Sketchy solutions of Moed.B, Hedva1.EE, 201.1.981 14.08.2015 Ben Gurion University

1.a. Suppose $a \leq b$, present the sequence in the form $b \sqrt[n]{\left(\frac{a_n}{b}\right)^n + \left(\frac{b_n}{b}\right)^n}$. Note that $b_n \to b > 0$, thus for any $\epsilon > 0$: $1 - \epsilon < \frac{b_n}{b} < 1 + \epsilon$, for *n* large enough. Similarly, $\frac{a_n}{b} < 1 + \epsilon$. Therefore $(1 - \epsilon)^n < \left(\frac{a_n}{b}\right)^n + \left(\frac{b_n}{b}\right)^n < 2(1 + \epsilon)^n$. We have proved: for any $\epsilon > 0$ and *n* large enough there holds $(1 - \epsilon) < \sqrt[n]{\left(\frac{a_n}{b}\right)^n + \left(\frac{b_n}{b}\right)^n} < (1 + \epsilon) \sqrt[n]{2}$. Therefore $\lim_{n \to \infty} \sqrt[n]{\left(\frac{a_n}{b}\right)^n + \left(\frac{b_n}{b}\right)^n} = 1$. Thus $\lim_{n \to \infty} \sqrt[n]{(a_n)^n + (b_n)^n} = b$. Similarly in the case $b \leq a$. In total: $\lim_{n \to \infty} \sqrt[n]{(a_n)^n + (b_n)^n} = max(a, b)$.

1.b. Note that cos(x) is negative for $x \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$. Therefore:

$$area = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(x) |\cos(2x)| dx - \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \cos(x) |\cos(2x)| dx \xrightarrow{\cos(2x) = 1 - 2\sin^2(x)}_{\substack{t := \sin(x) \\ \equiv = \\ \frac{1}{\sqrt{2}}}} \int_{\frac{1}{\sqrt{2}}}^{1} |1 - 2t^2| dt - \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} |1 - 2t^2| dt = \int_{\frac{1}{\sqrt{2}}}^{1} |2t^2 - 1| dt + \int_{\frac{\sqrt{3}}{2}}^{1} (2t^2 - 1) dt = \frac{\sqrt{2}}{3} + \frac{\sqrt{3}}{4} - \frac{2}{3}$$

2.a. The function f(x) is defined at all the points where the denominator does not vanish. If the denominator, $\frac{1}{f(x)} = e^x - e^{-x} + \sqrt{2}sin(x\sqrt{3}) + ln(5)$, vanishes at some point x_0 , then $\lim_{x \to x_0} f(x) = \pm \infty$. In particular f(x) cannot be uniformly continuous in any neighborhood of x_0 .

Note that $\lim_{x \to +\infty} \frac{1}{f(x)} = +\infty$, $\lim_{x \to -\infty} \frac{1}{f(x)} = -\infty$. Therefore the equation $e^x - e^{-x} + \sqrt{2}sin(x\sqrt{3}) + ln(5) = 0$ has at least one root. At this point f(x) has a vertical asymptote. Thus f(x) is not uniformly continuous in its domain of definition.

2.b. It is enough to check the convergence of $\lim_{N \to \infty} \int_{1}^{N} \sin(x^2) dx$. The change of variable $t := x^2$ converts this limit into $\lim_{N \to \infty} \int_{1}^{N^2} \frac{\sin(t)dt}{2\sqrt{t}}$. Now the integration by parts leads to: $\lim_{N \to \infty} \left(-\frac{\cos(t)}{2\sqrt{t}} \Big|_{1}^{N^2} - \int_{1}^{N^2} \frac{\cos(t)dt}{4\sqrt{t^3}} \right)$. Here the second summand converges absolutely, e.g. by comparison to $\int_{1}^{\infty} \frac{dt}{4\sqrt{t^3}}$.

3.a. Consider the function $f(x) = x \sin \frac{x}{2} - \cos(x) - \ln(17)$. Note that $f(2\pi n) < 0$, while $f(\pi + 4\pi n) > 0$. Therefore on each interval $(4\pi n, \pi + 4\pi n)$ and $(\pi + 4\pi n, 2\pi + 4\pi n)$ there is at least one root of the equation.

3.b. Note that $\lim_{n \to +\infty} x_n = +\infty$. (For example, on each interval $[\pi n, \pi(n+1)]$ there is at most a finite number of roots.) Note that $\cos(x_n) + \ln(17)$ is bounded. Thus $x_n \sin \frac{x_n}{2} = \cos(x_n) + \ln(17)$ forces: $\sin \frac{x_n}{2} \to 0$. Therefore the points $\frac{x_n}{2}$ approach the points of the sequence $\{\pi m\}_{m \in \mathbb{N}}$. More precisely, there is a sequence of natural numbers $\{m_n\}_n$, satisfying: $\left(\frac{x_n}{2} - \pi m_n\right) \to 0$.

By part a. there are two subsequences of x_n , for one subsequence $\left(\frac{x_n}{2} - \pi m_n\right) \to 0^+$, for the other $\left(\frac{x_n}{2} - \pi m_n\right) \to 0^-$. Therefore, for the first subsequence $\left\{\frac{x_n}{2\pi}\right\} \to 0$, while for the second subsequence $\left\{\frac{x_n}{2\pi}\right\} \to 1$. Thus, the sequence $\left\{\frac{x_n}{2\pi}\right\}$ does not converge.

4.a. As f'(x) > 0, the function is monotonically increasing. In particular f is 1:1 and is surjective onto its image. Therefore f is invertible. As f is monotonic, continuous and is defined on the whole \mathbb{R} , the inverse function is continuous as well.

As $\lim_{x \to +\infty} f(x) = \pi$, we can assume: f'(x) > 3 for $x \ge x_0$, for some $x_0 \gg 0$. Then Lagrange's theorem on $[x_0, x_1]$ gives: $f(x_1) = f(x_0) + (x_1 - x_0)f'(c) > f(x_0) + 3(x_1 - x_0)$. Therefore $\lim_{x_1 \to \infty} f(x_1) = \infty$.

By the definition of inverse function: $g(f(x)) \equiv x$. Thus $\lim_{y \to +\infty} g(y) = \lim_{x \to \infty} g(f(x)) = +\infty$. (Here we use: g is continuous and increasing.)

4.b. Note that $\lim_{y \to +\infty} g(y) = \infty$ and $\lim_{x \to \infty} f(x) = \infty$, therefore $\lim_{y \to \infty} \int_{0}^{g(y)} f(t)dt = \infty$. Note that g(y) is differentiable.

Thus we can apply l'Hopital's rule: $\lim_{y \to \infty} \frac{\int_{0}^{g(y)} f(t)dt}{y^2} = \lim_{y \to \infty} \frac{g'(y)f(g(y))}{2y} = \lim_{y \to \infty} \frac{1}{f'|_{g(y)}} \frac{y}{2y} = \lim_{x \to \infty} \frac{1}{f'(x)} \frac{1}{2} = \frac{1}{2\pi}.$