Calculus 2.ME, BGU, Spring 2015. Some answers/hints to hwk.1.5

- (1) a. Diverges (both series diverge). b. Converges (bring to the common denominator).
 - c. Diverges. (Note that $\sum \frac{1}{\ln^n(n)}$ converges. The convergence $\sum (\frac{1}{(n+10)\ln(n)} \frac{1}{\ln^n(n)})$ would imply the convergence of $\sum (\frac{1}{(n+10)\ln(n)}$. Thus the $\sum (\frac{1}{(n+10)\ln(n)} \frac{1}{\ln^n(n)})$ diverges.)

 d. Diverges for s < 1 (any t) and for s = 1, $t \le 1$. Converges for s > 1 or s = 1, t > 1. (Integral comparison
 - criterion).
 - e. Diverges. f. Converges (criterion of d'Alambert). g. Diverges
 - h. Converges absolutely (comparison to $\sum \frac{1}{n^2}$).
- (2) The domains of convergence are: a. $|x| \le 1$. b. $x \ge -\frac{3}{2}$. c. $x > -\frac{5}{4}$. d. $-\frac{1}{e} \le x < \frac{1}{e}$. e. $-\frac{1}{2} \le \sin(x) < \frac{1}{2}$. f. $|x+1| \le 1$. g. $-1 \le x < 1$. (The divergence at x = 1 occurs because $\sum_{k=1}^{n} \frac{1}{k} < n$.)
 - h. $-1 \le x < 1$. (Let $a_n = \frac{1 \cdot 4 \cdots (3n+1)}{2 \cdot 5 \cdots (3n+2)}$. To prove the divergence at x = 1 we present a_n in the form $a_n = 1$ $\frac{4\cdot7\cdots(3n+1)}{2\cdot5\cdots(3n-1)}\frac{1}{(3n+2)} > \frac{1}{(3n+2)}$. Thus, for x=1 the series diverges by comparison with $\sum \frac{1}{n}$. To check the convergence at x=-1 we use Leibnitz's criterion, for this we should prove that $a_n\to 0$. Alternatively, we should prove:
 - $ln(a_n) \to -\infty$. But $ln(a_n) = -\sum_{k=1}^n ln(1 + \frac{1}{3k+1})$. And $\sum_{k=0}^n ln(1 + \frac{1}{3k+1}) = \infty$ by comparison to $\sum \frac{1}{n}$. Thus $a_n \to 0$ and we use Leibnitz criterion for x = -1.)

 - i. The series converges for any x.
- (3) a. $f(x) = -ln(3-x)(2-x) = -ln(6) ln(1-\frac{x}{3}) ln(1-\frac{x}{2}) = -ln(6) + \sum_{n\geq 1} \frac{(\frac{x}{3})^n + (\frac{x}{2})^n}{n}$. (The series converges

 - for $-2 \le x < 2$)
 b. $f(x) = \frac{1 \cos(2x)}{2} = \cdots$ c. $f(x) = \frac{1}{(1-x)^3} + \frac{x}{(1-x)^3}$. Now use the series for $\frac{1}{(1-x)^3}$, which can be obtained by the differentiation of the series for $\frac{1}{(1-x)}$.
 - d. Rewrite $f(x) = \frac{\sin(2) \sin(2x)}{2}$. Now use the series for $\sin(x)$.
 - e. First obtain the series for arctan(x), using the series for $(arctan(x))' = \frac{1}{1+x^2}$. Then substitute x^3 .
- h. Rewrite $f(x) = x \cdot cos(x) sin(x)$. Now use the series for $sin(x) \cdot cos(x)$.

 (4) a. A counterexample: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.
- - b. The proof goes via the main Cauchy theorem (as explained in the lectures).
 - c. A counterexample: $\sum \frac{(-1)^n}{\ln(n)}$