1.a. Suppose $a \leq b$, present the sequence in the form $b \sqrt[n]{\left(\frac{a_{n}}{b}\right)^{n}+\left(\frac{b_{n}}{b}\right)^{n}}$. Note that $b_{n} \rightarrow b>0$, thus for any $\epsilon>0$: $1-\epsilon<\frac{b_{n}}{b}<1+\epsilon$, for n large enough. Similarly, $\frac{a_{n}}{b}<1+\epsilon$. Therefore $(1-\epsilon)^{n}<\left(\frac{a_{n}}{b}\right)^{n}+\left(\frac{b_{n}}{b}\right)^{n}<2(1+\epsilon)^{n}$. We have proved: for any $\epsilon>0$ and n large enough there holds $(1-\epsilon)<\sqrt[n]{\left(\frac{a_{n}}{b}\right)^{n}+\left(\frac{b_{n}}{b}\right)^{n}}<(1+\epsilon) \sqrt[n]{2}$. Therefore $\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{a_{n}}{b}\right)^{n}+\left(\frac{b_{n}}{b}\right)^{n}}=1$. Thus $\lim _{n \rightarrow \infty} \sqrt[n]{\left(a_{n}\right)^{n}+\left(b_{n}\right)^{n}}=b$.

Similarly in the case $b \leq a$. In total: $\lim _{n \rightarrow \infty} \sqrt[n]{\left(a_{n}\right)^{n}+\left(b_{n}\right)^{n}}=\max (a, b)$.
1.b. Note that $\cos (x)$ is negative for $x \in\left[\frac{\pi}{2}, \frac{2 \pi}{3}\right]$. Therefore:

$$
\begin{aligned}
& \text { area }=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos (x)|\cos (2 x)| d x-\int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} \cos (x)|\cos (2 x)| d x \stackrel{\substack{\cos (2 x)=1-2 \sin ^{2}(x) \\
t:=\sin (x)}}{=} \int_{\frac{1}{\sqrt{2}}}^{1}\left|1-2 t^{2}\right| d t-\int_{1}^{\frac{\sqrt{3}}{2}}\left|1-2 t^{2}\right| d t= \\
& =\int_{\frac{1}{\sqrt{2}}}^{1}\left(2 t^{2}-1\right) d t+\int_{\frac{\sqrt{3}}{2}}^{1}\left(2 t^{2}-1\right) d t=\frac{\sqrt{2}}{3}+\frac{\sqrt{3}}{4}-\frac{2}{3}
\end{aligned}
$$

2.a. The function $f(x)$ is defined at all the points where the denominator does not vanish. If the denominator, $\frac{1}{f(x)}=e^{x}-e^{-x}+\sqrt{2} \sin (x \sqrt{3})+\ln (5)$, vanishes at some point x_{0}, then $\lim _{x \rightarrow x_{0}} f(x)= \pm \infty$. In particular $f(x)$ cannot be uniformly continuous in any neighborhood of x_{0}.

Note that $\lim _{x \rightarrow+\infty} \frac{1}{f(x)}=+\infty, \lim _{x \rightarrow-\infty} \frac{1}{f(x)}=-\infty$. Therefore the equation $e^{x}-e^{-x}+\sqrt{2} \sin (x \sqrt{3})+\ln (5)=0$ has at least one root. At this point $f(x)$ has a vertical asymptote. Thus $f(x)$ is not uniformly continuous in its domain of definition.
2.b. It is enough to check the convergence of $\lim _{N \rightarrow \infty} \int_{1}^{N} \sin \left(x^{2}\right) d x$. The change of variable $t:=x^{2}$ converts this limit into $\lim _{N \rightarrow \infty} \int_{1}^{N^{2}} \frac{\sin (t) d t}{2 \sqrt{t}}$. Now the integration by parts leads to: $\lim _{N \rightarrow \infty}\left(-\left.\frac{\cos (t)}{2 \sqrt{t}}\right|_{1} ^{N^{2}}-\int_{1}^{N^{2}} \frac{\cos (t) d t}{4 \sqrt{t^{3}}}\right)$. Here the second summand converges absolutely, e.g. by comparison to $\int_{1}^{\infty} \frac{d t}{4 \sqrt{t^{3}}}$.
3.a. Consider the function $f(x)=x \sin \frac{x}{2}-\cos (x)-\ln (17)$. Note that $f(2 \pi n)<0$, while $f(\pi+4 \pi n)>0$. Therefore on each interval $(4 \pi n, \pi+4 \pi n)$ and $(\pi+4 \pi n, 2 \pi+4 \pi n)$ there is at least one root of the equation.
3.b. Note that $\lim _{n \rightarrow+\infty} x_{n}=+\infty$. (For example, on each interval $[\pi n, \pi(n+1)]$ there is at most a finite number of roots.) Note that $\cos \left(x_{n}\right)+\ln (17)$ is bounded. Thus $x_{n} \sin \frac{x_{n}}{2}=\cos \left(x_{n}\right)+\ln (17)$ forces: $\sin \frac{x_{n}}{2} \rightarrow 0$. Therefore the points $\frac{x_{n}}{2}$ approach the points of the sequence $\{\pi m\}_{m \in \mathbb{N}}$. More precisely, there is a sequence of natural numbers $\left\{m_{n}\right\}_{n}$, satisfying: $\left(\frac{x_{n}}{2}-\pi m_{n}\right) \rightarrow 0$.

By part a. there are two subsequences of x_{n}, for one subsequence $\left(\frac{x_{n}}{2}-\pi m_{n}\right) \rightarrow 0^{+}$, for the other $\left(\frac{x_{n}}{2}-\pi m_{n}\right) \rightarrow 0^{-}$. Therefore, for the first subsequence $\left\{\frac{x_{n}}{2 \pi}\right\} \rightarrow 0$, while for the second subsequence $\left\{\frac{x_{n}}{2 \pi}\right\} \rightarrow 1$. Thus, the sequence $\left\{\frac{x_{n}}{2 \pi}\right\}$ does not converge.
4.a. As $f^{\prime}(x)>0$, the function is monotonically increasing. In particular f is $1: 1$ and is surjective onto its image. Therefore f is invertible. As f is monotonic, continuous and is defined on the whole \mathbb{R}, the inverse function is continuous as well.

As $\lim _{x \rightarrow+\infty} f(x)=\pi$, we can assume: $f^{\prime}(x)>3$ for $x \geq x_{0}$, for some $x_{0} \gg 0$. Then Lagrange's theorem on $\left[x_{0}, x_{1}\right]$ gives: $f\left(x_{1}\right)=f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}(c)>f\left(x_{0}\right)+3\left(x_{1}-x_{0}\right)$. Therefore $\lim _{x_{1} \rightarrow \infty} f\left(x_{1}\right)=\infty$.

By the definition of inverse function: $g(f(x)) \equiv x$. Thus $\lim _{y \rightarrow+\infty} g(y)=\lim _{x \rightarrow \infty} g(f(x))=+\infty$. (Here we use: g is continuous and increasing.)
4.b. Note that $\lim _{y \rightarrow+\infty} g(y)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$, therefore $\lim _{y \rightarrow \infty} \int_{0}^{g(y)} f(t) d t=\infty$. Note that $g(y)$ is differentiable. Thus we can apply l'Hopital's rule: $\lim _{y \rightarrow \infty} \frac{\int_{0}^{g(y)} f(t) d t}{y^{2}}=\lim _{y \rightarrow \infty} \frac{g^{\prime}(y) f(g(y))}{2 y}=\lim _{y \rightarrow \infty} \frac{1}{f^{\prime} \log _{g(y)}} \frac{y}{2 y}=\lim _{x \rightarrow \infty} \frac{1}{f^{\prime}(x)} \frac{1}{2}=\frac{1}{2 \pi}$.

