
Calculus1.EE, BGU, Spring 2015.

Below are some solutions/answers to some of the questions. The work is in the progress, the file is getting longer (by
regular updates).

Partial answers to some of the questions of HWK1

2. a. Subsets of S: S, {2, 3, 8}, {2, 4, 8}, {2, 3, 4}, {3, 4, 8}, {2, 8}, {2, 3}, {2, 4}, {3, 8}, {4, 8}, {3, 4}, {2}, {3}, {4},
{8}, ∅.

b. S ∪∅ = S, S ∩∅ = ∅, S ∪ R = R, S ∩ R = S, R \ S = {x ∈ R| x ̸= 2, 3, 4, 8}, S ∩ (R \Q) = ∅, S ∩ (Z \ N) = ∅.

4. a. If x ∈ Z then n = (x+ 1) is the needed number, as x < x+ 1 < y. Otherwise x < n = ⌈x⌉ < y.

b. The proof of
√
3 ̸∈ Q is the same as for

√
2 ̸∈ Q, which is done in the class. From here: 1 +

√
3 ̸∈ Q. (Otherwise√

3 = (1 +
√
3)− 1 ∈ Q.)

The case of
√
2 +

√
3. First one proves that

√
6 ̸∈ Q. (Similarly to

√
3 ̸∈ Q.) Now, suppose x =

√
2 +

√
3 ∈ Q, then

x2−5
2 =

√
6 ∈ Q. Contradiction.

c. yes. (ab × c
d = ac

bd , which is a fraction of integers. a
b + c

d = ad+cb
bd )

d. and e. ±
√
2 ̸∈ Q but both

√
2 · (−

√
2) ∈ Q and

√
2 + (−

√
2) ∈ Q.

6. By the assumption x ≥ 0. Suppose x > 0. Take c = x ∈ R, then by the assumption x < x. Contradiction.

9. Suppose x = inf(A) and for some ϵ > 0: [x, x+ ϵ)∩A = ∅. Then x+ ϵ is also a lower bound of A, contrary to the
maximality of x.

Suppose x is a lower bound of A and for any ϵ > 0 there exists y ∈ A such that y < x + ϵ. Suppose there exists a
bigger lower bound, x < x1, of A. Choose ϵ = x1−x

2 > 0 to get the contradiction.
11. Let x = inf(T ), then T ⊆ [x,∞). By the assumptions x is an upper bound of S, thus S ⊆ (−∞, x]. As S ∪T = R

we have: x = sup(S). Hence the statement.

Partial answers to some of the questions of HWK2

1. Consider the subsequences: a2n = 0, a4n+1 =
√
4n+ 1, a4n−1 = −

√
4n− 1. Note that a2n converges (and is

bounded), while a4n+1, a4n−1 are monotonic and unbounded. Thus an is not monotonic, unbounded, not converging.

2. ii. Present an = 3√
n+3+

√
n
→ 0.

iii. an =
√
n√

n+3+
√
n
→ 1.

vii. As n
√
n → 1, for n large enough 0 < n

√
n− 1 < 0.5. Thus by sandwich lemma ( n

√
n− 1)n → 0.

3. iv. a2n = 2n
2n+1 → 1, a2n+1 = 0 → 0. Thus an does not converge.

v. By the definition of the sequence a2n+1 − a2n = 1 ̸→ 0, thus an cannot converge.

4. i. no
ii. yes
iii. an = 1, 0, 2, 0, 3, 0, 4, 0, . . .
iv. yes
v. take an = (−1)n, bn = (−1)n+1.
vi. Take an = 0, bn = (−1)n.
vii. an = 1

n > 0 but lim an ̸> 0.
viii. If an → L > 0 then for ϵ = L and big enough n one has: |an − L| < ϵ = L, which implies: 0 < an.

ix. Take as an the decimal expansion of
√
2. Then an ∈ Q but converges to

√
2 ̸∈ Q. Take bn =

√
2

n . Then bn ̸∈ Q but
bn → 0 ∈ Q.

x. Take an = (−1)n

xi. Take an =
{ 1

n : n ∈ 2Z
1
n2 : n ̸∈ 2Z

5. n√
n2+n

= n ·min{ 1√
n2+k

} ≤ an ≤ n ·max{ 1√
n2+k

} = n√
n2+1

. Now use this sandwich.

6. i. If an → a then ∀ϵ > 0: |a− an| < ϵ for n > N . Thus for n > N : |bn − a| ≤
N∑

i=1

|ai−a|

n +

n∑
i=N+1

|ai−a|

n . Thus, as N

is fixed, we can take n so large that |
N∑

i=1
|an−a|

n | < ϵ. Then |bn − a| < 2ϵ.
1
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ii. an = (−1)n , bn → 0.

7. iii. an+1

an
= 1

cos( π

2n+1 ) > 1, thus an increases. On the other hand: for x > 0, sin(x) < x, thus an ≤ π. Hence an
converges.

iv. an+1

an
< 1 thus an decreases. And an > 0, thus an converges.

v. an+1 − an = 1
2n+2 + 1

2n+1 − 1
n < 0, thus an decreases. And an > 0, thus an converges.

Partial answers to some of the questions of HWK3

1. From an+1 = an(an − 1) and a1 =3 one gets: an increases and an ≥ 3 (e.g. by induction). Thus an+1 ≥ 2an ≥
· · · ≥ 2n−1a1. Thus an → ∞.

Note, if one does not check the existence of the limit and just assumes that lim(an) = a is finite then from a = a2 − a
one gets wrong answers a = 0, 2.

6. The sequence is increasing. If it is bounded then it converges to a finite limit, contradicting an+1 − an → L > 0.
Thus the sequence is unbounded (and increasing), thus an → ∞

7.b. From the convergence of a2n+15 and a32n+3 − a32n+4 one has: the subsequences a2n and a2n+1 converge. Further,
from the convergence of an3 one gets: lim

n→∞
a2n = lim

n→∞
a2n+1. Thus an converges.

(Note that the condition of convergence of a22n+3 − a22n+4 is not necessary.)

9. i. an = n. ii. an : 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, . . . . iii. an : 1, 0, 2, 0, 3, 0, . . .
iv. and v. 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . . ,

11. a. A counterexample: an = ln(ln(n)). b. A counterexample: an = n+ (−1)n, bn = −n.

c. A counterexample: an = n, bn = (−1)n

n . d. A counterexample: an = 0, 1, 0, 2, 0, 3, 0, 4, 0, . . . , bn = 1, 0, 2, 0, 3, 0, 4, 0, . . . .
Then 0 is a partial limit of both an and bn but not of an + bn.
e. If an is monotonic and has a converging subsequence, then an is bounded. Hence converging.

12. a. |an+m − an| = |(an+m − an+m−1)+ · · ·+(an+1 − an)| ≤ 1
(n+m)(n+m+1) + · · ·+ 1

n(n+1) =
1
n − 1

n+m+1 → 0. (Now

use Cauchy criterion for convergence.)
b. Similarly.
c. |an+1 − an| = 1

2 |an − an−1|, now use part ii.

13. a. Note that a1 > 0, thus by induction an > 0. Thus an+1 − an > 0, i.e. an increases.
Suppose an → L < ∞, then an+1 − an → 0. In contradiction to an+1 − an = 1

an
→ 1

L ̸= 0. Thus an → ∞.

b. The induction: we assume an < 3
√
n and prove an+1 < 3

√
n+ 1.

Indeed: a2n+1 = a2n + 2 + 1
a2
n
< 9n+ 2 + 1 < 9(n+ 1) = (3

√
n+ 1)2. Here we use an ≥ 1, as an increases.

14. b. Take e.g. bn = 1√
|an|+1

.

Partial answers to some of the questions of HWK4

1. i. Has been proven in the class.
ii. A counterexample: an = (−1)n, bn = (−1)n+1.
iii. and iv. Has been proven in the class.

2. bet. i. Let g(x) := f( 1+x
x−1 ). As Df = {0 < x < 1}, Dg = {0 < 1+x

x−1 < 1} = {x < −1}.
ii. and iii. are done similarly.

3. i. Im(f) = {y : the equation y = 1
1+x2 has a solution } = {0 < y ≤ 1}

Similarly for ii. and iii.
iv. Present f(x) =

√
2sin(x+ π

4 ) to get: Im(f) = {|y| ≤
√
2}.

v. Im([x]) = Z.
vi. Im{x} = [0, 1).

5. a. i. Use a2 + b2 ≥ 2ab to get: | x
x2+2 | ≤

1
2
√
2

5. b. i. A counterexample: f(x) = sin(x) = −g(x).

6. ii. f(−x) = −f(x), iv. f(−x) = −f(x) (multiply by conjugate)
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7. f(x) = f(x)+f(−x)
2 + f(x)−f(−x)

2 .

8. a. i. Note that f(x + 2π) = f(x). To find the (minimal) period present f(x) = 2sin(x)cos(x)(2cos(x) + 1). If
f(x) = f(x+ T ), then for x = 0 one has: sin(T )cos(T )(2cos(T ) + 1) = 0. Suppose T ∈ (0, 2π). Then T is one of: π

2 , π,
3π
2 , 2π

3 , 4π
3 . By the direct check: neither of these satisfies f(x) = f(x+ T ) for x ∈ R arbitrary. Thus T = 2π.

iii. f(x) =
√
A2 +B2sin(λx+ α), where sin(α) = A√

A2+B2
. Thus T = 2π

λ .

8. b. Let χ(x) =
{ 1 : x ∈ Q

0 : x ̸∈ Q . The periods of χ(x) are precisely all the rational numbers. Note that no irrational

number can be a period of χ(x).

8. c. Suppose sin(x2) = sin((x + T )2) for any x ∈ R. Then sin(2xT + T 2)cos(2x2 + 2xT + T 2) = 0 for any x. If
T ̸= 0 then choose any x which is not a solution of 2xT + T 2 ∈ πZ, neither of 2x2 + 2xT + T 2 ∈ π

2 + πZ.

9. b. A counterexample: f(x) = 2x + sin(x), g(x) = −2x. To check that f(x) is increasing note: f(x2) − f(x1) =
2(x2 − x1) + 2sinx2−x1

2 cosx2+x1

2 and |2sinx2−x1

2 cosx2+x1

2 | ≤ |x2 − x1|. Thus, for x2 > x1 we get: f(x2) > f(x1).

c. A counterexample: f(x) = 2x+ sin(x), g(x) = 1
x on the interval (0, a), for any a > 2π.

Partial answers to some of the questions of HWK5

2. a. ii. Present f(x) = asin(x) + bcos(x) =
√
a2 + b2sin(x + ϕ), where cosϕ = a√

a2+b2
, sinϕ = b√

a2+b2
. Thus

max =
√
a2 + b2, min = −

√
a2 + b2,.

6. First we pass from lim
x→0

f( 1x ) to lim
t→∞

f(t) by the change of variable, x → 1
t . If f(t) is not constant, then f(t1) ̸= f(t2)

for some t1, t2 ∈ Df . Thus consider the sequences: t1 + nT and t2 + nT , where T is a period of f . Then

lim
n→∞

f(t1 + nT ) = f(t1) ̸= f(t2) = lim
n→∞

f(t2 + nT ).

8. i. A counterexample: f(x) = χ(x), g(x) = 1− χ(x), here χ(x) is the Dirichlet function.
ii. no.
iii. no.
iv. if lim

x→a
f(x) exists then f(x) is bounded in some neighborhood of x = a.

v. f(x) = −x2 ≤ 0 but lim
x→0

f(x) = 0.

vi. yes
vii. f(x) = x2 ≥ 0, lim

x→0
f(x) = 0.

viii. f(x) = x2, g(x) = −x2.

ix. A counterexample: f(x) =
{ 0, x ̸= 0

1, x = 0
and g(x) ≡ 0. Then lim

x→0
f(g(x)) = 1 ̸= lim

x→0
f(x).

10. Proof of Weierstrass theorem. Consider the case of lim
x→x−

0

f(x) and f(x) non-decreasing.

proof (using Cauchy’s definition of the limit.) Let L = sup
x<x0

f(x), as the function is bounded near x0 this sup is finite.

If L is actually achieved at some point x1 < x0, then (as f(x) is non-decreasing) f(x) ≡ L on (x1, x0). In particular
lim

x→x−
0

f(x) = L.

Suppose L is not achieved, then, by the properties of sup, for any ϵ > 0 there exists some L− ϵ < L1 < L which is a
value of f(x). Namely, L = f(x1), for some x1 < x0. But then, for x ∈ (x1, x0): L − ϵ < f(x) < L. As we wanted to
prove.

proof (using Heine’s definition of the limit.) Let xn → x−
0 . Though xn is not necessarily monotonic, it has an

increasing subsequence, xnk
→ x0. Then the sequence f(xnk

) is also increasing, and bounded. Thus f(xnk
) converges.

As L defined as sup, limf(xnk
) ≤ L. If limf(xnk

) < L, then for any x < x0: f(x) ≤ limf(xnk
) < L, contradicting that

L = sup. Thus limf(xnk
) = L.

In particular, for any ϵ > 0 for nk large enough f(xnk
) > L − ϵ. But then (as f(x) is increasing) there exists δ > 0

such that f(x) > L− ϵ, for x > x0 − δ. Thus limf(xn) = L. As we wanted to prove.

Partial answers to some of the questions of HWK6
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1. iii. lim
x→0−

sin(x)
|x| = −1 ̸= f(0).

iv. For x ̸= 0 can present: f(x) = sin2(x)
x2(1+cos(x)) , thus lim

x→0
f(x) = 1/2.

vi. For |x| > 1: f(x) = 0, in particular continuous. For 1
n+1x ≤ 1

n f(x) = nx. Thus f(x) is continuous in the intervals

( 1
n+1 ,

1
n ) but discontinuous at the points { 1

n}n∈N.

vii. The function is periodic, f(x+ 2) = f(x). Thus it’s enough to check the continuity for x ∈ [0, 2]. The function is
piecewise linear and continuous.

2. i., iii., iv., v., yes.
ii. , vi. no
3. Consider f(x) = sin 1

x on (0, 1) and xn = 8
πn .

4. i. no. ii. f(x) = χ(x), g(x) = 1− χ(x), where χ(x) is Dirichlet function.
iii. f(x) = χ(x).
iv. Consider two increasing sequences: 0 ≤ x1 < x2 < · · · < xn < · · · ≤ 1 and 0 ≤ y1 < y2 < · · · < yn < · · · ≤ 1.

Define the function: f |[xn−1,xn] = yn. The graph consists of infinity of segments, at increasing heights. Thus f is
monotonic, with infinite number of discontinuities.

v., vi., vii. viii. ix. no
x. A counterexample: D = [−2,−1] ∪ [1, 2]. f |[−2,−1] = −1 f |[1,2] = 1.
xi., xii. xiii. no.
7. As A is bounded, inf(A), sup(A) are finite numbers. If max(A) exists then it is sup(A) and f |max(A) > 1. But

then f > 1 in some neighborhood of max(A), contradiction.
8. Look at f(x+ T/2)− f(x).
10. In i. ii. iii., v. vi. vii. x. not uniformly continuous.
iv., vi., vii., viii., ix uniformly continuous.

Partial answers to some of the questions of HWK7

1. i. yes.
ii. f2(x) and f(x)g(x) are not necessarily uniformly cont.
iii., iv., viii., ix., x., no
v., vii., xii. yes
vi. yes for f ± g. Nothing can be said about f(x)g(x).
4. f(x) is uniformly cont. on (0, 1) but not on (1,∞).
8. i. and iii. f ′(x) is continuous in R.
ii. f ′(x) exists everywhere but is not continuous at x = 0.
iv. f ′(x) exists for x ̸= 1 and is continuous.

v. By the direct check, f(x) =
{ π

2 − (x− 2πn), x ∈ [2πn, 2πn+ π)
−π

2 + (x− π − 2πn), x ∈ [2πn+ π, 2πn+ 2π)
. Thus f(x) is continuous everywhere,

differentiable for x ̸∈ πn and the derivative is continuous (at the points where it exists).

9. Note that f(x) =
2014∏
i=1

(i− x), for x < 1 all the brackets are positive. Thus ln(f(x)) =
2014∑
i=1

ln(i− x), thus, for x < 1,

f ′(x)
f(x) =

2014∑
i=1

1
i−x . From here: f ′(0) = 2014!

2014∑
i=1

1
i .

Partial answers to some of the questions of HWK8

3. A counterexample: f(x) = sin(ex).
4. i. true for odd/even, periodic. Not true for bounded.
ii. and iv. A counterexample: f(x) = |x|.
iii. From the definition of derivative follows: f ′(x) ≡ 0.
v. and x. a counterexample f(x) = sin(e2x)
vii. a counterexample f(x) = x · sin( 1x ).
viii. The functions is differentiable, thus it is enough to check that the derivative is bounded. For that it is enough to

check that lim
x→∞

x(π2 − arctan(x)) is finite.

Alternatively, one can check that for x → ∞: f(x) → ∞ in the form: f(x) ∼ x. Thus it is natural to consider f(x)−x.
Then one checks that lim

x→∞
(f(x)− x) = 0, thus f(x)− x is uniformly continuous. As x is uniformly continuous one gets:

f(x) is uniformly continuous.

ix. If lim
x→∞

f ′(x) = 0, then for x > M : |f ′(x)| < ϵ. Thus, by Lagrange’s theorem on any interval [M,N ]: | f(x)−f(M)
x−M | <

ϵ. From here follows lim
x→∞

f(x)
x = 0.

(Note that lim
x→∞

f ′(x) = 0 does not imply that f(x) is bounded, e.g. f(x) = ln(x).)
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Similarly for the case of f ′(x) bounded.
xi. xiii. Follows from Lagrange thm

xii. a counterexample: f =
{

x2sin 1
x3 , x ̸= 0

0, x = 0
.

xiv. a counterexample: f(x) = x2χ(x), where χ(x) is the Dirichlet function
xv. a counterexample: f(x) = x

2 + x2sin 1
x .

5. a. Check that the functions are continuous and monotonic, then use the mean value theorem.

b. Define the polynomial p(x) :=
n∑

i=0

cix
i+1

i+1 . Then p(0) = 0. Further, the condition
n∑

i=0

ci
i+1 = 0 gives p(1) = 0. So, the

continuous function p(x) must have a min or max in (0, 1). Thus p′(x) = 0 for some x ∈ (0, 1).
c. (First solution) We can assume that f(x) > 0 on (a, b). (If needed one can shrink the interval to a smaller,

preserving f(a) = 0 = f(b) and f |(a,b) > 0. If f(x) < 0 then consider −f(x)). Consider the equation αx+ ln(f(x)) = 0.
As ln(f(x)) → −∞ for x → a or x → b, we get: ln(f(f)) is continuous and bounded from above, there exists a local
maximum of αx+ ln(f(x)) at some point c ∈ (a, b). At this point one has: (αx+ ln(f(x)))′ = 0, i.e. αf(c) + f ′(c) = 0,
as is to be proved.

(Second solution) Consider the function g(x) = eαxf(x). It is continuous and g(a) = 0 = g(b). Thus g′(c) = 0. Note
that g′(x) = eαx(αf(x) + f ′(x)) and eαx does not vanish.

Partial answers to some of the questions of HWK9

1. a. The proof is by induction, similar to the proof of (a+ b)n = ...
For n = 0, n = 1 the formula holds. Suppose it holds for some n. Then

(f(x)g(x))(n+1) =
( n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x)

)′
=

n∑
k=0

(
n

k

)(
f (k+1)(x)g(n−k)(x) + f (k)(x)g(n+1−k)(x)

)
= · · ·

b. ii. f(x)(n) = sin(x+ πn
2 ).

iii. Use sin2(x) = 1−cos(2x)
2 .

iv. Using question 1 and 2.ii. we get: (exsin(x))(n) = ex
n∑

k=0

(
n
k

)
sin(x+ πk

2 )

v. f (n) = xsin(x+ πn
2 ) + n · sin(x+ π(n−1)

2 )

vi. Use 1
x2−a2 = 1

2a (
1

x−a − 1
x+a ) and ( 1

x+a )
(n) = (−1)nn!

(x+a)n+1 .

2. a. i. ln(x+ a) = ln(a) + ln(1 + x
a )⇝ ln(a) +

∑
n≥1

(−1)n−1(x/a)n

n . (Here we use the expansion of ln(1 + x), obtained

in the class.)
ii. 1

x2−a2 = − 1
2a (

1
a−x + 1

a+x ) = − 1
2a2 (

1
1− x

a
+ 1

1+ x
a
)⇝ − 1

2a2

∑
n≥0

((xa )
n + (−x

a )
n) = − 1

a2

∑
n≥0

(xa )
2n.

(Here we use the expansion of 1
1+x , obtained in the class.)

iii. sin(x+ a) = sin(x)cos(a) + sin(a)cos(x) = cos(a)
∑
n≥0

(−1)nx2n+1

(2n+1)! + sin(a)
∑
n≥0

(−1)nx2n

(2n)! .

b. i. ex
3

=
∑
n≥0

x3n

n! .

ii. Using part a.iii we get: sin(x2 + a) = cos(a)
∑
n≥0

(−1)nx4n+2

(2n+1)! + sin(a)
∑
n≥0

(−1)nx4n

(2n)! .

iii. Note that (arctan(x))′ = 1
1+x2 =

∑
n≥0

(−x2)n. Thus arctan(x) =
∑
n≥0

(−1)nx2n+1

2n+1 .

c. i. ln sin(x)
x = ln(1− x2

3! +
x4

5! + o(x5)) = −x2

3! +
x4

5! −
(− x2

3! +
x4

5! )
2

2 + o(x4) = −x2

3! +
x4

5! −
x4

(3!)22 + o(x4).

ii. Use sin2(x) = 1−cos(2x)
2 .

e. e.g. use l’Hopital’s rule n times.

3. i. Multiply by the conjugate.
ii. present in the form ( lim

x→0

x
sin(x) )( limx→0

xsin 1
x )

vii. One approach:(√
x+ 1−

√
x
)
+
(√

x− 1−
√
x
)
= 1√

x+1+
√
x
− 1√

x−1+
√
x
=

√
x−1−

√
x+1

(
√
x+1+

√
x)(

√
x−1+

√
x)

=

= −2
(
√
x+1+

√
x)(

√
x−1+

√
x)(

√
x−1+

√
x+1)

Another approach:

√
x+ 1 +

√
x− 1− 2

√
x =

√
x
(√

1 +
1

x
+

√
1− 1

x
− 2

)
=

√
x
(
1 +

1

2x
− 1

8x2
+ 1− 1

2x
− 1

8x2
− 2 + o(

1

x2
)
)

4. b.iii. cosh(x) =
∑
n≥0

x2n

(2n)! , sinh(x) =
∑
n≥0

x2n+1

(2n+1)!
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5. b. For x ̸= 0: f ′(x) = g′(x)
x − g(x)

x2 . For x = 0: f ′(0) = lim
x→0

g(x)
x2 = 3

2 . (Apply l’Hopital’s rule twice.)

Further, lim
x→0

f ′(x) = 3
2 = f ′(0), thus f ′(x) is a continuous function.

For x ̸= 0: f ′′(x) = g′′(x)
x − 2g′(x)

x2 + 2g(x)
x3 . For x = 0: f ′′(0) = lim

x→0

g′(x)
x − g(x)

x2 − 3
2

x3 .

Suppose g′′(x) is continuous, then can use l’Hopital and get: f ′′(0) = lim
x→0

g′′(x)−3
3x . Eventhough lim

x→0
g′′(x) = 3,

lim
x→0

g′′(x)−3
3x does not necessarily exist. (For example, for g′′(x) = 3 + 3

√
x.)

Thus, even if g is assumed to be twice differentiable, with g′′(x) continuous, f is in general not twice differentiable.

c. We start from the general statement, for any k: lim
x→0

e
− 1

x2

xk = 0. (Present the limit in the form lim
x→0

x−k

e
1
x2

and apply

l’Hopital several times.)

When computing f (n)(0) (for any n) one always gets the limit of the form: lim
x→0

Pol( 1x )e
− 1

x2 , where Pol( 1x ) is a

polynomial in the inverse powers of x. As observed above: this limit is zero, regardless of the degree of the polynomial.

7. All the statements are false.

A counterexample to v. is the function of 5.c. A counterexample to vi. is e.g.
{

x2sin 1
x , x ̸= 0

0, x = 0
.

Partial answers to some of the questions of HWK10

1. a. Suppose the minimum of f(x) is achieved at 0 < xmin ≤ 1
2 . Write the Taylor expansion at that point:

0 = f(0) = f(xmin) + f ′(xmin)︸ ︷︷ ︸
=0

(0− xmin) + f ′′(c)
(xmin − 0)2

2
for some c ∈ (0, xmin) <

1

2
.

Thus f ′′(c) = 2
(xmin−0)2 ≥ 8. If 1

2 ≤ xmin < 1 then consider f(1) = f(xmin) + f ′(xmin)︸ ︷︷ ︸
=0

(1− xmin) + f ′′(c) (xmin−1)2

2 .

b. If the equation f(x) = 0 has n solutions, x1 < x2 < · · · < xn then in each interval (xi, xi+1) there is a point of local
min/max, i.e. ci ∈ (xi, xi+1) such that f ′(ci) = 0. Thus the equation f ′(x) = 0 has at least (n− 1) solutions. As f ′(x)
is a polynomial of degree = (n − 1), the equation can have at most (n − 1) solutions. In total, one has: f ′(x) vanishes
precisely (n− 1) times. Continue by induction.

d. If f( 1n ) = 0 for n ∈ N then on each interval ( 1
n+1 ,

1
n ) the derivative vanishes. Thus f ′(x) has infinite number of

zeros in any neighborhood of x = 0. By the assumption: f ′ is continuous, thus f ′(0) = lim
x→0

f ′(x) = 0. Now repeat the

same procedure for f ′(x), then get: f ′′(0) = lim
x→0

f ′′(x) = 0. And so on. Thus: f (n)(0) = 0 for any n. Thus the Taylor

series of f(x) at x = 0 is identically zero.
Finally, we claim that f(x) is equal to its Taylor series. The sufficient condition for this equality is in terms of the

remainder: lim
n→∞

rn(x) = 0, where rn(x) =
f(n)(c)xn

n! . In our case: |f (n)(x)| ≤ L thus |rn| ≤ L|xn|
n! → 0. So the function

equals to its Taylor series.
Thus: f(x) ≡ 0.

2. a. Consider for example f(x) = −x2χ(x), where χ(x) is the Dirichlet function. Alternatively: f(x) =
{ −x2sin2( 1x ), x ̸= 0

0, x = 0

b. Consider f(x) =
{

sin 1
x , x ̸= 0

10, x = 0
.

d. Suppose x1, x2 are the points of local maximum, then the continuous function f(x) on [x1, x2] must have a local
minimum. As x1, x2 are loc.maxima, the local minimum is achieved in (x1, x2).

This does not hold for f(x) non-continuous. e.g. f(x) =
{ |x|, 0 ̸= |x| ≤ 1

1, x = 0
.

e. Consider for example f(x) = −x4.
f. Consider for example f(x) = x3 in the interval [−1, 1].

g. Consider for example f(x) =
{

esin
1
x− 1

x , x ∈ (0, 1]
0, x = 0

. By the direct check: the function is differentiable on [0, 1]

and for x > 0: f ′(x) =
1−cos 1

x

x2 esin
1
x− 1

x . Thus f ′(x) ≥ 0 on [0, 1] and f ′(x) = 0 at all the points 1
xn

= 2πn.
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3. i. Consider the function f(x) = xln(x) − x2+1
2 , we want to prove f(x) ≤ 0. Note that lim

x→0+
f(x) < 0 and

lim
x→+∞

f(x) < 0. Thus it is enough to check the value of f(x) at its maximal point.

For this we study f ′(x) = 1+ ln(x)− x. We want to check when is f ′(x) positive/negative. Note that lim
x→0+

f ′(x) < 0

and lim
x→+∞

f ′(x) < 0. Thus we check f ′′(x) = 1
x − 1. As f ′′(x) > 0 for x < 1 and f ′′(x) < 0 for x > 1 we have: f ′(x)

increases for x < 1 and decreases for x > 1. Therefore its maximum is at x = 1 and f ′(1) = 0. Therefore f ′(x) ≤ 0 for
x > 0. But then f(x) is non-increasing on x > 0. And lim

x→0+
f(x) < 0. Thus f(x) < 0 on x > 0.

(Note: using ln(1 + t) ≤ t one could get immediately that f ′(x) ≤ 0 for x > 0.)
4. a. ii. f ′(x) = cos(cos(x))(−sin(x)). Note that |cos(x)| ≤ 1 < π

2 . Thus the sign of f ′(x) is determined by sin(x).
f ′ > 0 for x ∈ (−π + 2πn, 2πn) and f ′ < 0 for x ∈ (2πn, π + 2πn). Thus {2πn} are the local maxima, while {π + 2πn}
are the local minima.

iii. f ′(x) = 0 means: ex+e−x

2 = cos(x). Note that ex + e−x ≥ 2, with equality iff x = 0. (e.g. the inequality of

averages) Thus there is only one point to check: x = 0. At this point: f ′(0) = 0 = f ′′(0), f (3)(0) = 2. Thus this is a flex.
iv. The domain of definition of f is (−1, 0) ∪ (0,∞), in this domain the function is infinitely differentiable. f ′(x) =

ln(1+x)
x2

(
2x
1+x − ln(1 + x)

)
. Thus f ′(x) vanishes only when the expression g(x) = 2x

1+x − ln(1 + x) vanishes. So we study

this new function. Its domain of definition is (−1,∞). And g′(x) = 2
(1+x)2 − 1

(1+x) . Thus g(x) increases on (−1, 1) and

decreases on (1,∞). Thus g(1) = 1− ln(2) > 0 is the global maximum. Thus g(x) has one root on (−1, 0) and one root
on (1,∞). By the direct check: g(0) = 0, while the other root,x1 > 1, is transcendental.

Altogether: f ′(x) > 0 on (−1, 0) ∪ (0, x1) and f ′(x) < 0 on (x1,∞). Thus x1 is a local maximum.
v. The function is continuous but not differentiable at x = 0, x = 1, these point should be checked separately. For

x > 1 there are no critical points, for x < 1 there is an additional point: x = −1. f ′′(−1) < 0, thus x = −1 is a local
maximum. Further, f(x) ≥ 0, and f(0) = 0 thus x = 0 is the global minimum.

Finally, for f → ±∞: f(x) → 0. Thus it achieves the global maximum at some point. And f(1) = 1, while
f(−1) = e−2. Thus x = 1 is the global maximum.

vi. f ′(x) = 0 for x = 0, x = 1 and x = m
m+n . If m is even then f ′ changes the sign at x = 0, thus this is an extremum.

Similarly, if n is even then x = 1 is an extremum. Finally, the point x = m
m+n is always an extremum as f ′ changes the

sign.
vii. f ′(x) = cos(sin6(x))6sin5(x)cos(x). As |sin(x)| ≤ 1 < π

2 , the part cos(sin6(x)) is always positive. Thus it is

enough to study the expression sin5(x)cos(x), so the critical points of f(x) are: {πn
2 }n∈Z.

To classify these critical points one can check the sign of sin5(x)cos(x).
To classify via higher derivative(s) is cumbersome as f ′′(x) and f (3) vanish at the points πn. Rather one can check

the Taylor expansion. At the point x = 0: f(x) = x6 + 0(x7), so this is a local minimum. By periodicity all the points
x = πn are local minima.

The points π
2 + πn are local maxima.

5. Let (x, y = ax+ b) be a point on the line, consider the square-of-distance: f(x) = (x− x0)
2 + (ax+ b− y0)

2. We

must find the minimum of this function. f ′(x) = 0 gives x = x0+a(y0−b)
1+a2 . Substitute this into f(x) to get the final answer.

6.b. We should prove: f(g(λ1x1 + λ2x2)) ≥ λ1f(g(x1)) + λ2f(g(x2)).
Indeed, as g(x) is convex up: g(λ1x1 + λ2x2) ≥ λ1g(x1) + λ2g(x2). As f decreases we have the needed inequality.
6.c.i. By the assumptions f is convex down, thus

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) ≤ λ ·max(f(a), f(b)) + (1− λ) ·max(f(a), f(b)) = max(f(a), f(b)).

7. a. v. Present the function in the form f(x) = x+ ln
(
(1 + 1

ex )
x
)
. Thus, for x → ±∞, f(x) ∼ x+ 1

e .

Further, for x → 0: f(x) → 0, while for x → (−1
e )

−: f(x) → ∞.
b. If f(x) has a slant asymptote for x → ∞ then f(x)− ax− b → 0 (for some appropriate (a, b)). Thus the function

f(x) − ax − b is continuous on [a,∞) and with a finite limit at x → ∞. So it is uniformly continuous. Thus f(x) is
uniformly continuous.

c. As f(x) has a slant asymptote, we get that p(x) is of degree at most 2. Further, f(0) = 0 gives p(x) = xg(x), where
the polynomial g(x) is of degree at most one.

Finally, the condition ”x = −2 is an extremum of f(x)” forces: f(x) = ax2

x+1 , while the condition f(−2) = 4 forces

f(x) = − x2

x+1 .

d. Consider f(x) = sin(ex)
1+x2 .

8. b. The function is defined on [0, 1] is continuous, differentiable on (0, 1) and decreases everywhere. For a = 1 this
is a line, for a > 1 the function is convex up, for 0 < a < 1 the function is convex down.

To check the limit of the curve |x|a + |y|a = 1 as a → ∞, note that lim
a→∞

a
√
|x|a + |y|a = max(|x|, |y|).
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To check the limit of the curve |x|a + |y|a = 1 as a → 0+, note that lim
a→0+

|x|a =
{ 1, x ̸= 0

0, x = 0
.

Partial answers to some of the questions of HWK11

1. b. iv. Use x = tan(α). Alternatively, one can use
∫

1
(1+x2)dx = x

(1+x2) +
∫

2x2

(1+x2)2 dx.

v.
∫ ex(1−x)

x2 dx = − ex(1−x)
x +

∫ −exx
x dx

vi.
∫
eaxsin(bx)dx = eaxsin(bx)

a −
∫ eaxb·cos(bx)

a dx = eaxsin(bx)
a − eaxb·cos(bx)

a2 −
∫ eaxb2·sin(bx)

a2 dx.

Thus
∫
eaxsin(bx)dx = aeaxsin(bx)−beaxcos(bx)

a2+b2 .

2. (2n− 1)Jn + x
(x2+1)n = 2na2Jn+1.

Partial answers to some of the questions of HWK12

1. a. i. The function is continuous for x ̸= 0, thus it is integrable for any interval [a, b] that does not contain 0. To check
integrability near x = 0, split the Darboux sums according to

∫ a

0
=

∫ a

ϵ
+
∫ ϵ

0
. As f(x) is bounded, |

∫ ϵ

0
f(x)dx| ≤ ϵ. Thus

the limits of the lower and upper Darboux sums coincide.
Alternatively, as has been proved in the class: a bounded function with at most a finite number of discontinuities is

integrable.
ii. iii. The function is continuous in its domain of definition, thus it is integrable.
iv. Split Darboux sums according to

∫ a

0
=

∫ a

ϵ
+
∫ ϵ

0
. On [ϵ, a] the function has at most finite number of discontinuities

(and is bounded), thus it is integrable. Further, |
∫ ϵ

0
f(x)dx| ≤ ϵ. Thus the limits of the lower and upper Darboux sums

coincide.
b. For any partition the lower Darboux sum is 0, the upper is 1.
c. Let Sf , sf be the upper/lower Darboux sums for a given partition. By the triangle inequality: |Sf−sf | ≥ |S|f |−s|f ||.

Thus from |Sf − sf | → 0 we get |S|f | − s|f || → 0. Thus |f | is integrable. Further, S|f | ≥ |Sf |.

2. vi.
e∫
1
e

|ln(x)|dx =
e∫
1

ln(x)dx−
1∫
1
e

ln(x)dx

vii. Note that

π
2∫
0

cos5(x)dx
cos5(x)+sin5(x)

t=π
2 −x
=

π
2∫
0

sin5(t)dt
cos5(t)+sin5(t) . Thus

π
2∫
0

cos5(x)dx
cos5(x)+sin5(x) =

1
2

π
2∫
0

cos5(x)+sin5(x)
cos5(x)+sin5(x)dx = π

4 .

viii. Integrate by parts twice.

x. Use the factorization x4 − 1 = (x− 1)(x+ 1)(x2 + 1), then split the fraction: 1
x4−1 = 1

2 (
1

x−1−
1

x+1

2 − 1
x2+1 ).

3.c. Present in the form

π
2∫
0

sin(x)sinm−1(x)dx and integrate by parts.

4. a. Let Sf , Sg, sf , sg be the upper/lower Darboux sums for some partition. Then lim(Sf+g − sf+g) = lim(Sf −
sf ) + lim(Sg − sg) = 0. Thus f + g is integrable.

Integrability of f2(x). As f is bounded, can assume |f(x)| ≤ C. Therefore:

Sf2(x) − sf2(x) =
∑
i

(xi+1 − xi)
(
supi(f

2(x))− infi(f
2(x))

)
Note that supi(f

2(x))− infi(f
2(x)) ≤ C(supi(f(x))− infi(f(x))), thus for any partition 0 ≤ Sf2(x)−sf2(x) ≤ C(Sf(x)−

sf(x)). Thus lim(Sf2(x) − sf2(x)) = 0.

Integrability of f(x)g(x) follows now from the presentation f(x)g(x) = (f+g)2−(f−g)2

4 .
b. If f(x) is integrable then |f(x)| is integrable as well. (By the triangle inequality: S|f | − s|f | ≤ Sf − sf .)

The converse does not hold, e.g. consider f(x) =
{ 1, x ∈ Q

−1, x ̸∈ Q

c.d.e. Consider f(x) =
{

10100, x = 1
n , n ∈ N

0, x ̸= 1
n

f. Suppose f(x0) = c > 0, then by continuity f(x) > c
2 for x ∈ (x0 − ϵ, x0 + ϵ) (for some small enough ϵ). Thus

b∫
a

f(x)dx > cϵ.

g. It is enough to prove for the case: f(x) = g(x) for x ∈ [a, b] \ {x0}. In this case g(x) is integrable and
b∫
a

(f(x) −

g(x))dx =
x0∫
a

(f(x)− g(x))dx+
b∫

x0

(f(x)− g(x))dx. By the direct check of Darboux sums, both integrals vanish.

h. The proof in both cases is by the change of variable, x → −x.
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5. a. In all the cases the limits are the Darboux sums. Thus i. lim(...) =
1∫
0

ln(1 + x)dx = · · · .

ii. lim(..) =
1∫
0

x2arctan(x)dx = · · · . iii. liml(..) =
2∫
0

xαdx = · · ·

b. In all the cases apply l’Hôpital’s rule. e.g.

iii. lim(...) = lim
x→0

esin
2(x)cos(x)−esin

2(sin(x))cos(sin(x))cos(x)
2x = lim

x→0

esin
2(x)cos(x)

2
1−esin

2(sin(x))−sin2(x)cos(sin(x))
x = 0 .

iv. lim(..) = lim
x→0

tan(x)sin(αtan(x)) 1
cos2(x)

1−cos(x) = 2a.

v. lim(...) = lim
x→0

f(x)g(x)
f(x) = g(0).

Partial answers to some of the questions of HWK14

1. Here all the functions have constant signs, thus one can use the comparison criterion.

iiii.
∞∫
0

xdx√
x4+1

≥
∞∫
0

dx
10x = ∞

iv.
∞∫
1

e−x2

dx ≤
∞∫
1

e−xdx < ∞

v. Use: e−
√
x < 1

x2 for x >> 1.
vi. There are two problematic points: x = 0 and x = 1. At x = 0:

ϵ∫
0

xa−1

100
dx <

ϵ∫
0

xa−1(1− x)b−1dx <

ϵ∫
0

xa−1dx

thus at x = 0 the integral converges iff a > 0. Similarly, at x = 1 the integral converges iff b > 0.
viii. The integral diverges at x = 1, there 1

x2−1 ∼ 1
x−1 .

x. At x = 0 the integral converges iff α > −1. At ∞ the integral converges iff β − α > 1.

xi. At x = 0 the integral converges iff α > −1. For x = 1 use: 1− cos(x− 1) = sin2(x−1)
1+cos(x−1) . Thus at x = 1 the integral

converges iff 2β > −1.

xii. Near x = 0 present: ln(sin(x)) = ln(x) + ln( sin(x)x ). Note that ln( sin(x)x ) → 0, thus the integral
ϵ∫
0

ln(
sin(x)

x )√
x

dx

converges. (e.g. use
ϵ∫
0

| ln(
sin(x)

x )√
x

|dx <
ϵ∫
0

10√
x
dx).

It remains to check the convergence of
ϵ∫
0

ln(x)√
x
dx. Integrate by parts:

ϵ∫
0

ln(x)√
x
dx = lim

a→0

xln(x)√
x

∣∣∣ϵ
a
−

ϵ∫
0

dx√
x
. Now in the

right hand side both terms converge to the finite limits.
xiv. Draw the graph of the function, it is a sequence of triangles, of height 1 (the length of basis is 2

2n ). The area of

such a triangle is 1
2n . Therefore

∞∫
2

f(x)dx <
∑
n≥1

1
2n = 1.

2. a. i. At x = 0: the integral converges iff α < 2. (If α < 2 then the convergence is absolute, if α ≥ 2 then the
integral diverges.)

For x → ∞, integrate by parts:
∞∫
1

sin(x)
xα dx = −cos(x)

xα |∞1 − α
∞∫
1

cos(x)
xα+1 dx. Thus, if α > 0 then the integral converges.

As was shown in the class, the integral converges absolutely only for α > 1. Thus, for 0 < α ≤ 1 the convergence is
conditional.

ii. The integral converges but not absolutely (conditionally), integrate by parts.
iii. Integrate by parts to get that the integral converges. The convergence is conditional (not absolute):

∞∫
1

|cos(x2)|dx >

∞∫
1

cos2(x2)dx >

∞∫
1

cos2(x2) + sin2(x2)

100
dx = ∞.

iv. At x = 0 the integral converges iff α > −1, the convergence is absolute.

For x → ∞, change the variable ex = t, then integrate by parts. One gets that
∞∫
1

xαcos(ex)dx converges for any α.

(Though for α ≥ −1 the convergence is condition.)

In total
∞∫
0

xαcos(ex)dx converges conditionally for α > −1 the integral.

v. Compare to 1
x .

4. a. Consider e.g.
∞∫
1

xαcos(ex)dx (from question 2).
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b. Consider f(x) =

{ n · 2n(x− n+ 1
2n ), x ∈ [n− 1

2n , n]
n · 2n(n+ 1

2n − x), x ∈ [n, n+ 1
2n ],

0
, cf. question 1.xiv.

c. Consider f ≥ 0 which is ”mostly” zero but have narrow bumps at the integer points. An example of such a function

is given in question 7. If the width of the bumps goes to zero fast enough then
∞∫
f(x)dx < ∞. But f(x) ̸→ 0 as x → ∞.

d. Suppose lim
x→∞

f(x) ̸= 0. Then there exists a number ϵ > 0 and a sequence of points xn → ∞ such that f(xn) > ϵ.

As f(x) is uniformly continuous, there exists δ > 0 such that on each interval (xn − δ, xn + δ): f(x) > ϵ
2 . Then, for each

such interval:
xn+δ∫
xn−δ

f(x)dx > 2δ ϵ
2 . This contradicts the condition lim

N1→∞
N2→∞

N2∫
N1

f(x)dx = 0.

e. Consider f(x) = g(x) = sin(x)√
x

. As is shown in question 2:
∞∫ sin(x)√

x
dx < ∞, but

∞∫ sin2(x)
x dx = ∞.

5. As lim
t→∞

t2f(t) = 1, one has for t ≫ 1: |f(t)| < 100
t2 . Thus

∞∫
f(t)dt converges, even absolutely.

Suppose a > 0, then lim
n→∞

∞∫
a

f(nx)dx = lim
n→∞

∞∫
na

f(t)dt

n = 0.

Finally: lim
n→∞

∞∫
a

f(nx)dx = 0.

6. Present the equation in the form y2 = 8
x − 4. We need to compute the area of the domain: 0 < x ≤ 2,

0 ≤ y ≤
√

8
x − 4. The area is:

2∫
0

√
8
x − 4dx. First we check the convergence of this integral at x = 0. Note that

2∫
0

√
8
x − 4dx < 10

2∫
0

dx√
x
< ∞, so the integral converges.

To compute the integral use the substitution: t2 = 8
x − 4.

7. The function has a vertical asymptote at each x ∈ N. It is enough to check the convergence of the integral on each

interval (n− ϵ, n+ ϵ). Note that lim
x→n

sin(πx)
x−n = 1. Thus

n+ϵ∫
n−ϵ

dx√
|sin(πx)|(1+ex)

<
n+ϵ∫
n−ϵ

100dx√
|x−n|

< ∞.

In fact the whole integral
∞∫
1

dx√
|sin(πx)|(1+ex)

converges absolutely, by the slightly better comparison:
n+ϵ∫
n−ϵ

dx√
|sin(πx)|(1+ex)

<

1010

1+en

n+ϵ∫
n−ϵ

dx√
|x−n|

. Thus

∞∫
1

dx√
|sin(πx)|(1 + ex)

< 1010
∞∫
1

dx

1 + ex
< 1010

∞∫
1

e−xdx < ∞.

8. i. f(x) is differentiable for x ∈ R. In particular it is uniformly continuous on any finite interval. Note that

lim
x→−∞

f(x) =
0∫
0

(..)dt = 0. Moreover, lim
x→∞

f(x) =
∞∫
0

(..)dt < ∞. Thus the function has two horizontal asymptotes.

In particular, as both limits are finite, f(x) is uniformly continuous in R.
f ′(x) = sin(ex). Thus f(x) increases for ex ∈ (2πn, 2πn + π) and decreases for ex ∈ (2πn − π, 2πn). The points

{ln(2πn)}n∈N are local minima, the points {ln(2πn− π)}n∈N are local maxima.
f ′′(x) = excos(ex). Thus f(x) is convex down for ex ∈ (−π

2 +2πn, π
2 +2πn) and convex up for ex ∈ (π2 +2πn, 3π

2 +2πn).
The points {ln(π2 + πn)}n∈N are inflection points.

Similarly for ii. and iii.


