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1.a. Suppose a ≤ b, present the sequence in the form b n

√
(an

b )n + ( bnb )n. Note that bn → b > 0, thus for any ϵ > 0:

1 − ϵ < bn
b < 1 + ϵ, for n large enough. Similarly, an

b < 1 + ϵ. Therefore (1 − ϵ)n < (an

b )n + ( bnb )n < 2(1 + ϵ)n.

We have proved: for any ϵ > 0 and n large enough there holds (1 − ϵ) < n

√
(an

b )n + ( bnb )n < (1 + ϵ) n
√
2. Therefore

lim
n→∞

n

√
(an

b )n + ( bnb )n = 1. Thus lim
n→∞

n
√

(an)n + (bn)n = b.

Similarly in the case b ≤ a. In total: lim
n→∞

n
√

(an)n + (bn)n = max(a, b).

1.b. Note that cos(x) is negative for x ∈ [π2 ,
2π
3 ]. Therefore:

area =

π
2∫
π
4

cos(x)|cos(2x)|dx−
2π
3∫
π
2

cos(x)|cos(2x)|dx
cos(2x)=1−2sin2(x)

t:=sin(x)
==

1∫
1√
2

|1− 2t2|dt−

√
3

2∫
1

|1− 2t2|dt =

=
1∫
1√
2

(2t2 − 1)dt+
1∫

√
3

2

(2t2 − 1)dt =
√
2
3 +

√
3
4 − 2

3

2.a. The function f(x) is defined at all the points where the denominator does not vanish. If the denominator,
1

f(x) = ex − e−x +
√
2sin(x

√
3) + ln(5), vanishes at some point x0, then lim

x→x0

f(x) = ±∞. In particular f(x) cannot

be uniformly continuous in any neighborhood of x0.
Note that lim

x→+∞
1

f(x) = +∞, lim
x→−∞

1
f(x) = −∞. Therefore the equation ex − e−x +

√
2sin(x

√
3) + ln(5) = 0 has

at least one root. At this point f(x) has a vertical asymptote. Thus f(x) is not uniformly continuous in its domain
of definition.

2.b. It is enough to check the convergence of lim
N→∞

N∫
1

sin(x2)dx. The change of variable t := x2 converts this

limit into lim
N→∞

N2∫
1

sin(t)dt

2
√
t

. Now the integration by parts leads to: lim
N→∞

(
− cos(t)

2
√
t

∣∣∣N2

1
−

N2∫
1

cos(t)dt

4
√
t3

)
. Here the second

summand converges absolutely, e.g. by comparison to
∞∫
1

dt

4
√
t3
.

3.a. Consider the function f(x) = xsinx
2 − cos(x)− ln(17). Note that f(2πn) < 0, while f(π+4πn) > 0. Therefore

on each interval (4πn, π + 4πn) and (π + 4πn, 2π + 4πn) there is at least one root of the equation.

3.b. Note that lim
n→+∞

xn = +∞. (For example, on each interval [πn, π(n + 1)] there is at most a finite number

of roots.) Note that cos(xn) + ln(17) is bounded. Thus xnsin
xn

2 = cos(xn) + ln(17) forces: sinxn

2 → 0. Therefore
the points xn

2 approach the points of the sequence {πm}m∈N. More precisely, there is a sequence of natural numbers

{mn}n, satisfying:
(

xn

2 − πmn

)
→ 0.

By part a. there are two subsequences of xn, for one subsequence
(

xn

2 −πmn

)
→ 0+, for the other

(
xn

2 −πmn

)
→ 0−.

Therefore, for the first subsequence {xn

2π } → 0, while for the second subsequence {xn

2π } → 1. Thus, the sequence {xn

2π }
does not converge.

4.a. As f ′(x) > 0, the function is monotonically increasing. In particular f is 1:1 and is surjective onto its image.
Therefore f is invertible. As f is monotonic, continuous and is defined on the whole R, the inverse function is
continuous as well.

As lim
x→+∞

f(x) = π, we can assume: f ′(x) > 3 for x ≥ x0, for some x0 ≫ 0. Then Lagrange’s theorem on [x0, x1]

gives: f(x1) = f(x0) + (x1 − x0)f
′(c) > f(x0) + 3(x1 − x0). Therefore lim

x1→∞
f(x1) = ∞.

By the definition of inverse function: g(f(x)) ≡ x. Thus lim
y→+∞

g(y) = lim
x→∞

g(f(x)) = +∞. (Here we use: g is

continuous and increasing.)

4.b. Note that lim
y→+∞

g(y) = ∞ and lim
x→∞

f(x) = ∞, therefore lim
y→∞

g(y)∫
0

f(t)dt = ∞. Note that g(y) is differentiable.

Thus we can apply l’Hopital’s rule: lim
y→∞

g(y)∫
0

f(t)dt

y2 = lim
y→∞

g′(y)f(g(y))
2y = lim

y→∞
1

f ′|g(y)

y
2y = lim

x→∞
1

f ′(x)
1
2 = 1

2π .


