GEOMETRY OF THE TANGO BUNDLE

Krzysztof Jaczewski, Michał Szurek, Jarosław A. Wisniewski Warszawa, Poland

O. Preliminaries. The Tango bundle, [2], is an indecomposable (n-1)-bundle on the projective n-space \mathbb{P}^n . This bundle has an interesting geometry. In particular, we study its stability and the configuration of its jump lines. In what follows V is a linear (n+1)-space and \mathbb{P}^n = $\mathbb{P}(V)$ is the projective space where all our bundles are defined, T is the tangent bundle to \mathbb{P}^n and $\mathbb{O}(1)$ is the ample bundle on \mathbb{P}^n . For a coherent sheaf \mathfrak{F} on \mathbb{P}^n , $\mathfrak{F}(k)$ will denote $\mathfrak{F} \otimes \mathbb{O}(1)^{\otimes k}$

1. First description of Tango's bundle E(1). Raising the Euler sequence of bundles over \mathbb{P}^{D}

$$0 \longrightarrow 0(-1) \longrightarrow V \otimes 0 \longrightarrow T(-1) \longrightarrow 0$$

to the second power, we get

$$(1.1) 0 \longrightarrow T(-2) \longrightarrow \Lambda^2 V \otimes 0 \longrightarrow (\Lambda^2 T)(-2) \longrightarrow 0$$

so that

(1.2)
$$H^0((\Lambda^2T)(-2))=\Lambda^2V$$

Let G=G(1,n) be the Grassmanian of lines in \mathbb{P}^n = $\mathbb{P}(V)$, canonically imbedded into $\mathbb{P}(\wedge^2)$ and let W be a linear subspace in $\wedge^2 V$ meeting the affine cone over G only at 0. The elements of W then correspond , under the isomorphism (1.2), to non-vanishing sections of the bundle ($\wedge^2 T$)(-2), hence they determine a trivial subbundle of it. When dimW=m=(n-1)(n-2)/2 the quotient ($\wedge^2 T$)(-2)/W is known as the (twisted) indecomposable Tango bundle E(1). The bundles defined by W's with dimW'<m will be styled incomplete Tango bundles.

- 2. Second description. The set of all (complete) Tango bundles may be identified with the set of all projective subspaces $\mathbb{P}(W)$ of dimension m-1 in $\mathbb{P}(\Lambda^2V)$ not meeting the Grassmanian G=G(1,n), [3]. Note that we have a filtration $(\Lambda^2T)(-2)\supset 0^{ff}\supset 0^{ff}\supset 0^{ff}$ that gives a sequence of (non-complete) Tango quotient bundles.
- 3. Third description. The points of Λ^2V can be viewed as antisymmetric matrices

(n+1)×(n+1). The Tango bundle, being a set of antisymmetric matrices, can be then considered as a generalization of the null-correlation bundle.

The affine cone over G consists of matrices of rank 2 and $G^2:=\{x|x\wedge x\wedge x=0\}=\{matrices \text{ of } rank \leq 4\}$, $G^3:=\{x|x\wedge x\wedge x\times x=0\}=\{matrices \text{ of } rank \leq 6\}$, etc. G^2 is a set theoretic sum of all tangent spaces $T_1G=\{[x]\in \mathbb{P}(\wedge^2V)|x\wedge 1=0\}$, where $1\in G$, in \wedge^2V . On \mathbb{P}^3 and \mathbb{P}^4 we have $G^2=\wedge^2V$ and therefore all Tango bundles are linearly equivalent, see [3]. In general, the bundles determined by W and W are linearly equivalent iff $\mathbb{P}(W)\cap G^1$ and $\mathbb{P}(W')\cap G^1$ are linearly equivalent, as cycles on $\mathbb{P}^{m-1}=\mathbb{P}(W)=\mathbb{P}(W')$, by means of the same linear map, determined by a linear automorphism of $\mathbb{P}(\wedge^2V)$.

4. Tango's bundle are generated by global sections. More concretely, the following sequence is exact

(4.1)
$$0 \longrightarrow T(-2) \longrightarrow H^0(E(1)) \otimes 0 \longrightarrow P \longrightarrow E(1) \longrightarrow 0$$
 where ρ is the evaluation morphism. Indeed, (4.1) occurs as the sequence of cokernels in the snake-lemma applied to the following diagram

As a corollary , we have

(4.2) $H^0(E(1)) = \Lambda^2 V/W$, $dimH^0(E(1)) = 2n-1$.

5. Zeros of sections of E(1). From (1.2) we infer readily that a section $y \wedge z = \Lambda^2 V = H^0(\Lambda^2 T(-2))$ vanishes precisely on these x's that annihilate $y \wedge z$, i.e. $y \wedge z \wedge x = 0$. Indeed, $y \wedge z \wedge x = 0$ means that x, as a line in V, lies on the plane spanned by y and z. According to (4.2), we treat sections of E(1) as cosets in the quotient space $\Lambda^2 V/W$. (5.1). Let $s \wedge \Lambda^2 V/W = H^0(E(1))$. Then s(x) = 0 iff there exist $u \in \Lambda^2 V = H^0(\Lambda^2 T(-2))$ such

(5.1). Let $s=\Lambda^2V/W=H^0(E(1))$. Then s(x)=0 iff there exist $u=\Lambda^2V=H^0(\Lambda^2T(-2))$ such that u+W=s and u(x)=0.

Proof. The part "if" is clear. Let now s(x)=0. Consider the following diagram with vertical arrows being evaluation of the global sections at the point x

$$0 \longrightarrow W \longrightarrow \Lambda^{2}V \longrightarrow \Lambda^{2}V/W \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow W \otimes O(x) \longrightarrow \Lambda^{2}T(-2)(x) \longrightarrow E(1)(x) \longrightarrow 0$$

By considering the kernels of vertical arrows we get (5.1).

(5.2). A global section s+We Λ^2 V/W of the bundle E(1) vanishes on lines represented by points $I_1,...I_d$ e(s+W)O{ cone over G }, where d is the degree of the Plucker map.

The projective version of (5.2) is

(5.3). Sections of E(1) are in natural one-to-one correspondence with projective subspaces S of $\mathbb{P}(\Lambda^2 V)$ such that $\mathbb{P}(W) \subset S$, dimS= m+1.

It follows that any line in \mathbb{P}^{Π} is a zero of presisely one section of E(1), and G(1,n) splits into disjoint d-element classes consisting of (not neccesary different) lines that are common zeros of one section. Hence

(5.4). For any line $L \subset \mathbb{P}^{n}$ we have $\dim H^{0}(E(1) \otimes g_{\underline{L}}) = 1$, where $g_{\underline{L}}$ is the sheaf of ideals of L.

(4.2) and (5.4) then give

(5.5). The canonical restriction map $H^0(E(1)) \longrightarrow H^0(E(1)_{|L})$ is an epimorphism. Proof. Since $\Lambda^2T(-2)_{|L}$ splits into $\mathfrak{O}_L(1)^{\oplus n} \oplus \mathfrak{O}_L^{\oplus n(n-1)/2}$, we have, restricting the diagram defining E(1) to L, the following sequence

$$(5.6) \quad 0 \longrightarrow W \otimes O_{\underline{L}} \longrightarrow O_{\underline{L}}(1)^{\oplus n} \oplus O_{\underline{L}} \oplus n(n-1)/2 \longrightarrow E(1)_{\underline{L}} \longrightarrow 0$$

So $dimH^0(E(1)_{|L})=2n-2$ and (5.5) follows by (5.4) .

(5.7). The set { L} $E(1)_{|L} = 0_{\underline{L}}(1) \oplus \oplus 0_{\underline{L}}(1)$ } is open in the Grassmanian G(1,n).

Proof. The bundle $O(1) \oplus \oplus O(1)$ on \mathbb{P}^1 is rigid, in the sense of local deformations.

The arguments used in [i] for the analytic case work in our case too. We shall show.

see (6.5) below, that the set of lines as above

is non-empty so that

(5.8). The general splitting type of E(1) is (1,...,1).

<u>6. Splitting of E(1) on lines in $\mathbb{P}^{\underline{\Pi}}$.</u> If E(1)_{|L} is the sum of $\mathfrak{O}_L(a_i)$, i=1,...,n-1, with

 $a_1\!\!\geqslant\!\! a_2\!\!\geqslant\! ...\!\!\geqslant\!\! a_{n-1}$, we call $(a_1,...,a_{n-1})$ the splitting type of L.

(6.1). If $(a_1,...a_{n-1})$ is the splitting type of a line L in \mathbb{P}^n then $a_i \ge 0$ and $a_1+....+a_{n-1}=n-1$.

Proof. The sum of a_i 's is n-1 because $c_i(E(1))=n-1$. By twisting the sequence (5.6) by $\mathfrak{O}_L(-1)$ we get $H^1(E_{|L})=0$. On the other hand if one of a_i 's was negative then we would have $\dim H^1(E_{|L})=\dim H^1(\mathfrak{O}_L(a_1-1)\oplus ...\oplus \mathfrak{O}_L(a_{n-1}-1))>0$.

(6.2). A line L is of type (1,...,1) iff for any section s of E(1), not identically zero on L, s has at most single zero on L.

Proof. If there is a summand O(a), $a \ge 2$ in the decomposition of $E(1)_{|L|}$, then there exist a section of E(1) that vanishes along two lines meeting L, and vice versa, (5.5).

(6.3). A line is of type (1,...,1) iff $T_{\dagger}G\cap\mathbb{P}(W)=\emptyset$, where I is the point on Grassmanian G corresponding to L.

Proof. Let $[w] \in \mathbb{P}(W) \cap T_1G$, w is then a sum of two primitive vectors v_1 , v_2 with $v_1 \wedge l = v_2 \wedge l = 0$ such that $v_1 + v_2 \in W$. This means that the section determined by the coset $v_1 + W$ vanishes on lines v_1 and v_2 . The restriction of this section has at least a double zero on \mathbb{E} , so that \mathbb{E} cannot be of type (1,...,1). Conversely, if \mathbb{E} is not of type (1,...,1), then there is a section of $\mathbb{E}(1)$ that vanishes on at least two lines \mathbb{E}_1 , \mathbb{E}_2 that meet \mathbb{E}_1 . Then $[1_1 - 1_2] \in \mathbb{P}(W) \cap T_1G$.

(6.4). Remark. The lemma (6.1) holds for incomplete Tango bundles. Proof is analogous to that of (6.1).

(6.5). Observe that (6.3) gives an interesting interpretation of the jump lines: the bundle epimorphism $\wedge^2 T(-2) \longrightarrow E(1)$ gives a rational map $\mathbb{P}(\wedge^2 V) \longrightarrow \mathbb{P}(H^0(E(1)) = \mathbb{P}^{2n-2})$, the projection along $\mathbb{P}(W)$. Since $\mathbb{W} \cap \{\text{cone over G}\}=0$, this gives a regular map $\mathbb{G}(1,n) \longrightarrow \mathbb{P}^{2n-2}$. The jump lines (i.e. these not of type (1,...,1)) are precisely the critical points of this map. This obviously implies the existence of lines of type (1,...,1). (6.6). If a line L is of type $(a_1,...,a_{n-1})$ and $k=\max\{a_i\mid i=1,...,n-1\}$,

then $dim(\mathbb{P}(\mathbb{W})\cap T_1G) \geqslant k-2$.

Proof.There exists a section of E(1) that vanishes at k distinct lines L_1 , i=1,...,k, meeting L at k distinct points, (5.5). Let H be a linear subspace of V spanned by affine planes $L_1,...,L_k$. The imbedding H \subset V gives Λ^2 H \subset Λ^2 V and G(1,dimH-1) \subset G(1,n). The linear

subspace W'= Λ^2 H∩W of Λ^2 H does not intersect G(1,dimH-1) and therefore determines a non-complete Tango bundle on P(H) with a non-zero section having k zeros at L. Then, according to remark (6.4) we have dimH \Rightarrow k+2. Let l_i , i=1,...,k, be the points in the cone over G(1,n) representing projective lines L_i , i=1,...,k. Since all L_i 's meet L and span a space of dimension bigger or equal k+2, the vectors l_i , i=1,...,k must be linearly independent in Λ^2 V. The vectors l_2-l_1 , $l_3-l_1,...,l_k-l_1$ then belong to W and span a (k-1)-linear space there. We see that P(span{ l_i-l_1 | i=2,...,k }) is contained in the common part of P(W) and l_i G what concludes the proof of (6.6).

A line that is of type (n-1,0,...,0) will be called an extremal one. We shall show that they correspond to maximal intersections of T_1G and $\mathbb{P}(W)$.

(6.7). dtm(P(W)∩T₁6)≤n-3.

Proof. Otherwise $G \cap T_1 G$ and $\mathbb{P}(W) \cap T_1 G$, being respectively of dimensions n and at least n-2, meet in $T_1 G$ that contradics the choice of W.

(6.8). Being an extremal line is an closed property.

This is clear from the deformations of bundles on a projective line, see [1].

(6.9). A line L is an extremal line iff $dim(T_1G\Omega\mathbb{P}(W))=n-3$.

Proof. If L is an extremal line then (6.6) and (6.7) imply $\dim(T_1G\cap\mathbb{P}(W))=n-3$

Conversely, assume that $\dim(T_1G\cap\mathbb{P}(W))=n-3$. We find a section of E(1) that vanishes on n-1 lines meeting L. We may assume, (6.8), that W is generic. We look for an element $s\in \Lambda^2V$ such that $G\cap T_1G\cap\mathbb{P}(s+W)$ consists of n-1 points. From the maximality of the intersection $T_1G\cap\mathbb{P}(W)$ it follows that for any $\{s\}\in T_1G-\mathbb{P}(W)$ the set $G\cap T_1G\cap\mathbb{P}(s+W)$ is the Schubert cycle $\sigma_{n-2}(\sigma_1)^n$. The Pieri formula gives then that for a generic s it must consist of n-1 points. This concludes the proof of (6.9).

We see that on \mathbb{P}^4 we have a complete classification of jump lines:

(6.10). Let n=4 and L be a line on IP4. Then:

a) L is of type (1,1,1) iff $T_1G\cap \mathbb{P}(W)=\emptyset$,

- b) L is of type (2,1,0) iff T₁G∩IP(W) is a point,
- c) L is of type (3,0,0) iff T₁GNP(W) is a line.

(6.11). The set of extremal jump lines on \mathbb{P}^4 is the image of $\mathbb{P}(W^*)$ under the Veronesė map $\mathbb{P}(W^*) \longrightarrow G \subset \mathbb{P}(\Lambda^2 V)$.

Proof. Let l=6 be a primitive vector representing line L, and u_1,u_2 independent non-pritimitive vectors with $||\Delta u_1|| = ||\Delta u_2|| = 0$. Then, [3], $|u_1 \wedge u_1|$, $|u_2 \wedge u_2|$, $|u_1 \wedge u_2| = ||\Delta^4 v|| = V^*$ represent independent hyperplanes that contain L and L is their common part. In other words

$$1 = ((u_1 \wedge u_1)^* \wedge (u_2 \wedge u_2)^* \wedge (u_1 \wedge u_2)^*)^*$$

where * $\wedge^{k}V \longrightarrow \wedge^{5-k}V^*$ Another pair w_1 , w_2 that spans the same subspace as u_1,u_2 gives the same 1. Therefore we obtain a regular map $\mathbb{P}(W^*) \longrightarrow \mathbb{G} \subset \mathbb{P}(\wedge^2 V)$. Since all Tango bundles on \mathbb{P}^4 are linearly equivalent, it sufficies to check the rest of the claim for a concrete W, see (7.2) below.

(6.12). The configuration of the jump lines on \mathbb{P}^4 can be obtained from that of the null-correlation bundle on \mathbb{P}^3 . Recall that each non-zero element we'w determines a linear form waw, [3]. Let us call such a form admissible. Any admissible form is determined by a unique vector, up to proportionality,[3]. Let H(w) be a hyperplane in $\mathbb{P}(V)$ given by waw. Fixing H(w) gives a natural imbedding $G(1,3)\subset\mathbb{P}(\Lambda^2H(w))=\mathbb{P}^5$ in $G(1,4)\subset\mathbb{P}(\Lambda^2V)$. Because $w\in\Lambda^2H(w)$ and $\mathbb{P}^5-G(1,3)$ is the moduli space for null-correlation bundles, w determines a null-correlation bundle N(w) of rank 2 on the projective 3-space H(w). For any $x\in H(w)$ let $H_{x,w}$ be its null-correlation plane through x. The jump lines of N(w) are those contained in $H_{x,w}$. For any such line L the tangent space $T_1G(1,3)$ meets w. This means that L is a jump line for E(1). Let now $H_{x,w}$. $H_{x,w}$ be two null-correlation planes through x, corresponding to w, w, respectively. When these two planes intersect in \mathbb{P}^4 only at x, then each of the lines of the penciles $H_{x,w}$. $H_{x,w}$ is a jump line of type (2,1,0). If, however, $H_{x,w}$ and $H_{x,w}$ intersect along a line L, the tangent spaces to the two Grassmanians given by w and w meet $\mathbb{P}(w)$ at distinct

points and then $T_1G(1,4)$ cuts $\mathbb{P}(W)$ along a projective line, so that L is of extremal type for E(1).

7. Examples.

(7.1). On \mathbb{P}^3 the bundle E is the null-correlation bundle and $\mathbb{P}(W)$ is a point $WeP^5=\mathbb{P}(\Lambda^2V)$, not belonging to the quadric G(1,3). Then a line is a jump line iff law=0 and we see that all jump lines form a hyperplane section of the Grassmanian. (7.2). Let be a Tango bundle on $\mathbb{P}^4=\mathbb{P}(\operatorname{span}(x_0,x_1,x_2,x_3,x_4))$ defined by

W=span(w_1 , w_2 , w_3) with w_1 = x_{14} - x_{23} , w_2 = x_{13} - x_{04} , w_3 = x_{03} - x_{12} , where x_{ij} = x_i 0 x_j , [3]. If w^* 's denote the dual coordinates to w's then the map defined in (6.11) can be now written in the form

$$\begin{split} & \Sigma a_1(w_1)^{\#} \longrightarrow (a_1)^3 x_{01} + (a_1)^2 a_2 x_{02} + ((a_1)^2 a_3 + a_1 (a_2)^2) x_{03} + a_1 a_2 a_3 x_{04} + a_1 (a_2)^2 x_{12} + \\ & ((a_2)^3 + 2a_1 a_2 a_3) x_{13} + (a_1 (a_3)^2 + (a_2)^2 a_3) x_{14} + (a_2)^2 a_3 x_{23} + a_2 (a_3)^2 x_{24} + (a_3)^3 x_{34}, \\ & \text{so it embeds } \mathbb{P}(\mathbb{W}^{\#}) \text{ as } 3 \text{-Veronese manifold.} \end{split}$$

(7.3). Let, on \mathbb{P}^5 , a Tango bundle be given by W=span($w_0, w_1, w_2, w_3, w_4, w_5$)

where $w_0=x_{14}-x_{23}$, $w_1=x_{13}-x_{04}$, $w_2=x_{03}-x_{12}$, $w_3=x_{45}-x_{02}$, $w_4=x_{25}-x_{01}$, $w_5=x_{35}-x_{24}$. One can see that WN(cone over G)=0, so P(W) defines Tango bundle indeed. We shall show jump lines of certain types. First consider an extremal jump line. If $1_1=x_{34}$ then $1_1 \wedge w_0=1_1 \wedge w_1=1_1 \wedge w_5=0$, so the line $L_1=P(\operatorname{span}(x_3,x_4))$ is of extremal type , (6.8).

Now let 1_2 be the point x_{01} on G. The tangent space to G at this point cuts $\mathbb{P}(W)$ along the line $\mathbb{P}(\operatorname{span}(w_1,w_2))$ and the section of E(1) given by $x_3 \wedge (x_0 + x_1)$ vanishes also on lines represented by $x_0 \wedge (x_3 + x_4)$ and $x_1 \wedge (x_2 + x_3)$. These three lines meet the line L_2 , so that we get the section of E(1) restricted to L_2 with three zeros. Since L_2 is not of extremal type, it is therefore of type (3,1,0,0).

Now let us consider L_3 =IP(span(x_1,x_2)). The section of E(1) represented by x_{14} vanishes also on the line x_{23} , on the other hand the section represented by x_{01} vanishes also on

 x_{25} , which implies that E(1) has two non-proportional sections having the same two zeros on L_3 , namely they vanish at $[x_i]$ and $[x_2]$. So L_3 must be of type (2,2,0,0). Observe that that the tangent space to 6 at $l_3 = x_{12}$ cuts $\mathbb{P}(\mathbb{W})$ along the line $\mathbb{P}(\text{span}(\mathbb{W}_0,\mathbb{W}_4))$, and the the converse to (6.6) does not hold.

The tangent space to G at $I_4=x_{03}$ meets $\mathbb{P}(W)$ at one point w_1 , and we see that the section given by x_{04} vanishes also on x_{13} providing a section with two single zeros on L_4 . We will see that L_4 is of type (2,1,1,0):

(7.4). If $T_1G\cap \mathbb{P}(W)$ consists of one point then L is of type (2,1,..,1,0).

Proof. Let the point [w] be the only point of $T_1G\cap\mathbb{P}(W)$ and let $\mathbb{P}(H)$ be the projective 3-space in \mathbb{P}^{Ω} that corresponds to $[w_{\Lambda}w] \in G(3,n)$. Obviously $\mathbb{E}\subset\mathbb{P}(H)$ and if there exists a section of $\mathbb{E}(1)$ vanishing at two different lines $\mathbb{E}_1,\mathbb{E}_2$ meeting \mathbb{E}_1 , then since $[\mathbb{E}_1-\mathbb{E}_2]=[w]$ we have $\mathbb{E}_1,\mathbb{E}_2\subset\mathbb{P}(H)$. We see that the sections of $\mathbb{E}(1)$ vanishing at least twice at \mathbb{E}_1 are the same as the same sections of the rank-2 Tango bundle on $\mathbb{P}(H)$ obtained from $\mathbb{E}(1)$ as in the proof of (6.6), so \mathbb{E}_1 must be of type (2,1,..1,0). 8. Stability of Tango bundles. We will use the following fact (see remark to the lemma (2.2.1) ch.2 [2]):

- (8.1). If $\mathfrak F$ is a bundle on $\mathbb P^n$ such that for some line L $\mathfrak F_{|L} = \mathfrak O \oplus \mathfrak O \oplus \ldots \oplus \mathfrak O$ then $\mathfrak F$ is semistable.
- (8.2). Corollary. All Tango's bundle are semistable.
- (8.3). If \Im is a bundle on \mathbb{P}^n as in (8.1) and all the bundles $\Lambda^p \Im$, with $1 \le p \le -1 + rank \Im$, have no sections, then \Im is stable.

Proof. In virtue of (8.1) it is enough to consider coherent subsheaf \mathcal{E} of \mathcal{F} with $c_1(\mathcal{E})=0$ and rank r, $0 < r < r k\mathcal{F}$. Using arguments as in the proof of lemma (1.1.7) ch.2 [ibid], we see that $\mathcal{G} \subset \mathcal{F}$ gives us imbedding $\Lambda^\Gamma \mathcal{E} \subset \Lambda^\Gamma \mathcal{F}$ and therefore gives us a section in $\Lambda^\Gamma \mathcal{F}$, contradiction.

To apply (8.3) we must compute $H^0(\Lambda^pE)$ for $1 \le p \le n-2$, E being the Tango bundle. (8.4). For any p=1,...,n-2; k=0,...p, we have $H^k(S^k(T(-3))(k-p))=0$, S^k denoting k-th

symmetric power.

Proof. Raising the twisted Euler sequence

$$0 \longrightarrow \emptyset(-3) \longrightarrow V \otimes \emptyset(-2) \longrightarrow T(-3) \longrightarrow 0$$

to the k-th symmetric power and then twisting it by O(k-p) we get

$$0\longrightarrow S^{k-1}(V\otimes O(-2))(k-p-3)\longrightarrow S^k(V\otimes O(-2))(k-p)\longrightarrow S^k(T(-3))(k-p)\longrightarrow 0$$
 that is

$$0 \longrightarrow \mathfrak{O}(-\mathsf{k}\mathsf{-p}\mathsf{-1})^{\bigoplus \mathsf{A}} \longrightarrow \mathfrak{O}(-\mathsf{k}\mathsf{-p})^{\bigoplus \mathsf{B}} \longrightarrow \mathsf{S}^{\mathsf{k}}(\mathsf{T}(-3))(\mathsf{k}\mathsf{-p}) \longrightarrow \mathsf{O}$$

where A=(n+p-1)!/n!(p-1)!, B=(n+p)!/n!p!. We see that all the groups $H^1(S^k(T(-3))(k-p))$ vanish for i=0,...,n-2.

(8.5). All the groups $H^0(\Lambda^pE)$ are zero for p=1,...,n-2.

Proof. Indeed, from the exact sequence (4.1) we obtain by means of standard cohomological algebra the following long exact sequence of vector bundles

$$0 \longrightarrow S^{p}(T(-3)) \longrightarrow_{\dots} S^{k}(T(-3)) \otimes \Lambda^{p-k}(M \otimes \emptyset(-1)) \longrightarrow_{\dots}$$
$$\dots \longrightarrow T(-3) \otimes \Lambda^{p-1}(M \otimes \emptyset(-1)) \longrightarrow \Lambda^{p}(M \otimes \emptyset(-1)) \longrightarrow \Lambda^{p}E \longrightarrow 0$$

where M=H^O(E(1)). Obviously $S^k(T(-3))\otimes \Lambda^{p-k}(M\otimes O(-1))=S^k(T(-3))(p-k)\otimes \Lambda^{p-k}M$, so using (8.4) and hypercohomology spectral sequence arguments we easily obtain (8.5). Hence we have proved

(8.6). All Tango bundles are stable.

Literature

- 1. Donin, I.F.: O deformacijach golomorfnych vektornych rasslojenij nad sferoj Riemanna, Mat.5b. 71,495-502, (1966).
- 2. Okonek, Ch., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces, Birkhauser 1981.
- 3. Moore, R.: Linear equivalence of Tango bundles on \mathbb{P}^4 , Journ. reine angew. Mathematik, 351, 12–19, (1984).

K. Jaczewski, M. Szurek, J. A. Wisniewski Institut Matematyky Palac Kultury i Nauki 00-901 Warszawa, Poland