F. CANO et R. PIEDRA

Characteristic polygon of surface singularities

O. INTRODUCTION

Lez Z be a regular noetherian scheme, let X be a closed two-dimensional subscheme of Z and let P be a closed point of X. The aim of this paper is to associate a polygon $\Delta(P)$ to P which turns to be an intrinsic invariant of the singularity of X at P.

Actually $\Delta(P)$ is the polygon defined by Hironaka in |4|, but for a selected choice of the "tangential parameters", the selection being made for reaching certain maximum in the space of polygons.

If D is a "tranversal regular hypersurface" we shall define an intermediate invariant $^{\Delta}_{D}(P)$ at §3 which may be used for the control of the resolution algorithms in the same way as in |3|.

The invariat $\Delta(P)$ is expected to be useful for formulating a "fine" version of the resolution game |8| as well as an intrinsic invariant for the analysis of the singularities.

1.PRELIMINARIES

Here we shall recall some results and notations needed in the sequel. Most of them are contained in |4| or |6|.

- (1.1) Let R be the completion of the local ring of Z at P, let I be the ideal of X in R and let M be the maximal ideal of R. The residual field k = R/M is supossed to be arbitrary unless otherwise would be specifield.
- (1.2) The graded ring $Gr_{M}(R)$ with respect to the M-adic filtration is a polynomial ring over the field k. Let us denote by E(I) the minimum k-submodule of the homogeneus part of tegree one $Gr_{M}(R)$ of $Gr_{M}(R)$ such that

(1.2.1)
$$\operatorname{Im}_{M}(I) = (\operatorname{In}_{M}(I) \cap K[E(I)]) \operatorname{Gr}_{M}(R)$$

where $\operatorname{In}_{M}(I)$ denotes the initial ideal of I in $\operatorname{Gr}_{M}(R)$. E(I) defines the strict tangent space of X at P, i.e. the maximum vector subspace of the tangent space of Z at P which leaves invariat the tangent cone of X acting by translations.

We shall suppose that the codimension of E(I) in $Gr_M(R)_1$ is two. In this case the strict tangent space and the tangent cone of X at P agree as reduced subschemes of the tangent space of Z at P. Actually, this is the "general case" for resolution purposes (|3|).

(1.3) A regular sequence $x=(x_1,x_2)$ in R is called a "system of tangential parameters" iff there exists a regular sequence $y=(y_1,\ldots,y_r)$ such that t=(x,y) is a regular system of parameters and the following condition is verified

(1.3.1)
$$E(I) = Y_1 Gr_M(R)_1 + ... + Y_r Gr_M(R)_1$$

where $Y_i = In_M(y_i), i=1,...,r$.

A subset of I, $f = (f_1, ..., f_m)$ is called a "tangential base" of I iff $In_M(f_i)$, i=1,...,m, generates the initial ideal $In_M(I)$. Systems of tangential parameters and tangential basis always exist (|6|).

(1.4) Let us fix a regular system of parameters t=(x,y) as in (1.3). Let $e: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a positively linear function. We shall consider the following filtration in R

(1.4.1)
$$R_{\rho,\nu} = (x^{\alpha} y^{\beta}; |\beta| + e(\alpha) \leq \nu) R$$

The associated graded ring (resp. initial ideal) will be denoted by ${\rm Gr_e(R)}$ (resp. ${\rm In_e(I)}$), there is an isomorphism of k-algebras

$$(1.4.2) \lambda_{g}: Gr_{g}(R) \longrightarrow Gr_{M}(R)$$

such that $\lambda_e(\operatorname{In}_e(x_i)) = X_i$ and $\lambda_e(\operatorname{In}_e(y_j)) = Y_j$, i=1,2, j=1,...,r. The isomorphism λ_e does not preserve the natural graded structure of $\operatorname{Gr}_e(R)$.

(1.5) <u>Definition</u>.- (Hironaka |6|). "Let t=(x,y) be a regular system of parameters, x being a system of tangential parameters and y verifying (1.3.1). The polygon $\Delta_{x,y}(I)$ is defined by

(1.5.1)
$$\dot{\Delta}_{\mathbf{X},\mathbf{Y}}(\mathbf{I}) = \bigcap_{\mathbf{X}} \{\alpha \in \mathbb{R}^2; \ \mathbf{e}(\alpha) \geq 1\}$$

where e ranges over all positively linear functiones that

$$\lambda_{\mathcal{L}}(\mathsf{In}_{\mathcal{L}}(\mathsf{I})) = \mathsf{In}_{\mathcal{L}}(\mathsf{I})$$

The "characteristic polygon $\Delta_{\mathbf{x}}(I)$ " is defined by

$$\Delta_{\mathbf{X}}(\mathbf{I}) = \bigwedge_{\mathbf{V}} \Delta_{\mathbf{X},\mathbf{V}}(\mathbf{I})$$

where y ranges over all regular sequences such that t=(x,y) is a regular system of parameters and (1.3.1) is verified ".

(1.6) Let $f=(f_1,...,f_m)$ be a set of elements of R, let $d_i=\operatorname{ord}_M(f_i)$, i=1,...,m. For each f_i , the polygon $\Delta_{x,y}(f_i)$ is defined to be

$$\Delta_{\mathbf{x},\mathbf{y}}(\mathbf{f}_{\mathbf{i}}) = \bigcap_{\mathbf{a}} \{\alpha \in \mathbb{R}^2; \ \mathbf{e}(\alpha) \geq 1\}$$

where e ranges over all positively linear functions e such that

$$(1.6.2) fi ∈ Re,di.$$

The polygon $\Delta_{x,y}(f)$ is defined to be the convex hull of

$$U_{i=1,\ldots,m} \quad \Delta_{x,y}(f_i)$$

(1.7) Definition.- (Hironaka |6|). "Let t=(x,y) be as in (1.5). Let $f=(f_1,...,f_m)$ be a tangential base of I such that

(1.7.1)
$$\operatorname{In}_{M}(f_{1}) \in k[Y_{1}, \dots, Y_{r}] \subset \operatorname{Gr}_{M}(R)$$

i=1,...,m. A vertex v of $\Delta_{x,y}(f)$ is said to be "well prepared" iff the following condition is verified.

(1.7.2) Let e be a positively linear function on \mathbb{R}^2 such that e(v)=1 and e>1 on $\Delta_{x,y}(f)-\{v\}$. Let J be the ideal of $\mathrm{Gr}_M(\mathbb{R})$ generated by $\lambda_e(\mathrm{In}_e(f_i))$, $i=1,\ldots,m$. Then, there exists no $k[X_1,X_2]$ - automorphism σ of $\mathrm{Gr}_M(\mathbb{R})$ such that

a)
$$\sigma$$
 (Y_i) = Y_i + $c_i X_i^V$ $c_i \in k$, $i=1,...,m$.

b) σ (J) is generated by σ (J) \cap k[Y]

(in (1.7.2) we denote $X=(X_1,X_2)$).

- (1.8) Remark that if (1.7.2) fails to be true and $v \notin \mathbb{Z}^2$, then $\sigma = identity$.
- (1.9) Theorem. (|6|). With motations as above, one has that

$$(1.9.1) \qquad \qquad \lambda_{\mathbf{x},\mathbf{y}}(\mathbf{f}) = \lambda_{\mathbf{x}}(\mathbf{I})$$

iff every vertex of $\Delta_{x,y}(f)$ is well prepared.

- (1.10) From the proof of the abore theorem, the following useful result may be deduced:
- (1.10.1) If v is a well prepared vertex of $\Delta_{x,y}(f)$, then v is a vertex of $\Delta_{y,y}(f)$ also.

2.VERY WELL PREPARATION

We shall study the relevant coordinate changes in order to obtain new polygons.

(2.1) A set $\Delta \ll \mathbb{R}_0^2$ is said to be a "discrete F-set" iff it is positively convex and it has its vertices on $(\mathbf{Z}_0/d)^2$ for some $d \in \mathbf{Z}_0$. For a discrete F-set Δ we shall denote by

$$(2.1.1) vi(\Delta) = (\alphai(\Delta), \betai(\Delta))$$

i=1,...,t its vertices, arranged by increasing abscissas. We shall denote by $l_i(\Delta)$ the length of the segment joining $v_i(\Delta)$ and $v_{i+1}(\Delta)$ and we shall denote $-1/|\epsilon_i(\Delta)|$ the slope of this segment.

(2.2). For a discrete F-set ,the "characteristic sequence" $s(\Delta)$ of Δ will be defined by.

$$(2.2.1) \quad s(\Delta) = (\alpha_1(\Delta), \beta_1(\Delta), \epsilon_1(\Delta), -1_1(\Delta), \dots, t^{(\Delta)}, -1_t(\Delta), \dots)$$

Given two discrete F-set, we shall write $\Delta \leq \Delta'$ iff $s(\Delta')$ is bigger than $s(\Delta)$ for the lexicographic order. This gives a total ordering in the discrete F-sets strictly finer than the inclusion ordering.

(2.3) Let us identify $\mathbb{R}^2 \leq P^2(\mathbb{R})$, the added infinitum line corresponding to the third homogeneus coordinate equal zero. Let us consider the subset \mathbb{R} of $\mathbb{R}^2(\mathbb{R})$ defined by.

(2.3.1)
$$H = \{ [(-a,1,b)]; a,b \in \mathbb{Z}_0, (a,b) \neq (0,0) \}.$$

Given a discrete F-set Δ , we shall define the set $T(\Delta)$ as the set of all straigth lines L ϵ $P^2(\mathbb{R})$ such that L meets Δ only at the border and L \cap $\mathbb{H} \neq \emptyset$.

(2.4) Lemma. Let $t=(x_1,x_2,y)$ be a regular system of parameters as in (1.3) and let $f=(f_1,\ldots,f_m)$ be a tangential base of I such that $\text{In}_M(f_1) \in K[Y]$. Let us fix $L \in T(\Delta)$, where $\Delta = \Delta_{x,y}(f)$. Let σ be a $K[X_1,Y]$ -automorphism of $Gr_M(R)$ such that

(2.4.1)
$$\sigma(X_2) = X_2 + \sum_{R} {\lambda_R \times X_1^a Y^B}$$

where $[(-a,1, |B|)] \in L \cap \mathbb{H}$ and $\lambda_{B} \in k$. Let us consider

(2.4.2)
$$x'_2 = x_2 + \sum_B g_B x_1^a y^B$$

where the residual class of $\mathbf{g}_{\mathbf{R}}$ is $\boldsymbol{\lambda}_{\mathbf{R}}.$ Then

- i) If s is the first index such that $v_s(\Delta) \in L \cap \Delta$, then Δ and $\Delta' = \Delta_{x',y}(f)$, where $x' = (x_1,x'_2)$, have exactly the same vertices until $v_s(\Delta) = v_s(\Delta')$.
- ii) A vertex $v_i(\Delta) = v_i(\Delta')$ is well prepared with respect to (x,y) iff it is well prepared with respect to (x',y), for each $i \le s$.

iii) If e : $\mathbb{R}^2 \longrightarrow \mathbb{R}$ is a positively linear function such that e=1 defines L, then

(2.4.3)
$$\Delta : \subset \{\alpha \in \mathbb{R}^2; \ e(\alpha) \geq 1\}.$$

Proof.- Let t=(x,y), t'=(x',y) and let us denote the ideals of (1.4.1) by $R_{e,t;\nu}$ to indicate their dependence on the parameters. Let $d_i = \operatorname{ord}_M(f_i)$, i=1,...,m and let us denote by.

(2.4.4)
$$E(x,y; f_i, L)$$
 $i = 1,...,m$

the set of all positively linear functions $e: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that the slope of e=1 is strictly smaller than the slope of L and

$$(2.4.5) f_{i} \in R_{e,t;d_{s}}$$

Now, in view of (1.6), to prove i) and iii) it sufices to prove that

(2.4.6)
$$E(x,y; f_i; L) = E(x',y; f_i; L)$$

for all i=1,...,. But this is a consequence of the fact that

$$(2.4.7) R_{e.t:v} = R_{e.t:v}$$

for all e such that the slope of e=1 is strictly smaller than the slope of L. Moreover, for such an e, one has an isomorphism of graded k-algebras

$$\psi: \operatorname{Gr}_{e,t}(R) \longrightarrow \operatorname{Gr}_{e,t'}(R)$$

given by

$$\psi(In_{e,t}(x_1)) = In_{e,t'}(x_1)$$

$$\psi(In_{e,+}(x_1)) = In_{e,+}(x_1)$$

which is compatible with the k-isomorphism of (1.4.2). Thus the condition (1.7.2) may be enounced equivalently for t or t' and ii) is proven.

(2.5) Corollary. With notations as above, if $\Delta = \Delta_{\chi}(I)$ and $\Delta' = \Delta_{\chi}(I)$, then Δ and Δ' have exactly the same vertices until $v_{g}(\Delta) = v_{g}(\Delta')$ and

(2.5.1)
$$\Delta : \subset \{\alpha \in \mathbb{R}_0^2; \ e(\alpha) \ge 1\}.$$

Proof.- We can choose f, t=(x,y) in such a way that

$$\Delta_{\mathbf{x}}(\mathbf{I}) = \Delta_{\mathbf{x},\mathbf{v}}(\mathbf{f})$$

(this is always possible |4|, |6|). Now, the first assertion follows from (1.10.1) and the second from the fac that

- (2.6) Let us fix a coefficient set C $\stackrel{\cdot}{_{\sim}}$ R. The remaining of this paragraph is dexoted to standarize, relatively to C, the modifications on f, x_2 , y which one must to make for reaching $^{\Delta}_{_{\times}}$ (I) from $^{\Delta}_{_{\times}}$, $^{(f)}$, where $x=(x_1,x_2)$, $x'=(x_1,x_2')$ are both systems of tangential parameters.
- (2.7) Let t=(x,y) be a regular system of parameters as in (1.3) and let $f=(f_1,\ldots,f_m)$ be a tangential base of I such that $In_M(f_i) \in k|Y|$ for all i. For a not well-prepared vertex v of $\Delta_{x,y}(f)$ there are two posibilities (which exclude one to another).
- (2.7.1) "Condition (1.7.2) fails with $\sigma = identity$ ".
- (2.7.2) "Condition (1.7.2) fails with $\sigma \neq identity$ ".

If (2.7.1) holds we shall say that " y is x-prepared with respect to f and v".

(2.8.) If (2.7.2) holds, then there is a unique sequence $g = (g_1, ... g_r)$ with $g_i \in C$, $g \neq 0$, such that if we set

(2.8.1)
$$y_i' = y_i + g_i x^v$$
 $i = 1,...,r$

then there are two posibilities:

Notice that since $|\mathbf{v}| \le 1$ we have also $\mathrm{In}_{\mathbf{M}}(\mathbf{f}_i) \in \mathbf{k} |\mathbf{Y}^i|$.

(2.9) If (2.7.1) holds, let us consider the set

(2.9.1)
$$\Lambda = \{ j \in [1,m]; \quad v \notin \Lambda_{X,Y}(f_j) \}.$$

Let j be the smallest index among those $j \in [1,m] - N$ such that $d_j = \operatorname{ord}_M(f_j)$ is the minimum possible. Now, for each couple (i,α) with $i \in A$, $\alpha \in \mathbb{Z}^2$, such that there exists $d \in \mathbb{Z}_{0}$ with

(2.9.2)
$$(d_{i} - d_{i} - d) v = \alpha$$

one can find element $h_{i\alpha i} \in R$ with

$$h_{j\alpha i} = \sum_{\beta \mid a \mid d} h_{j\alpha i} y^{\beta}$$

where $h_{j\alpha i} \in C$, in such a way that if we make

(2.9.4)
$$\mathbf{f}_{\mathbf{j}}' = \mathbf{f}_{\mathbf{j}} - \sum_{\alpha} \mathbf{x}^{\alpha} \sum_{i} h_{\mathbf{j}\alpha i} \mathbf{f}_{i}$$

then one has that $\mathbf{v} \notin \Delta_{\mathbf{x},\mathbf{y}}(\mathbf{f'}_{\mathbf{j}})$ (see [6]). Thus, by making changes in f as (2.9.4) one may reach $\Lambda = |1,\mathbf{m}|$ and so $\mathbf{v} \notin \Delta_{\mathbf{x},\mathbf{y}}(\mathbf{f'})$, $\mathbf{f'}$ being the new tangential base obtained.

A change $f \longmapsto f'$ as above will be called a "well preparation change of tangential base, relatively to C, t, f and v".

(2.10) Remark. If v and v' are two vertices as iu (2.9), then there is a

conmutativity in the following sense. If $f \longmapsto f'$ is a well preparation relatively to v and $f' \longmapsto f''$ is a well preparation relatively to v' (the status of v' does not change if we made $f \longmapsto f'$), the coefficients $h_{j\alpha i\beta}$ of $f' \longmapsto f''$ are the same as the coefficients of the well preparation change $f \longmapsto f'''$ relatively to v'.

(2.11) The changes $y \mapsto y'$ and $f \mapsto f'$ of (2.8) and (2.9) defines both convergent situations by making them successively in all possible vertices and the limits (x,y^{\sim}) and f^{\sim} verify that

$$\Delta_{\mathbf{X}}(\mathbf{I}) = \Delta_{\mathbf{X},\mathbf{V}^{\sim}}(\mathbf{f}^{\sim})$$

(see |6|).

(2.12) <u>Definition</u>. Let $t = (x_1, x_2, y)$ be as in (1.3) and let $f = (f_1, ..., f_m)$ be a tangential base of I such that $In_M(f_i) \in k|Y|$ for all i. Let us suppose that $\Delta_{x,y}(f) = \Delta_x(I)$. A sequence

(2.12.1)
$$S = \{((x(j), y(j), f(j))\}_{j \ge 0}$$

with $x(j) = (x_1, x_2, (j))$, will be calles a "very well preparation sequence for I beginning at t,f and relatively to C"iff one has that

- a) x(0) = x, y(0) = y, f(0) = f
- b) Let us denote $\Delta(j) = \Delta_{x(j),y(j)}$ (f(j)). Let L_1 be the element of $T(\Delta(0))$ of the smallest slope and let $L_j \in T(\Delta(j-1))$ be the element of the smallest slope strictly bigger than the slope of L_{j-1} , for $j \geq 2$. Then, there exixt $g_R \in C$ such that

- c) The changes $y(j-1) \mapsto y(j)$ and $f(j-i) \mapsto f(j)$ are obtained from the following algorithm: take the first vertex v of $\Lambda_{x(j),y(j-1)}(f(j-1))$ wich is not well prepared and make a well preparation of y(j-1) followed from a well preparation of f(j-1) and repeat. The algorithm stops when $\Lambda(j)$ has all its vertices well prepared until the vertex of biggest abscissa in $L(j+1) \cap \Lambda(j)$.
- (2.13.) Remark. The algorithm in c) is always finite. Actually, let \mathcal{F} be the triangle defined by the x-axis, L(j) and the line passing through the vertex

of smallest abscissa in $L(j) \cap \Delta(j-1)$ and having the smallest slope -1/m, $m \in \mathbb{Z}_0$, strictly bigger than the slope of L(j). Then, the vertex v in the algorithm may alway be taken in \mathcal{F} .

(2.14) The limit of a very well preparation sequence is defined in an obvious way. If (t^{\sim}, f^{\sim}) , with $t^{\sim} = (x^{\sim}, y^{\sim})$, is the limit of S, then one has that

This is a consequence of lemma (2.4) since a vertex v remains unchanged from a certain step of the sequence and this is compatible with the limit change, because we deal with initial forms (with respect to the filtrations of (1.4)).

(2.15) Theorem. - "Let $x = (x_1, x_2)$ and $x' = (x_1, x_2)$ be two systems of tangential parameters. Let t = (x, y) and f be such that

$$\Delta_{\mathbf{x},\mathbf{v}}(\mathbf{f}) = \Delta_{\mathbf{x}}(\mathbf{I}).$$

Then, there exists a very well preparation sequence S beginning at t,f and relatively to C such that if $((x^{\sim},y^{\sim}), f^{\sim})$ is its limit one has that

(2.15.2)
$$\Delta_{x',v'}(f') = \Delta_{x'}(I).$$

Proof. - Let t' = (x', y') be as in (1.3). We have that

(2.15.3)
$$\sum_{i=1,\dots,r} Y_i \operatorname{Gr}_{M}(R) = \sum_{i=1,\dots,r} Y_i \operatorname{Gr}_{M}(R)$$

so, there exists a unit $u \in \mathbb{R}$ such that

(2.15.4)
$$u x_2' = x_2 + \sum_{a \in B} g_{a,B} x_1^a y^B$$

where $g_{a,B} \in C$. We can suppose u=1. Let $\Delta = \Delta_x(I)$. First, if for each positively linear function e such that $e \ge 1$ on Δ and e=1 intersects Δ one has that $In_e(x_2) = In_e(x_2')$ (the filtration relatively to t = (x,y)), then, by applying the lemma (2.4), all the vertices of $\Delta_{x,y}(f)$ are well prepared and the trivial sequence solves the problem. If this is not the case, let us select e such that e=1 have the smallest slope and $In_e(x_2') \ne In_e(x_2)$. Then (2.15.4) takes the form

Now, set

(2.15.6)
$$x_2(1) = x_2 + \sum_{e(-a,1) = |B|} g_{a,B} x_1^a y^B$$

Then, after making well preparations succesively to obtain $y \mapsto y(1)$ and $f \mapsto f(1)$ as in (2.12.), in view of (2.4) and (2.13) one has that

(2.15.7)
$$u x'_{2} = x_{2}(1) + \sum_{a,B} g_{a,B} (1)x_{1}^{a} |y(1)|^{B}$$

$$e(-a,1) > |B|$$

Now, by repeating this procedure and taking limits one reach the first situations.

- (2.16) Corollary -- Let t and f be as above. Then the supremum of the set
- (2.16.1) $\{\Delta = \Delta_{x',y'}(f'); x' = (x_1,x_2'), t = (x',y') \text{ is as in (1.3) and } f' \text{ is a tangential base}\}.$

is the same as the supremum of the set

(2.16.2) $\{ \Delta = \Delta_{x^{\sim},y^{\sim}}(f^{\sim}); ((x^{\sim},y^{\sim}),f^{\sim}) \text{ is the limit of a sequence of very}$ well preparation beginning at t,f,}.

3. THE CHARACTERISTIC POLYGON α_{x_1} (I).

- (3.1) Definition.— Let x_2 be an element of M c R such that there exists x_2 with $x=(x_1,x_2)$ being a system of transversal parameters. Then the "characteristic polygon Δ_{x_1} (I)" is defined to be the supremum of the set (2.16.1).
- (3.2) Remark. Δ_{x_1} (I) always exist. Indeed $v_1(\Delta_{x,y}(f)) + \mathbb{R}^2_0$ is an upper bound for the elements in (2.16.1).
- (3.3) We shall use the following elementary fact

Lemma.- Let k be no numerable and algebraically closed. Let $\{C_i\}$ be a sequence of constructible sets of $\mathbb{A}^n(k)$ such that $C_i \neq 0$ and $C_i \geq C_{i+1}$ for all i. Then the intersection of the whole family is not empty.

(3.4) Theorem. Let us suppose that R has a coefficient field k which is algebraically closed and no numerable. Let \mathbf{x}_1 be as in (3.1). Then, for each

 $t=(x_1,x_2,y)$, f as in (2.12.), there exists a sequence of well preparation beginning at t,f and relatively to k such that

(3.4.1)
$$\Delta_{X_1}(I) = \Delta_{X^*, y^*}(f^*)$$

where $(x^2 = (x_1, x_2), y^2, f^2)$ is the limit of the sequence.

<u>Proof.-</u> Let $\Delta^*=\Delta$ and let H_i , $i\geq 1$, be the elements of $T(\Delta^*)$ arranged by increasing slope. For each $i\geq 1$, let us consider the regions

(3.4.2)
$$U_{i} = ((\alpha_{j(i)}, 0) + \mathbb{R}_{0}^{2}) \cap \{e_{i}(\alpha) \ge 1\} - \Delta^{*}$$

$$(3.4.3)$$
 $R_{i} = U_{i} - U_{i+1}$

where $\alpha_{i(i)}$ is the abscissa of the first vertex in $\Delta * \alpha H_i$ and $e_i = 1$ defines H_i .

In view of (2.16), for each $n \ge 1$, there exists a very well preparation sequence S(n) such that

(3.4.4)
$$L_{i}(n) = H_{i}$$
 $i = 1,...,n$

where $L_i(n)$ denotes the lines which appear in (2.12). Thus, the vertices of Δ^* and the vertices of the polygon $\Delta(n)$ given by the limit of S(n) agree until $v_{i(n)}(\Delta^*)$.

For a vertex v, let us denote by $g_{i,v}$ and $h_{j\alpha i\beta,v}$ the coefficients in (2.8.1) and (2.9.3) and for a line L, let us denote by $g_{B,L}$ the coefficients in (2.12.2). Now, the conditions on the coefficients which participate on the changes of S(n) in order to have no vertices in R_1 , $1=1,\ldots,n$, are polynomial relations (3.4.5) $\rho_1(\{g_{i,v}\},\{h_{j-i\beta,v}\},\{g_{B,H_+}\})=0$

where t = 1,...1 and v ranges over R_1 v...v R_1 . The relations of (3.4.5) depend only on the initial data and ρ_1 for a fixed 1 do not depend on the $n \ge 1$.

Because $\Delta^* = \Delta_{x_1,\rho_1} = 0$ has non empty solution for each 1. Thus, by applying lemma (3.3), the projection of all solutions over the space of

$$\{g_{i,v}, h_{j\alpha i\beta,v}, g_{B,H_1}\}$$

where v ranges over R_1 , is not empty. A similar argument shows that there is a common solution of (3.4.5) for all . This solution gives us the construction of the desired very well preparation sequence

4. THE CHARACTERISTIC POLYGON Λ(T)

- (4.1.) We shall construct a polygon $\Delta(I)$ which depends only on I. It is the maximum of the $\Delta_{\mathbf{X}}(I)$ for an ordering introduced below and it is strongly related with polygon $\Delta_{\mathbf{X}_1}(I)$ of the preceding paragraph.
- (4.2) Let Δ be a discrete F-set and let e(x,y) = x+y. We shall define

$$\delta(\Delta) = \min \left\{ e\left(\alpha\right); \ \alpha \in \Delta \right\}.$$

$$p(\Delta) = (\Upsilon(\Delta), \psi(\Delta)) = \text{vertex of lowest abcissa such}$$
 that $e\left(p(\Delta)\right) = \delta(\Delta)$.

(4.2.3) lp (
$$\Delta$$
) = length of the segment of slope -1 in Δ .

Let us consider the set

(4.2.5)
$$A = \mathbb{R}^3 \times \{\text{discrete F-sets}\}^2$$
 with the lexicographic order. We shall define $\mathsf{t}(\Delta) \in A$ as follows

$$t(\Delta) = (\delta(\Delta), -1p(\Delta), \psi(\Delta),$$

$$\Delta \cap ((\Upsilon(\Delta), 0) + R_0^2),$$

$$sim (\Delta) \cap ((\Upsilon(sim(\Delta)), 0) + R_0^2))).$$

Then t defines a monic mapping from the discrete F-sets to A. We shall denote the induced order by \prec , i.e.

$$(4.2.7) \qquad \qquad \Delta \triangleleft \Delta' \iff \mathsf{t}(\Delta) \leq \mathsf{t}(\Delta').$$

(4.3) Remark. If $x=(x_1,x_2)$ and $x'=(x_1,x_2')$ are system of tangential parameters, then one has that

$$(4.3.1) \qquad \qquad \Delta_{\mathbf{v}}(\mathbf{I}) \leq \Delta_{\mathbf{v}}(\mathbf{I}) \iff \Delta_{\mathbf{v}}(\mathbf{I}) \prec \Delta_{\mathbf{v}}(\mathbf{I}).$$

This is a consequence of the fact that the changes involved in a very well preparation sequence do not affect the vertices of the polygon until $p(\Delta)$. Another consequence of this is that if $x=(x_1,x_2)$, $x'=(x_1',x_2')$ are systems of tangential parameters, then one has that

$$\delta(\Delta_{\mathbf{x}}(\mathbf{I})) = \delta(\Delta_{\mathbf{y}}(\mathbf{I}))$$

and thus δ is an intrinsic character of the singularity which may be calculated directly from any $\Delta_{\mathbf{x}}(\mathbf{I})$. (For proving (4.3.2) it suffices to divide $(\mathbf{x}_1,\mathbf{x}_2) \longmapsto (\mathbf{x}_1',\mathbf{x}_2')$ in $(\mathbf{x}_1',\mathbf{x}_2') \longmapsto (\mathbf{x}_1',\mathbf{x}_2') \mapsto (\mathbf{x}_1',\mathbf{x}_2')$ which is always possible).

- (4.4) Definition. We shall say that $\Delta(I)$ is the "characteristic polygon of I" iff $\Delta(I)$ is the supremum of
- (4.4.1) $\{\Delta_{\mathbf{x}}(\mathbf{I}); \mathbf{x} \text{ is a system of tangential parameters}\}.$
- (4.5) Remark. As a consequence of (4.3.2), $\Delta(I)$ always exists, since elements in (4.4.1) are bounded by

(4.5.1)
$$(0,\delta(\Delta_{\mathbf{x}}(\mathbf{I})) + IR_0^2$$
.

(4.6) <u>Definition</u>. We shall say that a system of tangential parameters x is "adecuate" iff the couple

(4.6.1)
$$(-1p(\Delta_{v}(I)), \psi(\Delta_{v}(I)))$$

is maximum over all polygons ine (4.4.1)) for the lexicographic order.

(4.7) Given $x = (x_1, x_2)$, one may obtain an adecuate system $x' = (x_1', x_2')$ by making a linear change

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} g_1 & g_2 \\ g_3 & g_4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

where $g_i \in C$ (coefficient set), i=1,...,4. This follows from lemma (2.4) and a calculation with initial forms.

(4.8) Theorem.— Let t=(x,y) and f be such that x is adecuate and $A_{x,y}(f)=A_x(I)$ (with assumptions as usual for f and g). Let $x'=(x_1',x_2')$ be another adecuate system of tangential parameters. Then, after making if necessary an order change in (x_1',x_2') , there exists a very well preparation sequence S beginning at f and relatively to f such that if f and f beginning at f and relatively to f such that if f beginning at f beginning at f and relatively to f such that if f beginning at f beginning at

where $x^{-}=(x_{1}^{-},x_{2}^{-})$.

<u>Proof.</u>— We may suppose that (x_1,x_2) is a tangential system of parameters. By theorem (2.15), there exists S such that

$$\Delta_{\mathbf{x}^{R}}(\mathbf{I}) = \Delta_{\mathbf{x}^{L} \mathbf{I}^{L} \mathbf{v}^{*}}(\mathbf{f}^{*})$$

where $x'' = (x_1, x_2^i)$ and $x''' = (x_1, x_2^*)$. Now it is enough to prove that (x_1^i, x_2^*) is a tangential system of parameters such that

$$\Delta_{\mathbf{x}^{(1)}}(\mathbf{I}) = \Delta_{\mathbf{x}^{(1)}}(\mathbf{I})$$

where $x'''' = (x_1', x_2^{\sim})$ and $x' = (x_1', x_2')$. In this case, a similar argument gives us the thesis. Now, the proof of (4.8.3) follows from a systhematic use of lemma (2.4) and an analysis of the proof of theorem (2.15).

(4.9) Corollary.- a) Let us suppose that R has a coefficient field k which is algebraically closed and no numerable. Then, there exists a system of tangential parameters $x=(x_1,x_2)$ such that

$$\Delta_{\mathbf{y}}(\mathbf{I}) = \Delta(\mathbf{I}).$$

b) Moreover $\Delta(I)$ may be reached in the following way: Let t=(x,y), f be such that x is adecuate and such that $\Delta(I) = \Delta(I) = \Delta(X,y)$ (f). Let $((x_1,x_2^-,y_1^-),f_1^-)$ be the limit of a very well preparation sequence beginning at t, f and relatively to k such that

(4.9.2)
$$\Delta_{\mathbf{x}_{3}}(1) = \Delta_{\mathbf{x}', \mathbf{y}'}(\mathbf{f}'')$$

where $x'=(x_1,x_2)$. Let $((x_2,x_1,v^*),f^{**})$ be the limit of a very well preparation sequence beginning at (x_2,x_1,v^*) , f and relatively to k such that

(4.9.3)
$$\Delta_{x_0}(I) = \Delta_{x_0}(f^{-})$$

where $x^{\tilde{}} = (x_2^{\tilde{}}, x_1^{\tilde{}})$. Let $x^{\tilde{}} = (x_1^{\tilde{}}, x_2^{\tilde{}})$. Then, one has thas

(4.9.4)
$$\Delta(I) = \Delta_{x^{*},f^{*}}(f^{**})$$

or

$$\Delta(I) = \Delta_{\mathbf{x}^{1} \sim \mathbf{v}^{\sim}}(\mathbf{f}^{\sim}).$$

Proof.- Let us suppose that

$$\Delta_{\mathbf{x}^{-}}(\mathbf{I}) > \Delta_{\mathbf{x}^{-}}(\mathbf{I})$$

If $\Delta_{\mathbf{v}^{*}}(I)$ is not $\Delta(I)$, then, ther exist $\mathbf{x}'' = (\mathbf{x}_{1}', \mathbf{x}_{2}')$ such that

$$\Delta_{\mathbf{x}^{\sim}}(\mathbf{I}) \npreceq \Delta_{\mathbf{x}''}(\mathbf{I})$$

By theorem (4.8), we may suppose that

A. $((x_1,x_2',y''),f'')$ is the limit of a very well preparation sequence beginning at t,f and relatively to k and $((x_2',x_1',y'),f')$ is the limit of a very well preparation sequence beginning at $(x_2',x_1,y''),f''$ and relatively to k.

B. There exists $((x_2^-, x_1^+, y^{"'}), f^{"'})$ which is the limit of a very well preparation sequence begining at $(x_2^-, x_1^-, y^{--}), f^{--}$ and relatively to k. And there exists $((x_1^+, x_2^+, y^{"'}), f^{"''})$ which is the limit of a very well preparation sequence beginning at $(x_1^+, x_2^-, y^{"'}), f^{"'}$ and relatively to k, in such a way that

Now, from the statement A one has that

(4.9.10)
$${}^{\Delta}(x_1, x_2^{\sim})^{(1)} \stackrel{>}{\sim} {}^{\Delta}(x_1, x_2^{\perp})^{(1)}$$

But, since we have that

(4.9.11)
$$\Delta_{1}(\Delta_{(x_{1},x_{2}^{*})}(I)) = \Delta_{1}(\Delta_{(x_{1},x_{2}^{*})}(I))$$

where $\Delta_1(\Delta) = \Delta \cap (\alpha \ge \gamma(\Delta))$, then in view of (4.9.7) necessarily

On the other haud, from the statement B we have that

(4.9.13)
$$\Delta_{\mathbf{x}_{2}^{\sim}}(\mathbf{I}) = \Delta_{(\mathbf{x}_{2}^{\sim}, \mathbf{x}_{1}^{\sim})}(\mathbf{I}) \geq \Delta_{(\mathbf{x}_{2}^{\sim}, \mathbf{x}_{1}^{\prime})}(\mathbf{I})$$

Let us denote $\Delta_2(\Delta) = \text{sim} [(\sin \Delta) \cap (\alpha \ge \gamma(\sin \Delta))]$. Then, from (4.9.13) one has that

$$(4.9.14) \qquad \qquad ^{\Delta_{2}(\Delta_{(x_{1}^{*},x_{2}^{*})}(1) \geq \Delta_{2}(\Delta_{(x_{1}^{*},x_{2}^{*})}(1)) = \Delta_{2}(\Delta_{(x_{1}^{*},x_{2}^{*})}(1)).$$

Since Δ_2 is not changed by $\mathbf{x}_2^* \mapsto \mathbf{x}_2^*$. Now, we have that

$$(4.9.15) \quad \Delta_{1}(\Delta_{(\mathbf{x}_{1}^{*},\mathbf{x}_{2}^{*})}(\mathbf{I})) = \Delta_{1}(\Delta_{(\mathbf{x}_{1}^{*},\mathbf{x}_{2}^{*})}(\mathbf{I})) = \Delta_{1}(\Delta_{(\mathbf{x}_{1}^{*},\mathbf{x}_{2}^{*})}(\mathbf{I})) = \Delta_{1}(\Delta_{(\mathbf{x}_{1}^{*},\mathbf{x}_{2}^{*})}(\mathbf{I}))$$

Thus, from (4.9.14) and (4.9.15) and since (x_1^*, x_2^*) and (x_1^*, x_2^*) are adecuate

$$(4.9.16) \qquad \qquad {}^{\Delta}(\mathbf{x}_{1}^{\prime},\mathbf{x}_{2}^{\prime})^{(1)} \stackrel{\Delta}{\prec} {}^{\Delta}(\mathbf{x}_{1}^{\sim},\mathbf{x}_{2}^{\sim})^{(1)}$$

which is the desired contradiction.

References

- CANO, F. "El polígono de Newton de una superficie". Publi. Univ. Sevilla, 1984.
- |2| COSSART, V. "Sur le polyèdre charactéristique d'une singularité".

 Bull. Soc. Math. France 103, 1975 p. 13-19.
- HIRONAKA, H. "Desingularization of excellent surfaces". (Notes by B. Bennett). Bowdoin College 1967. (LIMM. 1101.)
- |4| HIRONAKA, H. "Characteristic polyhedra od singularities". J. Math.

 Kyoto Univ. 10. 1970. 151-187.
- |5| HIRONAKA, H. "Schemes, etc." Proc. of 5th Nordic Summer-School in Math. Oslo. 1970. Wolters. Noordfoff Publishing.
- |6| HIRONAKA, H. "Characteristic polyhedra of singularities". Handwitten notes about the lectures given at la Rábida. 1981.
- TEJEUNE, M.; TEISSIER, B. "Transversalité, polygones de Newton et installations". Sing. à Cargèse. Asterisque 7 et 8. 1973. pp. 75-120.
- 8 SPIVAKOSKI, M. "A solution to Hironaka's polyedra game". Arithmetic and Geometry... Progress in Math. vo. 36. Birkhauser. 1983.
- 9 SPIVAKOSKI, M. "A counterexample to Hironaka's "hard" polyhedra game". To appear in the Journal of. Math. of Kyoto Univ. 1984.