INVARIANTS OF WEIGHTED HOMOGENEOUS SINGULARITIES

Helmut A. HAMM

1.- Introduction :

In singularity theory one has first studied hypersurface singularities, where a holomorphic map germ $f:({\mathbb C}^m,0)\to({\mathbb C},0)$ is given. Especially simple is the example $f(z)=z_1^a+\ldots+z_m^a$ (Brieskorn polynomial). A more general class is given by the weighted homogeneous polynomials : Let d, w_1 , ..., w_m be positive integers and $f\in{\mathbb C}[z_1,\ldots,z_m]$ a polynomial.

Definition:

f is weighted homogeneous of degree d with respect to the weights w_1 , ..., w_m if f is a linear combination of monomials z_1 z_m , $j_1w_1+\ldots+j_mw_m=d$.

Let us assume that f is such a weighted homogeneous polynomial which has an isolated singularity at 0 and that n:=m-1>0. Let ε be a positive real number (in general, ε should be small, but since f is weighted homogeneous this is not necessary here), $t\in \mathbb{C}$, $0<|t|<<\varepsilon$, $Y_t=f^{-1}(\{t\})$, $Y_0=f^{-1}(\{0\})$. Then B_ε \cap Y_t is the Milnor fibre of f and $\Sigma=\partial B_\varepsilon$ \cap Y_0 the link of Y_0 at 0. It is well-known that B_ε \cap Y_t has the homotopy type of a bouquet of spheres of dimension n, their number is called the Milnor number μ , and the singularity of Y_0 at 0 is determined by Σ since B_ε \cap Y_0 is homeomorphic to the cone over Σ . There is an endomorphism h^* of $H^n(B_\varepsilon\cap Y_t;\mathbb{Z})$ — the (Picard-Lefschetz) monodromy — such that we have an exact sequence (with coefficients \mathbb{Z}):

$$0 \to H_n(\Sigma) \to H^n(B_{\epsilon} \cap Y_t) \xrightarrow{h^*-id} H^n(B_{\epsilon} \cap Y_t) \to \widetilde{H}_{n-1}(\Sigma) \to 0$$

Cf. [6].

As we are looking at the weighted homogeneous case $B_{\epsilon} \cap Y_t$ and $B_{\epsilon} \cap Y_0$ are deformation retracts of Y_t and Y_0 , respectively. Therefore we will consider Y_t instead of $B_{\epsilon} \cap Y_t$, the condition $|t| << \epsilon$ is no longer necessary then.

Let us list some invariants which have been calculated in the weighted homogeneous case already long ago:

 $\begin{array}{l} \mu = \text{rk H}_n(Y_t;\mathbb{Z}) : \text{Milnor-Orlik [7]} \\ \text{characteristic polynomial } \chi(x) \text{ of } h^* : \text{Milnor-Orlik [7]} \\ \text{rk } \widetilde{H}_{n-1}(\Sigma;\mathbb{Z}) : \text{Orlik [8] (as a consequence of [7])} \\ \sigma = \text{signature of } Y_t : \text{Steenbrink [11]} \\ \text{Hodge numbers of } Y_t \text{ (with respect to the mixed Hodge structure)} : \\ \text{Steenbrink [11]}. \end{array}$

In the next paragraph we will briefly recall the methods used in the hypersurface case and go over in the third paragraph to complete intersections. As a by-product we will get a further result for the hypersurface case, by determining the group $\widetilde{H}_{n-1}(\Sigma,\mathbb{Z})$.

2.- Methods in the hypersurface case :

Let us shortly discuss how the computations of the invariants cited above have been performed :

- a) The Milnor number μ can be calculated via the mapping degree of $(z_1,\ldots,z_m) \to \left(\frac{\partial f}{\partial z_1},\ldots,\frac{\partial f}{\partial z_m}\right)$, because of the formula $\mu = \dim \mathcal{O}_{\mathbb{C}^m,0}/\left(\frac{\partial f}{\partial z_1},\ldots,\frac{\partial f}{\partial z_m}\right)$, cf. [7].
- b) For the study of the endomorphism h^* of $H^n(Y_t;\mathbb{Z})$ it is useful to note that $f:\mathbb{C}^m\to\mathbb{C}$ is equivariant with respect to \mathbb{C}^* actions on \mathbb{C}^m and $\mathbb{C}:c\circ z:=(c^{w_1}z_1,\ldots,c^{w_m}z_m)$, $c\circ t':=c^dt'$ for $c\in\mathbb{C}^*$, $z\in\mathbb{C}^m$, $t'\in\mathbb{C}$. Then h^* is induced by $h:Y_t\to Y_t:h(z)=e^{2\pi i/d}\circ z$. From the Euler characteristics of the fixed point sets $\{z\in Y_t|h^{\nu}(z)=z\}$, $\nu=1$, 2, ..., one can compute the characteristic polynomial of h^* , cf. [7].
- c) The signature σ of Y:=Y_t can be computed from the Hodge numbers, cf. [11]. In order to understand the mixed Hodge structure on Y let us begin with the special case $w_1 = \ldots = w_m = 1$ (f homogeneous): then Y is the affine part of some smooth projective hypersurface \forall of degree d in $\mathbb{P}_m(\mathbb{C})$ In general one takes \mathbb{P}_w := Projan \mathbb{C} [z_0, \ldots, z_m], where deg $z_j = w_j$, $j = 0, \ldots, m$, $w_0 = 1$, instead of $\mathbb{P}_m(\mathbb{C})$. The underlying topological space of \mathbb{P}_w is the quotient of \mathbb{C}^{m+1} -{0} by the \mathbb{C}^* action which corresponds to

the weights w_0 ,..., w_m . Now \mathbb{P}_w is no longer smooth but still a V-manifold, hence a rational homology manifold. Let $\widetilde{f} \in \mathbb{C}[z_0,\ldots,z_m]$ be defined by $\widetilde{f}(z_0,\ldots,z_m) = f(z_1,\ldots,z_m) - \operatorname{t} z_0^d$. Then \widetilde{f} is weighted homogeneous of degree d with respect to w_0 ,..., w_m . The equation $\widetilde{f} = 0$ defines subvarieties \overline{Y} and Y_∞ of \mathbb{P}_w and $\{[z] \in \mathbb{P}_w | z_0 = 0\}$ which are V-manifolds. Since \overline{Y} and Y_∞ are compact algebraic varieties they have canonical mixed Hodge structures according to Deligne [1], but in fact these are pure because we have V-manifolds, so we can speak of Hodge numbers $h^{pq}(\overline{Y}) = \dim_{\mathbb{C}} \operatorname{Gr}_F^p H^{p+q}(\overline{Y};\mathbb{C})$. More important for our purpose are the numbers $h^{pq}_0(\overline{Y}) = \dim_{\mathbb{C}} \operatorname{Gr}_F^p H^{p+q}(\overline{Y};\mathbb{C})_0$, where $H^{j}(\overline{Y};\mathbb{C})_0$ denotes the j-th primitive cohomology group. Then $h^{pq}_0(\overline{Y}) = h^{pq}(\overline{Y}) - \delta_{pq}$, $0 \le p \le \dim \overline{Y}$. From the Gysin sequence for $Y_\infty \subset \overline{Y}$ one gets:

$$\begin{split} & \text{dim } \text{Gr}_F^p \text{ } \text{Gr}_n^W \quad \text{H}^n(Y;\mathbb{C}) = \text{h}_0^p,^{n-p}(Y) \\ & \text{dim } \text{Gr}_F^p \text{ } \text{Gr}_{n+1}^W \quad \text{H}^n(Y;\mathbb{C}) = \text{h}_0^{p-1},^{n-p}(Y_\infty) \\ & \text{Gr}_i^W \text{ } \text{H}^n(Y;\mathbb{C}) = 0 \quad , \quad i \neq n \quad , \quad n+1 \quad . \end{split}$$

See [11] for details. By generalizing Griffiths' description of the Hodge structure for a projective hypersurface [3] Steenbrink was able to describe the spaces F^p Gr_i^W $H^n(Y;\mathfrak{C})$ explicitly, see [11].

3.- Complete intersections :

Let us leave the hypersurface case now and assume that f_1,\ldots,f_k are polynomials such that f_j is weighted homogeneous of degree d_j with respect to w_1,\ldots,w_m for $j=1,\ldots,k$. Here w_1,\ldots,w_m , d_1,\ldots,d_k are positive integers. Let $f:\mathbb{C}^m\to\mathbb{C}^k$ be defined by $f=(f_1,\ldots,f_k)$, let t be a regular value of f, $Y_t=f^{-1}(\{t\})$, $Y_0=f^{-1}(\{0\})$, $n=\dim Y_0$, $\epsilon>0$, $\Sigma=Y_0\cap\partial B_\epsilon$. In order to be able to compute invariants from the weights and degrees alone we assume that n=m-k (i. e. Y_0 is a complete intersection) and that $Y_0-\{0\}$ is non-singular, n>0. Again Y_t has the homotopy type of a bouquet of spheres of dimension n [5]. Let us discuss the calculation of invariants now.

- a) μ = rk H_n(Y_t;Z): This invariant has been calculated using differential forms in [2], the method is not just a generalization of the method described in the hypersurface case.
- b) The monodromy is a more complicated object in the case $\,k\geq 2\,$ than for k=1: one has an action of $\pi_1(\mathbb{C}^k-D,t)$ on $H^n(Y_t;\mathbb{Z})$, D being the discriminant of f. For k=1, $\pi_1(\mathbb{C}^k-D,t)\cong\mathbb{Z}$, and the endomorphism h^* of $H^n(Y_t;\mathbb{Z})$ introduced in this case corresponds to the action of the canonical generator. In the weighted homogeneous case, however, we have another possibility of generalizing the definition of h^* . There is a \mathbb{C}^* action on \mathbb{C}^k defined by $c \circ t' = (c^-t', \ldots, c^-k't'_k)$, $c \in \mathbb{C}^*$, $t' \in \mathbb{C}^k$, such that $f: \mathbb{C}^m \to \mathbb{C}^k$ is equivariant. Let d be a positive integer such that $t = e^{2\pi i/d} \circ t$, i. e. $d|d_j$ for all j with $t_j \neq 0$. Let $h^*: H^n(Y_t;\mathbb{Z}) \to H^n(Y_t;\mathbb{Z})$ be induced by $h(z) = e^{2\pi i/d} \circ z$. Now the characteristic polynomial x(x) of h^* can be calculated by the results of [2].
- c) The algebraic variety Y = Y_t has a mixed Hodge structure which can be described just as in the hypersurface case : Let $\widetilde{f}_j \in \mathbb{C}[z_0,\ldots,z_m]$ be defined by $\widetilde{f}_j(z_0,\ldots,z_m) = f_j(z_1,\ldots,z_m) t_jz_0^j$, then $\widetilde{f}_1 = \ldots = \widetilde{f}_k = 0$ defines subvarieties \overline{Y} and Y_∞ of \mathbb{P}_w and $\{[z] \in \mathbb{P}_w | z_0 = 0\}$, and the results on $\mathrm{Gr}_F^p \ \mathrm{Gr}_i^W + \mathrm{H}^n(Y;\mathbb{C})$ are the same as in the hypersurface case. In order to state the formulae it is convenient to use the abbreviation

$$Q(x,y) = \frac{1}{1+y} \prod_{v=1}^{m} \frac{1+y}{1-x} \frac{w_{v}}{w_{v}} \prod_{\kappa=1}^{k} \frac{1-x^{\kappa}}{1+y} \frac{d_{\kappa}}{x^{\kappa}}.$$

Theorem 1 (cf. also formula (1) in [4]):

$$h_0^{p,n-p}(\overline{Y}) = (-1)^{n-p} \operatorname{res}_{\chi=\infty} \operatorname{res}_{y=0} x^{-1} y^{-p-1} \frac{1+yx}{1-x} \, \mathbb{Q}(x,y) \ ,$$

$$h_0^{p-1,n-p}(Y_{\infty}) = (-1)^{n-p} \operatorname{res}_{X=\infty} \operatorname{res}_{Y=0} x^{-1} y^{-p} Q(x,y)$$
.

The proof uses the description of the pure Hodge structure of projective varieties which are V-manifolds due to Steenbrink [11], it will be published elsewhere, as the proofs of the following theorems.

The same technique also yields more information about h^{\bigstar} than that obtained in b). Note that $h^d=\operatorname{id}$, therefore $h^{\bigstar}: \operatorname{H}^n(\overline{Y};{\mathfrak C})_0 \to \operatorname{H}^n(\overline{Y};{\mathfrak C})_0$ is diagonalizable, and the eigenvalues are of the form $e^{2\pi i r/d}$, $r\in \mathbb{Z}$. Let $h_0^{p,n-p}(e^{2\pi i r/d})$ be the dimension of the subspace of $\operatorname{Gr}_F^p\operatorname{H}^n(\overline{Y};{\mathfrak C})_0$ on which h^{\bigstar} operates as multiplication by $e^{2\pi i r/d}$.

Theorem 2:

$$h_0^{p,n-p}(e^{2\pi i r/d}) =$$

$$= (-1)^{n-p} \operatorname{res}_{z=\infty} \operatorname{res}_{x=\infty} \operatorname{res}_{y=0} x^{-1} y^{-p-1} z^{r-1} \frac{z^d}{1-z^d} \frac{1+yzx}{1-zx} Q(x,y) .$$

Note that h* acts on $H^{n-1}(Y_\infty; \mathfrak{C})_0$ as the identity. Now let n be even, let S be the intersection form on $H^n_c(Y; \mathfrak{C})$ and S^h the hermitian form on $H^n_c(Y; \mathfrak{C})$ defined by $S^h(x,y) = S(x,\overline{y})$. Let $\mu^+(e^{2\pi i r/d})$ be the dimension of a maximal linear subspace of $H^n_c(Y; \mathfrak{C})$ on which S^h is positive definite and h* acts as multiplication by $e^{2\pi i r/d}$. Let $\mu^-(e^{2\pi i r/d})$ and $\mu_0(e^{2\pi i r/d})$ be defined in an analogous way, with "negative definite" resp. " identically zero" instead of "positive definite". From Theorem 2 and [11] one obtains

Theorem 3:

If n is even we have:

$$\begin{split} &\mu_+(e^{2\pi i r/d}) = \text{res}_{z=\infty} \text{ res}_{x=\infty} \text{ res}_{y=0} \text{ x}^{-1} \text{ y}^{-n-1} \text{ z}^{r-1} \frac{1}{1-y^2} \frac{z^d}{1-z^d} \frac{1+yzx}{1-zx} \, \mathbb{Q}(x,y) \; , \\ &\mu_-(e^{2\pi i r/d}) = \text{res}_{z=\infty} \text{ res}_{x=\infty} \text{ res}_{y=0} \text{ x}^{-1} \text{ y}^{-n} \text{ z}^{r-1} \frac{-1}{1-y^2} \frac{z^d}{1-z^d} \frac{1+yzx}{1-zx} \, \mathbb{Q}(x,y) \; , \\ &\mu_0(e^{2\pi i r/d}) = 0 \quad \text{if} \quad \text{d} \; \text{if} \; \; , \end{split}$$

$$\mu_0(1) \; = \; \text{dim H}^{n-1}(Y_{\infty}; \mathfrak{C})_0 \; = \; \text{rk } \widetilde{H}_{n-1}(\Sigma; \mathbb{Z}) \quad \text{(see Theorem 4)} \, .$$

d) <u>Calculation of</u> $\widetilde{H}_{n-1}(\Sigma;\mathbb{Z})$: As Steenbrink pointed out to me, $\widetilde{H}^{n-1}(Y_0^{-}\{0\};\mathfrak{C})\cong H^{n-1}(Y_\infty^{-};\mathfrak{C})_0$ because of the existence of a rational Gysin sequence for the map $Y_0^{-}-\{0\}\to Y_\infty$ which is the canonical map to the orbit space with respect to the \mathbb{C}^* action. Using this and the homotopy equivalence between $Y_0^{-}-\{0\}$ and Σ we obtain

Theorem 4:

$$\operatorname{rk} \widetilde{H}_{n-1}(\Sigma; \mathbb{Z}) = \operatorname{res}_{x=\infty} \operatorname{res}_{y=0} x^{-1} y^{-n} \frac{1}{1+y} Q(x,y)$$
.

So it remains to calculate the torsion subgroup of $\widetilde{H}_{n-1}(\Sigma;\mathbb{Z})$. There is an explicit way of doing this for n odd by looking at certain fixed point sets similarly to section b) of the second paragraph.

In the special case where f_1, \ldots, f_k are Brieskorn polynomials the torsion has been calculated for all n by Randell [10].

The following object is related to $\widetilde{H}_{n-1}(\Sigma;\mathbb{Z})$: Let us assume that $\widetilde{Y}_0 = \{z \in \mathbb{C}^m | f_1(z) = \ldots = f_{k-1}(z) = 0\}$ has also an isolated singularity at 0. Then let us consider $H_n(\widetilde{\Sigma},\Sigma;\mathbb{Z})$, where $\widetilde{\Sigma} = \partial B_{\varepsilon} \cap \widetilde{Y}_0$.

e) <u>Calculation of</u> $H_n(\widetilde{\Sigma},\Sigma;\mathbb{Z})$: Because of the assumption just made we may choose $t=(0,\ldots,0,t_k)$ and $d=d_k$. Then the exact sequence of the introduction has the following analogue (cf. [5], coefficients: \mathbb{Z}):

$$0 \to H_{n+1}(\widetilde{\Sigma}, \Sigma) \to H^n(Y) \xrightarrow{h^*-id} H^n(Y) \to H_n(\widetilde{\Sigma}, \Sigma) \to 0 \ .$$

As we can compute the characteristic polynomial $\chi(x)$ of h^* (cf. b)), we can deduce a formula for rk $H_n(\widetilde{\Sigma},\Sigma;\mathbb{Z})$.

Note that there is an exact sequence

$$0 \to H_{n}(\widetilde{\Sigma}; \emptyset) \to H_{n}(\widetilde{\Sigma}, \Sigma; \emptyset) \to \widetilde{H}_{n-1}(\Sigma; \emptyset) \to 0$$

(since $\widetilde{H}_{n-1}(\Sigma; \mathbb{C}) \cong H^{n-1}(Y_{\infty}; \mathbb{C})_0$ etc...) so that $\operatorname{rk} H_n(\widetilde{\Sigma}, \Sigma; \mathbb{Z})$ can also be calculated from Theorem 4. On the other hand, one can prove Theorem 4 inductively using a suitable formula for $\operatorname{rk} H_n(\widetilde{\Sigma}, \Sigma; \mathbb{Z})$.

But in fact, the whole group $H_n(\widetilde{\Sigma},\Sigma;\mathbb{Z})$ can be calculated from X(x): Write $X=m_1,\ldots,m_{\mu}$ where $m_1|m_2,\ldots,m_{\mu-1}|m_{\mu}$ and m_{μ} is square-free, $m_1,\ldots,m_{\mu}\in\mathbb{Z}$ [x].

REFERENCES

- [1] P. DELIGNE, Théorie de Hodge III. Publ. Math. IHES 44, 5-77 (1975).
- [2] G.M. GREUEL, H.A. HAMM, Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math. 49, 67-86 (1978).
- [3] Ph. GRIFFITHS, On the periods of certain rational integrals : I, II. Ann. of Math. (2), 90, 460-541 (1969).
- [4] H.A. HAMM, Genus x_y of quasihomogeneous complete intersections Russian . Funkcional. Anal. i Priložen. 11, n° 1, 87-88 (1977) = Functional Anal. Appl. 11, 78-79 (1977).
- [5] H.A. HAMM, Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191, 235-252 (1971).
- [6] J. MILNOR, Singular points of complex hypersurfaces. Ann. of Math. Studies 61 (1968).
- [7] J. MILNOR, P. ORLIK, Isolated singularities defined by weighted homogeneous polynomials. Topology 9, 385-393 (1970).
- [8] P. ORLIK, On the homology of weighted homogeneous manifolds. Proc. Second Conf. Transf. Groups I, Springer LN 298 (1972), 260-269.
- [9] P. ORLIK, R. RANDELL, The monodromy of weighted homogeneous singularities. Invent. Math. 39, 199-211 (1977).
- [10] R.C. RANDELL, The homology of generalized Brieskorn manifolds. Topology 14, 347-355 (1975).
- [11] J.H.M. STEENBRINK, Intersection form for quasi-homogeneous singularities. Compositio Math. 34, 211-223 (1977).

- 12 -

Theorem 5:

$$H_{\mathsf{n}}(\widetilde{\Sigma},\Sigma;\mathbb{Z}) \ = \ (\mathbb{Z}/\mathfrak{m}_{_{1}}(1)\mathbb{Z}) \ \oplus \ldots \oplus \ (\mathbb{Z}/\mathfrak{m}_{_{\mu}}(1)\mathbb{Z}) \ .$$

In the case k=1 we have $\widetilde{\Sigma}=\partial B_{\varepsilon}$, so $H_{n}(\widetilde{\Sigma},\Sigma)\cong\widetilde{H}_{n-1}(\Sigma)$:

Corollary:

$$\widetilde{H}_{n-1}(\Sigma;\mathbb{Z}) = (\mathbb{Z}/m_1(1)\mathbb{Z}) \oplus \ldots \oplus (\mathbb{Z}/m_{\mu}(1)\mathbb{Z}) \quad \text{if} \quad k = 1 \ .$$

The corollary has been conjectured by Orlik [8] and proved in special cases by Orlik and Randell (see [8], [9], [10]).