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HOMEWORK ASSIGNMENT 1

ORR SHALIT

Solve all exercises in the lecture notes. Hand in 2 of the exercises 1–4
and five of the exercises 5–15.

Let X be a locally compact Hausdorff apace. A continuous function f on X is
said to vanish at infinity if for all ε > 0 there exists a compact set K ⊆ X such that
|f(x)| < ε for all x ∈ X \K. In this exercise we will use C0(X;R) to denote the
space of continuous real valued functions vanishing at infinity on X, and we will
use C0(X) to denote the space of continuous complex valued functions vanishing
at infinity.

Exercise 1. Let A ⊆ C0(X;R) be an algebra that separates points of X, in which
there exists, for every x ∈ X, a function f ∈ A such that f(x) 6= 0. Prove that A
is dense in C0(X;R). Deduce the complex valued version of this theorem.

Exercise 2. Prove directly that the (real) polynomials with zero constant coefficients
are dense in C0((0, 1];R).

Exercise 3. Let T be a compact Hausdorff space, and let W ⊆ T be a closed subset.
Let B be an algebra of continuous functions on T such that

(1) For all f ∈ B, f
∣∣
W

= 0.

(2) For every t1, t2 ∈ T \W , there is an f ∈ B such that f(t1) 6= f(t2).
(3) For every point t in T \W , there is an f ∈ B such that f(t) 6= 0.

Then the closure of the ∗-algebra generated by B in C(T ) (i.e., the algebra generated
by all f and f , f ∈ B) is equal to {f ∈ C(T ) : f

∣∣
W

= 0}.
Exercise 4. Make a series of drawings or figures to accompany the proof of the
Stone-Weierstrass Theorem.

Exercise 5. For one of the following spaces G, decide (and prove) whether or not
it is a Hilbert space.

(1) G = PC[a, b].
(2) G = `2(S), where S is an uncountable set.
(3) G = L2

a(D), which is defined to be the set of all analytic functions f : D→
C, such that

∫
D |f(x+ iy)|2dxdy <∞, with inner product

(f, g) =

∫
D
f(x+ iy)g(x+ iy)dxdy.

(4) G = H2(D), which is defined to be the set of all analytic functions f : D→
C with Taylor series f(z) =

∑∞
n=0 fnz

n, such that
∑∞

n=0 |fn|2 < ∞, with
inner product

(f, g) =

∞∑
n=0

fngn.
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Exercise 6. Regarding each of the following statements, decide whether (a) it is
true (b) it is false (c) you don’t know, but assuming the continuum hypothesis it
is true (perhaps some are related to others).

(1) Let G1 be a linear, dense, not closed subspace of `2(N). Let G2 be a
linear, dense, not closed subspace of L2[0, 1]. Then there exists a unitary
map from G1 to G2, i.e., there is an isomorphism U : G1 → G2 such that
(Ug,Uh) = (g, h) for all g, h ∈ G1.

(2) Every Hamel basis (i.e., a basis in the sense of linear algebra) of `2(N) has
cardinality 2ℵ0 .

(3) In an inner product space, every two complete orthonormal systems have
the same cardinality.

(4) Two inner product spaces G1 and G2 are isomorphic if and only if for
every complete orthonormal systems E1 in G1 and E2 in G2 have the same
cardinality.

(5) In an inner product space, every closed o.n. system is complete.
(6) In an inner product space, every complete o.n. system is closed.

Reminder: recall that an o.n. system {ei}i∈I in an inner product space G is said
to be closed if for all x ∈ G, ‖x‖2 =

∑
i∈I |(x, ei)|2.

Exercise 7. Let fn be a sequence of continuous functions on [a, b], and let f, g ∈
C[a, b]. Suppose that fn → f in L2 and that fn → g uniformly. Prove that f = g.
(**) What can be said if fn is known to converge to g only pointwise, rather than
uniformly?

Exercise 8. Let f ∈ C1[−π, π] such that f(−π) = f(π). Prove that the Fourier
series for f converges uniformly to f . (Use only material from Infi 2 and things
that you learned in this course).

Exercise 9. Describe an algorithm that, given n < 100, finds a0, a1, . . . , an ∈ R
such that the expression∫ 1

0

(e−x −
n∑

i=0

aix
i)2dx+

∫ 1

0

(e−x +

n∑
i=1

iaix
i−1)2e−x

2

dx

is as small as possible.

Exercise 10. Evaluate the sum of the series
∑∞

n=1
1
n2 by considering the function

f(x) = x on the interval [0, 1].

Exercise 11. Let a ∈ `2, let H be a Hilbert space, and let {en}∞n=1 be an o.n. basis
for H, and let K = {

∑
xnen : |xi| ≤ |ai|}. Prove that K is compact in H.

Exercise 12. Let A ∈Mn(C), and identify A with the operator TA that it induces
on Cn. Prove that ‖A‖ is equal to the square root of the greatest eigenvalue of
A∗A.

Exercise 13. Let P ∈ B(H), P = P 2. Such an operator is called a projection.
Recall that an orthogonal projection was defined to be the best approximation
mapping PM (here M is a closed subspace) which maps every x ∈ H to the unique
m ∈M such that ‖x−m‖ is minimal.
Prove that P is an orthogonal projection if and only if P ∗ = P .
Prove that P is an orthogonal projection if and only if ‖P‖ ≤ 1.
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Exercise 14. Let H be a Hilbert space. Let B : H ×H → C be a function that is
a sesquilinear form, that is, it satisfies

B(ax+ y, bz + w) = abB(x, z) + bB(y, z) + aB(x,w) +B(y, w)

for all x, y, z, w ∈ H, and a, b ∈ C. Assume further that B is bounded, that is,
there exists some C such that

|B(x, y)| ≤ C‖x‖‖y‖
for all x, y ∈ H. Prove that there exists a unique A ∈ B(H) such that for all
x, y ∈ H,

B(x, y) = (Ax, y).

The following exercise might be tedious but it is very useful.

Exercise 15. Let {Hi}i∈I be a collection of Hilbert spaces. Define a new space

H = {x ∈ Πi∈IHi :
∑
i∈I
‖x(i)‖2 <∞}.

Endow H with an inner product (x, y) =
∑

i∈I〈x(i), y(i)〉. This space is called the
direct sum of the spaces Hi and is denoted H = ⊕i∈IHi.

(1) Prove that H is indeed a Hilbert space.
(2) Suppose that I = {1, . . . , n}¡ so that H = ⊕n

i=1Hi = H1 ⊕ . . .⊕Hn. Then
one can think of h ∈ H as a column h = (h1, . . . , hn)t, where hi ∈ Hi.
Let A be an n × n matrix such that the ijth entry is an operator Aij in
B(Hi, Hj). Show that multiplication by A gives rise to an element TA in
B(H), by way of

TA(h1, . . . , hn)t = (

n∑
j=1

A1jhj , . . . ,

n∑
j=1

Anjhj).

Show that every T ∈ B(H) arises this way.
(3) Continuing with the same notation, show that the adjoint of TA is TA∗

where the A∗ is the operator matrix that has A∗ji in the ijth place.
(4) Show that if A and B are operator matrices with the appropriate decom-

position (figure out what that means), then TATB = TAB , where AB is the
matrix with

∑
k AikBkj in its ijth entry.


