tilde{x}_{1}\right)-f\left(\tilde{x}_{2}\right)\right|<\epsilon$. Which is precisely the uniform continuity.

Question: why did we consider here the interval $[0,2 T]$ and not just $[0, T]$?
4.a. The integrand is bounded and continuous. We should check the convergence of $\int_{0}^{\infty}(* *) d t$ and $\int_{-\infty}^{0}(* *) d t$.

Note that $0<\frac{e^{2 t}}{1+e^{(1+\sqrt{2}) t}}=\frac{1}{e^{-2 t}+e^{(\sqrt{2}-1) t}}<e^{(1-\sqrt{2}) t}$. Thus the integral $\int_{0}^{\infty}(* *) d t$ converges by comparison to $\int_{0}^{\infty} e^{(1-\sqrt{2}) t} d t$. Similarly, $0<\frac{e^{2 t}}{1+e^{(1+\sqrt{2}) t}}<e^{2 t}$, thus $\int_{-\infty}^{0}(* *) d t$ converges by comparison to $\int_{-\infty}^{0} e^{2 t} d t$.
4.b.i. The function $f(x)$ is differentiable as the integrand is continuous. In particular $f(x)$ is bounded on any finite interval. Moreover, it is bounded on $(0, \infty)$, by part a.
Note that $f(1)=0$. As the integrand is positive, $f(x)>0$ for $x>1$ and $f(x)<0$ for $x \in(0,1)$.
As the function is continuous and bounded, and $\lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow \infty} f(x)$ exist, $f(x)$ uniformly continuous. (As was proven in the class.)
As $f(x)$ is continuous everywhere in $(0, \infty)$ and $\lim _{x \rightarrow 0^{+}} f(x)$ is finite, there are no vertical asymptotes at finite points. There is horizontal asymptote, as $x \rightarrow \infty$, and it is: $y=\int_{0}^{\infty} \frac{e^{2 t}}{1+e^{(1+\sqrt{2}) t}} d t<\infty$.
4.b.ii. $f^{\prime}(x)=\frac{x}{1+x^{1+\sqrt{2}}}>0$, so the function grows monotonically on $(0, \infty)$. Thus there are no local/global minima/maxima. $\sup (f)=\lim _{x \rightarrow+\infty} f(x)$ and $\operatorname{in} f(f)=\lim _{x \rightarrow 0^{+}} f(x)$, both are finite.
$f^{\prime \prime}(x)=\frac{1-\sqrt{2} x^{1+\sqrt{2}}}{\left(1+x^{1+\sqrt{2}}\right)^{2}}$. Thus for $0<x<2^{-\frac{1 / 2}{1+\sqrt{2}}}, f^{\prime \prime}(x)>0$ (the function is convex down) and for $x>2^{-\frac{1 / 2}{1+\sqrt{2}}}$, $f^{\prime \prime}(x)<0$ (the function is convex up). The point $x=2^{-\frac{1 / 2}{1+\sqrt{2}}}$ is the only inflection point.

