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0. Preliminaries. The Tange bundle, {2}, is an indecomposable (n-13-bundle on the
projective n-space PN, This L...dle has an interesting-geometry. In particular, we study
its stability and the configuration of its jump lines, In What follows V is a linear

(n+ | }-space and P"=P(V) is the projective space where all our bundles are defined,

T is the tangent bundte to P" and ©(1) is the ample bundle on P" For a coherent sheaf
on P, F(k) will denote Feo(1)%K

1. First description of Tanqo's bundle E(1). Raising the Euler sequence of bundles

over PP

0 > 0{-1) Ven + T(-1) » 0
to the second power, we get
(an 0 —=» T(-2) — AZve® — (AZ7)(-2) —— 0
50 that

11.2) HOUAZT-2)=A2Y

Let G=G(1,n) be the Grassmanian of lines in PM=[(V), cancnically imbedded into PAL)
and let W be a linear subspace in A2y meeting the affine cone over G only at Q.

The elements of W then correspond , under the isomorphism (1.2), to non-vanishing
sections of the bundle (/\ZT)(—Q), hence they determine a frivial subbundie of it.
When dimW=m=(n-1}(n~2)/2 the quotient (AT)-2)/W is known as the (twisted
indecomposable Tango bundle £(1). The bundles defined by W's with dimW <m will be
styled incomplete Tange bundles.

2. Second gescription. The set of ail (complete) Tango bundies méy be identitied with
the set of all projective subspaces P(W) of dimension m-1 in P{AZV) not meeting the
Grassmanian 6=6(1,n), {3} Note that we have a Tiitration (AZT)-2)2eM oo™ 15
that gives @ sequence of {non-complete) Targo quotient bundies.

3. Third descriptign. The points of A2V can be viewad as antisymmetric matrices
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{n+1)x(n*1). The Tango bundle, being 2 set of antisymmetric matrices, can be then
considered a5 a generaltzation of the nult-correlation bundie.

The affine cone over G consists of matrices of rank 2 and G2=(xixAxAx=0}={matrices
of ranke€ 41, 63:={ x| xAxAxAX=0 ) = { matrices of rank<6 }, etc. 62 is a set theoretic

sum of all tangent spaces T)G= {IxIeP(A2V)| xA1=0}, where 1e6, 1n AV, on P ang P4

we have 62= A2V and therefore ail Tango bundles are linearly equivalent, see [3] In
general, the bundles determined by W and W' are linearly equivalent iff PwWING! and
P(W)NG! are linearly equivalent, as cycles on P ap(w)=p(W), by rmeans of the same
linear map, determined by a linear autemorphism of P(A2Y).
4 _Tango's bundle are generated by global sections. More concretely, the following
sequence is exact
(4.1) 0 ——T(-2) — HI(E(1))80 ~—P—s E(1) —— 0
where p is the evaluation merphism. Indeed, (4.1) occurs as the sequence of
cokernels in the snake-lemma applied to the following diagram

0 3 0 » Wed + Weo *

l i1 1
0~ F(-2)} —— HYAAZT(-2))80 — AZT(-2) —— 0

As acorollary , we have
{42) HUEQ )= AZv/W, dimHO(E(1)= 2n-1.
5. Zeros of sections of E(1), From (1.2) we infer readily that a section yaze AZv=

=HO(A2T(~2)) vanishes precisely on these x's that annihilate yaz, ie yazax=0. Indeed,
yAazAx=0 means that %, as a line in 'V, 1les on the plane spanned by y and 2. According to
(4.2), we treat sections of E{(1) as cosets in the quottent space AW,

(5.1). Let seAZv/w= HO(EQ1 ), Then s(x)=0 iff there exist usAZv= HO(AZT(-2)) such
that u+W=5 and u{x}=0.

Proof. The part "if” is clear. Let now 5(x)=0. Consider the following diagram with

vertical arrows being evaluation of the global sections at the point x

0 » W » A2y » A2V /W e O
i i l
0~ WOO(X) —— AZT(-2)(x) » ECEX(X) 30
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By considering the kernels of vertical arrows we get (5.1).

{5.2), A global section s+We AZV/W of the bundle E(1) vanishes on lines represented by
points 1y,..15e(s+WIN{ cone over G }, where d is the degree of the Plucker map.

The projective version of (5.2) is

{5.3). Sections of E(1} are in natural one-to-one correspandence with projective
subspaces S of P(AZY) such that PIW)CS, dimS= m=1,

It follows that any line in P" is a zero of presisely one section of E(1), and G(1,n)
splits into disjoint d-element classes consisting of ( not neccesary different ) lines

that are common zeros of one section. Hence

(5.4}, For any line LEP" we have dimHO(E(] J@gy )=1, where 4, is the sheaf of ideals
of L.

{4.2) and (5.4) then give

(5.5). The canonical restriction map HXE(1)) — HO(E() L) is an epimorphism.
Proof. Since /\ZT(—Q)]L splits into O (1 )anmq_&*n(ﬂ" Y2 we have, restricting the
diagram defining £01) to L, the follo@ing seguence

(56) 00— wee — o (1)®Neg *M 12— g1y, — 0

50 dimH(E(1) }=2n-2 and (5.5) follows by (5.4} .

(3.7). The set [ LI E(Y ).|L=@L( ] )@...Eq_( 1) } is open in the Grassmanian &(1,n).

Proof. The bundle ©(1)@..@0(1) on P! is rigid, in the sense of local deformations.
The arquments used in [1] for the analytic case work in our case too. We shall show,
see (6.5) below, that the set of lines as above

is non-empty so that

{5.8). The general splitting type of ECF}is (1., 1).
6. Splitting of E{1) on lines jn PR If E(l)"_ is the sum of ® (a;), f=t..n-}, with

a1 2d9%..28. , We €all (3,..8,_¢) the splitting type of L,
(6.1).1f {ay,...a_)) is the splitting type of a line L in P" then a,20 and

a] +...._.+an_ i =n-1.



Proof. The sum of a;'s 1s n-! because ¢ {E{1))=n-1. By twisting the sequence (5.6) by
O, (-1) we get R! (Ej 3=0. On the other hand if one of a;'s was negative then we would
have dimH () ) = dimh (@) (a,-1)®..0§ (a,_-1)) > 0.

(6.2). A iine L is of type (1,..,1) iTf for any section s of E(1), not identically zeroon L,
s has at most single zero on L.

Proof. If there is a summand ©(a}, a»2 in the decompositon of E(1 )ﬁ_, then there exist a
section of E{(1) that vanishes alang twoe lines meeting L, and vice versa, (5.5).

(6.3). A iine Is of type (1,..,1) 1ff T,GNP(W)==, whera ] i the point on Grassmanian G
corresponding to L.

Proaf. Let {wleP(WINT|G , w is then a sum of two primitive vectors vy vo
With vyal=vpal= 0 such that v +vneW. This means that the section determined by the

coset v i +W vanishes on 1ines Yy and Vo The restriction of this section has at least

2 double zero on i, so that L cannot be of type (1,..,1). Conversely, if L is not of type
{1...,1}, then there Is a sectton of E(1} that vanishes on at least two ines L, L, that
meet L. Then [1y-15]eP(W)NT,G.

(6.4). Remark. The lemma (6.1) helds for incompiete Tango bundles. Proof is analogous
to that of (6.1).

(6.3). Cbserve that (6.3) gives an interesting interpretation of the jump tines: the
pundle epimorphism AZT(-2)— E(1) gives a rational map PIAZV) — PHAE(1 )=
P22 the projection along P(W). Since WN {cone over G}=0, this gives a regular map
G(1,m — P27 The jump Tines (i.e. these not of type {1,..,1)) are precisely the
criticat points of this map. This obviously implies the existence of Jines of type (1,.,1)

(6.6} If a line L is of type (a,.,8,.) and k=max{ a;| i=1,.,n-1},
then dim{PIWINT,G) > k-2.
Proofl.There exists a section of E(1) that vanishes at k distinct iines L =1k,

meeting L at k distinct points, (5.3). Let H be a linear subspace of V spanned by affine
pianes L y,...Ly. The imbedding HSY gives AZHCAZY and G(1,dimH-1)CG(1,n). The Tinear
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subspace W'= AZHAW of AZH does not intersect G(1,dimH-1} and therefore defermines

a non-complete Tange bundle on P(H) with a non-zero section having k zeros at L. Then

according to remark (6.4) we have dimHzk+2. Let 1y, 1=1,_k, be the paints in the cone
over 6{1,n) representing projective lines Ly, =1,k Since ali {{'s meet L. and span a
space of dimension bigger or equal k+2, the vectors 1j, 1=1,..k must be linearly
independent in A2V, The vectors 15=1y, 13-14,..}~1; then beleng te W and span a
(k-1)-linear space there. We see that P(span{ i1 }=2,.,k } ) is contained In the
common part of PAW) and TyG what concludes the proof of (6.6).

Allne that 1s of type (n-1,0,..,0) will be called an extremal one. We shall show that

they correspond to maximal intersections of T;G and P{W).

(6.7). dim(PIWINTG)en-3,

Proof. Otherwise GNTG and P(WINT,G, being respectively of dimensions n and at least
n-2, meet in TG that contradics the choice of W.

(6.8). Being an extremal fine is an clesed property.

This is clear from the deformations of bundies on a projective ling, see [1]

(6.9). A line L is an extremal line iff dim{T GNRP(W)}= n-3.

Preof_1f L is an extremal line then (6.6 and (6.7) imply dim(T;6N(W))=n-3
Conversely, assume that dim(T,GNP(W)) = n-3. We find a section of E(1) that vanishes

on n-1 lines meeting L. We may assume, (6.8), that W is generic. We lock for an element

seA2V such that GNT{GNP(s+W) consists of n-1 points. From the maximality of the

intersection T GMIP(W) 1t follows that for any {sleT G-I(W) the set GNTGNP{s+W} is

the Schubert cycle cﬂ_z(c;)”. The Pierf formula gives then that for a generic s {t must

consist of n=1 points. This concludes the proof of (6.9}
We see that on P4 we have a complete classification of jump lines:

(6.10). Let n=4 and L be a line on B4 Then:
a} Lisof type (1,13 I T\GNP{IW)=¢,



b) L is of type (2,1,0) 1T T|GNP(W) Is a point,

€ Lisof type (3,0,0) iff T,GNIP(W) is a line.
{(6.11). The set of extremal jump lines on P9 is the image of P(W™) under the Veronesé
map P(W™) — GCP(AZY),
Proof. Let 16 be a primitive vecter representing line L, and uy,up independent
non-pritimitive vectors with 1AUy= 1AUp= 0. Then, [3], L AUY, UpAlg, Ly AUy & A4V L
v* represent independent hyperpianés that contain L and L is their common part.
In other words

1= (Quy Al YA (Ugaug) ™A (U Aug) ™

where * ARy —s ASRy™ Another pair wy, w; that spans the same subspace as u; U,
glves the same 1. Therefore we ohtain a regular map P(w*) — GEP(AZY). Since all
Tange bundles on P9 are linearly equivalent, t sufficies to check the rest of the claim
for a concrete W, see (7.2) below.
(6.12). The conflguration of the jump tines on P4 can be obtatned from that of the
nuli-correlation bundle on P>, Recall that each non-zero element weW determines a
linear form waAw, [31. Let us call such a form admissible. Any admissible form s
determined by a unique vector, up to proportionality,i3]. Let H(w) be a hyperplang in
P(V) given by waw. Fixing Hiw)} gives a natural imbedding 6( £IICPAZRW)=P 1n

6(1,4)CP(AZY). Because weAZH(w) and P°-G( 1,3) is the moduli space for
nutl-correlation bundles, w determines a null-correiation bundle N(w) of rank 2 on the

projective 3-space Hiw}. For any xsH(w) let Hx,w be its nuli-correlation plane through
% The jump lines of N{w) are those contained in Hx,w- For any such line L the tangent
space TyG(1,3) meets w. This means that L 15@ jump tine for £(1). Let now Hy . Hy v
be two null-correlation planes through x, corresponding to w, w', respectively. When
these two planes intersect in P4 only at x, then each of the lines of the penciles Hx,w .

Hx,w' is a jump iine of type (2,1,0). If, however, Hx,w and Hx,w‘ intersect along a line

L, the tangent spaces to the two Grassmanians given by w and w' meet B(W) at distinci

points and then T;6( 1,4) cuts P(W) along a projective tine, so that L is of extremal type
for E(1).

2. Examples.
(7.1). On P the bundle € 1s the null-correlation bundle and P(W) is a point

welPI=P(AZV), not betonging to the quadric G(1,3). Then a fine i3 2 jump line iff Taw=0
and we see that all jump lines form a hyperplane section of the Grassmanian.

{7.2). Let be a Tango bundle on IP4=IP(span (XQu%|.X0,X3,X4)) defined by
We=spaniw ,wo,w+) with w,'-xM-xz}, Wo=X| 37X04 W3=Xp3 %2, Where x; j“’"i‘“"j'
{31 If w*s denote the dual coordinates to w's then the map defined in (6.11) can be now

written in the form

Zaywp* — (a )y + (2 Yoagrap*l(a) Pag+a) (@) 2ixgz+a agazxostay (ag)2x) o+
((ag)3+2a 2 a5, 3408 (ag)2 (8 2ag)x | 480 2agnogratag) g g+ ag g4

50 it embeds P(W™) as 3-Veronese manifoid,

{7.3) Let, on IPS, a Tango bundle be given by W=span{wp,w |,Wo,Wz,W4,Wg)

where wo=x| 47%23, W1=X13"X04 W2™X03 X |2+ W3™X45 %02+ W4 ™25 %0 1»
Ws5=X357Xo4 One Can see that WNtcone over G)=0, so P(W) defines Tango bundle
indeed, We shall show jump lines of certain types. First consider an extremal jump tine.
I 1y=Xgz4 then Ty awg= 11 Aw = T awg= 0, 50 the line L j=[P(span{xz,x4)) 15 of extremal
type, (6.8).

Now Tet 1, be the point xg; on 6. The tangent space to G at this point cuts P(W) along
the Hine P(span{wy,w5)) and the section of E(1) given by x3Alxg+xy) vanishes also on
lines represented by xpAlxg+%4) and Xy AlXo*X1). These three lines meet the tine Lo, S0
that we get the section of E(1) restricted to Ly with three zeros. Since Lo Is not of

extremal type, it is therefore of type (3,1,0,0).

Now let us consider L3=Ip(span(xl X)), The section of E(1) represented by x 4 Vanishes ‘

also on the line X3, on the other hand the section represented by X vanishes also on



Xag, wWhiCh implies that (1) has two non-proportional sections having the same two
Zeros on Lz, namely they vanish at [x ;] and [x5]. So L3 must be of type {2,2,0,0).
Observe that that the tangent space to G at 13=¥% 7 culs P(W) atong the ling
Plspanlwq,w )}, and the the converse to (6.6) does not hold,

The tangent space to G at 1=%g3 meels P(W) at one paint Wy, and we see that

the section given by x4 vanishes aiso on %y 3 providing a section with two single zeros
on L, We will see that Lyisof type (2,1,1,0)

(7.4).1f T\GNIPCW) consists of one point then L is of {ype (2,1,.,1,0)

Proof. Let the point [w] be the only point of T\GNP(W) and let P(H) be the projective

F-space in P that corresponds to [waw} e G(3,n). Obviously LCIR(H) and if there exists

a2 section of E(1) vanishing at two different tines Lyt meeting L, then since
i1y =tal=lw] we have L 1 Lo CIP(HY. We see that the sections of £(1) vanishing at least

twice at L are the same as the same sections of the rank-2 Tango bundle on [P(H)
cbtained from E(1} 25 in the proof of (6.6), 50 L must be of type (2,1,.1,0).

8. Stability of Tangg bundles. We wil} use the following fact {see remark to the lemma
(221 ch2[2) x

(81210 & 15 a bundle on IPD such that for same {ine L iF]L= Q800,60

then & is sernistable,

(8.2). Carellary. Ali Tango's bundie are semistanle,

(B3).If T ic abundle on " a5 in (8.1) and all the bundles AP with t€pg~1+rank,
hava no secticns, then T is stable.

“rogf. in virtue of (3.1) it is enough to cansider coherent subshear & of & with € (B)=0

and rank r, 0< r<rkd. Using arguments as in the proot of lemma (1.1.7) ¢h.2 [ibid], we
60 thal BCF gives us imbedding ATBCATE and therefore gives us 2 section in ATF,
contradiction,

Toapply (8.3 we must compule HYAPE) for f<pen-2, £ being the Tango bundle,

(G.d). For any p=1,.n-2; =0, p, we have H(SMTE-3))k-p)=0, % denoting k-th

symmetric power.
Proof. Raising the twisted Euler sequence
0 — O(-3) ——+ VeO(~2} —— T(-3) — 0
to the k-th symmetric power and then twisting it by ©{k-p) we get
0 — 5K~ 1(veo(-2))k-p~3) — SK(ve(-2))k-p) — SK(TE-3Nk-p) — 0

that is

0 — O(-k-p=1)®A s O-k-p)®B — SK(T(-3))k-p) — 0
where A={n+p-1)i/ni{p-t}, B=(n+p}/nipl . We see that all the groups HI(SK(T(—3))(k-p))
vanish for i=0,..,n-2.
(8.5). All the groups HO(APE) are zero for p=1,.,n-2.
Proof. Indeed, from the exact sequence (4.1) we obtain by means of standard
cohomelogical algebra the following long exact sequence of vector bundies

0 SP(T(-3) —.— SK(T(-3eAPK(Men(- 1) —....

L= TC-3)e AP~ (Me®(-1)) — AP(M6®(- 1)) — APE — 0
where M=HO(E(1)). Obviousty S¥(T(-3De AP K(Meo(- 1 )= SK(T(-3p-k)e AP , s0
using (8.4) and hypercohomology spectral sequence arguments we easily obtain (8.5).
Hence we have proved
{B.6). All Tango bundles are stable.

Literature

1. Donin, Lf.: O deformacijach gelemorfnych vektornych rasslojenij nad sferoj
Riemanna, Mat.5b. 71 ,495-502, (1966),

2. Ckonek, Ch., Schneider, M., Spindler, H.: Vector bundies on complex projective spaces,
Birkhauser 1381.

3. Moore, R. Linear equivalence of Tango bundles on ]P4, Journ, reing angew. Mathemat ik,
351, 12-19, (1984),

K. Jaczewski, M, Szurek, J. A. Wisniewski
Institut Marematyky

Pafac Kultury i Nauki

00-901 Warszawa, Poland

185





