1.a. Note that $a_{n}>0$ for any n. Therefore $a_{n+1}<\frac{1}{c}$. So, the sequence is bounded from both sides.

Note that $a_{n+1}-a_{n}=\frac{\frac{1}{a_{n-1}}-\frac{1}{a_{n}}}{\left(c+\frac{1}{a_{n}}\right)\left(c+\frac{1}{a_{n-1}}\right)}$. Thus the sign of $a_{n+1}-a_{n}$ is preserved along the sequence, i.e. a_{n} is monotonic. Therefore a_{n} converges.

The limit $x=\lim a_{n}$ satisfies: $x=\frac{x}{x c+1}$. From here: $c x^{2}=0$, i.e. $\lim a_{n}=0$.
1.b. The sequence is $b_{n}=\frac{1}{n}+\sum_{i=1}^{n} \frac{e^{\frac{i}{n}}}{n}$. Here the second term is the Riemann sum for $\int_{0}^{1} e^{x} d x$. Therefore $\lim b_{n}=$ $0+\int_{0}^{1} e^{x} d x=e-1$.
2.a. Note that the part $\frac{1}{[x+1]^{2}}$ is locally constant, for $n-1 \leq x<n: \frac{1}{[x+1\rfloor^{2}}=\frac{1}{n^{2}}$. It is (uniformly) continuous except for the points $x \in \mathbb{N}$. At these points it is continuous from the right, but discontinuous from the left.

The part $\sin (\pi x) \cdot \sin \left(\frac{1}{\sin (\pi x)}\right)$ is periodic and continuous for $x \notin \mathbb{N}$. Though it is not defined for $x \in \mathbb{N}$, there exists the finite limits: $\lim _{x \rightarrow n} \sin (\pi x) \cdot \sin \left(\frac{1}{\sin (\pi x)}\right)=0$. Therefore this part is uniformly continuous on the whole $\mathbb{R} \backslash \mathbb{N}$.

In total, $f(x)$ is bounded and uniformly continuous on each interval $[n, n+1)$, for $n \in \mathbb{N}$. But $f(x)$ is discontinuous from the left at all the points $x \in \mathbb{N}$.
2.b. Note that $\int_{1}^{\infty} \frac{d x}{[x+1]^{2}}<\int_{1}^{\infty} \frac{d x}{x^{2}}<\infty$. Therefore the convergence/divergence depend only on $\int_{1}^{\infty} \sin (\pi x)$. $\sin \left(\frac{1}{\sin (\pi x)}\right) d x$. But the integrand is periodic, and is not identically zero. Therefore the later integral diverges. Hence $\int_{1}^{\infty} f(x) d x$ diverges.
3.a. We are studying the solutions of the equation $f(x)=\frac{1}{x^{2}}$. It is given that $f(\pi n)=0<\frac{1}{(\pi n)^{2}}$. Therefore (using the mean value theorem) it is enough to prove the existence of infinite amount of point where $f(x)>\frac{1}{x^{2}}$.

Suppose there are no such points for $x \gg 0$. Then (by the mean value theorem), for $x \gg 0$ holds: $f(x) \leq \frac{1}{x^{2}}$. But then, by the comparison criterion for convergence, $\int_{1}^{\infty} f(x) d x<\infty$. Contrary to the given data. Therefore, there exist a sequence of points $\tilde{x}_{n} \rightarrow \infty$ where $f\left(\tilde{x}_{n}\right)>\frac{1}{\tilde{x}_{n}^{2}}$.

Together with $f(\pi n)=0$ we get (by the mean value theorem) a sequence of points $x_{n} \rightarrow \infty$ with $f\left(x_{n}\right)=\frac{1}{x_{n}^{2}}$.
3.b. Define $f(x)=\sin (x)-x+\frac{x^{3}}{3!}$. Note that $f^{\prime \prime}(x)=-\sin (x)+x$. Thus $f^{\prime \prime}(x) \geq 0$ for $x \geq 0$. Thus $f^{\prime}(x)$ is non-decreasing for $x \geq 0$. As $f^{\prime}(0)=0$, we get: $f^{\prime}(x) \geq 0$ for $x \geq 0$. Finally, as $f(0)=0$, we get: $f(x) \geq 0$.
4.a. We use the formula $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$. Thus the "conjugate" for $\sqrt[3]{1+x}-\sqrt[3]{1-x}$ is $(\sqrt[3]{1+x})^{2}+$ $\sqrt[3]{1+x} \sqrt[3]{1-x}+(\sqrt[3]{1-x})^{2}$. Therefore:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[3]{1+2 x}-\sqrt[3]{1-2 x}}=\lim _{x \rightarrow \infty} \frac{(1+x)-(1-x)}{(1+2 x)-(1-2 x)} \cdot \frac{\sqrt[3]{(1+x)^{2}}+\sqrt[3]{1-x^{2}}+\sqrt[3]{(1-x)^{2}}}{\sqrt[3]{(1+2 x)^{2}}+\sqrt[3]{1-4 x^{2}}+\sqrt[3]{(1-2 x)^{2}}}=\frac{1}{2^{1+\frac{2}{3}}}
$$

4.b. $\int_{2}^{3} \frac{d x}{10-x^{2}}=\frac{1}{2 \sqrt{10}} \int_{2}^{3}\left(\frac{1}{\sqrt{10}-x}+\frac{1}{\sqrt{10}+x}\right) d x=\frac{1}{2 \sqrt{10}} \ln \left(\frac{\sqrt{10}+3}{\sqrt{10}-3} \cdot \frac{\sqrt{10}-2}{\sqrt{10}+2}\right)$.

