. J. STEENBRINK . L
Mixed Hodge structures and singularities : a

survey

Introduction. In the last ten years a link has been laid between

two ratner remote parts of geometry: the theory of mixed Hodge
structures and the study of isolated singularities. At the base of
this development stands P. Deligne, who in a talk at the monodromy
colloguium in Metz 1974 gave a first indication of possible
developments.

The first publications in this direction deal with mixed Hodge
structures on the vanishing cohomology of isolated hypersurface
singularities [21,22]. The description of the Hodge filtration,
however, was complicated and depends on resolution of singularities.
A. Varchenko [30] gave a direct description of this Hodge filtration
connecting the mixed hRodge structure with asymptotic developments
of integrals of holomorphic forms over vanishing cycles. F. Pham [16]
and M. Saito [17,18] gave a description in terms of D-modules, after
previous attempts by J. Scherk and the author {(see [191]).

These two descriptions of the Hodge filtration on the vanishing
cohomology have led to a very useful invariant for hypersurfaces:
the spectrum, which is semicontinuous under deformation in a certain
sense. We treat this development in §§1-6.

The local cohomology groups of isolated singularities also
carry a mixed Hodge structure. Their study was started in [10] and
[24], see §8. Together with Du Bois' result about the filtered
De Rham complex [1] and vanishing results about its cohomology
sheaves (§7) this leads to very general statements about extendability
of differential forms near singularities [28]. In the same spirit we
describe an application to the relation between Milnor number and

Tjurina number of complete intersections in §9.

We nave not treated all known results about mixed Hodge
structures and singularities. We omitted the D-module theory and its
applications. Also we focussed on the local rather than the global
aspects or tne tneory.iowever,we hope to give a good impression of the

fascinating and unexpected patterns which came out.
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1. What is a mixed Hodge structure?

If X is a compact Kahler manifold, its complex cohomology groups

admit a Hodge—decomposition

x,0) = @ wPIx)
p+g=m
with Hp’q(X) = Hq’P(X). This can be understood in the following way.

The Kahler metric on X determines a Riemannian metric and hence a

Laplace operator
A = dé§ + é&d

where ¢ is the adjoint of d. A differential form w on X is called
harmonic if Aw = 0. It was shown by Hodge that each cohomology class
of X contains precisely one harmonic form.

On the other hand, on a complex manifold each complex-valued

differential form of degree m admits a canonical decomposition

- p,q
):p+(_{=muu
where each oP’'? ig of type (p,q), i.e. in local holomorphic
coordinates (zl,...,zn) on X we have
P, - e =
wtrt = ¥ a. . . dz. A..Adz, AdzZ. A..ardz.
ll...lp]l...jq i, lp i jq

The main point of Hodge theory for Kdhler manifolds is that wvis
harmonic if and only if all wPr9 are harmonic, and also y is harmonic
if and only if w is. Thus it makes sense to speak about cohomology
classes of type (p,q) and the Hodge decomposition is a corollary of
these facts if we let Hp’q(X) be the space of cohomology classes of
type (p,q).

A crucial step towards mixed Hodge theory was the idea to

replace tne Hodge decomposition by the Hodge filtration F': one poses

FPe"(x,c) = gP/™P ¢ yPtl,m-p-1 o om0

100



i.e. FP consists of classes represented by forms with at least p dz's.
It was introduced by Griffiths, who observed that in a family the
spaces HP'9 4o not form a holomorphic subbundle of the fibre
cohomology, whereas the FP do give holomorphic subbundles.

It is the Hodge filtration which generalizes to part of the
structure of the cohomology of singular (or non-compact) complex
algebraic varieties. Observe that the Hodge filtration again

determines the hodge decomposition: one has

pPrd(x) = FPEP*9x,0) n FWPT9x, Q) .

These data give rise to the concept of a Hodge structure. A Hodge
structure of weight m is given by a finitely generated abelian group
H,, , together with a finite decreasing filtration by C-linear

subspaces

F= (...oFP>pPtl )
on d, ® L , in such a way that K, ® C = FP o PP £0r cach p.
Putting gPr™P - P 4 f™P , one obtains a Hodge decomposition as
before. The filtration F is called the Hodge filtration.

To see what happens in the singular case, suppose that X is a
compact complex algebraic variety with only one singular point.
Suppose that we can resolve the singularity by blowing up the point
once and that the exceptional divisor becomes smooth. Let n: Y » X
denote this blowing-up and let D be its excepfional divisor.
Topologically one may consider X as Y/D so we have the long exact

cohomology sequence

q g+l
coe > #Yy) &5 w¥30) - BTN x) - BT (y) & gTL(p) o

Here o 1is just the restriction mapping. The idea is to consider
Hq+l(X) as the extension of Ker(aq+1) by Coker(uq). as o9 preserves
the Hodge decomposition for all q, it is easily seen that coker (a9)

is a Hodge structure of weight g, whereas Ker(uq+l) is a Hodge struc-—

ture of weight g+1l. Hence Hq+l(X) carries a weight filtration:
. - - q _ 9+l
Wq—l (0), Wq Coker (a™), W§+l H (X)

such that each Wi/wi—l carries a natural Hodge structure of weight

i. Deligne observed that the Hodge filtrations on these Wi/Wi— are

1
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in fact induced by one filtration F on Hq+l(X,¢), as we will see be-

low., Thus one is led to the following definition, due to Deligne.[3]:

A mixed Hodge structure is a finitely generated abelian group
H.ZZ , together with a wéight filtration W. (finite and incfeasing) on
HE’ defined over @, and a Hodge filtration F (finite and decreasing)
on HE’ such that Wm/Wm_1 inherits a Hodge structure of weight m for

each m. Here the induced Hodge filtration on Wm/wm—l = er is given as

P. W R <}

FGr Hy = F° o W+ W _ /W . .

In [3,4] Deligne developed a theory which provides the cohomology of
each complex algebraic variety with a canonical mixed Hodge structure
which is functorial in the following sense: for each morphism

$: X > Y the map ¢*: H'(Y) > HEY(X) maps WiHm(Y) to WiHm(X) and FPHE™(y)

to FpHm(X), i.e. ¢* is a morphism of mixed Hodge structures.

It is known that every morphism of mixed Hodge structures is in
fact strictly compatible with the Hodge and weight filtrations, i.e.

for ¢* as above we will have

{Im o* n FPET(X) = ¢*FPE™(v) ,

Im ¢* n WiHm(X) ¢*WiHm(Y)
We will see below that exactly this property makes the theory of
mixed Hodge structures very useful: the category of mixed Hodge struc-
tures is thus very similar to a category of graded objects.
The main gquestions concerning mixed Hodge structures and singu-

larities are the following:

1. What is the behaviour of the {(mixed) Hodge structure on the
cohomology of fibers in a family,when the fibers acquire (more)
singularities?

2. How are the singularities of X reflected in the mixed Hodge

structure?

Of course these questions are strongly related, as often singularities

are studied by deforming them.
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2. Mixed Hodge structures for singular varieties.
* ; -

The coﬁstruction of a mixed Hodge structure on the cochomology
of a complete singular variety is based on the same idea as was used
in the preceding section: one expresses this cohomology in terms of
cohomology groups of nonsingular varieties which have pure Hodge

structures. The general construction uses semisimplicial resolutions.

n n+l n
Let AT = {(xo,...,x ) eIR xizo,zi=0 xi=l} be the standard
n-simplex and let
n-1 n .

si,n: A > A (i=0,....,n)
be the map given by

(XO""’Xn-l) - (xo,...,xl 1,0,xi,...,xn_l).
One has the obvious relations

®i,n%%j,n-1 - ®5,n°%i-1,n-1 (+>3).

A semisimplicial  variety is a collection of varieties

(X_,X

nl n_ll"-lxllxo)

together with a collection of morphisms

etrd, Xq > Xq_l p ? =1,...,n,
i=20,...,9,

satisfying the dual relations

EJ rq‘loequ = El'erI'loe] d (i> J) .
In more sophisticated terms, one may define a category consisting
of all Al, 0 £i<n with morphisms compositions of the €4 , and
'
define a semisimplicial variety as a contravariant functor from this

category to the category of (complex) varieties.

Suppose tnat X is a semisimplicial variety such that all Xq
are nonsingular and complete and suppose ¢: X0 + X is a morphism.
We consider on X the follow1ng sheaf complex < First observe that by
composition of any chain of ¢ ’j's with ¢ we obtain unambiguous maps
ej: X. » X
J

Let Aé denote the sheaf complex of c” complex valued differential
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forms on X,. Let
J

N
q _ = r ,g-r
Al = =0 %« AX
and define
) q g+l
d: Ay > Ag
by
g(wo, .,wq) = (dwo;e*w0+dwl,...,e*wq_l+dwq,e*wq)
where
r+1 . .
+ +1
e o) = 3 (T T g )
j=0

so ¢  is an alternating sum of pull-back mappings. In case the

sequence

1
X oo

is exact, we say that X » X is a semisimplicial resolution of X.

0 - EX f Ag - A

gxample. If X has only one singular point x, and n: ¥ - X is the
blowing up, and moreover Y and D = n_l(x) are smooth as in section 1,

then we can take:

X =Y u {x}

€ : D » {x}

€ : D > Y the inclusion

m
|.<
¥+ =3

X and {x} > X

Outside x Aé coincides with Fhe usual De Rham complex so the Poincaré
lemma guarantees that EX - AX is exact. If U is a small neighborhood
of x in X, then exactness on U follows from the fact that

Hi(n_l(U))i+ Hi(D) (by a homotopy argument) and some diagram chasing.

Example. Let D = Dl UeoaU Dk be a variety with normal crossings:
locally analytically D is isomorphic to a union of coordinate hyper-

planes in En+l where n= dim D. Let
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X, =, 4 . D, n...n Dy (disjoint union)

] <. <y i i
and let ¢977: Xj - Xj_1 be given by inclusions
Di Neson Di > Di Neoon Di n Di N...n Di -
1 j 1 g-1 g+l 3

"hen X, is a semisimplicial resolution of D.
If X >~ X is a semisimplicial resolution of X, we have iso-

morphisms

E(X,@) > B (T(X,A)

because A% is a flabby resolution of X. We will use this to define

the Hodge and weight filtrations on Hm(X,m). We define

p . _ @ &) T pl°
{F Ax r2p p'2p “« X
WA, = e ef Ay

kX re—k * r

These are subcomplexes of A%, satisfying

AX =F o F o5 ..
AX = W0 > W_lD .
We let
FPE™(X,T) = Image of Hm(F(X,FpAk))

in HYM(X,T);

{

Image of Hm(P(X,Wk_mA%))
in (X, T) .

m
W H (X,C)

The main facts which make this idea work are:

1) For every complete complex algebraic variety X there exists a

semisimplicial resolution (even one such that dim Xr < dim X-r);

2) The resulting filtrations W and F on Hm(X,¢) do not depend on the

choice of the semisimplicial resolution and determine a mixed
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Hodge structure.

Proofs of these facts can be found in [13]. Deligne's original ap-
proach is by simplicial schemes which give necessarily an infinite
tower of spaces,and is more convenient for proving functorial proper-

ties.

3. Variation of mixed Hodge structure.

Suppose that we have a projective morphism f : Y - U where U is a
complex manifold and Y is a reduced analytic space. Assume that f is
surjective with connected fibres. Let Y -+ Y be a semisimplicial reso-

lution of Y, and for u ¢ U let Yi(u) be the fibre of fi : = fosl:Yi+U
over u. Then we have the following '

LEMMA. There exists a Zariski-dense open subset U' of U such that
Y (u) » Y(u) <s a semisimplicial resolution of Y(u) for all u e U'.

Proof. This is a simple consequence of Sard's theorem; it suf-
fices to take for U' the intersection of the sets of regular values
for all fi. 0

Let us take U' as in the lemma. Then R@ﬁkEY}U. will be a locally

constant sheaf on U' and its sheaf of holomorphic sections

m _ .
HY'/U' = R f* EYIU' ® (EOU'

admits a filtration by holomorphic subbundles Fp, where
FP(u) = FPE™(Y(u), )
Moreover we have a Griffiths transversality property:

viP < P e o,

m m 1 . . .
where Vv : Hy'/U' - HY'/U ® Q5 is the connection given by
V(vwg =vewdg

for v,g local sections of R EY/U‘ and q}, respectively. Moreover
*
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the weight filtration on each Hm(Y(u),E) induces a filtration w_ of

H which is horizontal,i.e.

m
Yy'/u!

1

V(Wr) c wr ® QU'

because it comes from a filtration on the underlying local system. In

other words:

F' W)

m
(RS, €y pyur P oW

is a variation of mixed Hodge structure on U' (see [9,27,29]).

This concept generalizes the variations of Hodge structure,
introduced by Ph. Griffiths, in an obvious way. We will need a study
of its asymptotic behaviour near the boundary of U'. To do this, we
specialize to the case that dim U=l.

So let S be a disc in €, centered at 0 and let s*= s ~ {0}. Let
WV be a local system on s*and assume for simplicity that the monodromy
transformation T of V is unipotent. (In the geometric case, the mono-
dromy theorem assures that we can always achieve this situation by a
finite base change).

Let V be the space of multivalued horizontal sections of V. If

5, is the upper half plane in € and e : S_~ S*, e(u) = exp 2wiu, then
x,
V =T(S_,eV)

Let V = W’@b OS*' We define an extension V of V to a locally free

0_.-module as follows. Define a linear map

S
*
@ : V~>T(5_,e V)
by
¢ (v) (u) = exp(u log T)v(u)
As ¢(v) (utl) = ¢(v)(u) for v ¢ V, ¢ maps V isomorphically to a sub-

space of F(S*,V), which generates V at each point as an OS*—module.
We let

V= a(V) ®E OS “
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Then V extends to a connection with logarithmic pole on V. We can
apply thls constructlon to HY/S* as well as to its subsheaves wl if
f:Y+ S is a proper morphism which is locally trivial over S*

In the case of a (pure) variation of Hodge structure (with
polarization) W. Schmid has proved that the bundles FP also extend
to subbundles FP of ¥ and that the pure Hodge structures on each
V(s), s # 0, tend to a mixed Hodge structure on U(O)with integral
lattice @(V%) and Hodge filtration F*(0). The weight filtration is
determined by the monodromy T on V(0) in the following way. Let
N =1log T = -27i ResO(V) ¢ End(V(0)). Then N is nilpotent. It is a
simple exercise in linear algebra to show that there exists a fil-

tration L on U(O) wnich satisfies

- L is a finite increasing filtration;
- N : Ly » Li—2 for all i
k ~ :
*i N : Lk/Lk—l - L—k/L—k—l for k = 0.
Moreover L is hniquely determined by these conditions. We let
Mi = L, where m is the weight of W. Then

i1-m

(¢(Vy) e V(o), M ,F(0))

is a mixed Hodge structure which is called the limit mixed Hodge
structure of V. See [20] for much more pPrecise statements.

In [21], the author proved these results in the geometric case
by an explicit construction of the limit mixed Hodge structure. If
f : Y > S is smooth and proper over S* and D = f_l(O) is a union of
smooth divisors which is reduced and has normal crossings, then

m

V =R"f, (27, (log D))

Y/S
and the mixed Hodge structure on

~ _ o .
V(0) =H (D,QY/S(log D) ® OD)
is obtained by an explicit resolution

Qé/s(log D) ® OD -~ A
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and by lifting of F,M and N to filtrations and an endomorphism of A" ".
In [5] P. Deligne sketched how the situation should look like in
tne mixed case. There should exist a limit Hodge filtration as before
which on the quotients GrﬁOy ~induces the limit mixed Hodge struc-
ture of W. Schmid. Moreover the weight filtrations of these graded
quotients should be induced by a filtration M on V(o) satisfying
N(My) e My,

Deligne's conjecture, which arose from analogy with the £-adic

for all i.

case, has been verified by several people since: F. El Zein £7,8,91,
S. Zucker and the author [27,36], F. Guillén, V. Navarro Aznar and
F. Puerta [13] and Ph. du Bois [2]. All of their proofs use some
generalization of the complex A°" with suitable filtrations and endo-
morphisms.

It should be remarked that the existence of the filtration M
already gives restrictions for the filtered local system (V,W)without
any reference to a Hodge filtration. See [27,§§ 1-3] for a detailed

discussion.

4. Vanishing cycles.

If £f : Y » S is a proper morphism which is locally trivial over
the punctured disc S*, the construction of §3 provides one with a

complex K" (Y_) on YO, equipped with filtrations F,W and M such that
B (Y, K (Y,)) = H'(Y_,T)

where Y _ =Y Xg S,which is homotopy equivalent to the general fibre
of f£. Moreover F and M induce the limit mixed Hodge structure on
HY(Y_,T).

On the other hand, the construction of §2 gives a complex K'(YO)

on Y equipped with filtrations F and W, such that

OI

m

m . .
(YolK (YO)) = H (Yorq:)

H
and F and W induce the usual mixed Hodge structure on Hm(YO,E). The
relation between these two mixed Hodge structures is the following.

There exists a morphism of complexes

sp’: K*(Y,) = K™ (Y )

®
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which maps FP to FP and Wj to Mj' We let R® denote the mixed cone
(in the sense of El Zein [61) of sp*. It carries also filtrations
F and W which define a mixed Hodge structure onZHm(YO,Ré). One calls
R¢ the sheaf of vanishing cycles of f£. It measures the difference of

special and general fibre locally. If Y is smooth and f has an iso-
lated critical point,:ﬁm(Yo,R@) is isomorphic to the m-th reduced
cohomology of the Milnor fibre of f. By construction one obtains a

long exact sequence of mixed Hodge structures

~ H'(Y,) » EN(Y,) -~ E"(Re) Hm“(yol) - ...

5. Application to deformations of complete intersections.

Let (XO’X) be an isolated complete intersection singularity.

Then there exists a miniversal deformation

of (Xo,x) where U is smooth (as well as X). It is not hard to show

that there exists a projective map
F:Y->1U

where Y is a connected complex manifold containing X as an open subset,
such that f = F‘ and F has no critical points outside X ([26], Lem-
ma 2.5). We are going to apply the constructions of §4 by choosing
arcs h : S - U and considering the induced deformation h”* (X) over S.

First observe that there exists a complex analytic stratifica-
tion of U such that the map F is locally trivial over each stratum
of U. The arcs we consider will map the punctured disc s* to one
single stratum, so the induced family over S will be locally trivial
over S*.

In general the mixed Hodge structure on the vanishing cycles of
h” (X) will not only depend on the type of the flbres, i.e. the two
strata in the image of h, but also on the way h(s* ) approaches the
lower stratum.

Example. Consider two smoothings of the cusp
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>
It

C £, Gey) = X0y
and

X, = V(xz—y3-t7-txy) c E3,f2(x,y,t) = t.
The mixed Hodge structure onIHl(R@) is purely of weight one in the
case of Xl’ but in the case of X2 it will be an extension of Q(-1)
by @ (here Q@(~-i) is the 1-dimensional Hodge structure which is purely
of type (i,i)). This can be concluded from the fact that X2 has a
singular point of type T2'3’7 and this forces the monodromy of f2 to

be of infinite order.

To obtain numbers which are independent of the choice of the arc
connecting two given strata we must forget about the weight fil-
tration onIH*(Ri) and look at the Hodge filtration alone.

For any u ¢ U, consider an arc h : (s,0) - (U,u) such that h(S*)
consists of regular values of F. The fibre F_l(u) = Yu will have
only isolated complete intersection singularities and the general

fibre of h™(¥) will be smooth. We define for p ¢ N
= i p]Hn
sp(u) dim Grp (R@h).

By the exact sequence at the end of §4 and the fact that Milnor
fibres of isolated complete intersections have only cohomology in
dimensions 0 and n we obtain that
_ o0 RN P p,nti _ 34 p,,nti

sp(u) Li_p(~1)7{dim GrpH (Y )- dim GrpH (Yu)}
if v is any regular value of F. Hence the functions sp: U + ZZ do not
depend on the choice of h so they are well-defined and constant on
each stratum of U.

Lemma. The functions sp are upper semicontinuous on U.

Proof. Suppose u;,u, € U and u, is in the closure of the stratum
of u,. Choose an arc h: (S,0) - (U,uz) such that u, e h(S*). Then
one computes that

1

1M1



- = dim crP 10 (ra
) sp(uz) dim Gri H (R@h)

s _(u o

p 1

because:Hr(R@h) =0 for r # n by a result of G.~M, Greuel [12, Lem-

ma 3.21].
O

6. The spectrum of isolated hypersurface singularities.

In the isolated hypersurface singularity case the preceding
lemma can be refined as follows. First, the exact sequence of the
end of §4 can be simplified by choosing a suifable globalization. In
fact, J. Scherk has observed that, if deg(F) is suitably large, then
the map

B%(v_) > H(R®)

is surjective (for the "standard" smoothing of the hypersurface).

As:Hm(R@) = 0 for m # n, we obtain the short exact sequence
*
(%) 0 > HM(v)) SReu(y) ~H'(RY » 0 .

The monodromy T acts on this sequence. There are two fundamental

properties:

(1) as Y is nonsingular for the standard smoothing, the invariant

cycle theorem can be applied, which states that
* n
Image(sp ) = Ker(T-I;H (¥_)) :

(2) the semisimple part TS of T preserves the limit mixed Hodge

structure.

It follows that all data of the sequence (x)are determined by the
pair (Hn(Ym), T). Let N = log Tu where Tu is the unipotent part of
1. Moreover let

’ =27ia

Hn(Yw)a = Ker("I‘S - e ) for -1 < a < 0 .

Then
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n n

7 =
HANy,) = ST By .
We have a similar decomposition forZHn(R¢) and it follows from the

above that

n

n n
H (R@)a H (Ym)a , 1 <a < 0 ;

Hn(R®)0 2 Hn(Ym)O/Ker(N).

For o = 0 we have

k M n . M m

N© : Gr . H (Re) —— Gr _, B (Re)
but for a = 0:

k M n - M N

NP2 Gy B(RO) g = Grp oy HO(RD)

To define the spectrum of the isolated hypersurface singularity
(XO,O) we consider its standard smoothing and take for the spectrum
the unordered u-tuple al,...,au of rational numbers such that the
frequency of a number o in the spectrum is equal to the multiplicity
of e_2“ia as an eigenvalue of Ts acting on Gr?iHn(R@), where

p = [n-al.
Some properties of the spectrum are immediate.

(1) As Grgiﬂn(Ré) =0 for p < 0 or p > n, each spectrum number a

satisfies -1 < a < nj
(2) The two-fold symmetry on H" (R¢) by Nk as above and by complex
conjugation can be used to show that the frequency of ¢ in the

gspectrum equals the frequency of n-1-a.

A third important property is the following.

(3) Let £ E{zo,...,zn}, g e m{yo,...,ym} have isolated critical

points at 0 with spectra {ul,...,au} and {8 "’Bv} respectively.

1’°
Then the function germ f+g ¢ E{zO,..,zn,yo,..,ym} also has an
isolated critical point with spectrum numbers o+ Bj + 1 (with

their obvious multiplicities).
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The method of proof of this property; however, is completely
different. It uses Varchenko's description of the Hodge filtration,
see [19] or [311].

As a consequence of (3), the spectrum of f(z cerZ ) + 24

0"~ n+l
(d e N) consists of a sum of copies of the spectrum of f shlfted
by /9, 2/q,...,(g-1)/q . Each of these copies belongs to some
g _

1

b Cz .

eligenspaces for the action of &/q% by z

n+1 n+tl ' °©

Finally one has the important

(4) semicontinuity of the singularity spectrum.

To formulate what this means we choose a semi- -universal
deformation f: X » U of our hypersurface (Xo,x) For u ¢ U we let
DI be the union (with multlpllcltles) of the spectra of all critical

points of f in the fibre X (u) = f_l(u). For A c R and u ¢ U we let

s(A,u) = sum of the frequencies of the numbers
of Zu which lie in & .

In particular, for a (a,a+1] with a ¢ %Z , we recover the function

I

sp: U+~ % , with p n-a-1 .

The subset A of R is called a semicontinuity domain for deformations
of isolated hypersurface singularities if these functions s(Aa,-)
are upper semicontinuous on U. It follows from the lemma in §5

that each interval (a,a+1] with a ¢ Z is such a semicontinuity domain.

Theorem. For each a « IR  the interval (a,a+l] is a semi-
continuity domain for deformations of isolated hypersurface

singularities.

This theorem has been conjectured and partially proved by
A. Varchenko [33], and a general proof by the author [26]. In fact it
is an easy exercise now: first observe that it suffices to prove the
theorem for a ¢ ® . Then use property (3) above to shift the spectra
in a given deformation over a rational distance.

An important consequence of the semicontinuity of the spectrum
is the semicontinuity of the lowest spectrum number, which is one
less than the complex singularity index of Arnol'd-Malgrange. Again
this was proved by Varchenko in the special case where the smallest

Spectrum number is negative in a deformation [34].
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Another consequence: in a p-constant deformation of a hypersurface
singularity the spectrum numbers remain constant. This was proved
before by Varchenko [32].

A very nice application of the semi-continuity gives an estimate
of the maximal number of singular points that may occur on a
projective hypersurface of given degree and dimension [33].

Finally the semicontinuity property gives a priori necessary
conditions for adjacency of isolated hypersurface singularities.
For certain classes (unimodal singularities) these are even
sufficient ([111). '

7. The filtered de Rham complex.

et us return to the construction of the bifiltered complex
Aé of §2. It is clear that this depends heavily on the choice of a
semi-simplicial resolution of the singular space X. However,
Ph. du Bois [1] has shown that it is again useful to forget about
the weight filtration W and to consider the complex Ai together
with its single filtration F : the Hodge filtration. The filtered
complex (AQ,F) is unique in the following sense: suppose one has
two semi-simplicial resolutions X  and X! of X, giving rise to

filtered complexes
(AgsF) and ("AgF) -
Then there exists a third filtered cqmplex ("AQ,F) and a diagram

. i1 Wit v .
(Ags/F) % ("Ag F) T (AL, F)
where u and v are filtered guasi-isomorphisms. (Such a pair
(u,v) corresponds even to a canonical isomorphism in the filtered
derived category of sheaves of T-vector spaces on X).

We call (Aé,F) the filtered de Rham complex of X .It should
be remarked that, if X is an algebraic variety, there exists an
algebraic version of tnis construction, which has been considered
by Du Bois.

The differentials in the complexes GrgAé are OX-linear and their

cohomology sheaves

q Py
H (GrFAX)
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are coherent Ox—modules ([1]1, Prop. 4.4). These have been studied
by Guillén, Navarro and Puerta [13] and the author [25]. In
particular, if "X is itself smooth, then

{ Hq(GrgAé) =0 for q # p ;

p
QX

p Py
H (GrFAX)
If 7: ¥ » X is a resolution of X, then

0 for g #n

Qe Dye

1

1 Hn(Gr;A;) T 50

*

(n = dim X)

[ot 3 =]

This is a rewritten version of the vanishing theorem of Grauert and

Riemenschneider. In general one has
HY(GrPAl) = 0 if gq<Pp or g >n
F X
(C13], 6.7, [25] Main Theorem). If X has normal isolated

singularities and n: ¥ + X is a good resolution with exceptional

divisor D which has normal crossings, then

12

Ox

{ HO (GroA)
RT™Pr aP(logp) (-p) for (p,q) # (0,0) .
X

12

- q p -
H (GrFAX)

(see [25], Corollary (3.4)).

So we obtain
an*QE(logD)(—D) =0 for p+g > dimX.
X

This appears to be a very useful vanishing theorem in the study of
isolated singularities. For example, if (X,p) ¥ x,x) is a good
resolution of an isolated singularity of dimension n and o is a
holomorphic p-form on X\{x} where P < n-1 , then w extends to a
meromorphic form on X which has at most a logarithmic pole along D.

In fact one can do better, see the next section.
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8. Local cohomology .

Another ingredient of "local Hodge theory" for the study of
isolated singularities is the following exact sequence. Let (X,x) be
an isolated singularity of dimension n 2 2 and let m : (X,D) - (X,x)
be a good resolution. Assume that X is a contractible Stein space.
Then D is a deformation retract of X, so Hi(i) = Hi(D). As D is a
complete algebraic variety, this provides Hi(R) with a mixed Hodge
structure.

One always may put X as an open subset inside a projective
variety Y with only one singular point x. Then the local cohomology
groups Eﬁkx}(Y) = H}X}(X) carry a mixed Hodge structure by the
general construction of Deligne [4]. It can be shown that this mixed
Hodge strucure on H%X}(X) does not depend on the choice of Y (see e.q.

[241,51). Because X is contractible, we have
i ~ ~i-1
H{X}(X) — H (X~{x1}).

Let M = 35X which can be supposed to be a (2n-1)-manifold, homotopy
equivalent to X~{x} = X~D. The isomorphism above provides H' (M) with
a mixed Hodge structure. Consider the exact cohomology seguence of

the pair (i,i\D):

I N I I Hé(f{) > HY(X) » HY(X~D) ~+ ..

I [ I |

. s a. . .
(x) ~ETr) - ELE-SEID H W) .

Theorem. (1) The sequence (*) is an exact sequence of mixed Hodge
structures (see [24],(1.10)).
(2) (Goresky-MacPherson). The maps a, are injective for i < n and

surjective for i 2z n. (ibid, (1.11)).
The proof of (2) by Goresky and MacPherson uses the decomposition
theorem of intersection homology. One can find a Hodge-theoretic

proof of (2) in [15].

The Hodge filtration levels of the mixed Hodge structures in

(#*) have been computed in [24]. In particular one has
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JFPHP(M,E) = HO(D,9§(1og D) ® 0p)

and

FPuP(p, ) = HO(D,9§/9§(log D) (-D)) .

The fact that ap is injective for p < n gives that the natural map

O(D,R%(log D) ® 0,)

1% (p,9B/2B (log D) (-D)) - H
XX

is surjective for p < n-1. One can use this to show that every mero-
morphic p-form on X with logarithmic poles along D is in fact holo-
morphic on X provided that p < n-1.

By the result of §7, each p-form on X~D is already logarithmic along
D for p £ n-2, so these forms extend over X. A local computation
shows that the same holds for closed (n-1)-forms on ¥~D. See [287 for

more detaiis.

9. Milnor number and Tjurina number.

We preserve the notations of the preceding paragraph, but we

take (X,x) to be an isolated complete intersection singularity of

dimension n 2 2. The dimension v of the base space of a semi-universal

deformation of (X,x}) is called the Tjurina number, and the nth Betti

number of a nonsingular fibre in this deformation is the Milnor
number L.

It has been proved by J. Wahl for n=2 [35] (even for smoothable
Gorenstein surfaces) and by E. Looijenga and the author for n 2z 2,

£14] that p 2 7. In fact there is a formula

=t = 2"t (0) - n® @57  (1og D) (-D)) + a +a

1 2+a

3

wnere al,az,a3 are non-negative constants to be defined below. Ob-
serve that the other two terms are Hodge numbers

.n-1 s 0 ..n-1
h (OD) = dim GrF H (D,T)

1

h°(9§'1/9§'1(1og D) (-D)) = @im Grp 'B" Y(D,q)
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and the inequality

Liy,@y > aim 6™ 8™ 1 (0, @)

. 0..n-
dim GrFH -

follows from the fact that Hn—l(D,m) has a mixed Hodge structure with

weights < n-1l. Hence, if

r,s _ . r. W n—1
h = dim GrFGrr+SH (D,C),
we have dim Grn_lHn—l(D,E) = hn_l’obut dim Gran_l(D,m) =
hO,n—l + hO,n—z + ... + h0,0_ Moreover by complex conjugation
nf’® = n%'Y, so we have our inequality.

New to our invariants ajray,as. Consider the differentiation

map {(where U = X~{x}):

0,.n-1 0, n-1 .0, _n 0.,.n
a, : HO(ey T)/H (2% ) - H(a5) /H (8(D)).
Because HO(QQ—l) = HO(R§_l(log D)) and d : Hé(9§_l(log D))-+Hé(ﬁ§(D))

is injective ([14]) it follows as in [28] that d1 is injective.

We have

a, = dim Coker dl.
Moreover

a, = dim HO(9§)/dH°(9§'1),

a, = dim Coker[HO(QETil) - Grg_lHn—l(D,E)]
where cl stands for closed forms. (Observe that closed (n-1)-forms

on U extend holomorphically on ¥ and thus can be restricted to D to
give elements of Gr;_lHn_l(D,m)).
In the two-dimensional Gorenstein case Wahl has shown that

a =a3=0 implies that the singularity is either quasi-homogeneous

=a
1 72
or a cusp singularity. The key is a result of Scheja and Wiebe: a
complete normal local ring of dimension two which admits a non-nil-
potent derivation possesses a good C*-action. Their result also

holds for isolated complete intersections of any dimension.

To see how this works, suppose (X,x) 1is a two dimensional Goren-
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stein surface singularity with al= 0 but dl#,o. Then one has that
the Gorenstein 2-form @y on X has a pole of order at least 2 along
some component C of V. Wahl shows that there exists a C like this

wnich nas either genus > 0 or C is rational with at least 3 inter-

section points with other components (work on the minimal good

resolution).

Because d1 is bijective, there exists a 1-form n on U such that
wo = dn mod HO(QE(D)). On the other hand, there exists a unique deri-
vation ¢ of OX such that n = iﬁwo, because @q is nowhere vanishing

on U, Thus

= di w. mod H0(9§(D))-

() @ %0

0
Any automorphism of (X,x), hence any derivation of OX’ lifts to the
minimal good resolution. So ¢ extends over X; it will be tangent to
C and vanish at the intersection points of C with the other compo-
nents of D. The assumptions about C imply that ® vanishes identical-
ly on C. (Exactly this argument is missing in higher dimension). In
local coordinates x,y gn i, C is given by x=0, and @y = x_kdx A dy,

k22, 9 = ax 5§ + bx 5y One checks easily that (%) implies that x

does not divide a. It follows that ¢ is non-nilpotent.
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