- (1) By the direct check: $y_n \ge x_n$. Then, from the definition of y_n one has: $y_n \ge y_{n+1} \ge x_n$. From the definition of x_n one has: $x_n \le x_{n+1} \le y_n$. Therefore:
 - the sequence x_n is non-decreasing and bounded from above (e.g. by y_1),
 - the sequence y_n is non-increasing and bounded from below (e.g. by $x_1 > 0$). Thus there exist the finite limits: $x_n \to x$ and $y_n \to y$. These limits satisfy: $x = \frac{2}{\frac{1}{x} + \frac{1}{y}}$ and $y = \sqrt{xy}$. From this one gets: x = y.
- (2) Fix any $\epsilon > 0$. We claim that there exist N such that for any n > N: at least one of the bounds $|a_n b_1| < \frac{\epsilon}{4^{k+1}}$, ..., $|a_n b_k| < \frac{\epsilon}{4^{k+1}}$ is satisfied. (proof: Otherwise one can construct a subsequence a_{n_j} that does not approach any of b_1, \ldots, b_k . As a_{n_j} is bounded, it has a finite partial limit. Which is not one of b_1, \ldots, b_k . Contradiction.)

Therefore for n > N holds: all the factors $|a_n|$, $|a_n - b_1|$,..., $|a_n - b_k|$ are bounded (e.g. by 4) and at least one of them is smaller than $\frac{\epsilon}{4^{k+1}}$. Therefore $|a_n \prod_{i=1}^k (a_n - b_i)| \le \epsilon$. Thus $\lim_{n \to \infty} a_n \prod_{i=1}^k (a_n - b_i) = 0$.

(3) Draw the graph of $1 - \frac{1}{x}$. Draw the graph of sin(x). We are looking for the intersection points of the two graphs. Note that for x > 1: $0 < 1 - \frac{1}{x} < 1$. Note that $sin(\pi n) = 0$, while $sin(\frac{\pi}{2} + 2\pi n) = 1$. Look at the graph.

(a) By the mean value theorem there is a solution in each interval $(2\pi n, \frac{\pi}{2} + 2\pi n)$ and in each interval $(\frac{\pi}{2} + 2\pi n, \pi + 2\pi n)$, $n \ge 1$. Note that there are no solutions in the intervals $(2\pi n + \pi, 2\pi n + 2\pi)$, as sin(x) < 0 there.

(b) By part (a) there is an infinite sequence of solutions, $x_n \to \infty$. Thus $sin(x_n) = 1 - \frac{1}{x_n} \to 1$. By the continuity of sin(x) and arcsin(x): these solutions approach the points $\{\frac{\pi}{2} + 2\pi k\}_{k \in \mathbb{N}}$. Therefore the differences $x_{n+1} - x_n$ tend either to 0 or to 2π (depending on whether *n* is odd or even). Thus $sin(\frac{x_{n+1}-x_n}{2}) \to 0$.

(4) The initial domain of definition of f is: $x \neq 0$ and $x \neq \frac{\pi}{2} + \pi n$. We would like to extend f(x) in a continuous way to the biggest possible domain.

We check $\lim_{x\to 0} f(x)$. Note that $\lim_{x\to 0} x \cdot \ln(1+\frac{1}{x^4}) = 0$. (Indeed: $\lim_{x\to 0} (\frac{1}{|x|^4})^x = (\lim_{x\to 0} \frac{1}{(|x|)^x})^4 = 1$, as follows e.g. from $\sqrt[n]{n} \to 1$.) Therefore $\lim_{x\to 0} f(x) = 1$.

Thus one can extend the definition of f to x = 0 and get a continuous function.

We check $\lim_{x \to \frac{\pi}{2} + \pi n} f(x)$. It is enough to check the part $|sin(x)|^{\frac{1}{|cos(x)|}}$. By periodicity it is enough to check $\lim_{x \to \frac{\pi}{2} + \pi n} |sin(x)|^{\frac{1}{|cos(x)|}}$. Present:

$$|\sin(x)|^{\frac{1}{|\cos(x)|}} = \left|1 - (1 - \sin(x))\right|^{\frac{1}{|\cos(x)|}} = \left|1 - \frac{\cos^2(x)}{1 + \sin(x)}\right|^{\frac{1}{|\cos(x)|}} = \left(\left|1 - \frac{\cos^2(x)}{1 + \sin(x)}\right|^{\frac{1 + \sin(x)}{\cos^2(x)}}\right)^{\frac{|\cos(x)|}{1 + \sin(x)}}$$

Thus $\lim_{x \to \frac{\pi}{2}} |sin(x)|^{\frac{1}{|cos(x)|}} = 1.$

Thus one can extend the definition of f to the points $\frac{\pi}{2} + \pi n$, by $f(\frac{\pi}{2} + \pi n) = 1 + (\frac{\pi}{2} + \pi n) ln(1 + \frac{1}{(\frac{\pi}{2} + \pi n)^4})$, to get a continuous function.

In total: one can extend f to a continuous function on the whole \mathbb{R} , therefore f is uniformly continuous on any finite interval (by Cantor's theorem).

It remans to check the behavior of f at infinity. Note that $|sin(x)|^{\frac{1}{|cos(x)|}}$ is periodic and uniformly continuous on any finite interval. Thus it is uniformly continuous on the whole \mathbb{R} .

Note that $\lim_{x \to \pm \infty} x \cdot \ln(1 + \frac{1}{x^4}) = 0$. (For example, $\lim_{x \to \pm \infty} (1 + \frac{1}{x^4})^x = 1$.) As has been proved in the class: if a function is continuous on \mathbb{R} and its limits as $x \to \pm \infty$ are finite, then f is uniformly continuous on the whole \mathbb{R} . Therefore $x \cdot \ln(1 + \frac{1}{x^4})$ is uniformly continuous on the whole \mathbb{R} .

In total: f is uniformly continuous on the whole \mathbb{R} .