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‘Moduli of analytic branches

Introduction

The purpose of this paper is to compute the underlying set of the moduli space
for irreducible analytic branches embedded in affine-space over an algebraically
closed field k of arbitrary characteristic.

Let:

CC—X = Spe'c(k[[To,...,Tm]])

be an analytic branch and {ri}m the sequence of multiplicities of C and its

i=-o
successive quadratic transforms. We will denote by r the following:

r=h+2 'Z ri(ri- 1)
1=0

2

‘where h is the number of quadratic transformations needed to desingularise C .

Let Cr be the r-th quadratic transform of C let XE-——*X be the r-th quadratic

transform of X in the direction of C. and
r
Trr.XC——-> X

the canonical map. If Xg is the reduced exceptional fibre of T, we will denote

by I the sheaf of ideals defining XO and let XSC—4>XE be the closed

subscheme which is defined by In+l. Let 'L:]]IZ be the conormal sheaf to Xo in
r
XC .
Definition: Two embedded branches &X' , C'“—X are equisingular when
'
¢ and XC are isomorphic schemes. That is, one defines the equisingularity of

X1 1

C&— X to be the scheme Xg .

Let Xl be an equisingularity. Also let M(Xl) be the set of analytic

equivalence classes of branches with equisingularity Xl .

Let Gi denote the sheaf of OX -modules
o
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cf -%e’el%e...01" .

Similarly let GL denote the sheaf

G - *el’e... .

Let Hl denote the k-vector space

1 1 ; K
H =H (Xo,Derk(Oxi,OX )@0 GL).

‘o X
0

Main theorem: There exists a natural integer K and a certain quotient set
1
M of H

1r:Hl——-> M

such that M(Xl) is the subset of M defined by the vanishing of a 2-cycle
obstruction class belonging to
H2(X _,Der, (0, ,0, )®, G)
o7 kX, TTX o, "L
1 7o X
o
and associated to each point of M .

(More precision and details will be given below).

As a particular case; when k=€, the complex field, and dimX=2 one gets a
result of 0. Zariski { 5 ] stating that the moduli space for plane analytic
branches over € is a quotient of a vector space.

In the present paper a sort of description of the fibres of 7 is given. I

hope to come back to this problem in a future paper.

0. Notations

The ground field k will be algebraically closed and of arbitrary
characteristic.We will denote the ring of formal power series in m+ 1 variables,

with coefficients in k, by

A= KI[T,,...,T 1]

We will also denote by X the spectrum of A and by X the formal spectrum
of A (in the sense of Grothendieck [2]).
Given a natural integer n and an analytic branch (always irreducible)

i:C¢<— X , one defines the "n-th blowing up" of X in the direction of C as the
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sequence

x(c ) — (¢, ) — ... —R(C) = SpF(A)

where X(C ) is the formal blowing up of X(C l along the closed point of

Ci-l (i.e.: the formalisation of the local blow1ng up of X(C )) and Ci is

the strict transform of Ci—l starting with Co: C.
The morphism:

nn:i(cn)——»Sp f(A)

is algebraisable, that is: there exists an ideal I of A such that the

formalisation of the blowing up _X(Cn) of X along I :

X(Cn)—-*-Spec(A)
is exactly:

ﬂn:X(Ch)——+ Sp f(A)
1. Equivalence theorem. Upper bound for the conductor

One starts with the following: for every multiplicity sequence {r }m , if

n’'n=o
h denotes the minimum integer such that r, = 1 , one defines r to be the integer:
T 2
r=h+2 .Z ri(ri- 1) ;
1=0
then if
X(Cr)——*»X

is the r-th blowing up of X directed by the branch C with multiplicity sequence
{rn}:—o then i(Cr) determines the branch C up to analytic equivalence. More

precisely:

Theorem 1.1: If C , C' are two branches with the same multiplicity sequence
r } then C , C' are analytically equivalent if and only if the schemes

(C ) and i(C;) are isomorphic.
To prove this theorem one needs some lemmas.

Lemma 1.2: C , C' are analytically equivalent if and only if they are

isomorphic schemes; i.e.

C = Spec(OC)z Spec(OC,) =C
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if one denotes by

€ = Spec(k[[T]])

the desingularization of C and by € the conductor, then ©=T°k[[T]] , where

c = £(0./C)
C
is the length of the conductor and one has

Tk[T1] =0,

Lemma 1.3: If £2z2c, ¢' then OC and OC' are isomorphic if and only if the
respective subalgebras of &[[T]1/(T¢) they induce are isomorphic, i.e.: if and
only if there exists an automorphism of k[[Tz]] that maps one subalgebra onto the

other.

We will now prove that the length ¢ of the conductor of a branch C is
bounded by the multiplicitx)sequence {rn}::o . More precisely, there exists a
positive integer K (=2 i§o ri(ri— 1)2), depending only on the given multiplicity
sequence,such that c<K .

Let OC: k{[T]] be the ring of the desingularization of C and, let Ve be
the valuation of the field of fractions of OC induced by OC . If Me is the
maximal ideal of OC and t 1is an element. of me with minimum value for Ve

then

vC(t) = multiplicity of OC =T
Moreover, one has

dimk(mcﬂmg)ﬁ r, = dimk(mC/th)

We will denote by dC the embedding dimension of C :
d. = dim (m /mz) ;
C kertet 2

it i1s clear that d. is a formal analogue of elements which generate the k-algebra

0

C
c -

Lemma l.4: For a plane branch C , i.e.: dC: 2 , then

for all n>r -1.
o)
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As a corollary one gets the following general result in the case dC 21 . As the

algebra
OC = k[[t,tl,...,tdc_l]]

1£1i2d,-1, which are plane branches

contains all the subalgebras k[[t,ti]] for ¢
and with multiplicities < r,= vc(t) , one can apply lemma 1.4 to get

Lemma 1.5: mgz tmrc‘-1 for all n:>(ro— l)(dC- 1)=q and so one has

Me = C

0, = U =5¢c L~ (field of fractions of 0.)
=0 :

and also dcérO . The lemma applies and gives

Yo —m™! for all n >(r0--l)2 and so

= n_
Corollary 1.6: me c=Me

2
K(Ocl/OC)é ro(ro— 1)

Proof: The second part results from the fact that

q _ 4
mCOCl_ me

(recall that q= (ro— l)(dC- 1)> (ro- 1)2) . So onevhas

20 10520, m30. y=£00. /t90.) = q-r
Cl C Cl C Cl ; Cl Cl [

because r, = £(0Cl/t0Cl) .

® 2
Corollary 1.7: Z(OC/OC)é iio ri(ri- n° .

If one uses the inequality
£00/8) 5 20100

one concludes that

2
c = !.(O(_:/C) < Z(OC/OC)‘ +£(0./€) =2 .

[ee]
'Z ri(ri- 1)
1=0
Corollary 1.8: The length ¢ of the conductor of a branch C with

multiplicity sequence {rn}:_é is bounded as follows:
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[s+]
<
cs2 .Z ri(ri— 1)
1=0

2

Let h be the number of quadratic transformations necessary to desingularise
C , that is h 1is the least integer such that r = 1.
Let -
nh:X(Ch)-—*'Sp f(A)
be the desingularisation map of C . Suppose C'“— X is another branch and

{ré— R(Ch) its strict transform for 7w, (C' 1is supposed to have the same

h
multiplicity sequence as C). Then one has

Lemma 1.9: If ¢, and ©' have a contact of order m2 1 , then OC and OC

induce isomorphic subalgebras in k[[TJ1/(T™)

Proof: As C , C' have the same multiplicity sequence, if Ch and C
intersect, then C'-= Cﬁ is simple and €, C' aredirect identical h-blowing ups
of X. Let T be a function on X(Ch) that is a parameter for Ch and Cﬁ . If
A= k[[To,...,Tm]], then by the contact condition To,...,Tm will have the same
expansion up to order m along both branches € , C'

This means that the following diagram of natural maps is commutative:

/C\
\/

KITI1/(T™)

Lemma 1.10: For the formal schemes i(Ch+m) and R(Cﬂ+m) to be isomorphic
it is necessary and sufficient that there exists an automorphism t of X .such that

the desingularisation T(C)h of 1T(C) has a contact of order m with Cﬁ .
Proof: Given an isomorphism
<I)"X(Ch+m)__.)'X(Ch+m) ’

by taking global sections one gets an automorphism T of X. Conversely, given a

T with the properties of the lemma, T .induces an isomorphism

o:X(C, )— X ,
h+m T(C)h+ Ch+m

Proof (of theorem 1.1): Taking m=2 T r, (r - l) and applying lemmas 1.10,
R 1=0
1.9, then corollary 1.8 and lemmas 1.3, 1.2 (in thls order) one concludes that if
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the formal schemes )’i(Cr) and )’Z(C;‘) are isomorphic, then the branches C , C*

in X are analytically equivalent . The converse is immediate.
2, Characterization of the "blowing ups"which are directed by a branch

Let {rn}CQ be a multiplicity sequence of a branch ( embeddedin X . Let

R=0

T 2
r=h+2 'Z ri(ri— 1)

1=0
where h 1is minimal with the condition that Py = 1. For everyembedded branch C'

in X , with multiplicity sequence {rn}:~0’ one denotes by

l.h t 3
wr.X(Cr)-——*X

the r-th formal blowing up in the direction of C' ; Xé will denote the
exceptional reduced fibre of m and L' the conormal sheaf to Xé in i(C;)

We now fix anembedded branch € in X with multiplicity sequence

{e 7

n°* =0

. Let (XQ,L) be the exceptional fiber and the conormal sheaf in the
r-th blowing up '

X(Cr)——* X

in the direction of C .

Let X' be a formal scheme along a closed subscheme isomorphic to Xo .
Suppose that the conormal sheaf to X0 in X' 'is isomorphic to L . The main
result characterizing the r-th blowing up is the following.

Theorem: X' is isomorphic to the composition of r formal blowing ups
starting with X' and with centers at closed points if and only if the sheaf
Oi' is locally isomorphic to OX(Cr) along Xo .

Proof: Let
o Rren n
ﬂr.X(Cr) — X

be an r-blowing up of X in the direction ef C'C—X . Suppose also that Xé and
X, are isomorphic. One can prove easily by induction on r that if xe X5 is a

closed point, then the local ring at x is:

; BN CARTN ISR AP ARk
Xy, x localization at the origin ’
r

where 't 1is the number of irreducible connected components of Xé which pass

through x . This proves the only if part.
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Conversely, let X0 be ebedded ‘in X' with the conditions of the theorem.

Suppose

X =x‘u...uxt
o oo

is the decomposition of X0 into irreducible components, and

k(e ~Lox Ak

are the given embeddings. Then there are positive integers Npsesesny such that
0(-(an84-...4-anE)) is an ample line sheaf for

,ﬂr:x(cr)__ﬁ'R
So its inverse image i*O(-(ané+ ...+»nrxg))‘ is ample on Xo , This implies that

the other inverse images i'*O(—(an£+»...+-nrxg)) are also ample on XO (because
by the hypothesis i*O(-Xo): Lrxl'= i'*O(-Xo)) . One can then apply M. Artin's
theorem on contractions ([4], Corollary (6.10)) to conclude that there exists a

modification (see [4] for defihition):

~

where X is the formal spectrum of a complete local ring. By Grothendieck's
algebraization theorem [3], there is a scheme xt containing X0 as a closed
subscheme and such that X' is the formalization of X' along X0 ; corollary
(6.11) of [4] appljed to the subscheme XE:ZPm(k) allows us to contract XE to

a point. That is, there exists a contraction
frX!— X"

such that the formalization of f along f(XO): f(Xé)U I f(Xg_l) is a formal
blowing up with center at the closed point f(Xg) of X" . One concludes by

induction on the number r of irreducible components of XO .

3. The scheme' of r-blowing ups and a theorem of boundedness

Let
~ . TT r ~ -~
X(Cr) — X — X(C;)

be two r-blowing ups, and I, I' bethe respectives sheaves of ideals defined by
the reduced exceptional fibres. Denote by X

K
respectively by ¥+t R il :

y Xk , the subschemes defined

We want to prove the
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Theorem 3.1 (Boundedness): For every r there exists.a K such that the
formal schemes X(Cr)‘ and R(Cé) are isomorphic if and only if the schemes XK

and Xk are isomorphic.

Proof: The condition is obviously necessary for every K . To see the
sufficiency suppose the following (*) is true:
(*) "for every positive integer r there exists a A such that the r-th

blowing up

i(cr)—»i = Sp f(A) ,
with A= k[[To,...,Tm]], is the blowing up of an ideal a of A such that
ﬂcucA,

m i . . g "
where is the maximal ideal of A and ﬂ*(uox(cr)) o
It is clear that there exists a positive integer Kl such that

K

1
mOX c1I

for every r-blowing up 7 of X (it is enough to take Kl: r! and to prove it
by induction on r). Let K= (%4—1)Kl . Suppose
. ~ 1
fI>.XK~XK
is an isomorphism. This induces another isomorphism between the subschemes

10, and mA+10X,

X
an automorphism T of Spec(A/mA+l) . Let T be an automorphism of Spec(A)

defined by the sheaves . By taking global sections one gets

that induces T . Let o be an ideal of A such that
ﬂr:X(Cr)—->X

is the blowing up along o , and which satisfies the condition (*) above, then

T,{(a) 1is another ideal in X such that

T*(Q)OX(CQ)

is locally principal (to see this use Nakayama and note that T*(a)OXk: Q*(QOXK))

So the morphism
X(c.) —sp f(A)

factors through the r-blowing up

R(CH)—>sp F(A)==Sp f(A) ,

193



that is, there exists a morphism
r 1y g '
f.X(Cr)——*'X(Cr)
such that

m. =t1em' of
r r .

One concludes that f is an isomorphism; because X(Cr) and X(C;) are r-blowing

ups.

To finish one has only to prove (*). Let X be the spectrum ¢f a local

k-algebra of finite type. Onie has:

Theorem 3.2 (Representability): There exists a noetherian scheme of finite
type over k and a blowing up

ToiX—r Xx A -
n n

such that for every closed point X € An the blowing up of X induced by m.ooon
the closed subscheme X=Xx Xn of Xx An is an n-blowing up of X and every '
n-blowing up is obtained in this way. Moreover, if Py x A ~is the sheaf of ideals

n
of the subscheme xx An of Xx An, then the blowing up ﬁn is defined by a sheaf
of ideals o such that

K

4
X % An

COCC)OXXA
n

Proof: We will only give the construction of A, - The properties of An
follow from the the general properties of a blowing up and the definition of An .
Firstly it is easy to see that if

X' = X!
is a blowing up of schemes over Y , and Z is a flat scheme over Y , and
L. '
XZ = X'x YZ — 7

the map obtained by base change, then the blowing up that 7 induces on Xi is
precisely
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Construction of

be the blowing up of

be the diagonal, and

be the hlowing up of

X x y2 —Elii—»_x

A i let
n

Xi— X

1Tl., 1

X at its closed point and A, the exceptional fibre. Let

izsA‘2

x A

1772

-

Xy X AZ along iZ(AZ) . Inductively one defines

‘ITn:Xn“—" Xn-lx An.

by blowing up the closed subscheme in:A — X x An , and An+l as the fibre

over i (A ) of 7
nn n

n  “n-l
and where

i . s X
1n+l'An+l an An'+l

is the diagonal. It is clear that Xn 1s obtained from

R = XxAlx..,XAn

(with Al: x) by a sequence of blowing ups. One also has projections

foiA —> A,
1 n 1

FaXxA —XxA x...,xA
] n 1 n

be the closed immersion defined by

where nx B nAn

f = (TTX"f ‘o

1°m -.,1’n°ﬂA )

AT
n n

are the projections on the factors (with fnz IdA ) . Consider

n

X X
n

=1
=

X x A C———— R
n
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where T is the blowing up constructed above and ﬁn the one induced on Xx An

by =
(*) Follows from this, because if
meX — X

is a blowing up, there exists a closed point X, € An such that

where 7 is the blowing up induced by 7 . But 7 is defined by the blowing up
of the sheaf of ideals o  such that

K
px><A coc px><A
n n

Restricting everything to X=Xx x ~one has that 7 1is defined by the

blowing up of a sheaf of ideals a such that
K
moeacm

Moreover, one caneasily see that B:'n*(uoi) defines the same blowing up

as o , and it verifies
ﬂ*(BOX) = ﬂ*(aoi) =8 ,
with which one concludes the proof of condition (*).

Observation: The scheme An parametrizes the analytic branches in X up to
order n modulo the relation:

C~nC' if and only if the both direct the same n-blowing up.

4, Classification theorem

Let {rn}:—o be the multiplicity sequence of an embedded branch in X . We will
suppose all branches have multiplicity sequence equal to {rn}::o . Let

ﬂr:X(Cr)-—*-Sp f(A) ,

with A= k[[To,...,Tm]], be the r-blowirqup of X in the direction of a branch C
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embedded in X . We will denote by Xo the exceptional reduced fibre of T s by I
the sheaf of ideals defining X = in Q(Cr) and by L:I/I2 the conormal sheaf. Let X_

be the closed subscheme of R(Cr) defined by In+l .
To a given branch C embedded in X we associate the scheme Xl . Note that

the pair (XO,L) is part of the information Xl carries which we have defined as

the equisingularity of C asembeddedin X . In this paragraph we want to classify

embedded branches with the same, up to isomorphism, associated scheme Xl . So we

will fix the scheme Xl . The pair (XO,L) is also fixed and we will also fix, as
a reference to cla;sify, the formal scheme X(Cr)

By theorem (1.1), one knows that to classify, up to analytic equivalence,
the branches embedded in X with multiplicity sequence {rn}::o
associated pair (XO,L) amounts to classifying isemorphism classes of formal schemes

and given

obtained by r-blowing ups of X (r=h+2 i§o ri(ri- 1)2) such that their
associated pair is (XO,L) . But.by the theorem of equivalence (section 2)
to classify these classes of formal schemes is the same as to classify the
isomorphism classes of formal schemes X' which contain Xo as closed subscheme,
which are complete along X0 and such that the conormal sheaf to Xo in X' 1is
isomorphic to L and Oi‘ is locally isomorphic to Oir on X0 . Besides, by the
boundedness theorem (3.1), a formal scheme such as X' determined, up to
isomorphism, by the closed subscheme Xk of X! s, where Xk is the subscheme
defined by the sheaf of ideals I'K*' ,'I' being the defining sheaf of X_ in X'
(and K 1is a positive integer whose existence is guaranteed by theorem 3.1).

' So, it is enough ‘to classify the schemes Xk so obtained.

Consider now, for each pair of positive integers. n2m , the sheaf Autx"fxn)
of groups over X0 consisting of local automorphisms of the scheme Xn which
restrict the identity on the subscheme Xm

Denote by

T'::Autxl(xn)'—> Autxl(xn)

(for n2m21) the natural restriction maps.

Lemma &4.1. For each r>1 , the sheaf of groups Aut (Xn) is canonically

X
isomorphic to the sheaf of groups n-1

n
Derk(Oxl,L )

In particular

AutX (Xn)(——»AutX (Xn)
n-1 1

is a subsheaf contained in the center of this last sheaf of groups.
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Proof: The map

) - n
¢.Autx (Xn)——ﬁ-Derk(Ox ,L )

: n-1 1
defined by

1) =1-Id =D
‘ T

is a mofphism of sheaves of groups. The image of ® is contained in

. ; n
J*Derk(Oxl,L )

where
'-,
J.xf——»-xn

is the canonical injection. Conversely, given a derivation De Derk(OX ,1™) one
defines 0 1(D) to be !

aHD) = 1+ 1,0 = T

It is easily seen that 1, is an automorphism of X, 9iving the identity on

D

X, « The rest follows from- this.

1

Corollary &4.2. The sheaves of groups Autx (Xn) for n»>1 have resolutions
1

by sheaves of coherent Oy -modules of the form
o .

T A
Derk(ox_l,L

for 2<hsn . More precisely, the sequéences

)

i
Sy p Ay TR
(n) 0-——*Derk(0X1,L ) = AutXl

are exact, where in is defined as in the above lemma, identifying

(X)) — Autxl(Xn_l) —0

Derk(Oxl,L ) = Autx » (Xn)
n-1

To simplify the notation, let us write
= Per, (0, ,0, )OL"
k Xl X0
l.
" - Pele...eL"

Corollary &.3: For every n there exists a quotient M, of the abelian group

1,y 10e M
~ H (Xo-,D @XOG )
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and a map

£ M — (X ,0°0G6M)

n*'n o
which identifies

1
H (xo,A")
with the subset of Mn defined thg elements c&:Mn suc¢h that fn(c)z 0.
Proof: By induction.on n . For n=2 one has

1 2
Ml = H (XO,D )

and fl:O by applying lemma 5.1. If n>2 the cohomology sequence associated with

{n) gives an exact sequence

’ n
B=H (0™ s10(A" 1) o wt Ay — (A Yy S P (o)

(see [1]). The first term on the left is an abelian group and acts freelyon the left

on Hl(An) . The orbits of this action are the fibres of

mE™ = M e .

So
WA = I x B H (A" xBan  xB
We define ‘
£ o — Mo e = winedh
to be
fn-l = Fn-l °m o
where
Tr:Mn_l x B ——~>Mn_1
is the natural projection. and
?n-l = fn—l+ 9

where g : Mn_1_——»»B is equal to 5" on Hl(An_l) and is zero on the

complement.

As the sheaves OX” are locally isomofphic to 0X , they are classified by
K K
the set

H (Xl,Autxl\(XK))
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(see [1]). The quotient of this Hl by the action of the group Aut(Xl) classified -
the schemes Xk which contain Xl as ‘a closed. subscheme, and whose structure
sheaf Oxk :is locally isomorphic to OXK

From Corollary 4.3 and the considerations at the beginningof this paragraph the

main theorem of this introduction follows easily.
REFERENCES

[1] 3. Giraud - "Cohomologie non abeliane", Springer-Verlag, §3 (1971).
(2] A. Grothendieck and J. Dieudonné - "Le langage des schemes", EGAI , Publ.
Math. IHES, 4 (1960).

[3] A. Grothendieck and J. Dieudonné - "Etude cohomologique des faisceaux cohe-
rents", EGA ITI. Ibid. 11 (1961), and 17 (1963). '

[4]- M. Artin - "Algebraization of formal moduli II: Existence of modifications",
Annals of Math., 91 (1970), 88-135.

[5] 0. Zariski - "Le probleme des modules pour les branches plénes" - Hermonn,
Paris, 1986.

200 -



