PERIODS AND GAUSS-MANIN CONNECTION FOR THE MUMFORD CURVE $y_2^r y_1^r - y_2^r - y_1^r + \lambda = 0$

Lothar Gerritzen Bochum, W. Germany

A method is introduced which allows to obtain explicit formulas for the periods $q(\lambda)$ of a family $\{C_{\lambda}\}$ of smooth curves. It gives expressions for $q(\lambda)$ in the vicinity of a point λ_0 for which the curve C_{λ_0} is totally degenerate provided one knows Picard-Fuchs equations for differentials of the family $\{C_{\lambda}\}$.

Techniques from rigid analytic geometry are used, see [T]. We work with the notion of periods for p-adic Schottky groups as defined by Manin-Drinfeld, [MD]. The result can certainly be applied to the usual complex periods. In this approach it is basic that one has a canonical basis for the De Rham cohomology classes.

In this manuscript only one example is treated. The curves C_{λ}^{T} given by the equation in the title are prestable and totally degenerate for λ = 1. The p-adic Schottky uniformization is constructed in section 2. In section 3 a crucial formula for the Gauss-Manin connection is explained. The main application is the expression for the periods in proposition 4 of section 4. For elliptic curves the result is classical, see [F]. It is planned to give a more complete account of this method in a joint paper with F. Herrlich. The relation to the work of B. Dwork, [D], shall be included.

1. The curve C_{λ}^{T}

Let K be a field of characteristic 0 and $r = (r_1, r_2)$ a pair of integers \geq 2. Assume that there is a primitive root of unity ρ_i of

order r; in K.

Let (y_1,y_2) be a system of inhomogeneous coordinates for $P\times P$, where P is the projective line over K and let λ be a parameter in K. The equation

$$y_2^r y_1^{r_1} - y_2^{r_2} - y_1^{r_1} + \lambda = 0$$

defines a projective curve $C_{\lambda}^{\mathbf{r}}$ in $\mathbf{P} \times \mathbf{P}$.

If u_i , v_i are homogeneous variables for P with $y_i = \frac{u_i}{v_i}$, then C_{λ}^{r} is the set of zeroes of the bihomogeneous equation

$$u_2^{r_2}u_1^{r_1} - u_2^{r_2}v_1^{r_1} - v_2^{r_2}u_1^{r_1} + \lambda v_2^{r_2}v_1^{r_1} = 0$$

The curve $C_{\lambda}^{\mathbf{r}}$ is non-singular if and only if $\lambda(\lambda-1)\neq 0$. The curve $C_{\lambda}^{\mathbf{r}}$ is a union of $\mathbf{r}_1\cdot\mathbf{r}_2$ projective lines and prestable.

Let $\boldsymbol{\sigma}_1$ (resp. $\boldsymbol{\sigma}_2)$ be the automorphism on $\mathbb{P}\times\mathbb{P}$ for which

$$y_1 \circ \sigma_1 = \rho_1 \cdot y_1, \quad y_2 \circ \sigma_1 = y_2.$$

(resp. $y_1 \circ \sigma_2 = y_1, y_2 \circ \sigma_2 = \rho_2 \cdot y_2$).

The restriction $\sigma_1 \mid C_\lambda^r$ of σ_i onto C_λ^r is an automorphism of C_λ^r and $\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1$. Let G denote the group generated by $\sigma_1 \mid C_\lambda^r$ and $\sigma_2 \mid C_\lambda^r$. It is canonically isomorphic to $\mathbb{Z}/r_1\mathbb{Z} \oplus \mathbb{Z}/r_2\mathbb{Z}$.

The field of K-rational functions of C_{λ}^{r} is generated by $y_{1} \mid C_{\lambda}^{r}$ and $y_{2} \mid C_{\lambda}^{r}$ if $\lambda \neq 0$, $\lambda \neq 1$. We will write in the sequel y_{i} instead of $y_{i} \mid C_{\lambda}^{r}$ and define x_{i} to be y_{i}^{r} . Then

$$\frac{dx_1}{x_1-1} = -\frac{dx_2}{x_2-1}$$

because the rational functions x_1 , x_2 satisfy the relation

$$x_2x_1 - x_2 - x_1 + \lambda = 0$$

and thus

$$x_2dx_1 + x_1dx_2 - dx_2 - dx_3 = 0$$

$$(x_1-1)dx_2 + (x_2-1)dx_1 = 0.$$

Let I := $\{i = (i_1, i_2) \in \mathbb{Z}^2 : 1 \le i_1 < r_1, 1 \le i_2 < r_2\}$. For $i = (i_1, i_2) \in I$ we define

$$\omega_{i} = \frac{dx_{1}}{y_{1}^{i_{1}}y_{2}^{i_{2}}(x_{1}-1)} = -\frac{dx_{2}}{y_{1}^{i_{1}}y_{2}^{i_{2}}(x_{2}-1)}$$

$$\omega_1' = \frac{dx_1}{i_1 i_2}$$

$$y_1' y_2'$$

Then the De Rham cohomology vectorspace $H^1_{DR}(C^{\mathbf{r}}_{\lambda})$ admits a direct decomposition

where $(\omega_{\hat{1}}, \omega_{\hat{1}}^{i})$ denotes the K-vectorspace of differentials generated by $\omega_{\hat{1}}$ and $\omega_{\hat{1}}^{i}$. In fact $(\omega_{\hat{1}}, \omega_{\hat{1}}^{i})$ is the eigenspace of the canonical action of G on $H_{DR}^{1}(C_{\lambda}^{r})$ with respect to the character $\chi: G \to K^{*}$ for which $\chi(\sigma_{1}) = \rho_{1}^{-i_{1}}$, $\chi(\sigma_{2}) = \rho_{2}^{-i_{2}}$.

As dim $H_{DR}^{1}(C_{\lambda}^{r}) = 2(r_{1}^{-1})(r_{2}^{-1})$ the genus of C_{λ}^{r} is $(r_{1}^{-1})(r_{2}^{-1})$.

2. p-adic uniformization

Let now K be complete with respect to non-archimedean valuation $|\cdot|$ and assume that $|\lambda^{-1}| < 1$ and that $r_1 \cdot r_2$ is prime to the characteristic of the residue field. I want to show that C_{λ}^r is a Mumford curve. This will be achieved by constructing the non-archimedean or p-adic Schottky uniformization for C_{λ}^r .

Let z be a coordinate for P, and $s \in K$, |s-1| < 1, $s \ne 1$ and let

$$\sigma_1(z) = \rho_1 \cdot z$$

$$\sigma_2(z) = \frac{(s - \rho_2)z + (\rho_2 - 1)s}{(1 - \rho_2)z + (\rho_2 s - 1)}$$

Then σ_1 , σ_2 are elliptic fractional linear transformation of P and σ_2 has the multiplier ρ_2 and the fixed points 1 and s. One can show that the group (σ_1,σ_2) is discontinuous in the sense of [GP], Chap. I,§1, and that the commutator subgroup Γ of (σ_1,σ_2) is a free group freely generated by $\{\gamma_i := \sigma_1^{i_1}\sigma_2^{i_2}\sigma_1^{-i_1}\sigma_2^{-i_2}: i\in I\}$, see [GH].

Let $z_1 := z \cdot z_2 := \frac{z-s}{z-1}$. Then

$$z_1 = \frac{z_2 - s}{z_1 - 1}$$
.

Let Γ_i the group generated by $\Gamma \cup {\sigma_i}$ i = 1, 2.

Define

$$y_1 := \prod_{\gamma \in \Gamma_2} \frac{z_1 \circ \gamma}{(z_1 \circ \gamma)(1)}$$

$$y_2 := \prod_{\gamma \in \Gamma_1} \frac{z_2 \circ \gamma}{(z_1 \circ \gamma) (\varpi)}.$$

Both products converge on the domain Z of ordinary points for r.

They are both meromorphic on Z and are r-automorphic forms on Z with constant factors of automorphy, see [GP], Chap. II, §2.

A direct computation gives

$$y_1 \circ \sigma_1 = \rho_1 \cdot y_1$$

 $y_2 \circ \sigma_2 = \rho_2 \cdot y_2$.

One can conclude that y_1^r , y_2^r are (σ_1, σ_2) -automorphic and that y_1, y_2 are Γ -invariant, see [GP], Chap. III, §1, for the notions. Let $\lambda := y_1^{r_1}(s)$

Proposition 1: The mapping $z + (y_1(z), y_2(z))$

gives a bianalytic mapping between the Mumford curve Z/r and the curve $C_{\lambda}^{\mathbf{r}}.$

Proof: see [GH].

Remark: The mapping

is a bianalytic mapping between $\{s \in K : |1-s| < 1\}$ and

 $\{\lambda \in K : |1-\lambda| < 1\}$ with $\lambda(1) = 1$. Moreover $\lambda(s^{-1}) = \lambda(s)^{-1}$.

3. Gauss-Manin connection

There are canonical analytic Γ -automorphic forms with constant factors of automorphy such that $\alpha_i := \frac{du_i}{u_i}$ are analytic differentials on C_λ^r and such that $\{\alpha_i : i \in I\}$ is a basis of the K-vectorspace of analytic differentials on C_λ^r , see [GP], Chap. II, §4.

Let $q_{ij} := \frac{u_i \cdot \gamma_j}{u_i} \in K^*$. The matrix $q := (q_{ij})$ is the period matrix of Γ with respect to the basis $\{\gamma_i : i \in I\}$, see [MD], §2. Also there are meromorphic functions ζ_i on Z such that $\zeta_i - \zeta_i \cdot \gamma_j = \{1 : i = j, see [G2], p. 387, and [G1], section 3.$

The differentials $\beta_i := d\zeta_i$ are of the second kind and $\{\alpha_i : i \in I\} \cup \{\beta_i : i \in I\}$ is a basis of $H^1_{DR}(C^r_\lambda)$.

We consider now $C^{\mathbf{r}}$ as a family of curves by letting λ vary through $\{\lambda\in K: |\lambda-1|<1\}$. The Gauss-Manin connection ∇ of $C^{\mathbf{r}}$ is a connection

$$\nabla : H_{DR}^1 \to H_{DR}^1 \ \underline{\Theta} \quad \Omega$$

where H^1_{DR} is the sheaf of De Rham cohomology classes of C^T as family of curves over $S=\{s\in K: |s-1|<1\}$ and Ω is the sheaf of analytic differentials on S.

The main result of [G1] is a proof of Proposition 2: $\nabla(\alpha_i) = \sum_{i \in I} \beta_i \otimes \frac{dq_{ij}}{q_{ij}}$ $\nabla(\beta_i) = 0.$

We want to apply this formula to the differential of the first kind

$$\omega_{i} = \frac{dx_{1}}{y_{1}^{i_{1}}y_{2}^{i_{2}}(x_{1}^{-1})}$$

Proposition 3:

$$\omega_{i} = F_{i}(\lambda) \cdot \sum_{j \in I} \rho_{1}^{i_{1}j_{1}} \rho_{2}^{i_{2}j_{2}} \alpha_{j}$$

with
$$F_{i}(\lambda) = \sum_{n=0}^{\infty} \frac{(\frac{1}{r_{1}})_{n} \cdot (\frac{1}{r_{2}})_{n}}{(n!)^{2}} (1-\lambda)^{n}$$
 and $(a)_{n} := \prod_{i=0}^{n-1} (a+i)$.

Proof: The method of proof consist in the following: It is well known that the cohomology class ω of $\frac{dx}{y}$, $y := x^{a}(x-1)^{b}(x-\lambda)^{c}$, satisfies the hypergeometric differential equation also known as Picard-Fuchs equation for w:

$$\lambda(1-\lambda)\nabla_{\lambda}^{2}(\omega) + [a+c-(a+b+2c)\lambda]\nabla_{\lambda}(\omega) - (a+b+c-1)\omega = 0$$

see for instance [M], p. 378 or [D], Chap. I, p. 8.

In our case
$$a = \frac{-i_1}{r_1}$$
, $b = -1 + \frac{i_2}{r_2}$, $c = \frac{i_2}{r_2}$.

A straightforward computation shows that the above F; is up to a constant the only power series solution of the above differential equation.

But ω_i being a differential of the first kind admits a representation

$$\omega_{i} = \sum_{j \in I} G_{ij}^{\alpha}_{j}$$

with Gi analytic in S.

Thus $\nabla_{\lambda}(\omega_{i}) \equiv \sum_{i \in I} G_{ij} \alpha_{j} \mod H'$ when H' is the subspace generated by $\{\beta_i : i \in I\}$. Thus each $c_{ij} = c_i \cdot F_i$ with $c_i \in K$, where the dot over $\textbf{G}_{i\,j}$ means the derivative with respect to $\lambda.$ By considering the limit case for s + 1 one obtains the above constants. For the details see [GH].

R. Coleman (Berkeley) has informed me that he has a completely different approach to this result.

4. Application to periods

The formulas for the Gauss-Manin connection and the Picard-Fuchs equation allow to derive an explicit expression for the logarithmic derivative of $\boldsymbol{q}_{\boldsymbol{i}\,\boldsymbol{i}}$ with respect to the variable λ in the domain

$$\{|\lambda-1|<1\}.$$

Proposition 4:

Proposition 4.

$$\frac{q_{ij}}{q_{ij}} = \sum_{k \in I} c_{ik} \cdot E_{kj}$$
with $c_{ik} = \frac{(\rho_1^{-i})^k 1 - 1)(\rho_2^{-i})^2 2 - 1}{r_1 \cdot r_2}$

$$E_{kj} = \frac{A_{kj}}{(1 - \lambda)\lambda} + \frac{k_2}{r_2} \cdot F_k^2$$

$$A_{kj} = 1 - \rho_1^{k_1 j_1} - \rho_2^{k_2 j_2} + \rho^{kj} = c_{-k,j} \cdot r_1 \cdot r_2$$

$$\lambda^a = (1 - (1 - \lambda))^a := \sum_{n=0}^{\infty} (a_n^a)(1 - \lambda)^n \cdot (-1)^n$$

$$F_{k} = \sum_{n=0}^{\infty} \frac{(\frac{k_1}{r_1})_n \cdot (\frac{k_2}{r_2})_n}{(1 - \lambda)^n} (1 - \lambda)^n$$

$$F_k = \sum_{n=0}^{\infty} \frac{(\frac{k_1}{r_1})_n \cdot (\frac{k_2}{r_2})_n}{(n!)^2} (1-\lambda)^n$$

which is the hypergeometric function ${}_{2}F_{1}(\frac{k_{1}}{r_{1}},\frac{k_{2}}{r_{2}};1;1-\lambda)$, see [MOS], Chap. II, (2.1).

Remark: In the special case $r_1 = r_2 = 2$ the index set I consists of (1,1) only and with $q := q_{11}$ one gets

$$\frac{\dot{q}}{q} = \frac{4}{(1-\lambda)\lambda \cdot {}_{2}F_{1}(\frac{1}{2}, \frac{1}{2}, 1; 1-\lambda)}$$

which is equivalent to a classical formula, see [F]. Be aware that λ is not the Legendre parameter as our equation is $y_2^2y_1^2 - y_2^2 - y_1^2 + \lambda = 0.$

We sketch now a proof of proposition 4.

1) Let
$$\omega_{i}^{*} := \frac{\omega_{i}}{F_{i}} = \sum_{j \in I} \rho^{ij} \alpha_{j}$$
. Then
$$\nabla_{\lambda}(\omega_{i}^{*}) = \sum_{k \in I} E_{ik} \cdot \beta_{k}$$

with
$$E_{ik} := \sum_{j \in I} p^{ij} \frac{\dot{q}_{jk}}{q_{jk}}$$

Let L; denote the operator

$$L_{1} = \lambda (1-\lambda) \nabla_{\lambda}^{2} - [1 - (\frac{i_{1}}{r_{1}} + \frac{i_{2}}{r_{2}} + 1)(1-\lambda)] \nabla_{\lambda} - \frac{i_{1}i_{2}}{r_{1}r_{2}}.$$

It is known that

$$L_i(\omega_i) = 0.$$

Now

$$\nabla_{\lambda}(F_{\mathbf{i}}\omega_{\mathbf{i}}^{*}) = F_{\mathbf{i}}\nabla_{\lambda}(\omega_{\mathbf{i}}^{*}) + \hat{F}_{\mathbf{i}}\omega_{\mathbf{i}}^{*}$$

$$\nabla_{\lambda}^{2}(F_{\mathbf{i}}\omega_{\mathbf{i}}^{*}) = F_{\mathbf{i}}\nabla_{\lambda}^{2}(\omega_{\mathbf{i}}^{*}) + 2\hat{F}_{\mathbf{i}}\nabla_{\lambda}(\omega_{\mathbf{i}}^{*}) + \hat{F}_{\mathbf{i}}\omega_{\mathbf{i}}^{*}$$
and
$$\nabla_{\lambda}^{2}(\omega_{\mathbf{i}}^{*}) = \sum_{i=1}^{n} \hat{E}_{\mathbf{i}k}\beta_{k}$$

Substituting into the equation $L_i(\omega_i) = 0$ and looking for the coefficient at β_k which must be zero gives

cient at
$$\beta_k$$
 which must be zero gives
$$\frac{\dot{E}_{ik}}{E_{ik}} = -2 \frac{\dot{F}_i}{F_i} + \frac{1}{1-\lambda} - \frac{(\frac{\dot{1}}{r_1} + \frac{\dot{1}}{r_2})}{\lambda}.$$

Solving this differential equation gives

$$E_{ik} = \frac{A_{ik}}{(\frac{1}{r_1} + \frac{1}{r_2})_{F_i^2}}$$

with a constant $A_{ik} \in K$. E_{ik} is considered as a Laurent series in (1- λ); its residue at 1 is just A_{ik} .

In a joint work with F. Herrlich we determined the constants A_{ik} . A careful study of the action of Γ on the Bruhat-Tits tree of P gives the result that the vanishing order ord q_{ji} of q_{ji} at the

point $s = \lambda = 1$ is as follows:

ord
$$q_{ik} = \begin{cases} 4 : j = k \\ 2 : j \neq k \text{ and } j_1 = k_1 \text{ or } j_2 = k_2 \\ 1 : \text{ otherwise} \end{cases}$$

Therefore the residue of $\frac{dq_{jk}}{q_{jk}}$ at λ = 1 is ord q_{jk} and the residue of $E_{ik}d\lambda$ at λ = 1 is

As
$$\sum_{\substack{j \in I \\ j \in I}} \rho^{ij} + \sum_{\substack{j \in I \\ j \in I}} \rho^{ij} + \sum_{\substack{j \in I \\ j \in I \\ j_1 = k_1}} \rho^{ij} + \sum_{\substack{j \in I \\ j_2 = k_2}} \rho^{ij} + \rho^{ik}$$

$$\sum_{\substack{j \in I \\ j_1 = k_1}} \rho^{ij} = \sum_{\substack{j \in I \\ j_2 = k}} \rho^{ij} \rho^{ij} = -\rho^{i}_2^{i} \rho^{ij} = 1 \quad \text{this residue is}$$

$$\sum_{\substack{j \in I \\ j \in I \\ j_2 = k}} \rho^{ij} = -\rho^{i}_2^{i} \rho^{ij} = 1 \quad \text{this residue is}$$

indeed Aik.

2) Let $\overline{\Gamma}=\Gamma/[\Gamma,\Gamma]$ be the commutator factor group of Γ ; if is a free \mathbb{Z} -module generated by the images e_i of γ_i , $i\in I$.

Now G is canonically isomorphic to the factor group $\langle \sigma_1, \sigma_2 \rangle / \Gamma$ and thus acts on $\overline{\Gamma}$ by inner automorphims; we consider $\overline{\Gamma}$ as G-module.

As
$$\sigma_{1}\gamma_{1}\sigma_{1}^{-1} = \sigma_{1} \cdot \sigma_{1}^{-1} \cdot \sigma_{2}^{-1} \cdot \sigma_{1}^{-1} \cdot \sigma_{2}^{-1} \cdot \sigma_{1}^{-1}$$

$$= \sigma_{1}^{1} \cdot \sigma_{2}^{1} \cdot \sigma_{1}^{-1} \cdot \sigma_{1} \cdot \sigma_{2}^{-1} \cdot \sigma_{1}^{-1}$$

$$= \gamma_{1_{1}+1, i_{2}} \cdot \sigma_{2}^{1} \cdot \sigma_{1} \cdot \sigma_{2}^{-1} \cdot \sigma_{1}^{-1}$$

$$= \gamma_{1_{1}+1, i_{2}} \cdot \gamma_{1, i_{2}}^{-1}$$

$$= \gamma_{1_{1}+1, i_{2}} \cdot \gamma_{1, i_{2}}^{-1}$$
and $\sigma_{2}\gamma_{1}\sigma_{2}^{-1} = \sigma_{2}\sigma_{1}^{1} \cdot \sigma_{2}^{1} \cdot \sigma_{1}^{-1} \cdot \sigma_{2}^{-1} \cdot \sigma_{2}^{-1}$

$$= \sigma_{2}\sigma_{1}^{1} \cdot \sigma_{2}^{-1} \cdot \sigma_{1}^{-1} \cdot \sigma_{2}^{1} \cdot \sigma_{2}^{-1} \cdot \sigma_{2}^{-1}$$

$$= \gamma_{1_{1}, 1}^{-1} \cdot \gamma_{1_{1}, i_{2}+1}^{-1}$$

$$= \gamma_{1_{1}, 1}^{-1} \cdot \gamma_{1_{1}, i_{2}+1}^{-1}$$

the action of G is known.

Let M be the submodule of the group ring Z[G]generated by

$$a_i = (\sigma_1^{i_1} - 1) \cdot (\sigma_2^{i_2} - 1)$$

for all $(i_1, i_2) \in I$. It is easy to verify that the mapping

which sends e_i to a_i , $i\in I$, is indeed an isomorphism of G-modules. In order to be able to work with a simpler basis we consider K Ω M and let

$$W_{i} := \sum_{j \in I} \rho^{+ij} \cdot a_{j} \in K \boxtimes M$$

where i·j is the multiplication in I considered as multiplicative semi-group in the ring $J=\mathbb{Z}/r_1\mathbb{Z}\oplus\mathbb{Z}/r_2\mathbb{Z}$ and $\rho^i:=\rho_1^{i_1}\cdot\rho_2^{i_2}$ for $i\in\mathbb{Z}/r_1\mathbb{Z}\oplus\mathbb{Z}/r_2\mathbb{Z}$.

This shows that $\{w_i : i \in I\}$ is a basis of K Ω M and thus

$$a_i = \sum_{j \in I} c_{ij} w_j$$

with a matrix $c = (c_{ij}), c_{ij} \in K$, of determinant $\neq 0$. In fact c is the inverse of the matrix

$$(\rho^{+ij})_{i,j \in I}$$
A straight forward computation gives: $c_{ij} = \frac{\rho_1^{i_1j_1} - 1}{r_1} \cdot \frac{\rho_2^{i_2j_2} - 1}{r_2}$
for any $i,j \in I$, $i = (i_1,i_2)$, $j = (j_1,j_2)$.

3) From 2) we get that

Now
$$\nabla(\alpha_{\mathbf{i}}) = \sum_{k \in \mathbf{I}} c_{\mathbf{i}\mathbf{j}} \omega_{\mathbf{j}}^{\mathbf{k}}$$

$$= \sum_{k \in \mathbf{I}} c_{\mathbf{i}\mathbf{j}} (\sum_{k \in \mathbf{I}} E_{\mathbf{j}k} \beta_{k})$$

$$= \sum_{k \in \mathbf{I}} (\sum_{\mathbf{j} \in \mathbf{I}} c_{\mathbf{i}\mathbf{j}} E_{\mathbf{j}k}) \cdot \beta_{k}$$

and thus $\sum_{j \in I} c_{ij} E_{jk} = \frac{q_{ik}}{q_{ik}}$ which completes the proof.

References

[D]	Dwork,B.:	Lectures on p-adic differential equa- tions, Springer-Verlag New York 1982
[F]	Fricke,R.:	Die elliptischen Funktionen und ihre Anwendungen, Leipzig-Berlin, Teubner 1922
[G1]	Gorritzen,L.:	Periods and Gauss-Manin connection for families of p-adic Schottky groups, Preprint Nr. 53, Ruhr-Uni- versität Bochum
[G2]	Gerritzen,L.:	Integrale zweiter Gattung auf Mum- fordkurven, Math. Ann. 270, 381-392, (1985)
[GH]	Gerritzen,L Herrlich,F	.: Explicit formulas for periods of curves, in preparation
[GP]	Gerritzen,L van der Pu	t,M.: Schottky groups and Mumford curves, Lectures Notes in Math. 817, Springer-Verlag (1980)
[M]	Messing, W.:	On the nilpotence of the hypergeometric equation, J. Math. Kyoto Univ. 12 (1972), 369-383
[MD]	Manin, Yu Drinfeld, V.G.	: Periods of p-adic Schottky groups, J. reine angew. Math. 262/263, 239-247 (1973)
[MOS]	Magnus,W Oberhettinger	,F Soni,R.P.: Formulas and Theorems for the Special Functions of Mathe- matical Physics, Springer-Verlag New York 1966
[T]	Tate,J.:	Rigid Analytic Spaces, Invent. math. 12, 257-289 (1971).

L. Gerritzen Ruhr-Universität Bochum Institut f. Mathematik D-4630 Bochum 1