The singularities of some invariant hypersurfaces by

George Kempf The Johns Hopkins University

In his work [1] Igusa has required detailed knowledge of the resolution of the invariant conic in A27 for the group E6 and the invariant quartic in \mathbb{A}^{56} for the group \mathbb{E}_7 . In this paper we will compute embedded resolutions of these hypersurfaces.

sl. Numerical properties of resolutions

Let H be a hypersurface of a smooth variety X. Let $\pi: X_1 \to X$ be a proper birational morphism where X_1 is a smooth variety. Then we have the strict transform H, of H and also we have the divisor-theoretic inverse image $\pi^{-1}(H)$ of H. Then $\pi^{-1}(H) = H_1 + \sum_i E_i$ where the E_i are effective exceptional) divisors on X_1 and the multiplicaties n_i are non-negative . numbers.

The morphism π induces an \mathcal{O}_{χ_1} -homomorphism $\pi^*\Lambda^n\Omega_\chi \longrightarrow \Lambda^n\Omega_{\chi_1}$ where $n=dim\ X$. Thus we have an effective divisor $Ram(\pi)$ on X_1 such that $\Lambda^n \Omega_{\chi_i} = (\pi^* \Lambda^n \Omega_{\chi}) (\text{Ram } \pi)$. We may write Ram $(\pi) = \sum_{i=1}^n m_i E_i$ where the m_i are non-negative integers. The pairs (n, m,) of integers are called the numerical data for the morphism π and the divisor H.

If H, and the E;'s are smooth divisors meeting transversally, we will say that T is an embedded resolution. In this case the numerical data gives information about the singularities of H. For instance [2] H has rational singularities iff $n_i \leq m_i$ for all i. We want to have a stronger condition * 2n, ≤ m, for all i.

In practice we will construct π to be a succession of blowing up with smooth centers. Then we will have a sequence $X_n, \dots, X_0 = X$ of smooth varieties, smooth centers $C_{n-1},...,C_0$ in X_i such that X_{i+1} is X_i with C_i blown up.

^{*}Partly supported by NSF grant #MPS75-05578

Here we denote the projection $X_{i+1} \longrightarrow X_i$ by π_i^{i+1} . Similarly the composition $X_j \longrightarrow X_i$ given by $\pi_{j-1}^j \circ \ldots \circ \pi_i^{i+1}$ is denoted by π_i^j . We have exceptional divisor ${}_i E = (\pi_{i-1}^i)^{-1}(C_{i-1})$ in X_i for $1 \le i \le n$. For any variety Y of X_i we will denote by Y_j the strict transform of Y by π_i^j . Thus X_n contains the exceptional divisors ${}_1E_n, \ldots, {}_nE$.

In this situation we may compute the numerical invariants inductively. Assume that
$$(\pi_0^j)^{-1}H = H_j \in \prod_{1 \le i \le j} n_i (_iE_j)$$
 and
$$\operatorname{Ram} (\pi_0^j) = \prod_{1 \le i \le j} m_i (_iE_j) .$$
 Then
$$(\pi_0^{j+1})^{-1}H = H_j + \prod_{1 \le i \le j} m_i (_iE_{j+1}) + x (_{j+1}E)$$
 and
$$\operatorname{Ram} (\pi_0^{j+1}) = \prod_{1 \le i \le j} m_i (_iE_{j+1}) + y (_{j+1}E)$$
 where x is the multiplicity of
$$(\pi_0^j)^{-1}H \text{ at a generic point of } C_j \text{ and } y = (\operatorname{cod} C_j - 1) \text{ plus } \sum_{C_j \in i} m_i .$$

§2. The group E_6 .

We will be working with a fundamental representation of E_6 of dimension 27. Explicitly consider the vector spaces of triples (A,x,y) where A is a 6×6 skew-symmetric matrix and x and y are 6-vectors. Let C(A,x,y) be the cubic form $Pf(A) + y A^{t}x$ where Pf denotes the Pf affian. Then the group E^6 is the connected subgroup of GL(27) which leaves this form C invariant.

We will need to know some transformations in E_6 . First of all SL(6) is contained in E^6 . Let M be an element of SL(6). Then $M \cdot (A,x,y) = (MA^{t}M,xM^{-1},yM^{-1})$ is a linear transformation of A^{27} which leaves C invariant. Also SL(2) is contained in E^6 . For N in SL(2) set N (A,x,y) = (A,z,w) where $\binom{z}{w} = N\binom{x}{y}$. These operations also leave C invariant. The diagonals of SL(2) and SL(6) together form a maximal torus of E^6 for which the action on A^{27} is diagonal. We need to know some more erotic one-parameter subgroups of E_6 .

Let $\binom{s_1,\ldots,s_r}{t_1,\ldots,t_r}$ be zero if the s_i 's are not a permutation of the t_i 's and sign (permutation) is they are. Let $f_1 < f_2 < f_3$ be a triple of elements of [1,6]

and let $f_4 < f_5 < f_6$ be the complementary triple. Then we have a one-parameter subgroup $T_{f_1 f_2 f_3}$ of E_6 given by

$$T_{f_{1}f_{2}f_{3}}(\lambda)(a_{ij}) = a_{ij} + \lambda \epsilon \binom{i}{f_{1}f_{2}f_{3}}(\lambda)x_{k}$$

$$T_{f_{1}f_{2}f_{3}}(\lambda)(y_{k}) = y_{k} + \lambda \binom{i}{f_{4}f_{5}f_{6}}(\lambda)a_{ij}$$

$$T_{f_{1}f_{2}f_{3}}(\lambda)(x_{k}) = x_{k}$$

$$\xi_{1}f_{2}f_{3}f_{4}f_{5}f_{6}(\lambda)$$

where $\varepsilon = \begin{cases} f_1 f_2 f_3 f_4 f_5 f_6 \\ 1 2 3 4 5 6 \end{cases}$.

We also have one-parameter subgroups $S_{f_1f_2f_3}$ where

$$\begin{split} & s_{f_1 f_2 f_3}^{}(\lambda) \, (a_{ij}) = a_{ij} - \lambda \, (f_1 f_2 f_3) y_k \\ & s_{f_1 f_2 f_3}^{}(\lambda) \, (y_k) = y_k \\ & s_{f_1 f_2 f_3}^{}(\lambda) \, (x_k) = x_k + \lambda \, (f_4 f_5 f_6) a_{ij} \quad \text{with } i < j \ . \end{split}$$

We want to resolve the singularities of the cone H = (C=0). Let $X_0 = X_0$ be \mathbb{A}^{27} . The blowing up as described is

- Theorem a) The center C₀ is the origin which has codimension 27 and a triple point of H.
 - b) The center C_1 is the singular locus of H_1 which has codimension 10 in X, and H_1 has rank 10 double points along H_1 . Furthermore H_1 and 1^{E} meet transversally.
 - c) H_2 is smooth and $H_{2ij}E_2$ and 2^E meet transversally.

Corollary.
$$(\pi_0^2)^{-1}H = H_2 + 3(_1E_2) + 2(_2E)$$

and $Ram(\pi_0^2) = 26(_1E_2) + 9(_2E)$.

<u>Proof.</u> As $^{1}\!\!\!/A^{27}$ is spanned by extreme weight vectors for E_6 , we need blow-up only one coordinate as all of them are isomorphic under the action of the Weyl group. Let $B = \{\text{skew-symmetric } 6 \times 6 \text{ matrices where } a_{56} = 1\}$. Consider the quadratic transformation σ : $A^1 \times B \times A^6 \times A^6 \longrightarrow A^{27}$ given by $\sigma(\lambda, b, x, y) = (\lambda b, \lambda x, \lambda y)$. Then π is locally isomorphic to σ and $\sigma \times C = \lambda^3 C(b, x, y)$. Thus $H_1 = (C(b, x, y) = 0)$ is transversal to $\sigma = (b, x, y)$. We need to analyze $\sigma = (b, x, y)$.

Let D be the subset of B where $b_{ij} = 0$ if i or j is 5 or 6 but $\{i,j\} \neq \{5,6\}$. Let K be the upper diagonal subgroup of SC(6) with 1 on the diagonal and only non-zero entrees, $m_5^1, \dots, m_5^4, m_6^1, \dots, m_6^4$.

Claim. The multiplication $K \times D + B$ sending (k,d) to $k \cdot d \cdot t_k$ is an isomorphism This claim is clear by matrix multiplication. Using the claim we have an isomorphism $K \times \{D \times A^6 \times A^6\} \longrightarrow B \times A^6 \times A^6$ given by inclusion of K in E⁶. Now $C(kd^{t}k,xk^{-1},yk^{-1}) = C(d,x,y)$ by the invariance of C. This last expression involves few variables than C(b,x,y). Next we will use the exotic transformations to remove more variables. Let $f_1 < f_2 < f_3$ be a subset of [1,4]. The transform $T_{f_1,f_2,f_3}(\lambda)$ leaves $B \times A^6 \times A^6$ invariant. If $f_4,5,6$ is the complementary subset, we have $T_{f_1,f_2,f_3}(\lambda)y_{f_4} = y_{f_4} + \lambda (f_{4} + \lambda) + \lambda (f_{$ * = 5 or 6. Thus if V is the subset of \mathbb{A}^6 where $y_1 = y_2 = y_3 = y_4 = 0$. we have an isomorphism $\mathbb{A}^4 \times \mathbb{B} \times \mathbb{A}^6 \times \mathbb{V} \longrightarrow \mathbb{B} \times \mathbb{A}^6 \times \mathbb{A}^6$ given by the action of the above 4 one-parameter subgroups. Similarly with the S transformation if $W = \{x_1 = x_2 = x_4 = 0 \text{ in } A^6\}, A^4 \times B \times W \times V \longrightarrow B \times A^6 \times V \text{ is an}$ isomorphism. The function C(b,x,y) on $B \times W \times V$ is just $Pf(B_{ij_{1-i+1}}) + x_5y_6 - y_5x_6$ which is a rank 10 quadric. Thus the local equation of H_1 is a rank 10 quadric and it has singular locus $0 = B_{ij} = x_k = y_e$ for 1≤i,j≤4 and 5≤k,1≤6. It is elementary to check that H₂ is smooth and transversal to $_1$ E $_2$ and $_2$ E. The only remarkable fact is the transformation in E_6 induce the group D_5 of this quadratic. Q.E.D.

3, The group E7.

We will be working with a fundamental representation of E_7 of dimension 56. Explicitly consider the space of pairs (Z,Y) of skew-symmetric 8×8 matrices. Let

$$Q(Z,Y) = Pf(Z) + Pf(Y) - \frac{1}{4}Tr(ZYZY) + \frac{1}{16}(Tr(ZY))^{2}$$

Then the group E_7 is the connected subgroup of GL(56) which leave invariant Q and the skew-symmetric form $\langle (Z,Y),(Z',Y')\rangle = Tr(ZY'-Z'Y)$. There is an obvious inclusion of SL(8) in E_7 given by the action $A \cdot (Z,Y) = (AZ^tA,^tA^{-1}YA)$

for A in SL(8). The diagonal of SL(8) is a maximal torus in E_7 for which the action on A^{56} is diagonalized. We also have exotic transformations in E_7 . Let $f_1 < f_2 < f_3 < f_4$ be a subset of [1,...,8] with complement $f_5 < f_6 < f_7 < f_8$. Let U_{f_1,f_2,f_3,f_4} be the one-parameter subgroup defined by

$$\begin{cases} U_{f_{1},f_{2},f_{3},f_{4}}(\lambda)(Z_{ij}) &= Z_{ij} + \lambda \sum_{m,n} \binom{ijmn}{f_{1}f_{2}f_{3}f_{4}}(Y_{m,n}) \\ &\text{and} \\ U_{f_{1},f_{2},f_{3},f_{4}}(\lambda)(Y_{ij}) &= Y_{ij} - \lambda \in \sum_{m,n} \binom{ijmn}{f_{5}f_{6}f_{7}f_{8}}(X_{m,n}) \\ &\text{where } \epsilon = \binom{f_{1},\ldots,f_{8}}{f_{1},\ldots,g_{8}}. \end{cases}$$

We want to make an embedded resolution of the quartic hypersurface $H = (Q=0) \text{ in } X = X_0 = A^{56}.$ We will do this resolution by a sequence of blowing-up

- Theorem a) The first center C_0 is the origin in X_0 . Then C_0 has codimension 56 and H has multiplicity four at C_0 .
 - b) The next center C_1 is the singular locus of the singular locus of H_1 . Now C_1 has codimension 28 and H_1 has rank one double points along C_1 . Also C_1 is transversal to ${}_1E$.
 - c) H_2 has two components in its singular locus. Let C_2 be the component of codimension 11. Then C_2 is transversal to ${}_1E_2$ and ${}_2E$ and H_2 has rank 11 double points generically along C_2 .
 - d) The hypersurface H_3 is singular in codimension 3 in X_3 . Let C_3 be its singular locus. Then H_3 has rank three double points along C_3 . Furthermore $C_3 < {}_2E_3$ and C_3 is transversal to E_3 and ${}_3E$.
 - e) Let C_4 be ${}_2E_4 \cap H_4$ with its reduced structure. Then C_4 has codimension 2 and H_4 is smooth and C_4 is transversal to ${}_1E_4$, ${}_3E_4$ and ${}_4E$.
 - f) H_5 is smooth and meets ${}_2E_5$ transversally. Let C_5 equal $H_5 \wedge {}_2E_5$. Then $C_5 \subset {}_5E$.
 - g) H₆ and the exceptional divisors are smooth and meet transversally.

Corollary. $(\pi_0^6)^{-1}H = H_6 + 4_1E_6 + 2_2E_6 + 2_3E_6 + 2_4E_6 + _5E_6 + 4_6E$ and $Ram(\pi_0^6) = 55_1E_6 + 27_2E_6 + 10_7E_6 + 29_4E_6 + 28_5E_6 + 56_6E.$

Proof. In the first blowing up we are magnifying the behavior at zero. Again as \mathbb{A}^{56} is spanned by extreme vectors we need only look at the part of the blow-up where $Z_{7,8}$ has been inverted. Let B be the subset $Z_{7,8} = 1$ of \mathbb{A}^{28} . Then $(\pi_0^1)^{-1}(Z_{7,8} \neq 0)$ is isomorphic to $\mathbb{A}^1 \times \mathbb{B} \times \mathbb{A}^{28}$, where the projection π_0^1 in these coordinates is $\frac{1}{\pi_0}(\lambda, b, Y) = (\lambda b, \lambda Y)$. As Q is homogeneous of degree 4, $\binom{1}{\pi_0} {}^*Q(\lambda,b,Y) = \lambda^4 Q(b,Y)$. Then H_1 is Q(b,Y) = 0 in local coordinates which is transversal to μ E which is $\lambda = 0$. We may use the unipotent transformations in SL(8) to get B; = 0 if i or j equals 7 or 8 but not both. Let D be the subset of B defined by these inequalities. Let H be the subgroup of SL(8) of elements with ones on the diagonal and zero except for $h_{i,j}$ where i = 7 or 8 and j ϵ [1,...,6]. Then the action of E₇ on \mathbb{A}^{56} gives an isomorphism ψ : $H \times (D \times A^{28}) \longrightarrow B \times A^{28}$. As Q is invariant under E_{7} . $\psi^{-1}(Q)(h,d,Y) = Q(d,Y)$, thus ψ gives local coordinates such that the equation of H, is simpler. We will further simplify by using the exotic transformations. Let $f_1 < f_2 < f_3 < f_4$ be a subset of [1,...,6]. We can use this transformation to reduce to the case where $Y_{f_c,f_c} = 0$. Thus by a sequence of such transformations we can reduce to the case where $Y_{ij} = 0$ if i or j is not contained in $\{7,8\}$. Let $A_{ij} = b_{ij}$ for $1 \le i, j \le 6$, $x_i = Y_{i,7}$ and $y_i = Y_{i,8}$ where $1 \le i \le 6$ and $a = Y_{7,8}$. Then by direct calculation we have $Q(b,Y) = Pf(A) + yA^{t}x - \frac{1}{4}a^{2} = C(A,x,y) - \frac{1}{4}a^{2}$

Now it is clear that the singular locus of H_1 is locally $0 \times \{\text{singular locus of } C_1^3\} \times \text{removed variables}$. So the singular locus C_1 of the singular locus is given by a = A = x = y = 0 which is codimension 28. Clearly H_1 has rank 1 souble points along C_1 . Now blowing up C_1 in the coordinate a produced a smooth H_2 which does not meet the new exceptional divisor. Blowing up the other coordinates is more interesting. Note that E_6 acts on $A^1 \times A^2 = \{(a,A,x,y)\}$ by the previous action on the second factor and by the trivial one on the first. In fact one can check that this action is induced by

where C is the cubic for E_6 .

part of the E₇-action on A^{56} . As in the last proof we may only blow up the $A_{5,6}$ -coordinate as all other are equivalent under the action of E₆. Using the elimination of variables as before and choicing appropriate local coordinates (z_i) , a local equation of H_2 is $0 = -\frac{1}{4}a^2 + \lambda$ is z_1z_{10-i} where $\lambda = 0$ is the local equation of the exceptional divisor z_1 . Thus we are down to a hypersurface in 12 variables. The singular locus of H_2 locally is $\{a = \lambda = \sum z_1z_{10-i} = 0\}$ \bigcup $\{a = z_1 = \ldots = z_{10} = 0\}$. This last component is C_2 and it has codimension 11 and is transversal to z_1 . Also z_2 has rank 11 double points along z_2 generically.

Next we blow up C_2 . Again blow-up in variable a we have H_3 is smooth and does not meet the divisor ${}_2E_3$ and ${}_3E$. Blowing up a variable z_j (say j=10) the equation of H_3 becomes $0=-\frac{1}{4}a^2+\lambda$ ($\sum\limits_{1\leq i\leq 4}z_iz_{10-i}+z_9$) where $\lambda=0$ is ${}_2E_3$. Let $\sum\limits_{1\leq i\leq 4}z_1z_{10-i}+z_9=z$ be a new coordinate. The equation H_3 is $0=-\frac{1}{4}a^2+\lambda$ z. The singular locus C_3 of H_3 is given by $0=a=\lambda=z$ and has codimension 3 in X_3 . Furthermore H_3 has rank 3 double points along C_3 . Clearly H_3 is transversal to ${}_1E_3$ and ${}_3E$ and, hence, so is C_3 . Note that C_3 is contained in ${}_2E_3$.

Now we can blowup C_3 . Clearly H_4 is smooth and meets $_1$ E_4 , $_3$ E_4 and $_4$ E transversally. We need to see how H_4 meets $_2$ E_4 . Blowup the coordinate a H_4 does not meet $_2$ E_4 in this open. Blowup the coordinate λ $_2$ E_4 does not meet this open. Finally blowing the coordinate z, H_4 has equation $-\frac{a^2}{4} + \lambda = 0$ where $\lambda = 0$ is the local equation of $_2$ E_4 . Thus $(H_4 \wedge _2 E_4)_{\text{red}} = C_4$ is given by $a = \lambda = 0$. After blowing up C_4 it is elementary to check that all the divisors H_5 , $_1$ E_5 , $_2$ E_5 , $_3$ E_5 , $_4$ E_5 and $_5$ E_6 most transversally except unfortunately $H_5 \wedge _2$ $E_5 = _2$ $E_5 \wedge _5$ $E_6 = C_5$. Then C_5 is of codimension two. Blowup C_5 and then all intersections are transversal. Q.E.D.

References

^[1] J. Igusa, Forms of higher degree, Tata Inst. Lecture Notes 59, Springer-Verlag (1978) (esp. pp. 122-128).

^[2] G. Kempf, Varieties with rational singularities, Lefschetz conference Mexico City Dec. 1984, to appear.

G. Kempf, The Johns Hopkins University Dept. of Mathematics, Baltimore, MD 21218, U.S.A.