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1.a. Note that an > 0 for any n. Therefore an+1 < 1
c . So, the sequence is bounded from both sides.

Note that an+1 − an =
1

an−1
− 1

an

(c+ 1
an

)(c+ 1
an−1

)
. Thus the sign of an+1 − an is preserved along the sequence, i.e. an is

monotonic. Therefore an converges.
The limit x = lim an satisfies: x = x

xc+1 . From here: cx2 = 0, i.e. lim an = 0.

1.b. The sequence is bn = 1
n +

n∑
i=1

e
i
n

n . Here the second term is the Riemann sum for
1∫
0

exdx. Therefore lim bn =

0 +
1∫
0

exdx = e− 1.

2.a. Note that the part 1
⌊x+1⌋2 is locally constant, for n − 1 ≤ x < n: 1

⌊x+1⌋2 = 1
n2 . It is (uniformly) continuous

except for the points x ∈ N. At these points it is continuous from the right, but discontinuous from the left.

The part sin(πx) · sin
(

1
sin(πx)

)
is periodic and continuous for x ̸∈ N. Though it is not defined for x ∈ N, there

exists the finite limits: lim
x→n

sin(πx) ·sin
(

1
sin(πx)

)
= 0. Therefore this part is uniformly continuous on the whole R\N.

In total, f(x) is bounded and uniformly continuous on each interval [n, n+1), for n ∈ N. But f(x) is discontinuous
from the left at all the points x ∈ N.

2.b. Note that
∞∫
1

dx
⌊x+1⌋2 <

∞∫
1

dx
x2 < ∞. Therefore the convergence/divergence depend only on

∞∫
1

sin(πx) ·

sin
(

1
sin(πx)

)
dx. But the integrand is periodic, and is not identically zero. Therefore the later integral diverges.

Hence
∞∫
1

f(x)dx diverges.

3.a. We are studying the solutions of the equation f(x) = 1
x2 . It is given that f(πn) = 0 < 1

(πn)2 . Therefore (using

the mean value theorem) it is enough to prove the existence of infinite amount of point where f(x) > 1
x2 .

Suppose there are no such points for x ≫ 0. Then (by the mean value theorem), for x ≫ 0 holds: f(x) ≤ 1
x2 . But

then, by the comparison criterion for convergence,
∞∫
1

f(x)dx < ∞. Contrary to the given data. Therefore, there exist

a sequence of points x̃n → ∞ where f(x̃n) >
1
x̃2
n
.

Together with f(πn) = 0 we get (by the mean value theorem) a sequence of points xn → ∞ with f(xn) =
1
x2
n
.

3.b. Define f(x) = sin(x) − x + x3

3! . Note that f ′′(x) = −sin(x) + x. Thus f ′′(x) ≥ 0 for x ≥ 0. Thus f ′(x) is
non-decreasing for x ≥ 0. As f ′(0) = 0, we get: f ′(x) ≥ 0 for x ≥ 0. Finally, as f(0) = 0, we get: f(x) ≥ 0.

4.a. We use the formula a3 − b3 = (a− b)(a2 + ab+ b2). Thus the “conjugate” for 3
√
1 + x− 3

√
1− x is ( 3

√
1 + x)2 +

3
√
1 + x 3

√
1− x+ ( 3

√
1− x)2. Therefore:

lim
x→∞

3
√
1 + x− 3

√
1− x

3
√
1 + 2x− 3

√
1− 2x

= lim
x→∞

(1 + x)− (1− x)

(1 + 2x)− (1− 2x)
·

3
√

(1 + x)2 + 3
√
1− x2 + 3

√
(1− x)2

3
√

(1 + 2x)2 + 3
√
1− 4x2 + 3

√
(1− 2x)2

=
1

21+
2
3

.

4.b.
3∫
2

dx
10−x2 = 1

2
√
10

3∫
2

(
1√

10−x
+ 1√

10+x

)
dx = 1

2
√
10
ln
(√

10+3√
10−3

·
√
10−2√
10+2

)
.


