Sketchy solutions of Moed.C, Hedva1.EE, 201.1.981 17.09.2015 Ben Gurion University

1.a. Note that $a_n > 0$ for any n. Therefore $a_{n+1} < \frac{1}{c}$. So, the sequence is bounded from both sides. Note that $a_{n+1} - a_n = \frac{\frac{1}{a_{n-1}} - \frac{1}{a_n}}{(c + \frac{1}{a_n})(c + \frac{1}{a_{n-1}})}$. Thus the sign of $a_{n+1} - a_n$ is preserved along the sequence, i.e. a_n is monotonic. Therefore a_n converges

The limit $x = \lim a_n$ satisfies: $x = \frac{x}{xc+1}$. From here: $cx^2 = 0$, i.e. $\lim a_n = 0$.

1.b. The sequence is $b_n = \frac{1}{n} + \sum_{i=1}^n \frac{e^{\frac{i}{n}}}{n}$. Here the second term is the Riemann sum for $\int_0^1 e^x dx$. Therefore $\lim b_n = \frac{1}{n} + \sum_{i=1}^n \frac{e^{\frac{i}{n}}}{n}$. $0 + \int_{-\infty}^{1} e^x dx = e - 1.$

2.a. Note that the part $\frac{1}{\lfloor x+1 \rfloor^2}$ is locally constant, for $n-1 \le x < n$: $\frac{1}{\lfloor x+1 \rfloor^2} = \frac{1}{n^2}$. It is (uniformly) continuous except for the points $x \in \mathbb{N}$. At these points it is continuous from the right, but discontinuous from the left.

The part $sin(\pi x) \cdot sin(\frac{1}{sin(\pi x)})$ is periodic and continuous for $x \notin \mathbb{N}$. Though it is not defined for $x \in \mathbb{N}$, there exists the finite limits: $\lim_{x \to n} \sin(\pi x) \cdot \sin\left(\frac{1}{\sin(\pi x)}\right) = 0$. Therefore this part is uniformly continuous on the whole $\mathbb{R} \setminus \mathbb{N}$. In total, f(x) is bounded and uniformly continuous on each interval [n, n+1), for $n \in \mathbb{N}$. But f(x) is discontinuous

from the left at all the points $x \in \mathbb{N}$.

2.b. Note that $\int_{1}^{\infty} \frac{dx}{\lfloor x+1 \rfloor^2} < \int_{1}^{\infty} \frac{dx}{x^2} < \infty$. Therefore the convergence/divergence depend only on $\int_{1}^{\infty} sin(\pi x) \cdot \frac{dx}{L} = \frac{1}{2} \int_{1}^{\infty} \frac{dx}{x^2} + \frac{1}{2} \int_{1}^{\infty} \frac{dx}{x^2}$ $sin\left(\frac{1}{sin(\pi x)}\right)dx$. But the integrand is periodic, and is not identically zero. Therefore the later integral diverges. Hence $\int f(x) dx$ diverges.

3.a. We are studying the solutions of the equation $f(x) = \frac{1}{x^2}$. It is given that $f(\pi n) = 0 < \frac{1}{(\pi n)^2}$. Therefore (using the mean value theorem) it is enough to prove the existence of infinite amount of point where $f(x) > \frac{1}{x^2}$.

Suppose there are no such points for $x \gg 0$. Then (by the mean value theorem), for $x \gg 0$ holds: $f(x) \le \frac{1}{x^2}$. But then, by the comparison criterion for convergence, $\int_{1}^{\infty} f(x) dx < \infty$. Contrary to the given data. Therefore, there exist a sequence of points $\tilde{x}_n \to \infty$ where $f(\tilde{x}_n) > \frac{1}{\tilde{x}_n^2}$.

Together with $f(\pi n) = 0$ we get (by the mean value theorem) a sequence of points $x_n \to \infty$ with $f(x_n) = \frac{1}{x_n^2}$.

3.b. Define $f(x) = sin(x) - x + \frac{x^3}{3!}$. Note that f''(x) = -sin(x) + x. Thus $f''(x) \ge 0$ for $x \ge 0$. Thus f'(x) is non-decreasing for $x \ge 0$. As f'(0) = 0, we get: $f'(x) \ge 0$ for $x \ge 0$. Finally, as f(0) = 0, we get: $f(x) \ge 0$.

4.a. We use the formula $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$. Thus the "conjugate" for $\sqrt[3]{1 + x} - \sqrt[3]{1 - x}$ is $(\sqrt[3]{1 + x})^2 + (\sqrt[3]{1 + x})^2 +$ $\sqrt[3]{1+x}\sqrt[3]{1-x} + (\sqrt[3]{1-x})^2$. Therefore:

$$\lim_{x \to \infty} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{\sqrt[3]{1+2x} - \sqrt[3]{1-2x}} = \lim_{x \to \infty} \frac{(1+x) - (1-x)}{(1+2x) - (1-2x)} \cdot \frac{\sqrt[3]{(1+x)^2} + \sqrt[3]{1-x^2} + \sqrt[3]{(1-x)^2}}{\sqrt[3]{(1+2x)^2} + \sqrt[3]{1-4x^2} + \sqrt[3]{(1-2x)^2}} = \frac{1}{2^{1+\frac{2}{3}}}.$$
4.b.
$$\int_{2}^{3} \frac{dx}{10-x^2} = \frac{1}{2\sqrt{10}} \int_{2}^{3} \left(\frac{1}{\sqrt{10-x}} + \frac{1}{\sqrt{10+x}}\right) dx = \frac{1}{2\sqrt{10}} ln \left(\frac{\sqrt{10}+3}{\sqrt{10-3}} \cdot \frac{\sqrt{10}-2}{\sqrt{10+2}}\right).$$