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(1) By the direct check: yn ≥ xn. Then, from the definition of yn one has: yn ≥ yn+1 ≥ xn. From the definition
of xn one has: xn ≤ xn+1 ≤ yn. Therefore:
• the sequence xn is non-decreasing and bounded from above (e.g. by y1),
• the sequence yn is non-increasing and bounded from below (e.g. by x1 > 0).

Thus there exist the finite limits: xn → x and yn → y.
These limits satisfy: x = 2

1
x+ 1

y

and y =
√
xy. From this one gets: x = y.

(2) Fix any ϵ > 0. We claim that there exist N such that for any n > N : at least one of the bounds |an−b1| < ϵ
4k+1 ,

..., |an − bk| < ϵ
4k+1 is satisfied.

(proof: Otherwise one can construct a subsequence anj that does not approach any of b1, . . . , bk. As anj is
bounded, it has a finite partial limit. Which is not one of b1, . . . , bk. Contradiction.)

Therefore for n > N holds: all the factors |an|, |an − b1|,. . . , |an − bk| are bounded (e.g. by 4) and at least

one of them is smaller than ϵ
4k+1 . Therefore |an

k∏
i=1

(an − bi)| ≤ ϵ. Thus lim
n→∞

an
k∏

i=1

(an − bi) = 0.

(3) Draw the graph of 1 − 1
x . Draw the graph of sin(x). We are looking for the intersection points of the two

graphs. Note that for x > 1: 0 < 1 − 1
x < 1. Note that sin(πn) = 0, while sin(π2 + 2πn) = 1. Look at the

graph.
(a) By the mean value theorem there is a solution in each interval (2πn, π

2 + 2πn) and in each interval
(π2 +2πn, π+2πn), n ≥ 1. Note that there are no solutions in the intervals (2πn+π, 2πn+2π), as sin(x) < 0
there.

(b) By part (a) there is an infinite sequence of solutions, xn → ∞. Thus sin(xn) = 1 − 1
xn

→ 1. By the

continuity of sin(x) and arcsin(x): these solutions approach the points {π
2+2πk}k∈N. Therefore the differences

xn+1 − xn tend either to 0 or to 2π (depending on whether n is odd or even). Thus sin(xn+1−xn

2 ) → 0.

(4) The initial domain of definition of f is: x ̸= 0 and x ̸= π
2 + πn. We would like to extend f(x) in a continuous

way to the biggest possible domain.
We check lim

x→0
f(x). Note that lim

x→0
x · ln(1 + 1

x4 ) = 0. (Indeed: lim
x→0

( 1
|x|4 )

x = ( lim
x→0

1
(|x|)x )

4 = 1, as follows

e.g. from n
√
n → 1.) Therefore lim

x→0
f(x) = 1.

Thus one can extend the definition of f to x = 0 and get a continuous function.

We check lim
x→π

2 +πn
f(x). It is enough to check the part |sin(x)|

1
|cos(x)| . By periodicity it is enough to check

lim
x→π

2

|sin(x)|
1

|cos(x)| . Present:

|sin(x)|
1

|cos(x)| =
∣∣∣1− (1− sin(x))

∣∣∣ 1
|cos(x)|

=
∣∣∣1− cos2(x)

1 + sin(x)

∣∣∣ 1
|cos(x)|

=
(∣∣∣1− cos2(x)

1 + sin(x)

∣∣∣ 1+sin(x)

cos2(x)
) |cos(x)|

1+sin(x)

.

Thus lim
x→π

2

|sin(x)|
1

|cos(x)| = 1.

Thus one can extend the definition of f to the points π
2 +πn, by f(π2 +πn) = 1+ (π2 +πn)ln(1+ 1

(π
2 +πn)4 ),

to get a continuous function.
In total: one can extend f to a continuous function on the whole R, therefore f is uniformly continuous on

any finite interval (by Cantor’s theorem).

It remans to check the behavior of f at infinity. Note that |sin(x)|
1

|cos(x)| is periodic and uniformly continuous
on any finite interval. Thus it is uniformly continuous on the whole R.

Note that lim
x→±∞

x · ln(1 + 1
x4 ) = 0. (For example, lim

x→±∞
(1 + 1

x4 )
x = 1.) As has been proved in the class:

if a function is continuous on R and its limits as x → ±∞ are finite, then f is uniformly continuous on the
whole R. Therefore x · ln(1 + 1

x4 ) is uniformly continuous on the whole R.
In total: f is uniformly continuous on the whole R.


