INVARIANTS OF WEIGHTED HOMOGENEOUS SINGULARITIES
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1.- Introduction :

In singularity theory one has first studied hypersurface singularities,

where a holomorphic map germ f : (mm,O) -+ (€,0) 1is given. Especially simple
a a

is the example f(z) = 211 +... +zmm (Brieskorn polynomial). A more general
class is given by the weighted homogeneous polynomials : Let d , w ,... .
be positive integers and f € € [zl,...,zm] a polynomial.
Definition :
f s weighted homogeneous of degree d with respect to the weights'
J J
Wyseee s W if f is a linear combination of monomials zll I .zmm ,

j1w1+... +jmwm =d .

Let us assume that f 1s such a weighted homogeneous polynomial which has
an isolated singularity at 0 and that n :=m-1>0 . Let ¢ be a positive
real number (in general, € should be small, but since f s weighted homo-
geneous this is not necessary here), t € € , 0 < Itl << e, Y, = f'l({t}f R
Y, = £7({0}) . Then B, n Y, is the Milnor fibre of f and I =2B_NY,
the_]ink of Y0 at 0 . It is well-known that BE n Yt has the homotopy type
- of a bouquet of spheres of dimension n , their number is called the Milnor
number u , and the singularity of Y0 at 0 1is determined by I since
Beny, is homeomorphic to the cone over I . There is an endomorphism h* of
H"(BE nYt;ZZ) - the (Picard-Lefschetz)’monodromy - such that we have an exact
sequence (with coefficients Z) : ’

h*

n -id ,n ~
0-*HMZ)»H wenYQ —— H weﬂYa »an(ﬂ -+ 0

cf. [61.

As we are looking at the weighted homogeneous case BE n Yt and Be n Yo
are deformation retracts of Yt and Yo , respectively. Therefore we will
consider Y, instead of B_n Ve the condition |t| << € 1is no Tonger neces-
sary then.



Let us 1ist some invariants which have been calculated in the weighted
homogeneous case already long ago :
u=rk Hn(Yt;Z) 1 Milnor-0rlik [7]
characteristic polynomial X{x) of h* : Milnor-Orlik 7]
rk ﬁh_l(z;ZZ) : Orlik [8] {as a consequence of [7])
o = signature of Yt : Steenbrink [11]
Hodge numbers of Yt (with respect to the mixed Hodge structure)

Steenbrink [11].

In the next paragraph we will briefly recall the methods used in the hyper-
surface case and go over in the third paragraph to complete intersections. As a
by-product we will get a further result for the hypersurface case, by determihing
the group ﬁ;_l(z,l) .

2.- Methods in the hypersurface case :

Let us shortly discuss how the computations of the invariants cited above
have been performed :

a) The Milnor number u can be calculated via the mapping degree of

(zx""'zm) - (g%iy...,é%i) , because of the formula p = dim 0 m /(§¥:;...;§¥i),
cf. [7]. ' m v.o 1 "

b) For the study of the endomorphism h* of H"(Yt;ZZ) it is useful to

note that f : €™ = C s equivariant with respect to * actions on " and
W w

C:co2 :=(c . Z s.ensC mzm) , Cot' := cdt' ,fqr cet*,z¢ ¢ , t' €0 .

. Then h* 4s induced by h : Yt - Yt : h(z) = ezm/d o2 . From the Euler charac-

teristics of the fixed point sets {z EYt[hv(z) =z} ,v=1,2,..., one can

compute the characteristic polynomial of h* , cf. [71.

c) The signature o of Y := Yt can be computed from the Hodge numbers,
cf. [11]. In order to understand the mixed Hodge structure on Y Tlet us begin
with the special case w = ... =w_ = 1 (f homogeneous) : then Y is the
affine part of some smooth projective hypersurface Y of degree d in Pm(C)
In general ane takes Pw := Projan € [zo,...,zm] , where deg z; =w. ,

j=0,...,m, W, = 1 , instead of Pm(m) . The underlying topological space
of Pw is the quotient of e™! - (0} by the €* action which corresponds to



to w

the weights Wooswee s W o Now Pw is no longer smooth but still é V-manifold,
hence a rational homology manifold. Let T € € [zo,...,zm] be defined by
?(zo,...,zm) = fz,,..002) -t zg . Then T is weighted homogeneous of degree

d with respéct to Wy oswee sV - The equation T = 0 defines subvarieties Y
and Y, of P_ and ([z]€ Pw]zo =0} which are V-manifolds. Since YV and

Y_ are compact algebraic varieties they have canonical mixed Hodge structures
according to Deligne [1], but in fact these are pure because we have V-manifolds,

so we can speak of Hodge numbers hpq(V) = dimm GrE Hp+q(7}¢) . More important
for our purpose are the numbers hgq(V) = dimg Grg Hp+q(7}¢)0 , where HJ(V;C)o

denotes the j-th primitive cohomoiogy group. Then hgq(V) = hPY(T) '6pq .
0 <p<dimY . From the Gysin sequence for Y_cV one gets :

B | N < 1 T
dim 6rf 6y H'(v;€) = hD"P(V)

dim GrP er

Nev.g) = pP~ENP
F e H(Y50) =1y (¥s,)

e W0 =0 L, ien o nel.
See [11] for details. By generalizing Griffiths' description of the Hodge

structure for a projective hypersurface [3] Steenbrink was able to describe the
spaces FP Gr? Hn(Y;G) explicitly, see [11].

3.- Complete intersections :

Let us leave the hypersurface case now‘and assume that f, ,... ‘fk are
polynomials such that f. is weighted homogeneous of degree dj with respect
MR for j=1,...,k . Here w,,... > Wy s dy s ee ,dk are
positive integers. Let f : 0" » €€ be defined by f = (f,,...,f,) , let t be
a regular value of f , Y, = £ t)) Yo = £71({01) , n = dim Yo »€>0,
= Y0 n aBE . In order to be able to compute invariants from the weights and
degrees alone we assume that n=m-k (i. e. Y0 is a complete intersection)
and that Y0 - {0} 1is non-singular, n > 0 . Again Yt has the homotopy type of
a bouquet of spheres of dimension n [5]. Let us discuss the calculation of

invariants now.



a) p=rk Hn(Yt;Z) : This invariant has been calculated using differential
forms in [2], the method is not just a generalization of the method described in
the hypersurface case.

b) The monodromy is a more complicated object in the case k 2 2 than for
k =1 : one has an action of nl(Ek-D,t) on Hn(Yt;E) , D being the discri-
minant of f . For k=1, nl(mk-D,t) ¥ 7ZZ , and the endomorphism h* of
Hn(Yt;Z) introduced in this case corresponds to the action of the canonical
generator. In the weighted homogeneous case, however, we have another possibility
of genera]izing the definition of h* . There is a €* action on ¢tk defined

1 dy Kk K

by cot'=(c t',...,c ty),ce€C*,t €L, suchthat f: " - ° s
equivariant. Let d be a positive integer such that t = e2n1/d ot , 1. e. d[dj
for all j with t; +0 . Llet h*: HY (Y, 52Z) ~ Hn(Yt;Z) be induced by

h(z) = e2“1/d .2 . Now the characteristic polynomial x(x) of h* can be
calculated by the results of [2].

c) The algebraic variety Y = Yt has a mixed Hodge structure which can be

described just as in the hypersurface case : Let ?3 €t [zo,...,zm] be defined
. d.
¥ - PN ¥ _F - .
by fJ(ZO""’fm) = fj(zl,...,zm) tjzo ,» then £, = ... =f 0 defines
subvarieties Y and Y_ of Pw and {([z]€ ]Pwlz0 =0} , and the results on
Grg Gr? Hn(Y;m) are the same as in the hypersurface case. In order to state

the formulae it is convenient to use the abbreviation

1 m 1+y x
Q(x’}') = n
T+y v=1 W

1-x 1+y x

Theorem 1 (cf. also formula (1) in {4]) :

hg’"'p(V) = (-1)"P res, .. 'eSy-0 x 'y Pt %E}%? QA(x,y)

-1

hB=h Py x vy Ay

= (-1\"°P
<) = (-1) res, . "eSy.g
The proof uses the description of the pure Hodge structure of projective
varieties which are V-manifolds due to Steenbrink [11], it will be published

elsewhere, as the proofs of the following theorems.
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The same technique also yields more information about h* than that
obtained in b). Note that h9 = id , therefore h* : HY(Vse), - H(Ts0), s

diagonalizable, and the eigenvalues are of the form e2n1r/d , P €7Z . Let

hP:""P(e*™"/d) be the dimension of the subspace of GrP H"(V;€), on which h*

operates as multiplication by ez“"'/d .

Theorem 2 :
s 1= ir/d
hg n p(e2n1r/ ) =

= (-"P TeS, mw M€Sye TES, x~tyPTL Efi—a-lrz¥£? Qx,y) -
-2z

Note that h* acts on Hn'l(ym;m)o as the identity.bNow let n be even,

h

let S be the intersection form on Hg(Y;E) and S~ the hermitian form on

2"1r/d) be the dimension of a

HU(Y3€) defined by S"(x,y) = S(x.7) . Let u'(e
maximal linear subspace of HE(Y;E) on which Sh is positive definite and h*

acts as multiplication by éznir/d . Let u'(e2“1r/d) 2n1r/o) be

defined in an analogous way, with "negative definite"” resp. " identically zero"

and uo(e
instead of "positive definite". From Theorem 2 and [11] one obtains

Theorem 3 :
If n 1is even we have :

. d
d -t -p-1 _r-1 1 1+
u+(e2"1r/ ) =res,__res res,_g X Y n=t g’ — z il 1_{;: Q(x,y)
-y 1-2z
(eznir/d) - res res res oy et -1 zd 1+yzx AUx,y)
Mo - z=0 Xz | “oy=0 Y 1-y2 T?;f T-zx Yo
LMY s qf dyr,

“o(l) = dim H"'I(Ym;m)0 = rk ﬁ;_l(z;ﬂ) (see Theorem 4).
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d) Calculation of ﬁn_l(z;Z) : As Steenbrink pointed out to me,

ﬁn'l(Yo-{O};t) = Hn'l(Yw;m)o because of the existence of a rational Gysin
sequence for the map Yo - {0} » Y_ which is the canonical map to the orbit
space with respect to the C* action. Using this and the homotopy equivalence
between Y, - {0} and I we obtain

Theorem 4 :

I . - -1 -n 1
rk Hn_l(z,ﬂ) =res . v"e'sy=O Xy v Q(x,y)

So it remains to calculate the torsion subgroup of ﬁ;_l(z;ﬂ) . There is
an explicit way of doing this for n odd by Tooking at certain fixed point sets
similarly to section b) of the second paragraph.

In the special case where f,,... ‘fk are Brieskorn polynomials the
torsion has been calculated for ail n by Randell [10].

The following object is related to ﬁn_l(z;ﬂ) : Let us assume that
?; = {z Emmlfl(z) =... =fk_1(z) =0} has also an isolated singularity at O .
Then let us consider Hn(f,z;l) , where T = 3B_n 70 .

______________ n(f,z;l) : Because of the assumption just made we may
choose t = (O,...,O,tk) and d = d . Then the exact sequence of the intro-
duction has the following analogue (cf. [5], coefficients : Z) :
*_ 3
0 - H hr-id,

T,5) » H'(Y) H'(Y) = H (E,5) = 0 .

ne1

As we can compute the characteristic polynomial x(x) of h* (cf. b)),
we can deduce a formula for rk Hn(z,z;l)-.

Note that there is an exact sequence

0 - H (5:0) » H (£,5;0) =~ H _ (5:0) = 0

ny

(since ﬁh_l(t;m) H"'l(Ym;m)0 etc...) so that rk Hn(E,X;Z) can also be
calculated from Theorem 4. On the other hand, one can prove Theorem 4 inducti-
vely using a suitable formula for rk Hn(g,z;l) .

But in fact, the whole group Hn(f,z;ﬂ) can be calculated from X(x) :
Write X =m, . ... -m where ml|m2 s e ’mu-llmu and mU is square-free,
mo,... ,mu € 7 [x] .
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Theorem 5 :

Hn(E,z;ZZ) = (z/m (1)) ®...8 (Z/m (1)Z) .

|
—
—
™M
—
as

In the case k = 1 we have I = 9B_ , so H (Z,Z) T H._

Corollary :
ﬁn_l(i;ﬂ.) = (Z/m (1)Z) ®... 8 (Z/mu(l)zz) if k=1.

The corollary has been conjectured by Orlik [8] and proved in special
by Orlik and Randell (see [8], [9], {10]).
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