ADVANCED ANALYSIS (201-2-5401)
 WINTER 2013/2014
 HOMEWORK ASSIGNMENT 2

ORR SHALIT

In all of the following X is normed space. Solve all exercises in the lecture notes. Hand in one out of every two consecutive exercises.

Exercise 1. The following are equivalent:
(1) X is Banach.
(2) For every $\left\{x_{n}\right\} \subset X$, if $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$ then $\sum_{n=1}^{\infty} x_{n}$ converges in X.

Exercise 2. Let f be a nonzero linear functional on X. The following are equivalent.
(1) f is continuous.
(2) $N(f)$ is closed.
(3) $N(f)$ is not dense.

Exercise 3. True or false: A norm is induced by an inner product if and only if whenever $\|x\|=\|y\|$ and $a, b \in \mathbb{R}$, then $\|a x+b y\|=\|b x+a y\|$ (you may assume, for simplicity, that the scalars are real).

Exercise 4. A closed half space in X is a set of the form $\{x \in X: \Re f(x) \leq c\}$ for some $c \in \mathbb{R}$ and some $f \in X^{*}$. True or false: a set C is a convex closed set if and only if it the intersection of closed half spaces.
Exercise 5. Let X be a normed space. Fix $\left\{x_{i}\right\}_{i \in I} \subset X$ and $\left\{a_{i}\right\}_{i \in I} \subset \mathbb{C}$. Show that there exists $f \in X^{*}$ such that $f\left(x_{i}\right)=a_{i}$ for all $i \in I$ if and only if there exists some constant $M \geq 0$ such that for every finite set of indices $i_{1}, \ldots, i_{n} \subseteq I$, and every sequence $\left\{b_{k}\right\}_{k=1}^{n}$, the inequality

$$
\left|\sum_{k=1}^{n} b_{k} a_{i_{k}}\right| \leq M\left\|\sum_{k=1}^{n} b_{k} x_{i_{k}}\right\|
$$

holds.
Exercise 6. Let $A, B \subseteq X$ be closed, and assume that at least one of them is compact. Prove that $A-B$ is closed. What happens if one does not assume that one of the sets is compact?
Exercise 7. Let X and Y be normed spaces. Define a new normed space

$$
Z=X \oplus Y=\{(x, y) \in X \times Y\}
$$

with the obvious vector space structure and the norm $\|(x, y)\|_{Z}=\|x\|_{X}+\|y\|_{Y}$.
(1) Prove that $Z^{*}=X^{*} \oplus Y^{*}$. What is the norm on Z^{*} ? (The answer should be in terms of the norms of X^{*} and Y^{*}).
(2) What changes if the norm on Z is taken to be $\|(x, y)\|_{Z}=\sqrt{\|x\|^{2}+\|y\|^{2}}$?

Exercise 8. True or false?
(1) If X and Y be isomorphic Banach spaces then X is reflexive if and only if Y is reflexive.
(2) Every finite dimensional normed space is reflexive.

Exercise 9. Let $X=\mathbb{R}^{3}$ with the ℓ^{1} norm: $\|(x, y, z)\|=|x|+|y|+|z|$. Let $X_{0}=\{(x, y, z): z=0=x-3 y\}$. Let f_{0} be the functional on X_{0} given by $f_{0}(x, y, z)=x$. Find the general form of $f \in X^{*}$ that extends f_{0} and satisfies $\|f\|=\left\|f_{0}\right\|$. What changes if the ℓ^{1} norm is replaced by the Euclidean norm?
Exercise 10. Suppose that $H=\mathbb{C}^{n}$ with the standard inner product. Find the norm on $B(H)^{*}$, when $B(H)$ is given the operator norm.

Exercise 11. (Existence of a mean) Let $\ell_{\mathbb{R}}^{\infty}(\mathbb{Z})$ be the space of bounded real sequences:

$$
\ell_{\mathbb{R}}^{\infty}(\mathbb{Z})=\left\{a=\left(a_{n}\right)_{n=-\infty}^{\infty}: \sup _{n}\left|a_{n}\right|<\infty\right\}
$$

Let T be the translation operator given by $T a=b=\left(b_{n}\right)_{n=-\infty}^{\infty}$, where $b_{n}=a_{n+1}$. Prove that there exists a linear functional $f \in \ell_{\mathbb{R}}^{\infty}$ of norm 1 that satisfies
(1) $f(T a)=f(a)$ for all a (translation invariance).
(2) $\inf _{n} a_{n} \leq f(a) \leq \sup _{n} a_{n}$ for all a.

Such a functional is sometimes called a mean. (Hint: separate the set $\left\{a \in \ell_{\mathbb{R}}^{\infty}(\mathbb{Z})\right.$: $\left.\inf a_{n}>0\right\}$ and $\left.\left.\left\{a-T a: a \in \ell_{\mathbb{R}}^{\infty}(\mathbb{Z})\right\}\right)\right)$. Deduce that $\left(\ell^{\infty}(\mathbb{N})\right)^{*} \neq \ell^{1}(\mathbb{N})$.

Exercise 12. Let X a real vector space with two norms $\|\cdot\|_{i}, i=1,2$. Let f be a linear functional such that

$$
f(x) \leq \max \left\{\|x\|_{1},\|x\|_{2}\right\} \quad, \quad x \in X .
$$

Prove that there exists $t \in[0,1]$ such that for all $x \in X$,

$$
f(x) \leq t\|x\|_{1}+(1-t)\|x\|_{2} .
$$

(Hint: consider the convex hull of S (i.e., the smallest closed set containing S, where $\left.S=\left\{\left(\|x\|_{1}-f(x),\|x\|_{2}-f(x)\right): x \in X\right\} \subset \mathbb{R}^{2}\right)$.
Exercise 13. Let c be the subspace of ℓ^{∞} of that consists of convergent sequences.
Let c_{0} be the subspace of c that consists of sequences that converge to 0 .
(1) Prove that c_{0}^{*} is isometric to ℓ^{1} (hint: find a mapping from ℓ^{1} into c_{0}^{*} and prove that it is isometric and surjective).
(2) Prove that c^{*} is isometric to ℓ^{1} (hint: find a different mapping from the case of c_{0}).
(3) $\left(^{* *}\right)$ Does the above imply that c_{0} is isometric to c ?

Exercise 14. (1) Let $T:[0,1] \rightarrow[0,1]$ be a measure preserving (piecsewise continuous, if you wish) transformation. Suppose that for every $f \in L^{2}[0,1]$, the sums $\frac{1}{N+1} \sum_{n=0}^{N} f \circ T^{n}$ converges in the mean to $\int_{0}^{1} f(t) d t$. Prove that T is ergodic.
(2) Prove that the transformation $T(x)=x+\alpha(\bmod 1)$ is ergodic if and only if α is irrational.

