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A quick review of

SOME BASIC FACTS



A Hilbert space is a complex vector space H with an inner product
(x,y) and a norm |[|x|| = v/ (X, X).

An operator T on H is a linear mapping T : H — H.




There are two fundamental examples of Hilbert
spaces, one finite-dimensional and the other
infinite-dimensional.




The Euclidean-Hilbert space C” is the space of vectors

X = (X1,X2,...,Xn)
with inner product
n
<X, y> — ZX,‘VI-, X,y & Cc"
i=1
and orthonormal basis of coordinate vectors

€0 &9 0 0 0 o ERc



The operators on C"” are matrices

/ di1 diz2 -+ Qain \
A — do1 dg : don
\ dni dn? e dnn /

where
djj = <Aej, e,->.




The Hilbert space ¢ is the space of infinite sequences

X = (X1,X2,X3,...)

satisfying

O
IXI* =) Ixil* < o<
=1

with inner product
@)
_ 2
(X, y) = inyn X,y €4
i=1
and orthonormal basis of coordinate vectors

€1,€2,€3,...



The operators on £# are infinite matrices

/ ai1 diz ais
dg1 d22 do3
d31 d32 433

\

where
djj = <Ae/-, e,->.




To make things interesting, we place some kind
of external structure on our Hilbert space.




The Hardy space H* is the set of analytic functions on the complex
unit disk D,

f(z):ao+alz+a222+...,

obtained by completing the polynomials C|z] in the inner product
with corresponding orthonormal basis

1,z,2°,7°, ...



This external structure leads to the consideration of “natural”
operators.

Example (Unilateral shift)

The unilateral shift M, is defined on the Hardy space H* by

(M) (z) = zf(z), fe H".

In other words, M, is the coordinate multiplication operator.




MULTIVARIABLE
OPERATOR THEORY

The study of more than one
operator at a time



Let (A1,...,An) be an n-tuple of commuting operators (i.e.
AiA; = AjA;) operators.

Motivating Question #1

For which functions f does it make sense to define f(A1,...,A,)?




Let (A1,...,Ap) be an n-tuple of (possibly noncommuting)
operators. Let A = Alg(A) denote the algebra they generate, i.e.

A:Span{Ail”'Aik | ila-“aikE {17“'7”}}'

Motivating Question #2

When does an operator B belong to .A? When can B be
approximated (in an appropriate sense) by operators in .A?




The case of

A SINGLE VARIABLE



Let A: H — H be an operator.

1. Ais said to be a contraction if ||Ax|| < [|x||, Vx € H,
2. Aissaid to be an isometry if |Ax|| = ||x||, Vxé€ H,

3. A s said to be a unitary if it is a surjective isometry (i.e.
Ran(A) = H).

Note: In finite dimensions, every isometry is a unitary.



Theorem (Sz.-Nagy (1954))

Every contraction A can be “dilated” to an isometry V. In other
words, there are operators B and C such that

A 0
=(5¢)

for an appropriate choice of basis.

By scaling A (if necessary), we can always take V to be a multiple of
M, the unilateral shift.



The advantage of Sz.-Nagy’s dilation theorem is that isometries are
extremely well understood.

Theorem (Lebesgue-von Neumann-Wold)

Every isometry V can be decomposed as
V=M e U,d U,

where /\/ng) is a multiple of the unilateral shift, and U, and U; are
unitaries with absolutely continuous and singular spectral measures
respectively.




For a bounded analytic function f on the complex unit disk, we can
define /(M,) = My, and we have

Corollary

For a bounded analytic function f, we can define f(A) by dilating A
to M,, then “compressing” to the top left corner of f(M,).




There are much deeper consequences of Sz.-Nagy’s dilation
theorem. For example:

Theorem (Brown-Chevreau-Pearcy (1988))

Every contractive operator with spectrum containing the complex
unit circle has a nontrivial invariant subspace.
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In the words of Rota, the unilateral shift is a universal
model for a single contractive operator.




The case of

TWO VARIABLES



The Hardy space /H*(ID"), is the set of analytic functions on the
complex polydisc D",

HZ1,--y2Zn) = Z anz%,

d
a€Ng

obtained by completing the polynomials C|zy, ..., z,| in the inner
product with corresponding orthonormal basis

« QL

_ 01 - n
7z =2z%"--z", a=(ay,...,q,) € N{.



We can consider the coordinate multiplication operators
M,.,...,M, on the Hardy space H*(D") defined by

(M, D (z1,...,2,) = zif(z1,...,2,), FfeH*(D").



Theorem (Ando (1963))

Every pair of commuting contractions (A1, As) can be “dilated” to
commuting isometries (V1, V5). In other words, there are operators
B1, B> and Cq, Cy such that

- Al O . AQ O
V1—<31 C1>’V2_(82 C2>’

for an appropriate choice of basis.

By scaling (A1, As) (if necessary), we can always take (V1, V5) to be
a multiple of (M;,, M,,), the coordinate multiplication operators on

the Hardy space H?*(ID?).



The coordinate multiplication operators (M,,, M,,) on H*(D?) are a
model for pairs of commuting contractions.



The case of

MORE THAN TWO
VARIABLES



Example (Parrott 1973)

There are commuting contractions (A1, A2, As) that cannot be
dilated to commuting isometries. Hence, no analogue of the
Sz.-Nagy-Ando dilation theorem holds for n > 3.

This phenomena is still not well understood.



The case for

NONCOMMUTATIVITY



The noncommutative Hardy-Hilbert space F is the set of
noncommutative “analytic” functions,

F(Z1, s Zo) =Y awZw,

obtained by completing the noncommutative polynomials
C(Z1,...,Z,) in the inner product with corresponding orthonormal
basis

Zw=Zw. - Zw., Wi,...,wx€{1,...,n}



We can consider the unilateral n-shift, i.e. the n-tuple of left
coordinate multiplication operators Ly = (Lz,,...,L7 ) on F> defined
by

(Lz,F)(Z1,...,Zy) = ZiF(Z4,...,Z,), F€F.



There are natural higher-dimensional analogues of familiar notions.

Let A= (Aq1,...,A,) be an n-tuple of operators on a Hilbert space
H. Consider A as a “row” operator A : H" — H.

1. Ais said to be a contraction if [|Ax|| < ||x||, Vx & H",
2. Ais said to be an isometry if ||Ax|| = [|x]|, Vxe H",

3. A s said to be a unitary if it is a surjective isometry (i.e.
Ran(A) = H).




Theorem (Bunce-Frazho-Popescu (1982-1989))

Every contractive n-tuple of operators A = (A4,...,A,) can be
dilated to an isometric n-tuple V = (V1,...,V,). In other words, for
each i, there are operators B; and C; such that

A 0
Vi_(B,’ C,')’

for an appropriate choice of basis.

By scaling A (if necessary), we can always take V to be a multiple of
L7, the n-tuple of left coordinate multiplication operators on the

noncommutative Hardy space F-.



An analogue of the Lebesgue-von Neumann-Wold decomposition
holds for isometric tuples.

Theorem (K (2011))

Every isometric n-tuple V = (V4,...,V,) can be decomposed as
V = Lék) D Ua D Us P, Uda

where Lék) is a multiple of the coordinate multiplication operators

on F,%, U, and U are absolutely continuous and singular unitary

n-tuples respectively, and U, arises as the dilation of some
contractive n-tuple.




It turns out there are good noncommutative analogues of measure
and function-theoretic notions like absolute continuity and

singularity.

For example, an isometric n-tuple V= (V1,...,V,) is singular if and
only if the algebra it generates is a von Neumann algebra.



Corollary (K (2011))

Let V denote the (weakly closed) algebra generated by an isometric
n-tuple V.= (V1,...,V,). An arbitrary operator T belongs to V' if and
only if every subspace invariant for V is also invariant for T.

We say that the n-tuple Ly = (Lz,,...,Lz ) is reflexive.



The unilateral n-shift M is a universal model for an arbitrary
contractive n-tuple of operators.



Back to the
COMMUTATIVE CASE



The Drury-Arveson Hilbert space 12, is the set of analytic functions
on the complex n-ball B,

HZ1,y. ..y 2Zn) = Z anZ"

d
aeNj

obtained by completing C|z4, ..., z,] in the inner product with
corresponding orthonormal basis

V
\/a "a’ 2%, a € Np.
1- p .




The Drury-Arveson space has been rediscovered
several times:

Algebraic geometers at the beginning of the 20th
referred to the apolar inner product

Bombieri re-discovered the inner product the context
of number theory, where people refer to the
Bombieri inner product

Rota realized the inner product as a Hopf algebra
pairing of the polynomials with the divided powers
algebra

Arveson realized the Drury-Arveson space as the
symmetric subspace of the non-commutative Hardy
space




We can consider Arveson’s n-shift, i.e. the n-tuple of coordinate
multiplication operators M, = (M,,,...,M, ) on H? defined by

(M, ) (z1,...,20) = zif(z1,...,2,), [E H,%,

which arise from the left coordinate multiplication operators
Ll =(Lz,,...,L7 ) on the noncommutative Hardy space F? as

M, 0
LZ,':< *' *>



Theorem (Arveson (1998))

Every strictly contractive commuting n-tuple of operators

A= (A1,...,An) can be dilated to a multiple of the Arveson n-shift
M, = (M,,,...,M, ), consisting of coordinate multiplication
operators on H?.




1. Dilate A = (Aq,...,A,) to the left coordinate multiplication
operators Ly = (Lz,,...,Lz,) on the noncommutative Hardy

space F-.
2. “Compress” Ly onto the coordinate multiplication operators
M, = (M,,,...,M, ) on the Drury-Arveson space H>.

Analogous to “modding out” by the commutator ideal of the tensor
algebra to get the symmetric tensor algebra.
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Operator-algebraic

GEOMETRY



Let / be an ideal of C|zy, ..., z,|, considered as a subspace of the
Drury-Arveson space H2.

The closure of I is an invariant subspace for the coordinate
multiplication operators M, = (M,,,..., M, ), so we can write

MZ:<A,- o))
! >k >k

where A = (A1,...,Ap) is the n-tuple obtained by compressing M,
onto I+,

The n-tuple A gives a “concrete” representation of the algebra

Clzy,...,z,]/l.



Letting | = (z4 + z% — z3) and compressing M, , M,,, M, to the
orthogonal complement /= gives operators A, Ay, A3 satisfying

AZ + A5 = As.




By Arveson’s dilation theorem, every contractive commuting n-tuple
of operators arises in this way.

Consequence

The behavior of an arbitrary commuting n-tuple of operators is
“determined” by this underlying geometry.




Let V be an algebraic variety in C" with corresponding ideal
(V) ={p €Clz1,...,z5] | p(z) =0Vz € V},

and let A = (A1,...,A,) denote the n-tuple of operators obtained by

compressing the coordinate multiplication operators
M, = (M,,,...,M,)to (V)L

The self-adjoint algebra A\ generated by A can be thought of as a
non-commutative coordinate ring for V.



Conjecture (Arveson 1999)

For every projective algebraic variety, there is an exact sequence
00— K — Ay — C(V) — 0,

leading to connections between operator theory and algebraic
geometry via index theory.

Conjecture is equivalent to the commutators

being compact, i.e. finite rank plus an arbitrarily small remainder.



These commutators decompose as direct sums of finite matrices, and we can verify Arveson’s
conjecture experimentally.



Let / be an ideal of C|z4, ..., z,| generated by homogeneous
polynomials.

Theorem (Arveson (2005))

If | is generated by monomials, then Arveson’s conjecture holds.

Theorem (Guo-Wang (2008))

If I is singly generated, or if n < 3, then Arveson’s conjecture holds.




Let / be an ideal of C|z4, ..., z,| generated by homogeneous
polynomials.

Theorem (K (2012))

If there are “sufficiently nice” (for example, singly generated) ideals
l1, ...l such that

T=Th s B

then Arveson’s conjecture holds for /.

Theorem (K (2012))

If | is generated by polynomials in disjoint variables, then Arveson’s
conjecture holds for /.




Let V be an algebraic variety in C".

Theorem (K-Shalit (2012))

If Arveson’s conjecture holds for V, then it holds for every variety
with an isomorphic coordinate ring.

Theorem (K-Shalit (2012))

If there are “sufficiently nice” varieties (for example, subspaces)
Vi, ..., Vi such that

V=ViU---UViorV=V,N---NV,,

then Arveson’s conjecture holds for V.







