Moduli of analytic branches

Introduction

The purpose of this paper is to compute the underlying set of the moduli space for irreducible analytic branches embedded in affine-space over an algebraically closed field k of arbitrary characteristic.

Let:

$$C \hookrightarrow X = Spec(k[[T_0, ..., T_m]])$$

be an analytic branch and $\left\{\mathbf{r}_i\right\}_{i=0}^{\infty}$ the sequence of multiplicities of C and its successive quadratic transforms. We will denote by r the following:

$$r = h + 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2$$

where h is the number of quadratic transformations needed to desingularise C. Let C_r be the r-th quadratic transform of C let $\text{X}_{\text{C}}^r \longrightarrow \text{X}$ be the r-th quadratic transform of X in the direction of C and

$$\pi_{\mathbf{r}}: X_{\mathbb{C}}^{\mathbf{r}} \longrightarrow X$$

the canonical map. If χ_0^C is the reduced exceptional fibre of π_r we will denote by I the sheaf of ideals defining X_0 and let $\chi_n^C \longrightarrow \chi_C^r$ be the closed subscheme which is defined by I^{n+1} . Let $L=I/I^2$ be the conormal sheaf to X_0 in χ_C^r .

Definition: Two embedded branches $C \hookrightarrow X'$, $C' \hookrightarrow X$ are equisingular when χ_1^C and $\chi_1^{C'}$ are isomorphic schemes. That is, one defines the equisingularity of $C \hookrightarrow X$ to be the scheme χ_1^C .

Let ${\rm X}_1$ be an equisingularity. Also let ${\rm M}({\rm X}_1)$ be the set of analytic equivalence classes of branches with equisingularity ${\rm X}_1$.

Let G_L^K denote the sheaf of O_{X_O} -modules

$$G_I^K = L^2 \oplus L^3 \oplus L^4 \oplus \ldots \oplus L^K$$
.

Similarly let G_i denote the sheaf

$$G_1 = L^2 \oplus L^3 \oplus \dots$$

Let H¹ denote the k-vector space

$$\mathsf{H}^1 = \mathsf{H}^1(\mathsf{X}_{_{\mathbf{O}}}, \mathsf{Der}_{_{\mathbf{K}}}(\mathcal{O}_{\mathsf{X}_{_{\mathbf{I}}}}, \mathcal{O}_{\mathsf{X}_{_{\mathbf{O}}}}) \otimes_{\mathcal{O}_{\mathsf{X}_{_{\mathbf{O}}}}} \mathsf{G}_{_{\mathbf{L}}}^{\mathbf{K}}) \ .$$

 $\mbox{\it Main theorem:}$ There exists a natural integer K $\mbox{\it and}$ a certain quotient set M of $\mbox{\it H}^1$

$$\pi:H^1\longrightarrow M$$

such that $M(X_1)$ is the subset of M defined by the vanishing of a 2-cycle obstruction class belonging to

$$H^{2}(X_{o},\mathbf{Der}_{k}(\mathcal{O}_{X_{1}},\mathcal{O}_{X_{o}})\otimes_{\mathcal{O}_{X_{o}}}G_{L})$$

and associated to each point of M .

(More precision and details will be given below).

As a particular case; when $k=\mathbb{C}$, the complex field, and dim X=2 one gets a result of 0. Zariski [5] stating that the moduli space for plane analytic branches over \mathbb{C} is a quotient of a vector space.

In the present paper a sort of description of the fibres of π is given. I hope to come back to this problem in a future paper.

O. Notations

The ground field k will be algebraically closed and of arbitrary characteristic. We will denote the ring of formal power series in m+1 variables, with coefficients in k, by

$$A = k[[T_0, \dots, T_m]] .$$

We will also denote by X the spectrum of A and by \hat{X} the formal spectrum of A (in the sense of Grothendieck [2]).

Given a natural integer n and an analytic branch (always irreducible) i:C $\hookrightarrow X$, one defines the "n-th blowing up" of \hat{X} in the direction of C as the

sequence

$$\hat{\chi}(C_n) \longrightarrow \hat{\chi}(C_{n-1}) \longrightarrow \dots \longrightarrow \hat{\chi}(C_0) = \operatorname{Sp} f(A)$$

where $\hat{\chi}(C_i)$ is the formal blowing up of $\hat{\chi}(C_{i-1})$ along the closed point of C_{i-1} (i.e.: the formalisation of the local blowing up of $\hat{\chi}(C_{i-1})$) and C_i is the strict transform of C_{i-1} starting with $C_o = C$.

The morphism:

$$\pi_n: \hat{\chi}(c_n) \longrightarrow Sp f(A)$$

is algebraisable, that is: there exists an ideal $\, \, {\rm I} \,$ of $\, \, {\rm A} \,$ such that the formalisation of the blowing up $\, \, {\rm X(C}_n) \,$ of $\, {\rm X} \,$ along $\, {\rm I} \,$:

$$X(C_n) \longrightarrow Spec(A)$$

is exactly:

$$\pi_n: \hat{X}(C_n) \longrightarrow Sp f(A)$$
.

1. Equivalence theorem. Upper bound for the conductor

One starts with the following: for every multiplicity sequence $\left\{\mathbf{r}_n\right\}_{n=0}^{\infty}$, if h denotes the minimum integer such that \mathbf{r}_h = 1, one defines \mathbf{r} to be the integer:

$$r = h + 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2$$
;

then if

$$\hat{x}(c_r) \longrightarrow \hat{x}$$

is the r-th blowing up of \hat{X} directed by the branch C with multiplicity sequence $\{\mathbf{r}_n\}_{n=0}^{\infty}$ then $\hat{X}(C_r)$ determines the branch C up to analytic equivalence. More precisely:

Theorem 1.1: If C , C' are two branches with the same multiplicity sequence $\left\{r_n\right\}_{n=0}^{\infty}$ then C , C' are analytically equivalent if and only if the schemes $\hat{X}(C_r)$ and $\hat{X}(C_r')$ are isomorphic.

To prove this theorem one needs some lemmas.

Lemma 1.2: C , C' are analytically equivalent if and only if they are isomorphic schemes; i.e.

$$C = \operatorname{Spec}(\mathcal{O}_C) \approx \operatorname{Spec}(\mathcal{O}_{C'}) = C'$$
.

if one denotes by

$$\tilde{C} = \operatorname{Spec}(k[[T]])$$

the desingularization of C and by C the conductor, then $C = T^{C}k[[T]]$, where

$$c = \ell(0_{\bar{C}}/C)$$

is the length of the conductor and one has

$$T^{c}k[[T]] \subset O_{C}$$
.

Lemma 1.3: If $\ell \ge c$, c' then θ_C and $\theta_{C'}$ are isomorphic if and only if the respective subalgebras of $k[[T]]/(T^\ell)$ they induce are isomorphic, i.e.: if and only if there exists an automorphism of $k[[T^\ell]]$ that maps one subalgebra onto the other.

We will now prove that the length c of the conductor of a branch C is bounded by the multiplicity sequence $\{r_n\}_{n=0}^{\infty}$. More precisely, there exists a positive integer K (=2 $\sum_{i=0}^{\infty} r_i (r_i - 1)^2$), depending only on the given multiplicity sequence, such that $c \le K$.

Let $\mathcal{O}_{\overline{\mathbb{C}}} = k[[T]]$ be the ring of the desingularization of C and, let v_C be the valuation of the field of fractions of \mathcal{O}_C induced by $\mathcal{O}_{\overline{\mathbb{C}}}$. If m_C is the maximal ideal of \mathcal{O}_C and t is an element of m_C with minimum value for v_C then

$$v_{c}(t) = \text{multiplicity of } o_{c} = r_{o}$$
.

Moreover, one has

$$\dim_{k}(m_{C}/m_{C}^{2}) \le r_{o} = \dim_{k}(m_{C}/tm_{C}) .$$

We will denote by $d_{\mathbb{C}}$ the embedding dimension of \mathbb{C} :

$$d_{C} = \dim_{k}(m_{C}/m_{C}^{2}) ;$$

it is clear that $\, d_{{\textstyle C}} \,$ is a formal analogue of elements which generate the k-algebra $\, \theta_{{\textstyle C}} \,$.

Lemma 1.4: For a plane branch C , i.e.: $d_C = 2$, then

$$m_C^n = tm_C^{n-1}$$

for all $n > r_0 - 1$.

As a corollary one gets the following general result in the case $\mbox{ d}_{C} \geqq 1$. As the algebra

$$0_{C} = k[[t,t_{1},...,t_{d_{C}-1}]]$$

contains all the subalgebras $k[[t,t_i]]$ for $1 \le i \le d_C - 1$, which are plane branches and with multiplicities $\le r_0 = v_C(t)$, one can apply lemma 1.4 to get

Lemma 1.5: $m_C^n = t m_C^{n-1}$ for all $n > (r_0 - 1)(d_C - 1) = q$ and so one has $m_C^n = t^{n-q} m_C^q$.

If θ_{C_1} is the first quadratic transform of θ_{C} , then

$$\theta_{c_1} = \bigcup_{i=0}^{\infty} \frac{m^i}{t^i} \subset \Sigma$$
 (field of fractions of θ_{c_1})

and also $d_{C} \leq r_{0}$. The lemma applies and gives

Corollary 1.6:
$$m_C^{n-1} O_C = m_C^{n-1}$$
 for all $n > (r_0 - 1)^2$ and so

$$\ell(O_{C_1}/O_{C}) \le r_o(r_o - 1)^2$$
.

Proof: The second part results from the fact that

$$m_{C}^{q} O_{C_{1}} = m_{C}^{q}$$

(recall that $q = (r_0 - 1)(d_0 - 1) > (r_0 - 1)^2$). So one has

$$\ell(O_{C_1}/O_C) \le \ell(O_{C_1}/m_C^q O_{C_1}) = \ell(O_{C_1}/t^q O_{C_1}) = q \cdot r_0$$

because $r_0 = \ell(\theta_{C_1}/t\theta_{C_1})$.

Corollary 1.7:
$$\ell(\mathcal{O}_{\overline{C}}/\mathcal{O}_{C}) \leq \sum_{i=0}^{\infty} r_{i}(r_{i}-1)^{2}$$
.

If one uses the inequality

$$\ell(0_{\mathbb{C}}/\mathfrak{C}) \leq \ell(0_{\overline{\mathbb{C}}}/0_{\mathbb{C}})$$

one concludes that

$$c = \ell(0_{\bar{c}}/c) \le \ell(0_{\bar{c}}/0_{c}) + \ell(0_{c}/c) \le 2 \sum_{i=0}^{\infty} r_{i}(r_{i}-1)^{2}$$
.

Corollary 1.8: The length c of the conductor of a branch C with multiplicity sequence $\{r_n\}_{n=0}^{\infty}$ is bounded as follows:

$$c \le 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2$$
.

Let h be the number of quadratic transformations necessary to desingularise C , that is h is the least integer such that $\,r_h^{}=1\,$.

Let

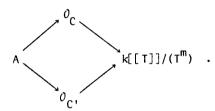
$$\pi_h: \hat{\chi}(C_h) \longrightarrow Sp f(A)$$

be the desingularisation map of C. Suppose $C' \hookrightarrow X$ is another branch and $\bar{C}' \hookrightarrow \hat{X}(C_h)$ its strict transform for π_h (C' is supposed to have the same multiplicity sequence as C). Then one has

Lemma 1.9: If C_h and \bar{C}' have a contact of order $m \ge 1$, then O_C and $O_{C'}$ induce isomorphic subalgebras in $k[[T]]/(T^m)$.

Proof: As C , C' have the same multiplicity sequence, if C_h and \bar{C} ' intersect, then $\bar{C}' = C_h'$ is simple and C , C' are direct identical h-blowing ups of \hat{X} . Let T be a function on $\hat{X}(C_h)$ that is a parameter for C_h and C_h' . If $A = k[[T_0, \ldots, T_m]]$, then by the contact condition T_0, \ldots, T_m will have the same expansion up to order m along both branches C , C'.

This means that the following diagram of natural maps is commutative:



Lemma 1.10: For the formal schemes $\hat{X}(C_{h+m})$ and $\hat{X}(C_{h+m}')$ to be isomorphic it is necessary and sufficient that there exists an automorphism τ of X such that the desingularisation $\tau(C)_h$ of $\tau(C)$ has a contact of order m with C_h' .

Proof: Given an isomorphism

$$\Phi: \hat{\chi}(C_{h+m}) \longrightarrow \chi(C_{h+m})$$
,

by taking global sections one gets an automorphism τ of X. Conversely, given a τ with the properties of the lemma, τ induces an isomorphism

$$\Phi: \hat{\chi}(C_{h+m}) \longrightarrow \hat{\chi}_{\tau(C)_{h+m}} = \hat{\chi}_{C_{h+m}}.$$

Proof (of theorem 1.1): Taking $m=2\sum_{i=0}^{\infty} r_i(r_i-1)^2$ and applying lemmas 1.10, 1.9, then corollary 1.8 and lemmas 1.3, 1.2 (in this order) one concludes that if

the formal schemes $\hat{X}(C_r)$ and $\hat{X}(C_r^t)$ are isomorphic, then the branches C, C^t in X are analytically equivalent. The converse is immediate.

2. Characterization of the "blowing ups" which are directed by a branch

Let $\left\{\mathbf{r}_{n}\right\}_{n=0}^{\infty}$ be a multiplicity sequence of a branch C embeddedin X . Let

$$r = h + 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2$$

where h is minimal with the condition that $\mathbf{r}_h = 1$. For everyembedded branch C' in X, with multiplicity sequence $\left\{\mathbf{r}_n\right\}_{n=0}^{\infty}$, one denotes by

$$\pi_{\mathbf{r}}^{\prime}:\hat{X}(C_{\mathbf{r}}^{\prime})\longrightarrow\hat{X}$$

the r-th formal blowing up in the direction of C'; X_Q' will denote the exceptional reduced fibre of π_r' and L' the conormal sheaf to X_Q' in $\widehat{X}(C_r')$.

We now fix an embedded branch C in X with multiplicity sequence $\{\mathbf{r}_n\}_{n=0}^{\infty}$. Let (X_0,L) be the exceptional fiber and the conormal sheaf in the r-th blowing up

$$\hat{x}(c_r) \longrightarrow \hat{x}$$

in the direction of C.

Let \hat{X}' be a formal scheme along a closed subscheme isomorphic to X_0 . Suppose that the conormal sheaf to X_0 in \hat{X}' is isomorphic to L. The main result characterizing the r-th blowing up is the following.

Theorem: $\hat{\chi}'$ is isomorphic to the composition of r formal blowing ups starting with $\hat{\chi}'$ and with centers at closed points if and only if the sheaf $\mathcal{O}_{\hat{\chi}'}$ is locally isomorphic to $\mathcal{O}_{\chi(C_n)}$ along χ_o .

Proof: Let

$$\pi_r^!: \hat{\chi}(C_r^!) \longrightarrow \hat{\chi}$$

be an r-blowing up of \hat{X} in the direction of $C' \hookrightarrow X$. Suppose also that X_o' and X_o are isomorphic. One can prove easily by induction on r that if $x \in X_o'$ is a closed point, then the local ring at x is:

$$o_{\hat{X}_{(C_{r}^{+}),x}} = \begin{bmatrix} k[Y_{o}, \dots, Y_{m}][[Y_{o}, Y_{1}, \dots, Y_{t-1}]] \\ localization at the origin \end{bmatrix}$$
,

where t is the number of irreducible connected components of X_0^\prime which pass through x . This proves the only if part.

Conversely, let X_0 be embedded in \hat{X}^{\dagger} with the conditions of the theorem. Suppose

$$X_o = X_o U_o U_o$$

is the decomposition of X_0 into irreducible components, and

$$\hat{X}(C_r) \stackrel{i}{\longleftrightarrow} X_o \stackrel{i'}{\longleftrightarrow} \hat{X}'$$

are the given embeddings. Then there are positive integers n_1, \dots, n_r such that $\mathcal{O}(-(n_1X_0'+\dots+n_rX_0^r))$ is an ample line sheaf for

$$\pi_{\mathbf{r}}: X(C_{\mathbf{r}}) \longrightarrow \hat{X}$$
.

So its inverse image $i*\mathcal{O}(-(n_1X_0^1+\ldots+n_rX_0^r))$ is ample on X_0 , This implies that the other inverse images $i'*\mathcal{O}(-(n_1X_0^1+\ldots+n_rX_0^r))$ are also ample on X_0 (because by the hypothesis $i*\mathcal{O}(-X_0)=L\approx L'=i'*\mathcal{O}(-X_0)$). One can then apply M. Artin's theorem on contractions ([4], Corollary (6.10)) to conclude that there exists a modification (see [4] for definition):

$$\pi': \hat{X}' \longrightarrow \bar{X}$$

where \hat{X} is the formal spectrum of a complete local ring. By Grothendieck's algebraization theorem [3], there is a scheme X^r containing X_o as a closed subscheme and such that \hat{X}' is the formalization of X' along X_o ; corollary (6.11) of [4] applied to the subscheme $X_o^r = \mathbb{P}_m(k)$ allows us to contract X_o^r to a point. That is, there exists a contraction

$$f:X' \longrightarrow X''$$

such that the formalization of f along $f(X_0) = f(X_0') \cup ... \cup f(X_0^{r-1})$ is a formal blowing up with center at the closed point $f(X_0^r)$ of X''. One concludes by induction on the number r of irreducible components of X_0 .

3. The scheme of r-blowing ups and a theorem of boundedness

Let

$$\hat{X}(C_{\mathbf{r}}) \xrightarrow{\pi_{\mathbf{r}}} \hat{X} \longleftrightarrow \hat{X}(C_{\mathbf{r}})$$

be two r-blowing ups, and I, I' be the respectives sheaves of ideals defined by the reduced exceptional fibres. Denote by X_{K} , X_{K}' , the subschemes defined respectively by I^{K+1} , I^{*K+1} .

We want to prove the

Theorem 3.1 (Boundedness): For every $\,r\,$ there exists a $\,$ K such that the formal schemes $\,\hat{\chi}(C_r)\,$ and $\,\hat{\chi}(C_r')\,$ are isomorphic if and only if the schemes $\,$ X $_K$ and X $_K'$ are isomorphic.

 ${f Proof:}$ The condition is obviously necessary for every K . To see the sufficiency suppose the following (*) is true:

(*) "for every positive integer $\, r \,$ there exists a $\, \lambda \,$ such that the r-th blowing up

$$\hat{X}(C_r) \longrightarrow \hat{X} = Sp f(A)$$
,

with $A = k[[T_0, ..., T_m]]$, is the blowing up of an ideal α of A such that

$$m^{\lambda} \subset \alpha \subset A$$
.

where m is the maximal ideal of A and $\pi_*(\alpha O_{\chi(C)}) = \alpha$ ".

It is clear that there exists a positive integer K_1 such that

$$mO_X = I^{K_1}$$

for every r-blowing up \hat{Z} of \hat{X} (it is enough to take $K_1=r!$ and to prove it by induction on r). Let $K=(\lambda+1)K_1$. Suppose

$$\Phi: X_{\mathbf{K}} \approx X_{\mathbf{K}}'$$

is an isomorphism. This induces another isomorphism between the subschemes defined by the sheaves $m^{\lambda+1}\mathcal{O}_{\chi}$ and $m^{\lambda+1}\mathcal{O}_{\chi}$. By taking global sections one gets an automorphism $\bar{\tau}$ of $\operatorname{Spec}(A/m^{\lambda+1})$. Let τ be an automorphism of $\operatorname{Spec}(A)$ that induces $\bar{\tau}$. Let α be an ideal of A such that

$$\pi_{\mathbf{r}}: \hat{\mathbf{X}}(\mathbf{C}_{\mathbf{r}}) \longrightarrow \hat{\mathbf{X}}$$

is the blowing up along α , and which satisfies the condition (*) above, then $\tau_*(\alpha)$ is another ideal in \hat{X} such that

$$\tau_*(\alpha)0X(C_r')$$

is locally principal (to see this use Nakayama and note that $\tau_*(\alpha) \partial_{\chi_K^{-}} = \Phi_*(\alpha \partial_{\chi_K^{-}})$). So the morphism

$$\hat{X}(C_r) \longrightarrow Sp f(A)$$

factors through the r-blowing up

$$\hat{X}(C_{\mathbf{r}}^{r}) \longrightarrow Sp f(A) \xrightarrow{\tau} Sp f(A)$$
,

that is, there exists a morphism

$$f: \hat{X}(C_r) \longrightarrow \hat{X}(C_r')$$

such that

$$\pi_{\mathbf{r}} = \mathbf{\tau} \circ \pi_{\mathbf{r}}' \circ \mathbf{f}$$
.

One concludes that f is an isomorphism, because $\mathrm{X}(\mathsf{C}_r)$ and $\mathrm{X}(\mathsf{C}_r')$ are r-blowing ups.

To finish one has only to prove (*). Let X be the spectrum of a local k-algebra of finite type. One has:

Theorem 3.2 (Representability): There exists a noetherian scheme of finite type over k and a blowing up

$$\bar{\pi}_{n}: \bar{X} \longrightarrow X \times \Delta_{n}$$

such that for every closed point $x_n \in \Delta_n$ the blowing up of X induced by π_n on the closed subscheme $X = X \times x_n$ of $X \times \Delta_n$ is an n-blowing up of X and every n-blowing up is obtained in this way. Moreover, if $p_{X \times \Delta_n}$ is the sheaf of ideals of the subscheme $x \times \Delta_n$ of $X \times \Delta_n$, then the blowing up $\tilde{\pi}_n$ is defined by a sheaf of ideals α such that

$$p_{\mathbf{x} \times \Delta_{\mathbf{n}}}^{\mathbf{K}} = \alpha = p_{\mathbf{x} \times \Delta_{\mathbf{n}}}.$$

Proof: We will only give the construction of Δ_n . The properties of Δ_n follow from the the general properties of a blowing up and the definition of Δ_n . Firstly it is easy to see that if

$$\bar{\pi}: \bar{X}' \longrightarrow X'$$

is a blowing up of schemes over $\, Y \,$, and $\, Z \,$ is a flat scheme over $\, Y \,$, and

$$X_7^1 = X^1 \times \sqrt{Z} \longrightarrow Z$$

the map obtained by base change, then the blowing up that $\ddot{\pi}$ induces on X_{Z}^{1} is precisely

$$\bar{X}' \times_{Y} Z \xrightarrow{\bar{\pi} \times 1} X_{Z}$$

Construction of Δ_n : let

$$\pi_1: \overline{X}_1 \longrightarrow X$$

be the blowing up of X at its closed point and Δ_2 the exceptional fibre. Let

$$i_2:\Delta_2 \hookrightarrow \bar{X}_1 \times \Delta_2$$

be the diagonal, and

$$\pi_2: \bar{X}_2 \longrightarrow \bar{X}_1 \times \Delta_2$$

be the blowing up of $~\vec{\lambda}_1 \times \Delta_2~$ along $~i_2(\Delta_2)$. Inductively one defines

$$\pi_n: \bar{X}_n \longrightarrow \bar{X}_{n-1} \times \Delta_n$$

by blowing up the closed subscheme $i_n: \Delta_n \stackrel{\longleftarrow}{\longleftrightarrow} \bar{X}_{n-1} \times \Delta_n$, and Δ_{n+1} as the fibre over $i_n(\Delta_n)$ of π_n and where

$$i_{n+1}:\Delta_{n+1} \hookrightarrow \bar{X}_n \times \Delta_{n+1}$$

is the diagonal. It is clear that $\,\bar{\boldsymbol{X}}_{n}\,\,$ is obtained from

$$R = X \times \Delta_1 \times \dots \times \Delta_n$$

(with $\Delta_1 = x$) by a sequence of blowing ups. One also has projections

$$f_i:\Delta_n \longrightarrow \Delta_i$$

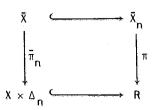
(i≤n) . Let

$$f: X \times \Delta_n \longrightarrow X \times \Delta_1 \times \ldots \times \Delta_n$$

be the closed immersion defined by

$$f = (\pi_{\chi}, f_1 \circ \pi_{\Delta_n}, \dots, f_n \circ \pi_{\Delta_n})$$

where π_X , π_{Δ_n} are the projections on the factors (with $f_n = Id_{\Delta_n}$). Consider

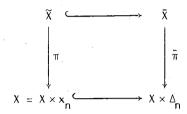


where π is the blowing up constructed above and $\bar{\pi}_n$ the one induced on $X\times \Delta_n$ by π .

(*) Follows from this, because if

$$\pi:\widetilde{X}\longrightarrow X$$

is a blowing up, there exists a closed point $x_n \in \Delta_n$ such that



where π is the blowing up induced by $\bar{\pi}$. But $\bar{\pi}$ is defined by the blowing up of the sheaf of ideals $\bar{\alpha}$ such that

$$p_{\mathbf{X} \times \Delta_{\mathbf{n}}}^{\mathbf{K}} = \alpha = p_{\mathbf{X} \times \Delta_{\mathbf{n}}}$$

Restricting everything to $X=X\times x_n$ one has that π is defined by the blowing up of a sheaf of ideals α such that

$$m_{\chi}^{K} \subset \alpha \subset m_{\chi}$$
.

Moreover, one can easily see that $\beta=\pi_*(\alpha\mathcal{O}_{\widetilde{\chi}})$ defines the same blowing up as α , and it verifies

$$\pi_*(\beta \mathcal{O}_{\widetilde{X}}) = \pi_*(\alpha \mathcal{O}_{\widetilde{X}}) = \beta$$
,

with which one concludes the proof of condition (*).

Observation: The scheme Δ_n parametrizes the analytic branches in \hat{X} up to order n modulo the relation:

 $C \sim C'$ if and only if the both direct the same n-blowing up.

4. Classification theorem

Let $\{r_n\}_{n=0}^{\infty}$ be the multiplicity sequence of an embedded branch in X. We will suppose all branches have multiplicity sequence equal to $\{r_n\}_{n=0}^{\infty}$. Let

$$\pi_r: \hat{X}(C_r) \longrightarrow Sp f(A)$$
,

with $A = k[[T_0, ..., T_m]]$, be the r-blowingup of X in the direction of a branch C

embedded in X. We will denote by X_0 the exceptional reduced fibre of $\pi_{\bf r}$, by I the sheaf of ideals defining X_0 in $\hat{X}(C_{\bf r})$ and by $L=I/I^2$ the conormal sheaf. Let X_n be the closed subscheme of $\hat{X}(C_{\bf r})$ defined by I^{n+1} .

To a given branch C embedded in X we associate the scheme X_1 . Note that the pair (X_0,L) is part of the information X_1 carries which we have defined as the equisingularity of C as embedded in X. In this paragraph we want to classify embedded branches with the same, up to isomorphism, associated scheme X_1 . So we will fix the scheme X_1 . The pair (X_0,L) is also fixed and we will also fix, as a reference to classify, the formal scheme $\hat{X}(C_n)$.

By theorem (1.1), one knows that to classify, up to analytic equivalence, the branches embedded in X with multiplicity sequence $\{\mathbf{r}_n\}_{n=0}^\infty$ and given associated pair (X_0,L) amounts to classifying isomorphism classes of formal schemes obtained by r-blowing ups of X $(\mathbf{r}=h+2\sum\limits_{i=0}^\infty \mathbf{r}_i(\mathbf{r}_i-1)^2)$ such that their associated pair is (X_0,L) . But by the theorem of equivalence (section 2) to classify these classes of formal schemes is the same as to classify the isomorphism classes of formal schemes $\hat{\mathbf{X}}'$ which contain \mathbf{X}_0 as closed subscheme, which are complete along \mathbf{X}_0 and such that the conormal sheaf to \mathbf{X}_0 in \mathbf{X}' is isomorphic to L and 0 is locally isomorphic to 0 row on \mathbf{X}_0 . Besides, by the boundedness theorem (3.1), a formal scheme such as \mathbf{X}' determined, up to isomorphism, by the closed subscheme \mathbf{X}_K' of $\hat{\mathbf{X}}'$, where \mathbf{X}_K' is the subscheme defined by the sheaf of ideals $\mathbf{I}^{\mathsf{K}+1}$, \mathbf{I}' being the defining sheaf of \mathbf{X}_0 in $\hat{\mathbf{X}}'$ (and K is a positive integer whose existence is guaranteed by theorem 3.1).

So, it is enough to classify the schemes $\,X_{{\mbox{$\mbox{\mathcal{K}}$}}}^{\,\prime}\,\,$ so obtained.

Consider now, for each pair of positive integers $n \geqq m$, the sheaf $\textbf{Aut}_{\chi_{_{_{\scriptsize m}}}}(X_{_{\tiny n}})$ of groups over $X_{_{\scriptsize o}}$ consisting of local automorphisms of the scheme $X_{_{\scriptsize n}}$ which restrict the identity on the subscheme $X_{_{\scriptsize m}}$.

Denote by

$$\tau_n^m$$
: Aut_{X₁} (X_n) \longrightarrow Aut_{X₁} (X_n)

(for $n \ge m \ge 1$) the natural restriction maps.

Lemma 4.1. For each r>1 , the sheaf of groups $\operatorname{Aut}_{X_{n-1}}(X_n)$ is canonically isomorphic to the sheaf of groups

$$\operatorname{Der}_{k}(\theta_{\chi_{1}}, L^{n})$$
 .

In particular

$$\operatorname{Aut}_{X_{n-1}}(X_n) \hookrightarrow \operatorname{Aut}_{X_1}(X_n)$$

is a subsheaf contained in the center of this last sheaf of groups.

Proof: The map

$$\Phi: \operatorname{Aut}_{X_{n-1}}(X_n) \longrightarrow \operatorname{Der}_{k}(\mathcal{O}_{X_1}, L^n)$$

defined by

$$\Phi(\tau) = \tau - Id = D_{\tau}$$

is a morphism of sheaves of groups. The image of Φ is contained in

$$\mathbf{j}_{\star}\mathbf{Der}_{\mathbf{k}}(\mathcal{O}_{\chi_{1}},\mathcal{L}^{n})$$

where

$$j:X_1 \longrightarrow X_n$$

is the canonical injection. Conversely, given a derivation $D \in \operatorname{Der}_k(\mathcal{O}_{\chi_1}, \mathcal{L}^n)$ one defines $\Phi^{-1}(D)$ to be

$$\Phi^{-1}(D) = Id + J_*D = \tau_n .$$

It is easily seen that $\tau_D^{}$ is an automorphism of $\,^{X}_{n}\,$ giving the identity on $^{X}_{1}$. The rest follows from this.

Corollary 4.2. The sheaves of groups $\operatorname{Aut}_{\chi_1}(X_n)$ for n>1 have resolutions by sheaves of coherent \mathcal{O}_{χ_n} -modules of the form

$$\mathbf{Der}_{k}(\theta_{X_{1}}, L^{h})$$

for $2 \le h \le n$. More precisely, the sequences

(n)
$$0 \longrightarrow \operatorname{Der}_{k}(\mathcal{O}_{X_{1}}, \mathcal{L}^{n}) \xrightarrow{1_{n}} \operatorname{Aut}_{X_{1}}(X_{n}) \longrightarrow \operatorname{Aut}_{X_{1}}(X_{n-1}) \longrightarrow 0$$

are exact, where i_n is defined as in the above lemma, identifying

$$\operatorname{Der}_{k}(\theta_{X_{1}}, L^{n}) = \operatorname{Aut}_{X_{n-1}}(X_{n})$$
.

To simplify the notation, let us write

$$D^{n} = \mathbf{Der}_{k}(\mathcal{O}_{X_{1}}, \mathcal{O}_{X_{0}}) \otimes L^{n}$$

$$A^{n} = \mathbf{Aut}_{X_{1}}(X_{n})$$

$$G^{n} = L^{2} \otimes L^{3} \otimes \ldots \otimes L^{n}$$

Corollary 4.3: For every n there exists a quotient M_1 of the abelian group

$$H^1(X_o, D^o \otimes_{X_o} G^n)$$

and a map

$$f_n: M_n \longrightarrow H^2(X_o, D^o \otimes G^n)$$

which identifies

$$H^1(X_0,A^n)$$

with the subset of M_n defined the elements $c \in M_n$ such that $f_n(c) = 0$.

Proof: By induction on $n \cdot For \quad n=2$ one has

$$M_1 = H^1(X_0, D^2)$$

and $f_1=0$ by applying lemma 5.1. If n>2 the cohomology sequence associated with (n) gives an exact sequence

$$B = H^{1}(D^{n})/\delta H^{0}(A^{n-1}) \hookrightarrow H^{1}(A^{n}) \longrightarrow H^{1}(A^{n-1}) \xrightarrow{\overline{\delta^{n}}} H^{2}(D^{n})$$

(see [1]). The first term on the left is an abelian group and acts freely on the left on $\operatorname{H}^1(\operatorname{A}^n)$. The orbits of this action are the fibres of

$$Im(\bar{\tau}^n) = (\bar{\delta}^n)^{-1}(o) .$$

So

$$H^{1}(A^{n}) = Im(\overline{\tau}^{n}) \times B \subset H^{1}(A^{n-1}) \times B \subset M_{n-1} \times B$$
.

We define

$$f_{n-1}: M_n \longrightarrow H^2(D^n) \oplus H^2(D^0 \oplus C^{n-1}) = H^2(D^0 \oplus C^n)$$

to be

$$f_{n-1} = \overline{f}_{n-1} \circ \pi ,$$

where

$$\pi: M_{n-1} \times B \longrightarrow M_{n-1}$$

is the natural projection and

$$\bar{f}_{n-1} = f_{n-1} + g$$

where $g:M_{n-1} \longrightarrow B$ is equal to $\overline{\delta}^n$ on $H^1(A^{n-1})$ and is zero on the complement.

As the sheaves $\mathcal{O}_{\chi_K^*}$ are locally isomorphic to \mathcal{O}_{χ_K} , they are classified by the set

$$H^1(X_1, Aut_{X_1}(X_K))$$

(see [1]). The quotient of this H^1 by the action of the group $\operatorname{Aut}(X_1)$ classified the schemes X_K' which contain X_1 as a closed subscheme, and whose structure sheaf $\mathcal{O}_{X_K'}$ is locally isomorphic to \mathcal{O}_{X_K} .

From Corollary 4.3 and the considerations at the beginning of this paragraph the main theorem of this introduction follows easily.

REFERENCES

- [1] J. Giraud "Cohomologie non abeliane", Springer-Verlag, §3 (1971).
- [2] A. Grothendieck and J. Dieudonné "Le langage des schemes", EGA I , Publ. Math. IHES, 4 (1960).
- [3] A. Grothendieck and J. Dieudonné "Etude cohomologique des faisceaux coherents", EGA III. Ibid. 11 (1961), and 17 (1963).
- [4] M. Artin "Algebraization of formal moduli II: Existence of modifications", Annals of Math., 91 (1970), 88-135.
- [5] O. Zariski "Le probleme des modules pour les branches planes" Hermonn, Paris, 1986.