PERIODS AND GAUSS-MANIN CONNECTION FOQR THE

T, T, T, L
MUMFORD CURVE y,“y;' - y,* - y;' + 2 =0
Lothar Gerritzen

Bochum, W. Germany

A method is intreduced which allows to obtain explicit formulas for
the periods q(}} of a family {C,) of smooth curves. It gives ex-

pressions for q(A) in the vicinityof a peint Ao, for which the curve
CAD is totally degenerate provided one knows Picard-Fuchs equations

.
for differentials of the family (CA)'

Techniques from rigid analytic geometry are used, see [T]. We work
with the notion of periods for p-adic Schottky groups as defined by
Manin-Drinfeld, {MD]. The result can certainly be applied to the

usual complex periods. In this approach it is basic that one has a

canonical basis for the De Rham cohemology classes.

In this manuscript only one example is treated. The curves C{ given
by the equation in the title are prestable and totally degenerate
for 1 = 1. The p-adic Schottky uniformization is constructed in
section 2. In section 3 a crucial formula for the Gauss-Manin con-
nection is explained. The main application is the expression for the
periods in proposition 4 of section 4. For elliptic curves the re-
sult is classical, see [F]. It is planned to give a more complete
account of this methed in a joint paper with F. Herrlich. The re-

lation te the work of B. Dwork, [D], shall be included.

1. The curve C;

Let K be a& field of characteristic Q0 and r = {r1,r2) a pair of in-

tegers > 2. Assume that there is a primitive root of unity CH of
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order Ty in K.

Let (yi,yzl be a system of inhomogeneous coordinates for P x P,
where P is the projective line over K and let A be a parameter in K.

The equation

T T T r
2.1 A 1 -
YZ Y9 — Y2 T Yy + A o

defines a projective curve C; inp =B,

=

If u;, v; are homogeneous variables for IP with y, = Fl’ then C{ is
i

the set of zeroes of the bihomogeneous equation
r, T T, T T, T ¥, T
2. M1 2.7 2. 71 2,71
PR PR PI PR S0 sz vy 4}
The curve Ci is non~singular if and only if A{A-1) # 0. The curve C§
is a union of ry-T, projective lines and prestable.

Let o, (resp. o,) be the automorphism onP x P for which
Y1 %1 T PyYy Y20 T Yy
(resp. Yie UZ =¥y Yzo g, = pg')'z).
The restriction GI|C§ of o, onto C§ is an automorphism of C{ and

g;? 0, = 0, g;. Let G denote the group generated by 01]C§ and GZICT.

It is canonically isomorphic teo ZZ/r1ﬂ ) ZZ/rZZZ. .

The field of K-rational functions of C§ is penerated by y,IC{ and
yle§ itf A #0, A ¢# 1. We will write in the sequel y; instead of

T,
yi|C§ and define x; to be yil. Then

i
dx1 dxz
E;:T =~ EE:T

because the rational functions x;, x, satisfy the relation
XgXy - Xy - X+ R =0
and thus

xzdxI + x1dx2 - dx2 - dx1 =0
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(x]"i)de + (x2‘1)dxl = 0,

Let T := {i = (i5,4,) €22 11 ci <1y, 121, <1,

For i = {i],iz) € I we define

dx1 dx

2

W, =T —3 3 = om -y v

1 ., 1 1, 1
Y1}YZZGH~¥J y11y22(x2-1)
1, 1
¥1v,

Then the De Rham cohomology vectorspace H;R[C{] admits a direct de-
composition

9 lw.,uwl)

jer T E

where (mi,wi) denotes the K-vectorspace of differentials generated
by w; and ;. In fact (”i’mi) is the eigenspace of the canonical

action of G on HéR(Ci] with respect to the character x : G = K* for
--i1 -iz
which x(d9,} = py ', x{5;) = o,

As dim Hlo(CT) = 2(r;-1)(r,~1) the genus of €} is (ry-1)(r,-1).

2. p-adic uniformization

Let now K be complete with respect to non-archimedean valuation |
and assume that jx-1| < 1 and that rv,-r, is prime to the characteri-

stic of the residue field. I want to show that C{ is a Mumford curve.

This will be achieved by constructing the non-archimedean or p-adic

Schottky uniformization for C;.

Let z be a coordinate for P, and s € K, |s-1] <« 1, s # 1 and let
o;{z) = py-2

(s=py)z +{n,-1)s
(-p,0z +(p,s-T)

a,{z) =
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Then gy, 0, are elliptic fractional linear transformation of P and a,

has the multiplier P, and the fixed points 1 and s. One can show that
the group (c],uz) is discontinuous in the sense of [GPI, Chap. I,§1,
and that the commutator §ubg?cup'F of (UI,UZ? is a free group freely

1 1 =1 “1
.= 1 .
generated by [Yi =0y 70,%, 102 Z.5e I}, see [GH],

.= .= Z=5S
Let z, := z. Zy 1= 3-7. Then
Z,"5
z, = -2
1 z,-1 "

1
Let r, the group generated by T' u {ui} i=1,2.

Define
Z oy
Yi = I 1
YET, Ze VI
¥ =0 ZZ°T
2 yer, V)T
Both products converge on the domain % of crdinary points for T.
They are both meromorphic on Z and are P-automorphic forms on Z with

constant factors of automorphy, see [GP}, Chap. II, §2.

A direct computation gives

Y1995 7 PyeYy
¥2° 92 = Py¥ye
One ¢ d i 2
an conclude that Yi1'» ¥,° are (c,,uz)-automorphic and that Y1:¥3
are I'-invariant, see [GP], Chap., III, §1, for the notions.

T
Let 3 := yT (s)

Pro - . .
position 1: The mapping z + {y,(z}, ¥(2))
Bives a bianalytic mapping between the Mumford curve Z/T and the

curve C{.
Proof: see [ GHp .
Remark: The mapping
5 «+ A(s)

is a bianalytic mapping between {s € K : [1-5] <1} and
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{r € K : |1-x] <1} with A{1} = 1. Moreover As™Ty = A(s)'t.

3. Gauss-Manin connection

There are canonical analytic T-automorphic forms with comstant fac-
du.
tors of automorphy such that a; = 5—1 are analytic differentials on

C; and such that {ui : i € Il is a basis of the K-vectorspace of ana-

lytic differentials on Cj, see {GP}, Chap. II, §4.

Uy g Vs

Let gy := —55——1 € K*. The matrix q t= (qij) is the period matrix
i

of T with respect to the basis {yi + i€ 1}, see [MD}, §2Z. Also there

are meromorphic functions t; om Z such that £, - &g« Y ® {é ; ; %,

V]

see [G2}, p. 387, and [G1], sectionm 3.

The differentials si 1= d;i are of the second kind and

{a; : 1 €1} U {8; : i € I} is a basis of Hip(CD) .

we consider now C' as a family of curves by letting A vary through

{\€K: |r-1] < 1}. The Gauss-Manin connection v of C' is a

connection

1

DR g 0

. ul
v : HDR -

wherte HéR is the sheaf of De Rham cohomology classes of C' as family

H

of curves aover § = {s € K : |s-1| < 1land 2 is the sheaf of analytic

differentials on S.

The main result of [G1] is a proef of

dg. .
Proposition 2: V{(a,) = L B. & e 5
i jer 93
V(Bi) = 0.

We want to apply this formula to the differential of the first kind

- dx,

Wy T

1, 1, )
y11y2“[x1-1]
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Proposition 3:

i3y a3
171 *242
i Fi(k) " Jé D] Pa Elj
1, L2
- (?;)n'(?;)n | n=1
with Fi(A) = L e {1-3) and (a)n = T (a*ri).
n=o (n!) i=g

Proof: The method of proof consist in the following: It is well known
that the cohomology class w of %;, y = xa(x—?)b{x—l]c, satisfies
the hypergeometric differential equation also known as Picard-Fuchs
equation for w!
A(]-A)vf(m) + lasc-(asb+2c)A1V, (0) - (a+bsc-1) w = O
see for instance (M), p. 378 or (D}, Chap. I, p. 8.
-1, i i,

2
Inour casea = —, b= -1 + £, ¢ = .
T rz' T,

A straightforward computation shows that the above Fi is up to a
constant the only power series solution of the above differential

eguation.

But w; being a differential of the first kind admits a representation

;3 = L[ G..a,
Wy jet ij%j
with Gij analytic in S.
Thus ¥, (w;} = I 6,.0; med H' when H' is the subspace generated by
| R | jer 1j7]
{Bi : i € 1}.Thus each &ij = cj~Fi with <5 € K, where the dot

over Gij means the derivative with respect te A. By considering the
limit case for s + | one obtains the above constants. For the de-

tails see [ GH}.

R. Coleman (Berkeley) has informed me that he has a completely dif-

ferent approach to this result.
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4, Application to periods

The formulas for the Gauss-Manin connection and the Picard-Fuchs
equation aliow to derive an explicit expression for the logarithmic

derivative of g with respect to the variable A in the domain

b}
{|a=1] < 1}.
Proposition 4:
LI
11 £ e,y E .
qij kel ik “kj
-i.k -1k,
, PRI TP D
with ik © I
E = Akj ¥
i k
k3 1, %2

T r
1 2 g2
(1 = X)X Fk
k.j k,j .
= 1 272 ki _ . r.er
Al{j i - p‘ pZ + p C-k,j 1°Ta

A= - gean? ez a-nt e GN°

n=o
k1 k
- (?;]n ‘(rZ) N
Fk = z _______Z_.__,(]—A)
n=o {n!}
Ky
which is the hypergeometric function ZFI(?I' ?;; 3 1-1)}, see 1MOS],

Chap. 11, (2.1).
ftematk: In the special case T, =Ty = 2 the index set I consists of

(1,1} only and with q := 9y one gets

g .
q (1-2)1 -, F(

Edf s ==

] %9 i f"X)

which is eguivalent to a classical f{ormula, sce {F]. Be aware that A

is not the Legeidre parameter as our oquation s

22 1 2 .
yyy - ¥y myy =l



We sketch now a proof of proposition 4.

., P
1) Let uw¥® := ﬁi = 5 lea.. Then
* i jer J
V,(wh = L E,, -8
AN keT ik k
. ij 9k
with Eik 1= ¢ pld )X
jer ik
Let Li denote the operator
- rrrertnl Ry i,
Ly = A(1-2)vy - (1 {;T + T, * N0V, - T T

It is kmown that

Li(wi) = 0.
Now
T w*y = + B
V;\ [I'imi) Fivk {mi] + I—imi
2 #) o F.ylry® F #+ &
VR(Fif) = FiVy(uf) ¢ 2R, 7, (w}) ¢+ Fut

2 .
and V. (o¥) = z E. B
AMYTE kEI ik"k

Substituting into the equation Li(wi) = 0 and looking for the coeffi-

cient at Bk which must be zero gives

i i
E, 3 G+
1 SN I I
Eik F, 7 Tx e

Solving this differential equation gives

ik ~ 1 i,
=+ )
4

E.. = ik

F2
1

{(f=1]x
with a constant Aik € K, Eik is considered as a Laurent series in

(1-2); its tesidue at 1 is just Aik'

In a joint work with F. Herrlich we determined the constants Aik'
A careful study of the action of T on the Bruhat-Tits tree of

gives the result that the vanishing order ord a4 of ;3 at the

point s = A = 1 is as follows:
4 +j =k
= 2 :j#Ek d j
ord 9y Jr ana 3,

1 : otherwise

dq ...
Therefore the residue of mali at A =

ik
Eikdl at A = 1 is
5 Dij + T pij - Dij . plk
jel jEI jeI
Ik 177k,
r7-1 il i ik
ij _ = 1y 1214 1
As r et =z o 1 19 o]
i€l i
317k
‘s ik ‘s
L le = - pzz E and I le
i€l jeT
j2=k
indeed Aik'
2) Let T = r/[T,T] be the

1 is ord 9k and the residue of

=k, or j, = k,

this residue

Z -module generated by the images e; of Yi» iel,

Now G is cancnically isomorphic to

thus acts on

i, i, iy -i

-1 2 -1

As 91¥307 T ©OqI04 9, 9, 2 1
i +1 i

= U1 02 0]

= , . e oqg
Yl]+1,1z 2

.l I
and szioz

-1

Yi1,1 Yi1,iz+1

the action of G is known.

8 Hurke/Moczen

the lactor group .05 /T

-3 -1 -i,

is

comnutator factor group of T; if is a free

T by inner automorphims; we consider T as G-module.



Let M be the submodule of the group ring Z[G] generated by

i i
- 1 . 2 _
ai = (Ui -1 {02 1)

for all (ij,iz) € I. It is easy to verify that the mapping
Kk : T+ M

which sends e; to a,, i€ I, is indeed an isomorphism of G-modules.
In order to be able to work with a simpler basis we consider K 2 M
and let

w.oi= r p*d a4 exan
jer ]
where i-j is the multiplication in I considered as multiplicative
semi-group in the ring J = Z’.fr.lZZ BZ!/rZE and pi 1= p? . pzz for

i EZZ/rIZZ. 4] Z?./rzﬁ .

Then w = I p+ij0j
i jeJ
; j i
with ol = a]T . 022 for j&J
-i'l
and oWy = 04 . oWy
ow P lz. Wy
| 2

This shows that {w,

i i € 1} is a basis of X 8 M and thus

a. = L C..wW.
je1 i3]

with a matrix ¢ = (cij)' €y € K, of determinant # 0. In fact ¢ is

i
the inverse of the matrix

+i_j
(rp )i,jEI i i j
o1 Pyl t -1
A straight forward computation gives: cij = -—?T—— . “"—;E———_

for any i,j € I, i = (11,i,), § = (§;,3,)-
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3) From 2} we get that

., = E c,  w?
oy je1 1jmj
ik
Now 9i{e.) = L B, —
7 ger kg
= I ¢e,.( E  E.,.8.)
jEI 13 ey jk"k

£ (L c,.E..}'B
kel eI ij ik k

n

q.
and thus I CijEjk al£ which completes the proof.
j€I ik
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