Sketchy solutions of Midterm, Hedva1.EE, 201.1.981
 14.05.2015 Ben Gurion University

(1) By the direct check: $y_{n} \geq x_{n}$. Then, from the definition of y_{n} one has: $y_{n} \geq y_{n+1} \geq x_{n}$. From the definition of x_{n} one has: $x_{n} \leq x_{n+1} \leq y_{n}$. Therefore:

- the sequence x_{n} is non-decreasing and bounded from above (e.g. by y_{1}),
- the sequence y_{n} is non-increasing and bounded from below (e.g. by $x_{1}>0$).

Thus there exist the finite limits: $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$.
These limits satisfy: $x=\frac{2}{\frac{1}{x}+\frac{1}{y}}$ and $y=\sqrt{x y}$. From this one gets: $x=y$.
(2) Fix any $\epsilon>0$. We claim that there exist N such that for any $n>N$: at least one of the bounds $\left|a_{n}-b_{1}\right|<\frac{\epsilon}{4^{k+1}}$, $\ldots,\left|a_{n}-b_{k}\right|<\frac{\epsilon}{4^{k+1}}$ is satisfied.
(proof: Otherwise one can construct a subsequence $a_{n_{j}}$ that does not approach any of b_{1}, \ldots, b_{k}. As $a_{n_{j}}$ is bounded, it has a finite partial limit. Which is not one of b_{1}, \ldots, b_{k}. Contradiction.)

Therefore for $n>N$ holds: all the factors $\left|a_{n}\right|,\left|a_{n}-b_{1}\right|, \ldots,\left|a_{n}-b_{k}\right|$ are bounded (e.g. by 4) and at least one of them is smaller than $\frac{\epsilon}{4^{k+1}}$. Therefore $\left|a_{n} \prod_{i=1}^{k}\left(a_{n}-b_{i}\right)\right| \leq \epsilon$. Thus $\lim _{n \rightarrow \infty} a_{n} \prod_{i=1}^{k}\left(a_{n}-b_{i}\right)=0$.
(3) Draw the graph of $1-\frac{1}{x}$. Draw the graph of $\sin (x)$. We are looking for the intersection points of the two graphs. Note that for $x>1: 0<1-\frac{1}{x}<1$. Note that $\sin (\pi n)=0$, while $\sin \left(\frac{\pi}{2}+2 \pi n\right)=1$. Look at the graph.
(a) By the mean value theorem there is a solution in each interval $\left(2 \pi n, \frac{\pi}{2}+2 \pi n\right)$ and in each interval $\left(\frac{\pi}{2}+2 \pi n, \pi+2 \pi n\right), n \geq 1$. Note that there are no solutions in the intervals $(2 \pi n+\pi, 2 \pi n+2 \pi)$, as $\sin (x)<0$ there.
(b) By part (a) there is an infinite sequence of solutions, $x_{n} \rightarrow \infty$. Thus $\sin \left(x_{n}\right)=1-\frac{1}{x_{n}} \rightarrow 1$. By the continuity of $\sin (x)$ and $\arcsin (x)$: these solutions approach the points $\left\{\frac{\pi}{2}+2 \pi k\right\}_{k \in \mathbb{N}}$. Therefore the differences $x_{n+1}-x_{n}$ tend either to 0 or to 2π (depending on whether n is odd or even). Thus $\sin \left(\frac{x_{n+1}-x_{n}}{2}\right) \rightarrow 0$.
(4) The initial domain of definition of f is: $x \neq 0$ and $x \neq \frac{\pi}{2}+\pi n$. We would like to extend $f(x)$ in a continuous way to the biggest possible domain.

We check $\lim _{x \rightarrow 0} f(x)$. Note that $\lim _{x \rightarrow 0} x \cdot \ln \left(1+\frac{1}{x^{4}}\right)=0$. (Indeed: $\lim _{x \rightarrow 0}\left(\frac{1}{|x|^{4}}\right)^{x}=\left(\lim _{x \rightarrow 0} \frac{1}{(|x|)^{x}}\right)^{4}=1$, as follows e.g. from $\sqrt[n]{n} \xrightarrow{x \rightarrow 0} 1$.) Therefore $\lim _{x \rightarrow 0} f(x)=1$.

Thus one can extend the definition of f to $x=0$ and get a continuous function.
We check $\lim _{x \rightarrow \frac{\pi}{2}+\pi n} f(x)$. It is enough to check the part $|\sin (x)|^{\frac{1}{\cos (x) \mid}}$. By periodicity it is enough to check $\lim _{x \rightarrow \frac{\pi}{2}}|\sin (x)|^{\frac{1}{\cos (x)}}$. Present:
$|\sin (x)|^{\frac{1}{|\cos (x)|}}=|1-(1-\sin (x))|^{\frac{1}{\cos (x) \mid}}=\left|1-\frac{\cos ^{2}(x)}{1+\sin (x)}\right|^{\frac{1}{\cos (x) \mid}}=\left(\left|1-\frac{\cos ^{2}(x)}{1+\sin (x)}\right|^{\frac{1+\sin (x)}{\cos ^{2}(x)}}\right)^{\frac{|\cos (x)|}{1+\sin (x)}}$.
Thus $\lim _{x \rightarrow \frac{\pi}{2}}|\sin (x)|^{\frac{1}{|\cos (x)|}}=1$.
Thus one can extend the definition of f to the points $\frac{\pi}{2}+\pi n$, by $f\left(\frac{\pi}{2}+\pi n\right)=1+\left(\frac{\pi}{2}+\pi n\right) \ln \left(1+\frac{1}{\left(\frac{\pi}{2}+\pi n\right)^{4}}\right)$, to get a continuous function.

In total: one can extend f to a continuous function on the whole \mathbb{R}, therefore f is uniformly continuous on any finite interval (by Cantor's theorem).

It remans to check the behavior of f at infinity. Note that $|\sin (x)|^{\frac{1}{|\cos (x)|}}$ is periodic and uniformly continuous on any finite interval. Thus it is uniformly continuous on the whole \mathbb{R}.

Note that $\lim _{x \rightarrow \pm \infty} x \cdot \ln \left(1+\frac{1}{x^{4}}\right)=0$. (For example, $\lim _{x \rightarrow \pm \infty}\left(1+\frac{1}{x^{4}}\right)^{x}=1$.) As has been proved in the class: if a function is continuous on \mathbb{R} and its limits as $x \rightarrow \pm \infty$ are finite, then f is uniformly continuous on the whole \mathbb{R}. Therefore $x \cdot \ln \left(1+\frac{1}{x^{4}}\right)$ is uniformly continuous on the whole \mathbb{R}.

In total: f is uniformly continuous on the whole \mathbb{R}.

