J.B. SANCHO DE SALAS

Blowing-up morphisms with Cohen-Macaulay associated graded rings

INTRODUCTION.

Let X be a Cohen-Macaulay variety, and let I be a coherent sheaf of ideals on X. Consider the blowing-up $\pi: \overline{X} \longrightarrow X$ of X with respect to I. Our purpose in this paper is to study the consequences of the Cohen-Macaulayness of $G_{\overline{I}}O_X = O_X/I \oplus I/I^2 \oplus I^2/I^3 \oplus \ldots$. The main result is the following:

Theorem 1.4. If Spec $G_I^0\chi$ is Cohen-Macaulay, then \bar{X} is a Cohen-Macaulay variety and its dualizing sheaf $\omega_{\bar{\chi}}$ satisfies

$$R^{i}\pi_{*}\omega_{\overline{X}}=0$$
 for $i>0$.

In this paper, variety means a equidimensional noetherian separated scheme locally of finite type over a field k. By a result of Nagata, any variety is an open subscheme of a proper variety Z. We denote by ω_χ the restriction of the dualizing sheaf ω_γ to X. It is well known that ω_χ is independent of the completion Z.

1. PROOF OF THEOREM 1.4.

Notation 1.1. We will write $C = \operatorname{Spec} G_I \partial_{\chi}$ and $E = \operatorname{Proj} G_I \partial_{\chi}$. The vertex V of the cone C is the subscheme corresponding to the irrelevant ideal of $G_I \partial_{\chi}$. Note that V is also the center of the blowing-up, and $E \cong \pi^{-1}(V)$. Finally, we write $\partial_{\overline{\chi}}(n) = I^n \cdot \partial_{\overline{\chi}}$, (n > 0).

$$H_V^i(E, O_F(-r)) = 0$$
 for $r > 0$ and $i < n-1$.

Proof. We will consider the natural morphisms

$$f:C \longrightarrow V$$
 , $g:C-V \longrightarrow E$.

Take $Y_0 = f^{-1}(x)$, then there is a long exact sequence

$$\longrightarrow H_{X}^{i}(C, \mathcal{O}_{C}) \longrightarrow H_{Y_{\Omega}}^{i}(C, \mathcal{O}_{C}) \xrightarrow{\lambda} H_{Y_{\Omega}}^{i}(C-x, \mathcal{O}_{C}) \longrightarrow \qquad . \tag{*}$$

The groups of this sequence are calculated in the following way.

- a) $H_X^{\hat{i}}(C, \partial_C) = 0$ for i < n, because $\partial_{C, X}$ is Cohen-Macaulay.
- b) As f is an affine morphism, we obtain

$$H_{Y_{\Omega}}^{i}(C, \mathcal{O}_{C}) = H_{X}^{i}(V, f_{*}\mathcal{O}_{C}) = \bigoplus_{r \geq 0} H_{X}(V, I^{r}/I^{r+1})$$
.

c) As g is also an affine morphism, we have

$$\mathsf{H}^{\mathbf{i}}_{\gamma_0}(\mathsf{C}\mathsf{-x}, \mathcal{O}_{\mathbb{C}}) = \mathsf{H}^{\mathbf{i}}_{\gamma_0}(\mathsf{C}\mathsf{-V}, \mathcal{O}_{\mathbb{C}}) = \mathsf{H}^{\mathbf{i}}_{\gamma}(\mathsf{E}, \mathsf{g}_{\mathbf{x}}\mathcal{O}_{\mathbb{C}}) = \bigoplus_{\mathbf{r} \in \mathbb{Z}} \mathsf{H}^{\mathbf{i}}_{\gamma}(\mathsf{E}, \mathcal{O}_{\mathbb{E}}(\mathbf{r})) \ .$$

Therefore, the groups in the middle and on the right of (*) are graded $G_{I} O_{\chi}$ -modules. Moreover, it is easy to see that λ is a homogeneous morphism of degree zero. We conclude from (*) that $H_{V}^{i}(E,O_{F}(-r))=0$ for $r\geq 0$, i< n-1.

$$H_{Y}^{i}(\overline{X}, \mathcal{O}_{\overline{X}})$$
 = 0 for i < n = dim X .

Proof. Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{\bar{X}}(1) \longrightarrow \mathcal{O}_{\bar{X}} \longrightarrow \mathcal{O}_{\bar{E}} \longrightarrow 0$$

Tensoring with $\,\mathcal{O}_{\widetilde{\widetilde{\mathbf{X}}}}(-\mathbf{r})\,\,$ and taking cohomology, we get

$$\longrightarrow \text{H}^{i}_{\gamma}(\text{O}_{\overline{\chi}}(\text{-(r-1)})) \longrightarrow \text{H}^{i}_{\gamma}(\text{O}_{\overline{\chi}}(\text{-r})) \longrightarrow \text{H}^{i}_{\gamma}(\text{O}_{E}(\text{-r})) \longrightarrow \text{.}$$

Furthermore, we have

a)
$$H_V^1(\mathcal{O}_F(-r)) = 0$$
 for $r > 0$ and $i < n-1$ (lemma 1.2);

b)
$$H_{\gamma}^{i}(\mathcal{O}_{\overline{\chi}}(-r))^* = (R^{n-i}\pi_*\omega_{\overline{\chi}}(r))_{x}^{i} = 0$$
 for $i < n$ and $r \gg 0$.

The first equality in b) is a duality formula (see Appendix). We conclude by descending induction on ${\bf r}$.

Theorem 1.4. Let X be a Cohen-Macaulay variety. Let $\pi: \overline{X} \longrightarrow X$ be the blowing-up with respect to a coherent sheaf of ideals I on X. Assume that Spec $G_I O_X$ is Cohen-Macaulay. Then \overline{X} is a Cohen-Macaulay variety and its dualizing sheaf $\omega_{\overline{X}}$ satisfies

$$R^{i}_{\pi_{*}\omega_{\overline{Y}}} = 0$$
 for $i > 0$.

<u>Proof.</u> As C-V is Cohen-Macaulay and g:C-V \longrightarrow E is smooth, E is Cohen-Macaulay. This implies that \bar{X} is Cohen-Macaulay. From 1.3 and a duality formula, we deduce that $R^i\pi_*\omega_{\bar{v}}=0$ for i>0.

Remark 1.5. Note that C is Cohen-Macaulay if and only if $\theta_{C,x}$ is Cohen-Macaulay for each $x \in V$.

There is an analogous result for the Rees algebra of I , R(I) = $0_\chi \oplus I \oplus I^2 \oplus \dots$

Corollary 1.6. Let X and I be as in 1.4. If R(I) is Cohen-Macaulay, then \bar{X} is Cohen-Macaulay and $R^i\pi_*\omega_{\bar{v}}=0$ for i>0.

<u>Proof.</u> According to a result of Huneke [5], if R(I) is Cohen-Macaulay, then $G_{\rm I} O_{\rm V}$ is Cohen-Macaulay. We conclude by 1.4.

Finally, we obtain a converse of 1.4:

Theorem 1.7. Let X be a Cohen-Macaulay variety. Let $\pi: \overline{X} \longrightarrow X$ be the blowing-up with a coherent sheaf of ideals I on X. Assume that \overline{X} is Cohen-Macaulay and $R^i\pi_*\omega_{\overline{X}}=0$ for i>0. Then there exists an integer r_o such that for each $r\geq r_o$, Spec $G_{\tau}r\partial_{X}$ is Cohen-Macaulay.

<u>Proof.</u> Take r_n such that the following conditions are fulfilled:

- 1. $\pi_* \partial_{\nabla}(\mathbf{r}) = \mathbf{I}^{\mathbf{r}}$ for $\mathbf{r} \geq \mathbf{r}_0$.
- 2. $R^{i}_{\mathbf{x}} \mathcal{O}_{\overline{\mathbf{y}}}(\mathbf{r})$ for i > 0 and $\mathbf{r} \ge \mathbf{r}_{0}$.
- 3. $H^i_{\gamma}(\overline{X},\mathcal{O}_{\overline{X}}(-r))* = (R^{n-i}\pi_*\omega_{\overline{X}}(r))^* = 0$ for $i \le n = \dim X$ and $r \ge r_0$, where x and y are as in 1.3. Moreover $H^i_{\gamma}(\overline{X},\mathcal{O}_{\overline{X}}) = 0$ for $i \le n$, by the duality formula.

Now, we will show that $G_J \partial_\chi$ is Cohen-Macaulay for $J = I^\Gamma$, $r \ge r_o$. As in 1.1, we write $C = \operatorname{Spec} G_J \partial_\chi$, $E = \operatorname{Proj} G_J \partial_\chi$ and V for the vertex of C. Changing the notation, we write $O_{\overline{\chi}}(1) = J \cdot O_{\overline{\chi}}$. Then, as in the proof of 1.2, we have the exact sequence

$$\longrightarrow H_{X}^{i}(C, \mathcal{O}_{C}) \longrightarrow H_{Y_{C}}^{i}(C, \mathcal{O}_{C}) \longrightarrow H_{Y_{C}}^{i}(C-x, \mathcal{O}_{C}) \longrightarrow$$

where

$$\begin{split} & H_{Y_{O}}^{\mathbf{i}}(\mathbb{C}, \mathcal{O}_{\mathbb{C}}) = \underset{m \geq o}{\oplus} H_{X}^{\mathbf{i}}(\mathbb{V}, \mathbb{J}^{m}/\mathbb{J}^{m+1}) \\ & H_{Y_{O}}^{\mathbf{i}}(\mathbb{C} - \times, \mathcal{O}_{\mathbb{C}}) = \underset{m \in \mathbb{Z}}{\oplus} H_{Y}^{\mathbf{i}}(\mathbb{E}, \mathbb{E}^{(m)}) \end{split}.$$

Therefore, we have to prove the following facts:

- a) $H_{V}^{i}(V, J^{m}/J^{m+1}) = H_{V}^{i}(E, O_{F}(m))$ for m > 0.
- **b)** $H_X^i(V,\mathcal{O}_X/J) = H_Y^i(E,\mathcal{O}_E)$ for i < n-1, and $H_X^{n-1}(V,\mathcal{O}_X/J) \longrightarrow H_Y^{n-1}(E,\mathcal{O}_E)$ is injective.
- c) $H_{\gamma}^{1}(E, 0_{E_{\gamma}}(m)) = 0$ for i<n-1 and m<0.

Proof of a). By 1 and 2 above, we have

$$R^{i}\pi_{*}\theta_{\overline{\chi}}(m) = 0$$
 for $i > 0$ and $\pi_{*}\theta_{\overline{\chi}}(m) = J^{m}$, $(m > 0)$

Therefore, from the exact sequence

$$0 \longrightarrow \mathcal{O}_{\overline{V}}(m+1) \longrightarrow \mathcal{O}_{\overline{V}}(m) \longrightarrow \mathcal{O}_{F}(m) \longrightarrow 0$$

we deduce that

$$R^{i}\pi_{*}\theta_{F}(m) = 0$$
 for $i>0$, and $\pi_{*}\theta_{F}(m) = J^{m}/J^{m+1}$

We conclude, from an obvious spectral sequence, that

$$H_{v}^{i}(V,J^{m}/J^{m+1}) = H_{v}^{i}(E,O_{F}(m))$$
.

Proof of b). Taking cohomology with supports in $\, x \,$ and $\, Y \,$, respectively, in the exact sequences

$$0 \longrightarrow J \longrightarrow \mathcal{O}_{\chi} \longrightarrow \mathcal{O}_{\chi}/J \longrightarrow 0$$
$$0 \longrightarrow \mathcal{O}_{\overline{\chi}}(1) \longrightarrow \mathcal{O}_{\overline{\chi}} \longrightarrow \mathcal{O}_{F} \longrightarrow 0$$

we obtain the following diagram

The vertical arrows on the left are isomorphisms, because $R^i\pi_*\mathcal{O}_{\overline{\chi}}(1)=0$ for i>0, and $\pi_*\mathcal{O}_{\overline{\chi}}(1)=J$. Moreover, the groups in the middle vanish for i< n-1. The assertion follows easily from the diagram.

Proof of c). Taking cohomology with supports in Y in the exact sequence

$$0 \longrightarrow \mathcal{O}_{\overline{X}}(1+m) \longrightarrow \mathcal{O}_{\overline{X}}(m) \longrightarrow \mathcal{O}_{\overline{E}}(m) \longrightarrow 0$$

we conclude by condition 3.

2. EXAMPLES

- a) The obvious example is when I is generated (locally) by a regular sequence. In this case, it is well known that $\operatorname{Spec} G_I {}^0 \chi$ is Cohen-Macaulay. Therefore the blowing-up $\pi\colon \overline{X} \longrightarrow X$ of I satisfies $R^i\pi_*\omega_{\overline{X}} = 0$, for i>0. A particular case is the blowing-up of a smooth variety along a smooth subvariety.
- b) Let X be a hypersurface of a smooth variety Z. Let $\pi: \overline{X} \longrightarrow X$ be the blowing-up of X along a smooth subvariety Y. If p is the ideal defining Y, it is easy to see that $G_p \mathcal{O}_X$ is Cohen-Macaulay. Therefore $R^i \pi_* \omega_{\overline{X}} = 0$ for i > 0.

 Moreover, if m is the multiplicity of X at the generic point of Y and d is the codimension of Y in X, then $\pi_* \omega_{\overline{X}} = p^{m-d} \otimes \omega_X$. With these results, one can calculate the variation of the arithmetic genus in the morphism π , (see [11]).
- c) Let X be a Cohen-Macaulay variety and let $\pi: \overline{X} \longrightarrow X$ be the blowing-up at a closed point x. Let m be the maximal ideal corresponding to x. We will write m = multiplicity of X at x, d = $\dim \mathcal{O}_{X,X}$ and δ = length m/m^2 . According to a result of Abhyankar [l], $d \le \delta \le m+d-1$. In general $G_m \mathcal{O}_X$ is not Cohen-Macaulay, though in the case of high embedding dimension we have the following result

Theorem (Sally, [8], [10]). If $\delta = m+d-1$, then $G_m O_X$ is Cohen-Macaulay. If $O_{X,X}$ is Gorenstein and $\delta = m+d-2$ or m+d-3, then $G_m O_X$ is Cohen-Macaulay.

Therefore, we obtain the following

Remark 2.2. It is easy to see that if $\mathcal{O}_{X,x}$ is Gorenstein and $m \le 5$, then $\delta = d,d+1,m+d-3$, or m+d-2.

J. Sally also obtained the Hilbert function in the cases of 2.1. This allows us to calculate the variation of the arithmetic genus and the groups of cohomology in the blowing-up π . If one knows the Hilbert function $H(n)=\dim_{\mathbb{R}}X(X,I^n/I^{n+1})$ (or the Samuel function $S(n)=\dim_{\mathbb{R}}X(X,\mathcal{O}_\chi/I^n))$ corresponding to an ideal I on X, then one can calculate the variation of the arithmetic genus in the blowing-up of I. The following theorem shows that the variation is the last coefficient of Samuel's polynomial.

Theorem 2.3 (see also Ramanujam [7]). Let X be a r-dimensional variety, proper over k, and let I be a coherent sheaf of ideals on X. Let $\pi: \overline{X} \to X$ be the blowing-up of X with respect to I. If $E = cl^*(\mathcal{O}_{\overline{X}}) - cl^*(\mathcal{O}_{\overline{X}}(1)) \in K^*(\overline{X})$, then one has

$$S(n) = \chi(\chi, 0_{\chi}) - \chi(\overline{\chi}, 0_{\overline{\chi}}) - \sum_{i=1}^{r} (-1)^{i} \chi(E^{i}) \binom{n}{i} , \quad n \gg 0 .$$

Note 2.4. $K^*(\bar{X})$ denotes, as usual, the Grothendieck group of coherent locally free sheaves on \bar{X} .

<u>Proof of 2.3.</u> One has $R^i\pi_*\partial_{\overline{\chi}}(n)=0$ for i>0 and $n\gg0$, and $\pi_*\partial_{\overline{\chi}}(n)=I^n$ for $n\gg0$. Therefore $\chi(\overline{\chi},I^n\cdot\partial_{\overline{\chi}})=\chi(\chi,I^n)$ for $n\gg0$. Writing $1=c1\cdot(\partial_{\overline{\chi}})$, one has

$$S(n) = \chi(0_{\chi}) - \chi(I^{n}) = \chi(0_{\chi}) - \chi(I^{n} \cdot 0_{\overline{\chi}}) = \chi(0_{\chi}) - \chi((1-E)^{n}) =$$

$$= \chi(0_{\chi}) - \chi(0_{\overline{\chi}}) - \sum_{i=1}^{r} (-1)^{i} \chi(E^{i}) \binom{n}{i} .$$

The last equality results from $E^i = 0$ for i > r, in the Grothendieck group $K.(\bar{X})$ of coherent sheaves (S.G.A. 6, exp. X).

Remark 2.5. Note that H(n) = S(n+1) - S(n). In particular, we have that H(n) is a polynomial for $n \gg 0$, as is well known. Moreover, if we write P(n) for that polynomial, it is easy to see that the last coefficient of Samuel's polynomial is

$$\chi(X, \mathcal{O}_{\chi}) - \chi(\overline{X}, \mathcal{O}_{\overline{\chi}}) = \sum_{n=0}^{\infty} (H(n) - P(n))$$
.

<u>Theorem</u> 2.6. Let X be a Cohen-Macaulay variety, proper over k. Let $\pi: \overline{X} \longrightarrow X$ be the blowing-up at a closed point x. Suppose one of the following conditions is satisfied:

- a) $\delta = m+d-1$ and d > 1,
- **b)** $\theta_{X,X}$ is Gorenstein, $\delta = m+d-2$ and d > 2,
- c) $\theta_{X,x}$ is Gorenstein, $\delta=m+d-3$ and d>3. Then $H^1(X,\theta_{\bar{X}})=H^1(\bar{X},\theta_{\bar{X}})$.

<u>Proof.</u> $R^i\pi_*\omega_{\overline{\chi}}=0$ for i>0, by 2.1. Therefore, we are done if $\pi_*\omega_{\overline{\chi}}=\omega_{\chi}$. In any case, there is a natural morphism $f:\pi_*\omega_{\overline{\chi}}\longrightarrow \omega_{\chi}$. Taking Euler characteristics in the exact sequence

we obtain

$$\chi(\chi,\omega_{\chi})$$
 - $\chi(\bar{\chi},\omega_{\bar{\chi}})$ = length Coker f .

However J. Sally shows ([9], [10]) that the Hilbert function is a polynomial for $n \ge 0$. This means, by 2.5, that the variation—of the Euler characteristic is zero. Therefore Coker f = 0—and we have finished.

- d) Let I be an ideal of a Gorenstein ring \mathcal{O}_χ . We set v(I) equal to the least number of generators of I. We assume that I is an almost complete intersection which is a generic complete intersection. This means that v(I) = h(I) + 1, $v(I_p) = h(I)$ for all $p \in \text{Min } \mathcal{O}_\chi/I$. If \mathcal{O}_χ/I is Cohen-Macaulay, then $G_I \mathcal{O}_\chi$ is Gorenstein (Valla, [12]). Therefore, we have
- Theorem 2.7. Let X be a Gorenstein variety and let $\pi: \overline{X} \longrightarrow X$ be the blowing-up with respect to a coherent sheaf of ideals I . We assume that Spec \mathcal{O}_{χ}/I is Cohen-Macaulay and that I is locally an almost complete intersection which is a generic complete intersection. Then, $R^{i}\pi_{\star}\omega_{\overline{\chi}}=0$ for i>0.
- e) Let X be a Cohen-Macaulay variety over k and let $\pi: \overline{X} \longrightarrow X$ be the blowing-up with respect to a coherent sheaf of ideals I.

Theorem 2.8. Suppose one of the following conditions is satisfied:

- a) $k = \mathbb{C}$ and \bar{X} is smooth,
- **b)** dim X = 2 and \overline{X} is normal.

Then Spec $G_{\tau^{\mathbf{n}}} \mathcal{O}_{\chi}$ is Cohen-Macaulay for $n \gg 0$.

<u>Proof</u>: The vanishing theorem $R^{i}\pi_{*}\omega_{\overline{\chi}}=0$ for i>0, holds in the two cases (Grauert-Riemenschneider [2] and Lipman [6]).

3. APPENDIX: A DUALITY FORMULA

Our purpose is to prove the following

Theorem 3.1. Let $\pi:Z \longrightarrow X$ be a proper morphism and let Y be the fibre over a closed point x . If Z is an n-dimensional Cohen-Macaulay variety and L is a coherent locally free sheaf on Z , one has

$$H_{\Upsilon}^{i}(Z, L)^{*} = (R^{n-i}\pi_{*}(\omega_{Z} \otimes L))^{\hat{i}}_{x}$$

where the dual is taken over the base field k .

<u>Proof:</u> Let p be the sheaf of ideals corresponding to Y . Then by the theorem of formal functions and global duality, one has:

$$(\mathsf{R}^{\mathsf{N}-\mathsf{i}}\pi_*(\omega_{\mathsf{Z}}\otimes\check{L}))_{\mathsf{x}}^{\hat{}} = \varprojlim_{\mathsf{r}} \; \mathsf{H}^{\mathsf{N}-\mathsf{i}}(\omega_{\mathsf{Z}}\otimes\check{L}\otimes\mathcal{O}_{\mathsf{Z}}/\mathsf{p}^{\mathsf{r}}) = \varprojlim_{\mathsf{r}} \; \mathsf{Ext}_{\mathcal{O}_{\mathsf{Z}}}^{\hat{}}(\omega_{\mathsf{Z}}\otimes\check{L}\otimes\mathcal{O}_{\mathsf{Z}}/\mathsf{p}^{\mathsf{r}},\omega_{\mathsf{Z}})^* = \\ = [\varprojlim_{\mathsf{r}} \; \mathsf{Ext}_{\mathcal{O}_{\mathsf{Z}}}^{\hat{}}(\omega_{\mathsf{Z}}\otimes\mathcal{O}_{\mathsf{Z}}/\mathsf{p}^{\mathsf{r}},L\otimes\omega_{\mathsf{Z}})]^* \stackrel{(1)}{=} \varprojlim_{\mathsf{r}} \; \mathsf{Ext}_{\mathcal{O}_{\mathsf{Z}}}^{\hat{}}(\mathcal{O}_{\mathsf{Z}}/\mathsf{p}^{\mathsf{r}},L)]^* = \mathsf{H}_{\mathsf{Y}}^{\hat{}}(\mathsf{Z},L)^* \; .$$

Equality (1) is a consequence of the spectral sequences with the same abutment:

$$\mathsf{E}_2^{\mathsf{p},\mathsf{q}} = [\varinjlim_{Q} \mathsf{Ext}_{Q_{\mathsf{Z}}}^{\mathsf{p}}(\mathsf{Tor}_{\mathsf{q}}^{\mathsf{Z}}(\mathcal{O}_{\mathsf{Z}}/\mathsf{p}^{\mathsf{r}},\omega_{\mathsf{Z}}),\mathsf{L} \otimes \omega_{\mathsf{Z}})]^* = \varprojlim_{\mathsf{H}^{\mathsf{n}-\mathsf{p}}} \mathsf{H}^{\mathsf{n}-\mathsf{p}}(\mathsf{Tor}_{\mathsf{q}}^{\mathsf{Z}}(\mathcal{O}_{\mathsf{Z}}/\mathsf{p}^{\mathsf{r}},\omega_{\mathsf{Z}}) \otimes \check{\mathsf{L}})$$

$$\bar{\mathbb{E}}_{2}^{\mathbf{p},\mathbf{q}} = [\varinjlim_{Z} \mathrm{Ext}_{\mathcal{O}_{Z}}^{\mathbf{p}}(\mathcal{O}_{Z}/\mathbf{p^{r}}, \mathbf{Ext}_{\mathcal{O}_{Z}}^{\mathbf{q}}(\omega_{Z},\omega_{Z}) \otimes L)]^{*} .$$

A computation gives $E_2^{p,q}=0$ for $q\neq 0$, and the second spectral sequence is also degenerate by the following fact (see [4], Satz 6.1)

$$\operatorname{Ext}_{\mathcal{O}_{\overline{Z}}}^{q}(\omega_{\overline{Z}},\omega_{\overline{Z}}) = 0 \quad \text{for} \quad q > 0 \quad , \quad \operatorname{Hom}_{\mathcal{O}_{\overline{Z}}}(\omega_{\overline{Z}},\omega_{\overline{Z}}) = \mathcal{O}_{\overline{Z}} \qquad \qquad \text{q.e.d.}$$

Theorem 3.1 is probably known. There are analogous results in Hartshorne ([3]) and Lipman [6].

REFERENCES

- [1] Abhyankar, S.S. "Local rings of high embedding dimension". Amer. J. Math. 89, 1073-1077 (1967).
- [2] Grauert, H. Riemenschneider, O. "Verschwindungssätze für analytische Kohomologiegruppen auf komplexem Räumen". Inv. Math., 11 (1970), 263-292.
- [3] Hartshorne, R. "On the De Rham cohomology of algebraic varieties". Publ. Math. I.H.E.S., 45 (1976), 5-99.
- [4] Herzog, J. and Kunz, E. "Der kanonische Modul eines Cohen-Macaulay-Rings". Lecture Notes in Math., 238.
- [5] Huneke, C. "On the associated graded ring of an ideal". Ill. J. of Math. 104, n^2 5 (1982), 1043-1062.
- [6] Lipman, J. "Desingularization of two dimensional schemes". Annals of Math. 107, (1978), 151-207.
- [7] Ramanujam, C.P. "On a geometric interpretation of multiplicity". Inv. Math. 22 (1973), 63-67.
- [8] Sally, J. "On the associated graded ring of a local Cohen-Macaulay ring".
 J. Math. Kyoto Univ., 17 (1977), 19-21.
- [9] Sally, J. "Local Cohen-Macaulay rings of maximal embedding dimension". J. Algebra, 56 (1979), 168-183.
- [10] Sally, J. "Good embedding dimensions for Gorenstein singularities". Math. Ann., 248, 95-106 (1980).
- [11] Sancho de Salas, J. "A vanishing theorem for birational morphism". Lecture Notes in Math., 961.
- [12] Valla, G. "A property of almost complete intersections". Quart. J. Math. Oxford Ser. (2), 33 (1982), nº 132, 487-492.