‘ .. F. CANO et R. PIEDRA: ) |
Characteristic polygon of surface singularities

0. INTRODUCTION

Lez Z be a regular noetherian scheme, let X be a:closed' two-dimensional |
'subscheme of Z and let P be a closed point of X. The aim of this paper is to
associate a polygon A (P) to P which turns to be an intrinsic invariant of the

singularity of X at P.

Actually A(P) is the polygon defined by Hironaka in |4]|, but for a selec-
ted choice of the "tangential parameters', the selection being made for reaching

certain maximum in the space of polygons.

If D is a "tranversal regular hypersurface" we shall define an interme-
diate invariant AD(P) at 43 which may be used for the control of the resolution

algorithms in the same way as in [3].

The invariat A (P) is expected to be useful for formulating a "fine"
version' of the resolution game |8| as well as an intrinsic invariant for the

analysis of the singularities.

1.PRELIMINARIES

Here we shall recall some results and notations needed'in the sequel. Most

of them are contained in |4] or |6].

(1.1) Let R be the completioﬁ of the local ring of Z at P, let I be the
ideal of X in R and let M be the maximal ideal of R. The residual field k& = R/M

is supossed to be arbitrary unless otherwise would be specifield.

(1.2) The graded ring GrM(R) with respect to the M-adic filtration is a
polynomial ring over the field k. Let us denote by E(I) the minimum k-submodule

of the.homogeneus part of . zgree one GrM(R)1 of GrM(R) such that
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(1.2.1) In (1) = (In (1) o K[E-(I)]) Gry, (R)

where InM(I) denotes the initial ideal eof I in GrM(R). E(I) defines the strict

tangent space of X at P, i.e. the maximum vector subspace of the tangent space

of Z at P which leaves invariat the tangent cone of X acting by translations.

We shall suppose that the codimension of E(I) in GrM(R)1 is two. In this
case the strict tangent space and the tangent cone of . X at P agree as reduced
subschemes of the tangent space of Z at P. Actually, this is the "general case"

for resolution purposes (|3]).

(1.3) A regular sequence xz(xl’XZ) in R is called a '"system of tangen-
tial parameters'" iff there exists a regular sequence y = (yl,...,yr) such that
t = (x,y) is a regular system of parameters and the following condition is
verified
(1.3.1) E(T) = YlGr‘M(R)1 Foaot YrGrM(R)1
where Yi = InM(yi), i=l,...,r.

A subset of I, - f = (fl,...,fm) is called a "tangential base" of I iff
InM(fi), i=1,...,m, generates the initial ideal InM(I). Systems of tangential

parameters and tangential basis always exist (|6]).

(1.4) Let us fix a regular system of parameters t={(x,y) as in (1.3).
Let e : Rz————é R be a positively linear function. We shall consider the
following filtration in R
(1.4.1) Ry = (x* y8; Igl + ela) < V)R

The associated graded ring (resp. initial ideal) will be denoted by Gre(R)

(resp. Ine(I)). there is an isomorphism of k-algebras

(1.4.2) % : Gre(R) —_—> GrM(R)

A = = i = i=1, ¢ . i -
such that e(Ine(xi)) Xi and ‘%(Ine(yj)) Yj’ i=1,2, j=1, ,r. The isomor

phism Aé does .not preserve the natural graded structure of Gre(R).

(1.5) Definition.— (Hironaka |6]). "Let t=(x,y) be a regular system of
parameters, x being a system of téngential parameters and y vefifying (1.3.1).

The polygon Ay y(I) is defined by
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(1.5.1) b (1) = Q {o € R?; e(a) > 1}

where e ranges over all positively linear functiones that

(1.5.2) A (In (I)) = In (1)
e e

M

The "characteristic polygon AX(I)“ is defined by

A (I) =N\ A (1)
x Yy X,y

where y ranges over all regular sequences such that t=(x,y) is a regular system

of parameters and (1.3.1) is verified v,

(1.6) Let f=(f ..,fm) be a set of elements of R, let dizordM(fi),

1

i=1,...,m. For each fi, the polygon Ax y(fi) is defined to be
’

(1.6.1) Ax’y(fi) = Q {a € /% ela) >1}

where e ranges over all positively linear functions e such that

(1.6.2) fi € Re,di.

The polygon Ax y(f) is .defined to be the convex hull of
(1.6.3) U, A (f.)

(1.7) Definition.- (Hironaka [6]). "Let t=(x,y) be as in (1.5). Let f=(f1,”
..,fm) be a tangential base of I such that

(1.7.1) InM(fi) € k.[Yl"”’Yr] e ary (R)

i=l,...,m. A vertex v of Ax y(f) is said to be "well prepared'" iff the follo-

’

wing condition is verified.

(1.7.2) Let e be a positively linear function on m2 such that e(v)=1 and
e>1 on A (f) = {vlt. Let .J be the ideal of GrM(R) generated by
r .
Aé(Ine(fi)), i=l,...,m. Then, there exists no k[xl’XZJ - automorphism
o of Gry(R) such that

a) o (Yi) =Y, + cix‘,’ c,ek, i=l,...,m.

b) o (J) is generated by ¢ (J)nk[Y] "
(in (1.7.2) we denote X:(Xl’XZ))'
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(1.8) Remark that if (1.7.2) fails to’e true.and v* Z2, then o = identity.
(1.9) Ipeoremu—(]6|).'Withimotations:@s above, one has that

(1.9.1) ‘Ax,y(f) = AX(I)

iff every vertex of ‘& y(f) is well prepared.

(1.10) From the proof .of ‘the wbore theorem,the following useful result may
be deduced:
(1.10.1) " If v is a ‘well prepared vertex of Ax y(f), then v is a vertex wof
’
A (1) also.
X

2.VERY WELL PREPARATION

We shall study the relevant coordinate changes in order to obtain new

polygons.

(2.1) A set A‘cle is .said to be a "discrete F-set' iff it is positively
convex and it has its vertices on (Z‘o/d)2 for some d € Zo. For a discrete F-set

A we shall denote by

(2.1.1) v.(A) = (a,(a), B, (2))

i=1,...,t its vertices, arranged by increasing abscissas. We shall denote by
li(A) the length of the segment joining vi(A) and vi+1(A) and we shall denote

-1/ Ei(A) the slope of this segment.

(2.2). For a discrete F-set ,the '"characteristic sequence" s(4) of .4 will
be defined by.

- ~1.(a 1
(2.2.1)  s(8) = (a (&), B,(8), e (&), = 1 (8),ouny (8, = 108D, )

Given two discrete F—set, we shall write A < A iff s{A') is bigger than s(a)
for the lexicographic order. This gives. a total ordering in the discrete F-sets

strictly finer than the inclusion ordering.

(2.3) Let us identiflezf_PzUR), the added infinitum line corresponding to the

third homogeneus coordinate equal zero. Let us consider the subset IH of PZUR)
defined by.
(2.3.1) IH :{[(—a,l,b)]; a,bez , (a,b) # (0,0) 1.
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Given a discrete F-set 4, we shall define the set T(A) as the set of all

straigth lines L € P2(m) such that L meets A only at the border and L n H £ 8.

(2.4) Lemma.- Let t:(xl,xz,y) be a regular system of parameters as in (1.3)
and let f=(fl,...,fm) be a tangential base of I such that InM(fi) [ K[Y]. Let
us fix L& T(A), where A = AX y(f). Let o be a K|Xl,Yl—automorphignoi‘GrM(R) such
that

(2.4.1) B

where [(-a,1, [B|)]€LnH and A k. Let us consider

a B
{(2.4.2) ‘ X', =%, o+ XB g X1 ¥

where the residual class of gq is XB' Then

i) If s is the first index such that vS(A) e LnA, then 4 and A'=

= A (f), where x'=(x

x'_), have exactly the same vertices until v (4) =
xlry 8

1’7 2
= A').
Vs( ) .
ii) A vertex vi(A) = vi(A‘) is well prepared with respect to (x,y)

iff it is well prepared with respect to (x',y), for each i<s.

iii) If e : Rz — R is a positively linear function such that e=1

defines L, then

(2.4.3) deda eR; efa)> 1},

Proof.- Let t=(x,y), t'=(x',y) and let us denote the ideals of (1.4.1)

by Re tiv to indicate their dependence on the parameters. Let di = ordM(fi),
. ’ ,

i=l,...,m and let us denote by.

(2.4.4) E(x,y; £y, L) i=121,...,m

the set of all positively linear functions e : mz———»lR such that the slope of

e=1l is strictly smaller than the siope of L and

f.e
(2.4.5) i Re,t;di

Now, in viem of (1.6), to prove i) and iii) it sufices to prove that

(2.4.6) ] E(x,y; fi; L) = E(x',y; fi; L)

for all i=1,...,. But this is a consequence of the fact that
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(2.4.7) R = velR

R
e,t;v e,t';v
for all e such that the slope of e=l is strictly smaller than the slope of L.

Moreover, for such an e, one has an isomorphism of graded k—-algebras

(2.4.8) Ve Gre,t(R) —> Gre,t'(R)
given by
W(Ine,t(xl)) = Ine,t’(xl)
1(2.4.9) w(Ine’t(xl)) = Ine’t'(x’l)
¢(Ine,t(yi) = Ine,t'(yi) i=l,...,r

which is compatible with the k-isomorphism of (1.4.2). Thus the condition

(1.7.2) may be enounced equivalently for t or t' and ii) is proven.

(2.5) Cordllary.- With notations as above, if A =AX(I) and A'= Ax'(I)’ then

A and A' have exactly the same vertices until VS(A) = VS(A') and

2
(2.5.1) A'C.{()Le lRO; E(Q‘)il}.
Proof.- We can choose f, t=(x,y) in such a way that
(2.5.2) A(I) = & _(f)
: X X,y

(this is always possible |4],[6]). Now,‘the first assertion follows from (1.10.1)

and the second from the fac that

(2.5.3) A (I)e A (f)
) X X,y
(see |6]).
(2.6) Let us fix a coefficient set C e R. The remaining of this paragraph

is dewoted to standarize, relatively to C, the modifications on f, X5 y which
i a A = 1= |
one must to make for reaching XI(I) from x,y(f),where ple (xl,xz), X (xl,x 2)

are both systems of tangential parameters.

(2.7) Let t=(x,y) be a regular system of parameters as in (1.3) and let
f=(fl,...,

a not well-prepared vertex v of L y(f) there are two posibilities (which

fm) be a tangential base of I such that InM(fi)&]<|Y| for all i. For

exclude ono to another).
(2.7.1) "Condition (1.7.2) fails with o¢ = identity".

(2.7.2) "Condition (1.7.2) fails with o # identity".
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If (2.7.1) holds we shall say that " y is x-prepared with respect to

f and v".

(2.8.) If (2.7.2) holds, then there is a unique sequence g = (gl,...gr) with
gie C, g# 0, such that if we set

1 — 3 _
(2.8.1) v, =¥t X i=1,...,r
then there are two posibilities:
.8. A A _ .
(2.8.2) Ly () e b (£) {v}
(2.8.3) Ax yl(f) = éx y(f) and y' is x-prepared with respect to f and v.

We shall call the change y*—> y' a "well preparation change relati-
vely to C, t, f .and v".

Notice that since |v| <1 we have also InM(fi)e.le‘l.
(2.9) If (2.7.1) holds, let us consider the set

(2.9.1) A ={jeli,ml; vé Axyy(fj)}.

Let j be the smallest index among those j €[1,m] - A such that dj = ordM(fj) is
the minimum possible. Now, for each couple (i,a) with i €A, ¢eZ°, such that

there exists delo with

(2.9.2) (dj - di ~d) v=oua

one can find element hja ie»R with

yP

(2.9.3) ZIBI— Sai

where hjaie C, in such a way that if we make

2.9.4 (- _r O
( ) fJ fj Ly X Ly L hj(li fi

then one has that V¢Ax y(f'J_) (see |6]). Thus, by making changes in f as

(2.9.4) one may reach A = |1,m| and so V’¢Ax y(f'), f' being the new tangential
1

base obtained.

A change f > f' as above will be called a "well preparation change

of tangential base, relatively to C, t, f and v".

(2.10) Remark.- If v and v' are two vertices as iu (2.9), then there is a
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conmutativity in the following sense. If f+—» f' is a well preparation relati-

vely to v and f' +—> f" is a well preparation relatively to v' (the status of

v' does not change if we made f+—> f'), the coefficients hjdiB of £'+—> f'' are
the same as the coefficients of the well preparation change f +> f''' relative-
1y to v'.

(2.11) The changes y V—> y' and f +—> f' of (2.8) and (2.9) defines both

convergent situations by making them successively in all possible vertices and

the limits (x,y”) and £~ verify that

(see |6]).

(2.12) Definition.— Let t = (x,,%X,,¥) be as in (1.3) and let f = (£, f)
be a tangential base of I such that InM(fi) ek|Y| for all i. Let us suppose that
A = A .

» y(f) x(I) A sequence

’

(2.12.1) s = {0x(3), y(3), £G4,

with x(j) = ( (j)), will be calles a '"very well preparation sequence for

X107
I beginning at t,f and relatively to C " iff one has that

a) x(0) = x, y(0) =y, f(0) = ¢

b) Let us denote A(j) (f(j)). Let L1 be the element of

Bx(5),v(3)
T(A(0)) of the smallest slope and let Lj € T(A(j-1)) be the element of the

smallest slope strictly bigger than the slope of L.

j-1° for j % 2. Then, there

exixt gBeC such that
B
| ’

(2.12.2) xz(J) = xz(j‘l) + 1 g X; ly(j-1)

i >
B NE

where [(-a,1,|B|)] €Ljn\H(A(j—l)).

c) The changes y(j-1) *> vy{(j} and £(j-1) +> £(j) are obtained fram

the following algorithm: take the first vertex v of A (:F( j-1)) wich

x(j),y(3-1)
is not well prepared and make a well preparation of y(j-1) followed from a well
preparation of f(j-1) and repeat. The algorithm stops when A(j) has all its ver-

tices well prepared until the vertex of biggest abscissa in L{j+1)n a(j).

(2.13.) Remark.— The algorithm in c) is always finite. Actually, let I* be the
triangle defined by the x-axis, L(j) and the line passing througth t.e vertex
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of smallest abscissa in L(j) n A(j-1) and having the smallest slope -1/m, me 7.,
strictly bigger than the slope of L(j). Then, the vertex v in the algorithm may

alway be taken in J'.

(2.14) The limit of a very well preparation sequence is defined in an

obvions way. If (t~,f”), with t™= (x”,y”), is the limit of S, then one has that
. . ~ = A . J{(f7).

(2.14.1) A (1) Ly (£7)

This is a consequence of lemma (2.4) since a vertex v remains unchanged from a
certain step of the sequence and this is compatible with the 1limit change,

because we deal with initial forms ( with respect to the filtrations of (1.4)).

') be two systems of tangen-

| I
yand x' = (x 5

(2.15) Theorem.— "Let x = (xl,x‘ )X

2 1

tial parameters. Let t =(x,y) and f be such that

(2.15.1) Ax,y(f) = AX(I).

Then, there exists a very well preparation sequence S beginning at t,f and

relatively to C such that if ((x7,y"), £f7) is its limit one has that

(2.15.2) A . A(F7) =4 (1),
X 2, ¥ X
Proof.- Let t' = (x',y') be as in (1.3). We have that
(2.15.3) T _ v '
Liz1, ..., r Y3 Gry(R) = Liq,...,r ¥ Gry(R)

so, there exists a unit ue€R such that

5 B
Vo ¥ a
(2.15.4) u x5 = X, +La,B ga,B X] Y

where ga B € C. We can suppose u=1l. Let A= AX(I). First, if for each positively
linear function e such that e>1 on A and e=1 intersects 4 one has that Ine(x2)=

= Ine(xé) (the filtration relatively to t = (x,y)), then, by applying the lemma

(2.4}, all the vertices of Ax'y(f) are well prepared and the trivial sequence

solves the problem. If this is not the case, let us select e such that e=1 have

the smallest slope and Ine(xé) £ Ine(x ). Then (2.15.4) takes the form

2
[ T a _B
(2.15.5) uxg o= X, + i ga,B X[y o+
e(-a,l) = |B}
v a B
+ L ga,B Xl y
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Now, set

(2.15.6) x,(1) = x,, + l B

xa
2 Ea,B %1 Y

e(-a,l) = |B|
Then, after making well preparations succesively to obtain y —> y(1) and
f+> f(1) as in (2.12.), in view of (2.4) and (2.13) one has that
(2.15.7) uxyo=x (1) + ¥ g (1)x:
e(-a,1) > |B]

"Now, by repeating this procedure and taking limits one reach the first situa-

tions.
(2.16) Corollary.~ Let t and f be as above. Then the supremum of the set
(2.16.1)  {as= & (£'); x'= (%, ,x!), t = {x',y') is as in (1.3) and f' is

x',y' 1’72

a tangential basel.

is the same as the supremum of the set

(2.16.2) { A= A (f7); ((x~,y™),f~) is the limit of a sequence of very

x",v"

well preparation beginning at t,f,}.

3. THE CHARACTERISTIC POLYGON Ax (I).
1

(3.1) Definition.~ Let X5 be an element of M c R such that there exists X5
with x = (xl,xz) being a system of transversal parameters. Then the "characte-

ristic polygon LY (I)" is defined to be the supremum of the set (2.16.1).

1
(3.2) Remark.- A (I) always exist. Indeed v (a4 (£)) +|R2 is an upper
_ x1 1 x,y o
bound for the elements in (2.16.1).
(3.3) We shall use the following elémentary fact

Lemma.- Let k be no numerable and algebraically closed. Let {Ci} be
a sequence of constructible sets of Ap(k) such -that Ci # 0 and Cizlci+l for

all i. Then the intersection of the whole family is not empty.

(3.4) Theorem.- Let us suppose that R has a coefficient field k which is

algebraically closed and no numerable. Let X, be as in (3.1). Then, for each
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t = (xl,xz,y), f as in (2.12.), there exists a sequence of well preparation

beginning at t,f and relatively to k such that

(3.4.1) A (1) = 6~ _~(f7)
Xl X,y

where (x"= (xl,xé), y~,f7) is the limit of the sequence.

Proof.- Let A*:AX and let Hi’ i> 1, be the elements of T(A*) arranged
1 :
by increasing slope. For each i>1, let us consider the regions

(.4.2) U= (8 (),0) + B)nfe (@) 21t - oo
(3.4.3) R, = U, -U,
i 1 i+l

where %(i) is the: abscissa of the first vertex in A*r\Hi and ei=1 defines Hi'

In view of (2.18), for each n> 1, there exists a very well prepara- .
tion sequence S(n) such that
(3.4.4) Li(n) = Hi i=1,...,n.
where Li(n) denotes the lines which appear in (2.12). Thus, the vertices of
A* and the vertices of the polygon a(n) given by the limit of S(n) agree until

vJ'(n)('A*)'

For a vertex v, let us denote by g v and hjaiB v the coefficients
. ] ’ .

in (2.8.1) and (2.9.3) and for a line L, let us denote by g L the coefficients
’

in (2.12.2)., Now, the conditions on the coefficients which participate on the

changes of S(n) in order to have no vertices in Ry®* 1=1,...,n, are polynomial
relations

(3.4.5) ap (g Jboing g b {gB,Ht} )= 0

where t = 1,..,1 and v ranges over Rlv...U Rl' The relations of (3.4.5) depend

only on the initial data and 0y for a fixed 1 do not depend on the né:l.

Recause A¥ = Ax o1 = 0 has non empty solution for each 1. Thus, by
applying lenma (3.3), the %rOJection of all solutions over the space of

t

185,y Pjaig,v ° gB,Hl

where v ranges over R is not empty. A similar argument shows that there is a

1)
common solution of (3.4.5) for all . This solution gives us the construction

of the desired‘very well preparation sequence
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4. THE CHARACTERTSTTC POLYGON A(T)

(4.1.) We shall construct a polygon A(I) which depends only on I. It is the
maximum of the %ﬁl) for an ordering introduced below and it is strongly related

“with polygon :%( (I) of the preceding paragraph.

1
(4.2) Let A be a discrete F-set and let e(x,y) = x+y. We shall define
(4.2.1) §(4) = min {e(a); ae al.
p(a) = (v(a),y(A)) = vertex of lowest abcissa such

that e (p(d)) = §(4).

(4.2.3) lp (4A) = length of the segment of slope -1 in A.
4.2.4) sim (A) = simetric of & with respect to the diagonal
x-y = O.

Let us consider the set

(4.2.5) A :lRa)({discrete F—sets}2

with the lexicographic order. We shall define t(4) €A as follows

(4.2.6) o t(8) = (s(4), - 1p(4), ¥(8),
A n{(Y(a),0) +IR§ ),

sim (8) A ((v(sim(4)),0) + B: ),

Then t defines a monic mapping from the discrete F-sets to A. We shall denote the

induced order by <, i.e.

(4.2.7) A AT & t(a) <t(a).

') are system of tangential para-

(4.3) Remark.- If X=(X1,X ) and x =(X1,X2

2
meters, then one has that

=) A . .
(4.3.1) A1) <8 (1) & 8 (1) <4 «(I)

This is a consequence of the fact that the changes involved in a very well
preparation sequence do not affect the vertices of the polygon until p(a).
Another consequence of this is that if x:(xl,xz), x'=(xi,xé) are systems of

tangential parameters, then one has that

(4.3.2) s(A(1)) = 6(4 (1))
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and thus 6 is an intrinsic charaster- off the singularity which may be calculated
directly from any Ax(I)" (For  proving (4.3.2) it suffices to divide
(xl,x

) —> (x! xé) in (x X

vy ] ] ) 3 3
1 )} and (xl,x2) vy (xl’XZ) which is

2 2

i)x2)}“—%t(x

always possible).

(4.4) Definition.- We shall. say that A(I) is the "characteristic polygon of

I" iff A(I) is the supremum of

(4.4.1) {4, (I); x is a system of tangential parameters}.

(4.5) Remark.- As a consequence of (4.3.2), A(I) always exists, since

elements in (4.4.1) are bounded by

S 2
(4.5.1) (O,&(AX(I)) + IRy -

(4.6) Definition.- We shall say that a system of tangential parameters x is

"adecuate" iff the couple

(4.6.1) ( - 1p ( ék(I)), W(AX(I)))

is maximum over all polygons ine (4.4.1)) for the lexicographic order.

(4.7) Given x = (xl’XZ)’ one may obtain an adecuate system x'= (xi,xé) by

making a linear change

*] & & *
(4.7.1) =

*3 €3 &4 *2
where gie ¢ (coefficient set), i=1,...,4. This follows from lemma (2.4) and a

calculation with initial forms.

(4.8) Theorem.— Let t=(x,y) and f be such that x is adecuate and Ax,y(f) =
= AX(I) (with assumptions as usual for f and y). Let x‘=(xi,xé) be another
adecuate system of tangential parameters. Then, after making if necessary an
order change in (xi,xé), there exists a very well preparation sequence S
beginning at t,f and relatively to C such that if ((xl,xé,y"),f”) is the limit
of 8, there exists a very well preparation sequence S5' beginning at (xg,xl,y”),

£~ and relatively to C such that if ((xé,xi,y"”),f”~) is the 1limit of S' one
has that
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(4.8.1) A L L (f77) = A (1)

).

where x"= (xi,xg

é) is a tangential system of para-

meters. By theorem (2.15), there exists S such that

Proof.- We may suppose that (xl,x

(4.8.2) A (1) = Ax,,,,,y~(f~)
where x" :(Xl’ xé) and x"':(xl,xé). Now it is enougth to prove that (xi,xg)

is a tangential system of parameters such that

(4.8.3) A (I) = & (1)

x' x !

é). In this case, a similar argument gives

8 (SR i ~ [ '
where x (xl,xg) and x (Xl,x
us the thesis. Now, the proof of (4.8.3) follows from a systhematic use of lemma

(2.4) and an analysis of the proof of theorem (2.15).

(4.9) Corollary.- a) Let us suppose that R has a coefficient field k which
is algebraically closed and no numerable. Then, there exists a system of tan-

gential parameters x=( ) such that

xl,x2
(4.9.1) AX(I) = A(I).

b) Moreover A(I) may be reached in the following way: Let

t=(x,y),f be such that x is adecuate and such that AX(I) = Ax y(f). Let
*

((xl,xé,yN),f”) be the limit of a very well preparation sequence beginning at

t,f and relatively to k such that
(4.9.2) A (I) =24 ~(F7)

where x'=(x_,x.). Let ((xé,xi,yN),f~~) be the limit of a very well preparation

1’72

sequence beginning at (x;,xl,yN), f and relatively to k such that

(4.9.3) Ax~(I) = Ax.~’y~(1f~N)
2
where x'~= (xé}xi). Let x™= (xiyxg). Then, one has thas
(4.9.4) A(I) = Ax”,fN(f~~)
or
(4.9.5) 8(T) = b7y~ (£77)
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Proof.- Let us suppose that

(4.9.6) A (1) % A, (D)
. pe pre
If Ax"(I) is not A(I), then, ther exist x"= (xi,xé) such that
(4.9.7) -
Ax’“(I) 2 AX.,(I)

By theorem {(4.8), we may suppose that

A. ((xl,xé,y”),f") is the limit of a very well preparation sequence

beginning at t,f and relatively to k and ((xé,xi,y'),f') is the limit of a very
well preparation sequence beginning at (xé,xl,y”),f" and relatively to k.

B. There exists ((xg,xi,y”'),f"') which is the limit of a very well

preparation sequence begining at (xé,x{,y~~),f”” and relatively to k. And there

exists ((xf,xg,y""),f"”) which is the limit of a very well preparation sequence

beginning at (xI,xé,y"'),f"' and relatively to k, in such a way that

(4.9.8) A, (1) = A L (1)
(x5 %3) (g %5)
(4.9.9) B (1) = A (1)
(g5 %3) (xg%5)
Now, from the statement A one has that
(%.9.10) A(xl’xé)(l) > A(xlrxé)(l)
But, since we have that
(4.9.11) & (A (D)) =8 (8 A (I))
1 (xl,x2) 1 (xl’XZ)
where Al(A) =2n(a >y(4)), then in view of (4.9.7) necessarily
(4.9.12) A(Xl,xg)(l) = A(Xl'x')(l)
On the other haud, from the statement B we have that
(4.9.13) Axg(l) = A(Xg-XI)(I)z‘A(Xg’X£)(I)
Let us denote AZ(A) = sim [(sima) o (@ > y(sima))]. Then, from (4.9.13) one has
that
(4.9.14) 28 g o) T 2 8208y ) (1)) = 2200 cr ey (1)
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Since A2 is not changed by xé — xé,iwaq-wn‘haweﬂthﬂt

(4.9.15) = Al(A(Xi”fo(I)) =y 0 (1)) = 8080y (D)

A (A, . . (I))
1T, x3) > =Xy Xy 1'%

Thus, from (4.9.14) and (4.9.15) and since LXI;XE)nandu(xi,xé) ave adecuate
(4.9.16) A(x',xé)(l)*'A(xgw;éd(Io
"which is the desired contradiction.
References
[1] CANO, F. "El poligono de Newton de wna superffiicie". Publi. Univ.
Sevilla, 1984. .
|2] COSSART, V. "Sur le polyédre charactéristigue &@'wme singularité".
' Bull. Soc. Math. France 103, 1975 p, 13-19.
[3] HIRONAKA, H. "Desingularization of exgellent surfaces". (Notes
by B. Bennett). Bowdoin College 1967. (LNM. 1101.)
|4] -: HIRONAKA, H. "Characteristic polyhedra od singularities”. J. Math.
Kyoto Univ. 10..1970. 151-187.
Is] HIRONAKA, H. "Schemes, etc." Proc. of Bth Nerdic Summer-School
in Math. Oslo. 1970. Wolters. Noordfoff Publishing.
|6] HIRONAKA, H. "Characteristic polyhedra of singularities". Handwitten
notes about the lectures given at la Réabida. 1981.
17] LEJEUNE, M.; TEISSIER, B. "Transversalité, polygones de Newton et
inétallations". Sing. & Cargése. Asterisque 7 et 8. 1973.
pp. 75-120.
|8] SPIVAKOSKI, M. "A solution to Hironaka's polyedra game". Arithmetic
and Geometry... Progress in Math. vo. 36. Birkhauser. 1983. °
l9| SPIVAKOSKI, M. "A counterexample to Hironaka's "hard" polyhedra

game". To appear in the Journal of. Math. of Kyoto Univ. 1984.

L2



